• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Collective excitations and quantum size effects on the surfaces of Pb(111)films: An experimental study*

    2021-07-30 07:35:38YadeWang王亞德ZijianLin林子薦SiweiXue薛思瑋JiadeLi李佳德YiLi李毅XuetaoZhu朱學(xué)濤andJiandongGuo郭建東
    Chinese Physics B 2021年7期
    關(guān)鍵詞:亞德李毅林子

    Yade Wang(王亞德) Zijian Lin(林子薦) Siwei Xue(薛思瑋) Jiade Li(李佳德)Yi Li(李毅) Xuetao Zhu(朱學(xué)濤) and Jiandong Guo(郭建東)

    1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: Pb films,plasmons,quantum size effects,high-resolution electron energy loss spectroscopy

    1. Introduction

    The collective excitations of electrons,i.e., plasmons,in metal films are important not only for the understanding of electron-electron interactions in low-dimensional systems[1,2]but also promising in plasmonic electro-optic applications,[3-11]The properties of plasmons in metal films are mainly determined by the electronic band structure of the metal as well as the dielectric properties of the substrate.[1]The spatial confinement of electrons in the metal films may also generate an essential influence on the plasmon behavior.[12,13]The spatial confinement of metal films in the normal direction will generate the quantization of the electronic states,which can be depicted as the quantum well states(QWS).Due to the discrete energy levels and the electron confinement in the QWS, the properties of metal films, such as the work functions[14]and the transport coefficients,[15]may strongly depend on the thickness,known as the quantum size effect(QSE).The plasmons in metal films sometimes also exhibit obvious QSE, mainly resulting from the inherent QWS.For example, the surface plasmon of Ag films shows negative dispersion in the small momentum range due to enhanced screening effect,[16]and the wave of the QWS can reach the substrate and give rise to the hybridized interaction between the film surface and substrate.[12]Consequently, the damping of the surface plasmon in Ag films displays significant thickness dependence.[17]QSE is a crucial issue to take into account in the research of the surface plasmons of thin films.

    Fig.1.A classic model of the surface plasmons in thin films.(a)A schematic diagram of the thin film epitaxy on the substrate,showing two interfaces. (b)A schematic plot of the surface plasmon in the film split into ω± branches.The green background illustrates the change of the width of the plasmon branch,with the qc defined at the position of the splitting or at the position of the minimum width. The dashed lines of ω± represent that the splitting may not be experimentally measured.

    The most striking metal film system showing the QSE is the Pb(111) film, where the superconducting critical temperature, work function, and the Kondo effect exhibit strong thickness-dependent oscillations.[22-27]Different from other metal films in which the QSE vanishes when the thickness is beyond~10 monolayers (ML),[28-30]the QSE in Pb(111)films is so much stronger that it persists over 30 ML.[24]The plasmons in Pb(111)films are expected to show much stronger QSE than other metal films. However,the manifestation of the strong QSE in the plasmons of Pb(111)films has not been observed so far.

    In this article, using high-resolution electron energy loss spectroscopy (HREELS) with the capability of twodimensional (2D) energy-momentum mapping,[31]we measured and analyzed the plasmon dispersions on the surface of Pb(111) films with different film thicknesses. We discovered that the QSE in Pb(111)films has a very strong effect on one of the surface plasmons,manifested as strong damping in the small momentum range. The damping is still noticeable even in 40-ML-thick Pb(111)films,clearly demonstrating the strong QSE in the perspective of the collective excitations.

    2. Methods

    3. Results and discussion

    As one of the heavy metal elements in the periodical table,Pb possesses large spin-orbit coupling,which may induce topological phases in systems associated with Pb films.[34-37]From theoretical calculations,the spin-orbit effect is also predicted to have a great influence on the plasmons of Pb,e.g.,resulting in anisotropy of the plasmons or generating new excitation modes.[38,39]Previous HREELS experiment[40]of Pb(111) films grown on Si(111) focused on a plasmon mode around 2 eV(q →0),which was assigned to be a surface plasmon. While there was a huge disagreement with the theoretical calculations,where the mode around 2 eV was proved to be a bulk mode related to the spin-orbit coupling of Pb.[38]To clarify the issue, we performed systematical HREELS measurements to show the full dispersions of the plasmons in Pb(111) films and analyzed the possible manifestation of the QSE in the collective excitations.

    Fig.2. The momentum-dependent energy loss curves of Pb(111)films with different thicknesses. (a)-(f)corresponding to film thickness of 40,30,20,13,7,and 4/3 ML,respectively. The dispersions of different branches are represented by dotted lines as guides to the eye.

    Figure 2 shows the momentum-dependent energy loss curves(ELCs)of Pb(111)films with different thicknesses,extracted from the 2D HREELS mapping (see Fig. B1 in Appendix B). In the 4/3-ML sample, only two loss peaks can be discerned due to the strong effect of the substrate, since it is actually the Pb-induced reconstruction of the Si(111)surface, with details discussed in the appendix. Except for the 4/3-ML sample, all the other samples show four peaks in the ELCs, marked by the dashed lines and labeled as TE,α1,α2,α3, respectively. In order to check the details about the thickness-dependence,we plot the stacking ELCs of different thicknesses atq=0.07 ?A-1andq=0.2 ?A-1,in Figs.3(a)and 3(b),respectively. The line profiles of these modes at different thicknesses are clearly demonstrated. The exact energies of the peaks can be obtained by fitting the ELCs using Lorentz functions. Two typical fitting cases are shown in Figs. 3(c)and 3(d)as examples. The fitting results are plotted in Fig.4 to show the dispersions of the observed features. The assignments of these features are obtained by comparison with theoretical calculations,[38,41]with the results summarized in Table 1.

    Table 1. Summary of the four observed features in the HREELS measurement of the Pb(111)films.

    The TE branch represents the photoemission threshold excitation, usually manifested as a single-particle excitation peak in HREELS.[42,43]In Pb(111) films, the TE branch is located at about 4 eV, very close to the work function of Pb(4.25 eV).

    Theα1,α2,α3branches are the collective excitations of Pb(111) films.α1is a bulk plasmon, with the energy of~1.8 eV atq=0 and dispersing up to~2.1 eV atq~0.1 ?A-1.The dispersion matches well(shown in Fig.C1(a)in Appendix C)with the calculated bulk plasmon,[38]which is strongly related to the spin-orbit coupling effect of Pb.α2is a surface plasmon,with the energy of~7.0 eV atq=0 and being dispersionless up toq=0.4 ?A-1. The comparison with the calculation (shown in Fig. C1(b) in Appendix C) indicates thatα2is closely related to the interband transitions.[41]The predicted acoustic plasmons in theoretical calculations[38]were not observed in our measurements,possibly because its crosssection,i.e.,the intensity in loss functions is too low to show obvious peaks in the ELCs.

    α3is another surface plasmon,strongly related to the film thickness,which will be the focus in this study. The comparison betweenα3and the calculated surface plasmon dispersion(shown in Fig. C1(b) in Appendix C) indicates that the overall energy ofα3is slightly lower than the calculated results.This difference should be resulting from the screening effect of the d-electrons,which is difficult to be fully considered in the calculations due to the strong electron-electron interactions.It can be roughly understood by a phenomenological model,where the reduction of the surface plasmon energy due to the additional screening from the d-electrons can be described by Liebsch’s theory.[44]

    Fig. 3. Comparison of the energy loss curves with different thicknesses and the curve fitting process: (a) the comparison at q=0.7 ?A-1; (b) the comparison at q=0.2 ?A-1. The dispersion of different branches is represented by dotted lines for guides to the eye; (c) and (d) typical peak fitting process of the 40-ML sample at q=0.07 ?A-1 and q=0.2 ?A-1,respectively.

    A prominent feature ofα3is the damping in the small momentum range,as shown in Figs.4 and C1(b). In all the films,regardless of the thickness,α3cannot be measured aroundq=0.With increasingq,α3gradually appears after the critical momentum valueqc. This phenomenon has not been reported in previous experimental studies of Pb(111) films. There are two possible reasons for the damping of surface plasmons at the small momentum range: (i)the interaction with other collective excitations or (ii) the interaction between the top and bottom interfaces of the thin films.

    The first scenario has been reported in two metal film systems, Cs films on Si(111) substrate[20]and Ag films on Cu(111) substrate.[16]In the case of ultrathin Cs films, there is a crossover between the multipole plasmon and the regular surface plasmon.[20]The regular surface plasmon cannot be measured whenq <0.1 ?A-1due to the influence of the multipole plasmon.[20]In the case of thin Ag films, the surface plasmon cannot be measured as well whenq <0.1 ?A-1,where only bulk plasmon can be measured.[16]In both cases,two plasmon modes cannot coexist,i.e., only one mode can be observed at each specificq. As an analogy, in our measurement, it seemsα3in Pb(111) films at small momentum range could be damped due to the influence ofα2. However,different from the cases of Cs and Ag films, it is clear from Fig. 2 thatα3andα2always coexist whenq >qc. These results rule out the possibility that the damping ofα3at the small momentum range is due to the interaction with other collective excitations.

    Fig.4. Dispersions of the measured plasmons obtained from the fitting of loss curves: (a)-(f)corresponding to film thickness of 40,30,20,13,7,and 4/3 ML,respectively.

    The second scenario,i.e.,the interaction between the top and bottom interfaces,is essentially a size effect due to the finite film thickness, as illustrated in Fig. 1. This scenario for Pb(111) films has been theoretically calculated in Ref. [41]and the overall damping feature ofα3observed in our experiment agrees well with this picture. The main difference is that the expected spitting ofα3in the small momentum range was not clear in the experiment, similar to the case of the surface plasmon in Ag films.[17]Instead,the damping was reflected by the change of the FWHM as a function ofq. As described in the scheme of Fig.1(b),qccan be determined as the momentum position of the minimum FWHM.To obtain the quantitative value of theqcfor each Pb(111)film with different thickness, the FWHMs ofα3at differentqare obtained from the fitting method shown in Figs.3(c)and 3(d). The fitting results are plotted in Fig.5(a). For each thickness,the FWHM gradually decreases with increasingquntil reaching the minimum,after which the FWHM starts increasing withq.

    As shown in Fig.5(b),the experimentalqcof Pb(111)is almost maintained around 0.2 ?A-1with the film thickness less than 30 ML; and it decays slowly to about 0.15 ?A-1when the film thickness is up to 40 ML. The weak and slow decay of the experimentally measuredqcin Pb(111)is significantly different from the case of Ag(111) as well as the calculated of Pb(111), both showing an exponential decay with the increasing film thickness. The observed phenomenon provides a manifestation of the strong QSE in Pb(111)films in the perspective of collective excitations.

    The origin of the surprisingly strong QSE in Pb(111)films has been theoretically investigated in Ref. [45]. Compared with other metals, the QSE in Pb(111) films are more prominent due to the slow decay of Friedel oscillations in the electron density from the Pb(111) surfaces, which is related to the strong nesting of the Fermi surface along the Pb(111) direction.[45]The Friedel oscillations at the Pb(111)surface decay as 1/xwith the distancexfrom the surface,different from the conventional 1/x2power law at other metal surfaces.[45]Rather than the mere presence of QWS, the interference in the electron density by the strong Friedel oscillations associated with the strong nesting of the Fermi surface along the Pb(111) direction,[45]would inevitably affect the plasmon behaviors. These effects are usually not considered in theab initiocalculations, resulting in the possible overestimation of the decay ofqcupon film thickness.[41]The indepth mechanism of the enhanced interface interactions in the surface plasmons by QSE is still not clear. More studies including both experiments and theories are needed in the future investigations.

    Fig.5. The critical momentum qc of different thicknesses: (a)the variation of the FWHW with different film thicknesses of Pb(111). The stars on the horizontal axis mark the positions of the qc. (b) Comparison of the decay of qc between different systems. The experimental values of Pb(111) are obtained from panel(a). The theoretical values of Pb(111),[41] experimental values of Ag(111),[17] and theoretical values of Ag(111)[18] are extracted from previous studies.

    4. Summary

    We have measured the electronic collective excitations in Pb(111) films with different thicknesses. The dispersions of three different plasmons modes have been observed and analyzed. We discovered that one of the surface plasmons shows strong damping in the small momentum range whenq <qc,manifesting the strong QSE effect in Pb(111) films. Different from other metal films in which the critical momentumqcdecays exponentially with increasing film thickness,theqcin Pb(111)films decays much slower,and the strong damping is still observable even in 40-ML-thick Pb(111)films. These observations indicate that the interactions between the surface and interface of the Pb(111) films can be enhanced by the strong Friedel oscillations in the electron density and significantly affect the behaviors of the collective excitations. This work further proves that the QSE is an important issue that should be considered in the analysis of the surface plasmons of thin metal films. Moreover,the thickness-dependent damping behavior originated from the QSE may have potential applications in plasmonics based on metal films.

    Acknowledgment

    The authors would like to thank Prof. E V Chulkov and Prof. V M Silkin for discussions about the plasmon assignments.

    Appendix A:Characterization of the films

    Fig.A1. (a)-(f)The LEED patterns of Pb(111)films with different thicknesses,with the incident electron beam energy of 90 eV.(g)and(h)The STM images(V =-2 V,I=100 pA)of 30-ML-thick Pb(111)films and 4/3-ML-thick Pb(111)films,respectively.

    Appendix B:Original 2D HREELS data

    The original data obtained from our 2D HREELS system are the energy-momentum mappings, as shown in Fig.B1. The momentum-dependent energy loss curves(ELCs),i.e.,the scattering intensity as a function of energy loss for a given momentum value,shown in Fig.2 of the main manuscript,are extracted from these 2D HREELS mappings.

    Fig.B1. (a)-(f)2D HREELS mappings showing the relationship between the energy loss and the momentum of Pb(111)films with different thicknesses.

    Appendix C:Comparison of the measured plasmons with theoretical calculations

    The assignments of the observed HREELS features are obtained by comparison with theoretical calculations.The colored background in Fig.C1(a)is adopted from the calculated loss functions of bulk Pb,[38]while the colored background in Fig. C1(b) is adopted from the calculated loss functions of Pb(111) films.[41]With our measured energy-momentum points superimposed on the theoretical backgrounds, we can obtain the assignments of the experimentally observed plasmon branches. The results are summarized in Table 1 in the main manuscript. The dispersions ofα1andα2matches well with the calculated results, while the overall energy ofα3is slightly lower than the calculated results. This difference should be resulting from the screening effect of the delectrons,which is difficult to be fully captured in the calculations.

    In Fig.C1(c),we plot the dispersions ofα3for the films with different thicknesses in one panel,to show that the overall energy is consistent with the dispersion of the calculated surface plasmon.

    Fig. C1. (a) Comparison of the experimental dispersion (dots) of α1 (40 ML) with the calculated loss functions (colored background, reprinted by permission from Ref.[38]. Copyright by the American Physical Society.) of bulk Pb. (b)Comparison of the experimental dispersion(dots)of α2 and α3(20 ML)with the calculated loss functions(colored background,reprinted by permission from Ref.[41]. Copyright by the American Physical Society.)of the 21-ML Pb(111)film. (c)The experimental dispersions of the α3 branch with different thicknesses.

    Appendix D: Comparison of the HREELS results between the 4/3-ML-Pb(111) film and Si substrate

    As shown in Fig. 2, different from the thicker films in which four energy loss peaks are clearly observed, the 4/3-ML-Pb(111) films can only roughly show two peaks. Especially,the bulk plasmonα1can no longer be observed in the ultrathin 4/3-ML-Pb(111)films. Here,in Fig.D1,the HREELS results of the 4/3-ML-Pb(111) films and the Si substrate are compared to show the possible influence from the substrate. It is clear that the ELCs of the 4/3-ML-Pb(111) films are more similar to the substrate than the thicker films,indicating strong substrate effects in the ultrathin films. Similar substrate effects have been previously reported in ultrathin Al films on Si(111).[48]Consequently,the dispersion of theα3branch and the correspondingqcof the 4/3 ML-Pb(111) are not as clear as those of the thick films. Theqcof the 4/3-ML-Pb(111) is roughly estimated from the momentum-dependent ELCs, as shown in Fig.D1(c). All other films with larger thicknesses in our study do not show obvious substrate effects, as shown in Fig.2.

    Fig. D1. (a) and (b) The 2D HREELS mappings of 4/3-ML-Pb(111) films and the Si substrate, respectively. (c) and (d) The momentum-dependent ELCs of the 4/3-ML-Pb(111)films and the Si substrate extracted from the 2D HREELS mappings.

    Appendix E: HREELS measurements at low temperature

    In order to study the influence of temperature on the plasmons of Pb(111)films,we also performed the HREELS measurements on the 30-ML-Pb(111) films at 35 K, with the results shown in Fig.E1. The plasmons of Pb(111)films at 35 K marked in Fig.E1(b)do not show an obvious difference with the results obtained at room temperature.

    Fig.E1. (a)The 2D HREELS of 30-ML-Pb(111)films measured at 35 K.(b)The corresponding momentum-dependent ELCs.

    猜你喜歡
    亞德李毅林子
    A simulation study of protons heated by left/right-handed Alfvén waves generated by electromagnetic proton–proton instability
    The Iditarod
    Hunter—Gatherers
    Advantages and Disadvantages of Studying Abroad
    冬日的林子
    Summer Vacation
    曉出凈慈寺送林子方
    如果
    特殊技能
    特殊技能
    故事會(2016年21期)2016-11-10 21:18:05
    国产高清国产精品国产三级| 一本一本综合久久| 亚洲美女黄色视频免费看| av有码第一页| 中文字幕人妻熟人妻熟丝袜美| 嫩草影院新地址| 久久久久久伊人网av| 日韩欧美 国产精品| 免费大片黄手机在线观看| 国产淫语在线视频| 免费看日本二区| 我要看黄色一级片免费的| 久久影院123| 国产综合精华液| 一级,二级,三级黄色视频| 成人综合一区亚洲| 狂野欧美激情性bbbbbb| 91精品伊人久久大香线蕉| 日本猛色少妇xxxxx猛交久久| 日韩制服骚丝袜av| 国产极品天堂在线| 免费观看av网站的网址| 亚洲成色77777| 国产熟女欧美一区二区| 久久女婷五月综合色啪小说| 国产精品.久久久| 国产在线男女| 亚洲美女搞黄在线观看| 国产亚洲一区二区精品| 中文乱码字字幕精品一区二区三区| 97在线视频观看| 大码成人一级视频| 七月丁香在线播放| 国内揄拍国产精品人妻在线| 午夜av观看不卡| 一级,二级,三级黄色视频| 亚洲欧美一区二区三区黑人 | 免费看日本二区| 国产精品嫩草影院av在线观看| 91久久精品国产一区二区成人| 国产真实伦视频高清在线观看| 国产av码专区亚洲av| 午夜福利网站1000一区二区三区| 色5月婷婷丁香| 亚洲国产毛片av蜜桃av| 黑人巨大精品欧美一区二区蜜桃 | 色94色欧美一区二区| 午夜影院在线不卡| 国产精品蜜桃在线观看| 久久久久网色| 狂野欧美白嫩少妇大欣赏| 麻豆成人午夜福利视频| 99久国产av精品国产电影| 一区二区三区免费毛片| av卡一久久| 国精品久久久久久国模美| 在线观看免费高清a一片| 六月丁香七月| 热re99久久国产66热| 狂野欧美激情性bbbbbb| 三上悠亚av全集在线观看 | 亚洲在久久综合| 麻豆成人av视频| 久久精品国产亚洲av涩爱| 久久精品国产亚洲av涩爱| 麻豆成人av视频| 亚洲欧美日韩东京热| 黄色日韩在线| 久久毛片免费看一区二区三区| 蜜桃在线观看..| 国产成人freesex在线| 免费观看av网站的网址| 最新的欧美精品一区二区| 国产真实伦视频高清在线观看| 亚洲国产av新网站| 一级片'在线观看视频| 欧美性感艳星| 亚洲欧美清纯卡通| 国产精品一二三区在线看| 国产日韩欧美亚洲二区| 久久久精品免费免费高清| 看十八女毛片水多多多| 日本-黄色视频高清免费观看| 交换朋友夫妻互换小说| 精品国产乱码久久久久久小说| 亚洲精品乱久久久久久| 免费av中文字幕在线| 成人特级av手机在线观看| 亚洲欧洲日产国产| 免费观看性生交大片5| 成人漫画全彩无遮挡| 偷拍熟女少妇极品色| 丰满迷人的少妇在线观看| 91久久精品国产一区二区三区| 爱豆传媒免费全集在线观看| 精品久久久久久电影网| 国产国拍精品亚洲av在线观看| 啦啦啦在线观看免费高清www| 有码 亚洲区| 欧美性感艳星| 偷拍熟女少妇极品色| av在线播放精品| 啦啦啦视频在线资源免费观看| 校园人妻丝袜中文字幕| 少妇猛男粗大的猛烈进出视频| 婷婷色综合www| 老司机影院成人| 超碰97精品在线观看| 丁香六月天网| 美女中出高潮动态图| 国产成人午夜福利电影在线观看| 中文资源天堂在线| 18禁动态无遮挡网站| av线在线观看网站| 国产欧美日韩精品一区二区| 国产欧美日韩一区二区三区在线 | 国产永久视频网站| 久久免费观看电影| 少妇人妻一区二区三区视频| 国产黄频视频在线观看| 日韩制服骚丝袜av| 免费播放大片免费观看视频在线观看| av.在线天堂| 欧美区成人在线视频| 精品酒店卫生间| 熟女av电影| 少妇的逼水好多| 黄色欧美视频在线观看| 亚洲av在线观看美女高潮| 久热久热在线精品观看| 在线观看www视频免费| 久久精品夜色国产| 下体分泌物呈黄色| 男人和女人高潮做爰伦理| 18禁在线无遮挡免费观看视频| 国产高清国产精品国产三级| 男女边吃奶边做爰视频| 性色avwww在线观看| 六月丁香七月| 大香蕉97超碰在线| 色婷婷久久久亚洲欧美| 亚洲欧美日韩另类电影网站| 天堂俺去俺来也www色官网| 亚洲国产欧美日韩在线播放 | 国产白丝娇喘喷水9色精品| 亚洲成人av在线免费| 全区人妻精品视频| 国产免费福利视频在线观看| 欧美bdsm另类| 日韩av免费高清视频| 成人漫画全彩无遮挡| 久久精品久久精品一区二区三区| 久久午夜福利片| 久久国内精品自在自线图片| 夜夜骑夜夜射夜夜干| 欧美日韩av久久| 亚洲精品成人av观看孕妇| 麻豆精品久久久久久蜜桃| 国产乱来视频区| 人人妻人人添人人爽欧美一区卜| 天天躁夜夜躁狠狠久久av| 久久国产精品大桥未久av | 欧美精品高潮呻吟av久久| 亚洲欧美清纯卡通| 女人精品久久久久毛片| 国产女主播在线喷水免费视频网站| 日韩一区二区三区影片| 黑人猛操日本美女一级片| 99热国产这里只有精品6| a级片在线免费高清观看视频| 人妻少妇偷人精品九色| 精品一区二区免费观看| 亚洲第一区二区三区不卡| 九草在线视频观看| 亚洲国产日韩一区二区| 人体艺术视频欧美日本| 永久免费av网站大全| 亚洲av成人精品一二三区| 大片电影免费在线观看免费| 97在线视频观看| 青青草视频在线视频观看| 日本爱情动作片www.在线观看| 亚洲国产精品一区三区| 日韩成人av中文字幕在线观看| 亚洲国产精品一区三区| 中文字幕av电影在线播放| 久久国内精品自在自线图片| 少妇 在线观看| 国产日韩欧美亚洲二区| a级一级毛片免费在线观看| 内射极品少妇av片p| 国产白丝娇喘喷水9色精品| 人妻夜夜爽99麻豆av| 欧美亚洲 丝袜 人妻 在线| 五月伊人婷婷丁香| av免费在线看不卡| 国产亚洲午夜精品一区二区久久| 成人特级av手机在线观看| 国产综合精华液| 日日摸夜夜添夜夜爱| 午夜老司机福利剧场| 美女内射精品一级片tv| 一区二区三区乱码不卡18| 国语对白做爰xxxⅹ性视频网站| 精品少妇内射三级| 婷婷色综合www| 亚洲精品日本国产第一区| 曰老女人黄片| 国产精品一二三区在线看| 熟妇人妻不卡中文字幕| 国产爽快片一区二区三区| 日韩电影二区| 久久99精品国语久久久| 国产亚洲午夜精品一区二区久久| 夜夜骑夜夜射夜夜干| 精品视频人人做人人爽| 欧美精品人与动牲交sv欧美| 日韩中文字幕视频在线看片| 欧美日韩视频高清一区二区三区二| 欧美性感艳星| 高清欧美精品videossex| 久久人人爽人人片av| 国产深夜福利视频在线观看| 亚洲欧美日韩东京热| 免费观看在线日韩| 黄片无遮挡物在线观看| 国内揄拍国产精品人妻在线| 免费观看无遮挡的男女| 一级av片app| 99久久精品一区二区三区| 亚洲成色77777| 国产亚洲5aaaaa淫片| 美女主播在线视频| 国产亚洲午夜精品一区二区久久| 日本av手机在线免费观看| 老司机亚洲免费影院| 精品亚洲成国产av| 女人久久www免费人成看片| 中文欧美无线码| 欧美丝袜亚洲另类| 熟妇人妻不卡中文字幕| 80岁老熟妇乱子伦牲交| 免费观看在线日韩| 欧美日韩精品成人综合77777| 爱豆传媒免费全集在线观看| 一二三四中文在线观看免费高清| 曰老女人黄片| 伊人久久国产一区二区| 日日摸夜夜添夜夜添av毛片| 高清黄色对白视频在线免费看 | 啦啦啦中文免费视频观看日本| 国产精品久久久久久精品电影小说| 亚洲美女搞黄在线观看| 国产av一区二区精品久久| 日本免费在线观看一区| 精品国产乱码久久久久久小说| 久久人人爽av亚洲精品天堂| 午夜激情福利司机影院| 久久这里有精品视频免费| 欧美日韩综合久久久久久| 街头女战士在线观看网站| 国产成人精品婷婷| 精品一区二区三区视频在线| 日韩电影二区| 天堂中文最新版在线下载| 七月丁香在线播放| 国产免费视频播放在线视频| 国产精品伦人一区二区| 亚洲国产精品999| 少妇人妻一区二区三区视频| 久久 成人 亚洲| 免费在线观看成人毛片| 精品视频人人做人人爽| 国产av精品麻豆| 免费观看a级毛片全部| 777米奇影视久久| 日本av手机在线免费观看| 在线免费观看不下载黄p国产| 国产91av在线免费观看| 国产精品国产av在线观看| 熟女电影av网| 欧美bdsm另类| 丰满迷人的少妇在线观看| 99久国产av精品国产电影| 高清毛片免费看| 伦精品一区二区三区| 中文天堂在线官网| 国产成人91sexporn| 亚洲精品久久午夜乱码| 国产精品一区www在线观看| 成人综合一区亚洲| 日韩一本色道免费dvd| 夫妻午夜视频| 亚洲欧美一区二区三区国产| 蜜桃在线观看..| 国产永久视频网站| 2018国产大陆天天弄谢| 日本欧美国产在线视频| 91成人精品电影| 老司机影院毛片| av福利片在线| 中文字幕av电影在线播放| 极品教师在线视频| 亚洲性久久影院| 免费人妻精品一区二区三区视频| 大码成人一级视频| 欧美 亚洲 国产 日韩一| 久久国产精品男人的天堂亚洲 | 91久久精品国产一区二区三区| 免费在线观看成人毛片| 国产伦理片在线播放av一区| 最新的欧美精品一区二区| 精品一区在线观看国产| 亚洲国产色片| 男女无遮挡免费网站观看| 欧美亚洲 丝袜 人妻 在线| 欧美性感艳星| 国产无遮挡羞羞视频在线观看| 两个人免费观看高清视频 | 插阴视频在线观看视频| 国产免费又黄又爽又色| 成人毛片60女人毛片免费| 日韩强制内射视频| 内地一区二区视频在线| 我的老师免费观看完整版| 国产亚洲最大av| 国产视频内射| 国产精品一区二区在线观看99| 中国三级夫妇交换| 97精品久久久久久久久久精品| 麻豆成人av视频| 亚洲av男天堂| 2021少妇久久久久久久久久久| 99久久人妻综合| 精品人妻熟女毛片av久久网站| 亚洲av国产av综合av卡| 色哟哟·www| 简卡轻食公司| 亚洲国产日韩一区二区| 亚洲美女视频黄频| 一区二区三区四区激情视频| 一级黄片播放器| 久热这里只有精品99| 久久久亚洲精品成人影院| 日本猛色少妇xxxxx猛交久久| av不卡在线播放| 国产成人精品一,二区| 国产熟女欧美一区二区| 女人精品久久久久毛片| 国产免费一区二区三区四区乱码| 亚洲精品国产av蜜桃| 亚洲欧美日韩东京热| 3wmmmm亚洲av在线观看| 久久 成人 亚洲| 国产欧美日韩一区二区三区在线 | 亚洲av在线观看美女高潮| 黄色日韩在线| 亚洲美女视频黄频| 久久国产亚洲av麻豆专区| 国产91av在线免费观看| 久久久国产精品麻豆| 极品人妻少妇av视频| 婷婷色综合www| 自线自在国产av| 十八禁网站网址无遮挡 | 精品久久久精品久久久| 亚洲av在线观看美女高潮| 久久女婷五月综合色啪小说| 国产精品秋霞免费鲁丝片| 99久久综合免费| 国产深夜福利视频在线观看| 黄色日韩在线| 亚洲av男天堂| 99久久精品国产国产毛片| 免费人成在线观看视频色| 午夜福利网站1000一区二区三区| 一边亲一边摸免费视频| 国产成人aa在线观看| 赤兔流量卡办理| 免费高清在线观看视频在线观看| 国产日韩一区二区三区精品不卡 | 欧美精品国产亚洲| 亚洲欧美中文字幕日韩二区| a级一级毛片免费在线观看| 国产黄色免费在线视频| 国产综合精华液| 在线亚洲精品国产二区图片欧美 | 国产成人午夜福利电影在线观看| 亚洲精品视频女| 久久综合国产亚洲精品| 国产一级毛片在线| 黄色配什么色好看| 亚洲伊人久久精品综合| 一本大道久久a久久精品| 亚洲三级黄色毛片| 亚洲精品视频女| av国产精品久久久久影院| 国产在线一区二区三区精| 中文字幕人妻丝袜制服| 又粗又硬又长又爽又黄的视频| 久久久久精品性色| 免费av不卡在线播放| 久久久久视频综合| 欧美日韩av久久| 亚洲无线观看免费| 精品久久久久久久久亚洲| 国语对白做爰xxxⅹ性视频网站| 亚洲三级黄色毛片| 边亲边吃奶的免费视频| 久久午夜综合久久蜜桃| 亚洲精品456在线播放app| 免费av不卡在线播放| 18禁裸乳无遮挡动漫免费视频| 国产老妇伦熟女老妇高清| 国产又色又爽无遮挡免| 欧美日韩精品成人综合77777| 午夜福利视频精品| tube8黄色片| 男女边摸边吃奶| 综合色丁香网| av在线老鸭窝| 成人毛片a级毛片在线播放| 亚洲国产精品一区三区| 中文字幕免费在线视频6| 免费观看av网站的网址| 久久ye,这里只有精品| 久久国产精品男人的天堂亚洲 | 一区二区三区免费毛片| 男人添女人高潮全过程视频| 日本与韩国留学比较| 久久精品久久精品一区二区三区| 99久久人妻综合| 午夜福利网站1000一区二区三区| 免费av中文字幕在线| 如何舔出高潮| 亚洲第一区二区三区不卡| 搡老乐熟女国产| 蜜桃久久精品国产亚洲av| 亚洲国产精品一区二区三区在线| 精品一区在线观看国产| 国产一级毛片在线| 欧美日韩一区二区视频在线观看视频在线| 日韩强制内射视频| 亚洲精品一区蜜桃| 久久99一区二区三区| 9色porny在线观看| 亚洲国产精品国产精品| 伊人亚洲综合成人网| 观看美女的网站| 乱码一卡2卡4卡精品| 亚洲激情五月婷婷啪啪| 美女福利国产在线| 日本欧美视频一区| 亚洲欧美精品专区久久| 国产亚洲精品久久久com| 久久毛片免费看一区二区三区| 国产精品福利在线免费观看| 亚洲欧美清纯卡通| 久久 成人 亚洲| 欧美精品高潮呻吟av久久| 汤姆久久久久久久影院中文字幕| 久久97久久精品| 大又大粗又爽又黄少妇毛片口| 在线观看免费日韩欧美大片 | 成人特级av手机在线观看| 99九九在线精品视频 | 精品国产一区二区三区久久久樱花| 国产亚洲91精品色在线| 亚洲精品一区蜜桃| 国产精品偷伦视频观看了| 少妇人妻精品综合一区二区| 日本免费在线观看一区| 国产免费一区二区三区四区乱码| 久久久精品免费免费高清| 国产一区二区在线观看日韩| 下体分泌物呈黄色| 国产黄片美女视频| av一本久久久久| 精品亚洲成a人片在线观看| 只有这里有精品99| 丰满少妇做爰视频| 国产又色又爽无遮挡免| 97超视频在线观看视频| 国产一区二区三区综合在线观看 | 欧美 日韩 精品 国产| 纵有疾风起免费观看全集完整版| 免费观看无遮挡的男女| 午夜免费观看性视频| 日韩伦理黄色片| 国产老妇伦熟女老妇高清| 少妇高潮的动态图| 亚洲精品国产色婷婷电影| 国产色婷婷99| 人人妻人人澡人人看| 99热6这里只有精品| 在线天堂最新版资源| 免费大片18禁| 久久久久久久亚洲中文字幕| 亚洲欧洲国产日韩| 99热全是精品| 国产成人精品久久久久久| 91久久精品国产一区二区成人| 伊人久久精品亚洲午夜| 观看美女的网站| 久久久久久久久久成人| 视频中文字幕在线观看| 精品少妇黑人巨大在线播放| 精品一区在线观看国产| 婷婷色av中文字幕| 精品人妻偷拍中文字幕| 美女cb高潮喷水在线观看| 久久久久久久久久成人| 日本猛色少妇xxxxx猛交久久| 老熟女久久久| 日本午夜av视频| 亚洲人与动物交配视频| 免费观看av网站的网址| 久久精品久久精品一区二区三区| 久久精品熟女亚洲av麻豆精品| 久久久久久久久大av| 久久精品久久久久久久性| 免费观看av网站的网址| 国产精品久久久久久av不卡| 亚洲国产精品999| 少妇的逼好多水| 中文字幕人妻熟人妻熟丝袜美| 久久99蜜桃精品久久| 国产美女午夜福利| 精品熟女少妇av免费看| 少妇猛男粗大的猛烈进出视频| 日韩成人伦理影院| 高清av免费在线| av在线老鸭窝| 亚洲怡红院男人天堂| 婷婷色av中文字幕| 亚洲av中文av极速乱| 丝袜脚勾引网站| 边亲边吃奶的免费视频| 99九九在线精品视频 | 精品久久久久久久久av| 精品亚洲乱码少妇综合久久| 国产熟女午夜一区二区三区 | 亚洲国产色片| 大陆偷拍与自拍| 国产精品久久久久久av不卡| 国产探花极品一区二区| 在线观看国产h片| 久久久精品免费免费高清| 久久人人爽人人爽人人片va| 国产亚洲av片在线观看秒播厂| 国产一区二区在线观看日韩| 国产精品一二三区在线看| 一级,二级,三级黄色视频| 国产精品嫩草影院av在线观看| 国产有黄有色有爽视频| 国产免费视频播放在线视频| 内射极品少妇av片p| 久久人人爽av亚洲精品天堂| 18+在线观看网站| 男女边吃奶边做爰视频| 青春草视频在线免费观看| 爱豆传媒免费全集在线观看| 伊人久久国产一区二区| 国产极品粉嫩免费观看在线 | 亚洲欧洲精品一区二区精品久久久 | 国产欧美日韩综合在线一区二区 | 日本91视频免费播放| 少妇人妻久久综合中文| 久久久久久人妻| 国产一区二区在线观看日韩| 丝袜在线中文字幕| 少妇人妻一区二区三区视频| 天堂俺去俺来也www色官网| freevideosex欧美| 秋霞在线观看毛片| 亚洲av国产av综合av卡| 日韩 亚洲 欧美在线| 国内少妇人妻偷人精品xxx网站| 高清欧美精品videossex| 肉色欧美久久久久久久蜜桃| 一本大道久久a久久精品| 99精国产麻豆久久婷婷| 人妻人人澡人人爽人人| 久久久久久久久久人人人人人人| videossex国产| 制服丝袜香蕉在线| 少妇熟女欧美另类| 亚洲精品自拍成人| 青春草国产在线视频| 日日啪夜夜撸| 三级国产精品片| av播播在线观看一区| 婷婷色av中文字幕| 欧美日韩在线观看h| 纯流量卡能插随身wifi吗| 国产一区二区在线观看日韩| 特大巨黑吊av在线直播| 精品久久久久久久久亚洲| 亚洲av不卡在线观看| 少妇人妻 视频| 99久久人妻综合| 亚洲av.av天堂| 黄色欧美视频在线观看| 九色成人免费人妻av| 99久久精品一区二区三区| 激情五月婷婷亚洲| 亚洲精华国产精华液的使用体验| 国产视频首页在线观看| 亚洲精华国产精华液的使用体验| 久久ye,这里只有精品| 国产伦在线观看视频一区| 校园人妻丝袜中文字幕| 成年人免费黄色播放视频 | 亚洲av综合色区一区| 免费播放大片免费观看视频在线观看|