• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Heterogeneous integration of GaSb layer on(100)Si substrate by ion-slicing technique

    2022-08-01 06:02:02RenJieLiu劉仁杰JiaJieLin林家杰ZhengHaoShen沈正皓JiaLiangSun孫嘉良TianGuiYou游天桂JinLi李進(jìn)MinLiao廖敏andYiChunZhou周益春
    Chinese Physics B 2022年7期
    關(guān)鍵詞:李進(jìn)林家

    Ren-Jie Liu(劉仁杰), Jia-Jie Lin(林家杰), Zheng-Hao Shen(沈正皓), Jia-Liang Sun(孫嘉良),Tian-Gui You(游天桂),§, Jin Li(李進(jìn)), Min Liao(廖敏), and Yi-Chun Zhou(周益春)

    1Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education,School of Materials Science and Engineering,Xiangtan University,Xiangtan 411105,China

    2Hunan Provincial Key Laboratory of Thin Film Materials and Devices,School of Materials Science and Engineering,Xiangtan University,Xiangtan 411105,China

    3College of Information Science and Engineering,Jiaxing University,Jiaxing 314001,China

    4State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Science(CAS),Shanghai 200050,China

    5Beijing Semicore ZKX Electronics Equipment Co.,Ltd,Beijing 100000,China

    Keywords: ion-slicing technique,heterogeneous integration,GaSbOI

    1. Introduction

    Among III–V compound semiconductors, the GaSb is a particularly significant semiconductor since its lattice parameter can be easily matched to various ternary and quaternary III–V compounds whose band gaps cover a wide range from~0.3 eV to 1.58 eV,e.g., 0.8 μm–4.3 μm.[1]Furthermore, it makes the detection of longer wavelengths(8 μm–14 μm)possible with intersubband absorption in the antimonide based superlattice. These have attracted huge attention in the development of GaSb applications in the fabrication of high-speed and microwave devices, infrared detectors, and long-wavelength lasers.[1–3]Additionally,the GaSb-based devices are a promising candidate for a variety of military and civil applications in long-wavelength regimes,such as infrared imaging sensors for missile and surveillance systems, fire detection, and monitoring environmental pollution.

    However,owing to the difficulty in fabricating,the semiinsulating GaSb substrate is not available currently, which limits its widespread applications. Heteroepitaxial growth of GaSb-based devices on GaAs substrates and Si substrates as an integration strategy has attracted considerable attention due to the numerous advantages in optoelectronic devices that can be enabled, including monolithically integrated lasers, detectors, solar cells, and transistors.[3–7]Nevertheless, this integration strategy is challenged by the conjunction of large lattice and polarity mismatches, especially for the heteroepitaxial growth on Si substrate(13%lattice mismatch with GaSb).These large mismatches easily give rise to planar defects,the antiphase boundaries (APBs) and misfit dislocations in epitaxial layers, which can reduce the device performance and reliability. Fortunately, ion-slicing technique appears to conduce to the further development of heterogeneous integration between the mismatched materials. Ion-slicing technique was developed first by Bruel in 1995,and now it has been successfully applied to the mass production of Si-on-insulator wafers(SOI).[8]In the ion-slicing technique, the light elemental ion implantation followed by wafer bonding and annealing allows relatively thick layer to slice and transfer from a donor substrate to a host material without worrying about the physical mismatch in heteroepitaxial growth. During annealing,the vacancies are introduced by the ion implantation and light elemental ions precipitate into the formation of platelet defects in nanometer dimensions, which progressively grow by Ostwald ripening.[9,10]With the concentration of the implanted ions increasing in platelet defect, the platelet defect evolves and finally coalesce to form micro-cracks.[9]The further thermal evolution of the micro-cracks leads to the fracture phenomenon, including blistering or exfoliating on the surface.When a stiffener is intentionally bonded onto the wafer surface, the overall layer, parallel to the wafer surface, can be split.[11]Hence, the ion-slicing technique can not only avoid physically mismatching materials to achieve heterogeneous integration, but also directly peel from the single crystal substrate to produce high- quality single crystal films. Furthermore,one substrate can be transferred multiple times to reduce the cost,which is important especially for the expensive materials. This method has been extended to the area of compound semiconductors,such as Si-based InP,SiC,GaN,and Ga2O3,LiTbO3.[12–16]Some researches of the exfoliation or blistering behaviors of GaSb under different ion implantation conditions have been conducted,[17–19]but no report shows that the highquality GaSb layer has been transferred onto the Si substrate successfully by ion-slicing technique so far.

    In this study,the splitting mechanism of GaSb is analyzed in detail. Combining direct wafer bonding, the GaSb layer is successfully transferred onto the Si/SiO2substrate to form high-quality GaSb-on-insulator(GaSbOI)structure.

    2. Experimental details

    The 350-μm-thick N-type (100) GaSb wafers having 2-inch(1 inch=2.54 cm)diameter were used in this study. The GaSb wafers were implanted by 75-keV H ions supplied from Nissin-implanter,respectively,with a fluence of 2×1016cm-2and 5×1016cm-2at room temperature.In order to avoid channeling effects,the 7°off the wafer normal was performed deliberately during the implantation process. After implantation,some of the GaSb wafers were cut into small samples for being characterized. Some of the samples implanted with 2×1016-cm-2and 5×1016-cm-2H ions were annealed at 200°C and 150°C with a constant flux of N2, respectively. The optical microscope (OM), Leica DM4000M, was used to characterize the surface morphologies of the samples. The strain variations under different annealing temperatures were characterized by x-ray diffraction(XRD)with Pilips X’Pert x-ray diffractometer. The cross-sectional transmission electron microscopy (XTEM), JEOL 2100F field-emission transmission electron microscope, was adopted to characterize the defects introduced by ion implantation. The quality of the different regions in sample was examined by selected area electron diffraction(SAED).Combined with direct wafer bonding,the GaSb layer was successfully transferred onto the Si/SiO2substrate. The surface topography was characterized by atomic force microscope (AFM) with Bruker Multimode 8. The structure of the GaSbOI substrate was characterized by crosssectional scanning electron microscopy (SEM) JEOL 7800F.The quality of the transferred GaSb layer after being annealed at different temperatures was examined by XRD and Raman excited by a 514.5-nm laser through using the Horiba Scientific LabRAM HR.

    3. Results and discussion

    In order to analyze the blistering behaviors, the GaSb samples implanted with 2×1016-cm-2and 5×1016-cm-2H ions are annealed at 200°C for 1 h. It is obvious that there is no change on the surface of sample implanted with 2×1016-cm-2H ions, while there are many bubbles and exfoliations on the surface of sample implanted with 5×1016-cm-2H ions as shown in Figs.1(a)and 1(b). The blistering efficiency depends on the extent of the damage produced by ion implantation because it affects the microstructure of the implanted sample. This microstructure is affected by the ion fluence.[20]The low ion fluence forms not only a small number of defects,but also the internal pressure of the defects which is not enough to overcome the facture energy of substrate,so no bubbles occur on the surface, which is regarded as a behavior of sample implanted with 2×1016-cm-2H ions. Owing to the nature of easy oxidation, the annealing temperature for GaSb must be lower. Therefore, the GaSb samples implanted with 5×1016-cm-2H ions are annealed at 150°C for 3 min and 1 h, respectively. As shown in Fig. 1(c), when the annealing time is 3 min,a large number of uniformly distributed bubbles appear on the surface. With the annealing time extending to 1 h, there is no significant increase in the volume of the bubbles,while some exfoliations occur on the surface as shown in Fig.1(d).During annealing,the defects need enough energy to migrate and coalesce together. Hence,for the GaSb implanted with 5×1016-cm-2H ions, the annealing at 150°C can meet the energy demand for the defect evolution to deform the surface causing blistering or exfoliation, which is necessary for the GaSb layer transfer.

    Fig. 1. OM image of GaSb implanted with (a) 2×1016-cm-2 H ions, (b)5×1016-cm-2 H ions after being annealed at 200 °C for 1 h,5×1016-cm-2 H ions after being annealed at 150 °C for(c)3 min and(d)1 h.

    During annealing, the driving force of defect evolution is the strain introduced by the ion implantation. The XRD is used to analyze the strain variation of the GaSb sample implanted with 5×1016-cm-2H ions after being annealed at different temperatures. Figure 2(a)shows theω/2θXRD scans along the GaSb (004) reflections. Compared with the virgin GaSb, the implanted GaSb sample presents additional scattered intensity for angles lower than the Bragg angle,indicating that there is an out-of-plane tensile strain introduced by ion implantation.[21]As reported early , the most distant fringe from the Bragg angle corresponds to the maximum strain in the GaSb sample.[21]With the temperature increasing,the additional scattered intensity decreases gradually until it disappears completely at 130°C. It indicates that the increase in the annealing temperature promotes the evolution of defects,resulting in the release of strain. The 130°C corresponds to a defect transition temperature,at which the strain introduced by ion implantation is fully released. In order to analyze the defect formation, the XTEM is utilized to characterize the microstructure for the GaSb sample implanted with 5×1016-cm-2H ions after being annealed at 130°C.Figure 2(b)shows the cross-sectional TEM image and the inset displays the H ion distribution and displacement per atom(DPA)distribution simulated by SRIM 2008.[22]The DPA is commonly used to evaluate the degree of radiation damage to materials.It is obvious that the ion implantation gives rise to a damaged layer consisting of large density of defects in the GaSb sample as shown by the red dashed line. The damaged layer is 250-nm thick and 500-nm away from the surface. The maximum damage is around the upper boundary of damaged layer, while the peak of the H ion distribution is located in the middle of the damaged layer. Figure 2(c)shows the high-resolution TEM image for the damaged layer region in Fig. 2(b). Some platelet defects,parallel to the surface,appear in the damaged layer. Just like the H ion implantation into the Si substrate,the implanted H ions and some of the vacancies generated by the implantation coprecipitate during annealing and from two-dimensional circular objects named platelet defect.[10]The platelet defects serve as the precursors of the microcracks, which are essential for the layer splitting. Hence, the formation of platelet defects causes the strain to release, corresponding to the results of Fig.2(a). With the temperature increasing,the driving force of the evolution of platelet defects is the pressure inside the defects instead of the strain introduced by ion implantation. Figure 2(d) shows the SAED images corresponding to the three regions in Fig.2(b). The diffraction patterns in three regions show regular and bright spots rather than diffraction rings,which proves that the 5×1016-cm-2H ion implantation does not make the lattice amorphous in GaSb. However, the spots in region 1 are a little bigger than the spots in region 2,which means that in region 1 there are much heavier lattices disordered than in region 2. All the implanted ions go through region 1 to region 2. It is reasonable to think that the multiple collisions between the ions and lattice atoms in region 1 cause the much heavier lattice to disorder. Hence, the implantation condition of 5×1016-cm-2H ions is suitable to the splitting of the GaSb layer.

    Fig. 2. (a) Patterns of ω/2θ XRD scan along GaSb (004) reflections for virgin GaSb and GaSb implanted with 5×1016-cm-2 H ions after being annealed at different temperatures;(b)cross-sectional TEM image of GaSb implanted with 5×1016-cm-2 H ions after being annealed at 130 °C;(c)high-resolution TEM image for the damaged layer in panel(b);(d)SAED images corresponding to the three regions in panel(b).

    Based on the analysis of the splitting mechanism of GaSb,the process of GaSb layer transfer by ion-slicing technique is shown in Fig. 3. Firstly, the GaSb wafer is implanted with 5×1016-cm-2H ions at 75 keV. Then, the implanted GaSb wafer is bonded with a 4-inch SiO2/Si(100)substrate directly after the surface has been activated by O2plasma. The O2plasma activation can remove the contaminants and increase the density of the dangling bonds on the wafer surface,which is beneficial to achieving high bonding strength at low temperature. Subsequently, the bonding pair of GaSb/SiO2/Si (100)is annealed at 150°C for 1 h in a furnace with an N2atmosphere to achieve the GaSb layer transfer.

    Fig.3. Flowchart of our scheme for GaSb layer transfer by ion-slicing technique.

    Figure 4(a) shows the images of the bonding pair of of GaSb/SiO2/Si(100)after being annealed at 150°C for 1 h. It is obvious that the upper GaSb wafer is broken up into small pieces. With linear thermal expansion coefficients of Si and GaSb being 2.6×10-6C-1and 7.75×10-6C-1, there is a large thermal mismatch between Si and GaSb. During annealing,a huge thermal stress introduced by the large thermal mismatch exceeds the fracture energy of GaSb,causing the GaSb wafer to be broken. The annealing process needs to be further optimized to reduce the thermal stress, including reducing the rate of heating and cooling. After removing the pieces of GaSb wafer,the GaSb layer is transferred onto the SiO2/Si substrate to fabricate the GaSbOI substrate, which is shown in Fig.4(b). Owing to the huge thermal stress resulting from debonding,the GaSb layer in some region is not successfully transferred onto the SiO2/Si substrate.The surface topography of the GaSb is characterized by AFM as shown in Fig. 4(c).The scan covers an area of 5 μm×5 μm.The transferred GaSb layer has a high surface roughness of 27 nm, which should be polished to be sufficiently smooth for subsequent epitaxial growth. The GaSbOI substrate shows distinct three layers,including GaSb layer,SiO2layer,and Si substrate,respectively,as shown in Fig.4(d). The thickness of GaSb layer is around 630 nm,corresponding to the maximum peak of H ion distribution in Fig.2(b). Figure 4(e)shows a typical cross-sectional TEM image of GaSbOI, which reveals a sharp and smooth bonding interface between GaSb substrate and SiO2/Si substrate. The quality of the transferred GaSb layer is evaluated by high-angle annular dark field-STEM (HAADF-STEM) as shown in Fig. 4(f). In the HAADF-STEM image, the atoms of GaSb are arranged in regular lattice structure without any visible misfit dislocations, which proves that the GaSb layer has a perfect single-crystal structure.

    Fig.4. (a)Photo for GaSb/Si bonding pair after being annealed at 150 °C for 1 h;(b)photo of GaSb layer transferred on Si substrate;(c)AFM image for transferred GaSb layer;(d)SEM image of GaSbOI structure;(e)cross-sectional TEM image of GaSbOI;(f)HAADF-STEM image for transferred GaSb layer.

    The quantitative characterization of the quality of the transferred GaSb layer is evaluated by x-ray rocking curve(XRC)measurement. The normalized(004)XRDs of the bulk GaSb substrate and the transferred GaSb layer before and after being annealed at 200°C are shown in Fig. 5(a). Obviously, an additional scattering peak appears to be lower than the Bragg angle of GaSb, while the peak disappears after being annealed at 200°C. Additionally, the full width at half maximum (FWHM) of the XRCs of the GaSb layer before and after being annealed remains constant, about 77 arcsec,which is slightly higher than that for the bulk GaSb substrate(20 arcsec). Therefore,it is reasonable to speculate that there are some defects in the transferred GaSb layer,which reduces the crystalline quality and cannot be recovered after being annealed at 200°C.The FWHMs of the XRCs of the GaSb layer before and after being annealed are significantly larger than that of virgin GaSb. The ion implantation will introduce a damaged layer containing large density of defects in the GaSb substrate as shown in Fig.2(b).Although the GaSb layer splitting occurs in the damaged layer,there are still many residual defects in the transferred GaSb layer. After being annealed at 200°C,only part of the defects recombin and disappear due to the restricted energy.Hence,these residual defects in the GaSb layer causes significantly larger FWHM of the XRCs even after being annealed at 200°C. In order to characterize the defects in the as-transferred GaSb layer,the Raman spectrum is utilized to analyze the components of the region near to the surface of the GaSb layer before and after being annealed at 200°C as shown in Fig.5(b). The GaSb layer is found to have typical first-order TO mode and LO mode before and after being annealed, and so is the virgin GaSb substrate, while an additional peak appears at around 155 cm-1for the GaSb before being annealed as shown by the black dashed line square.As reported early,during annealing,the segregation of Sb element easily happens to form a peak at about 155 cm-1in Raman scattering spectrum.[23]After being annealed at 200°C,it is reasonable to believe that the atoms near to the surface of GaSb layer are rearranged to recover the crystalline structure.Hence, the annealing at 200°C is essential for GaSb layer to improve its crystalline structure.

    Fig.5. (a)Normalized(004)XRCs for bulk GaSb substrate and transferred GaSb layer before and after being annealed at 200 °C; (b) normalized Raman spectrum for virgin GaSb and transferred GaSb layer before and after being annealed at 200 °C.

    4. Conclusions and perspectives

    In this work, we analyzed the blistering and exfoliation behaviors of GaSb after H ion implantation and confirm the suitable ion implantation fluence of 5×1016-cm-2H ions for GaSb layer transfer. During annealing, the strain introduced by the H ion implantation as the driving force accelerates the coprecipitation of the implanted H ions and some of the vacancies generated by the implantation to form the platelet defect. With the temperature increasing, the pressure inside the platelet defects,instead of the strain introduced by ion implantation,drives the platelet defects to evolve. Based on the analysis of the splitting mechanism of GaSb,the monolithic integration of high-quality GaSb layer with SiO2/Si substrate is successfully achieved by the ion-slicing technique. The crystalline quality of the GaSb layer can be further improved by annealing at 200°C.The high-quality heterogeneous integration of GaSb on the SiO2/Si substrate promises to become a novel platform for infrared applications.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China (Grant No. 2017YFE0131300),the National Natural Science Foundation of China (Grant Nos.U1732268,61874128,11622545,61851406,11705262,61875220, and 61804157), the Frontier Science Key Program of Chinese Academy of Sciences(Grant Nos.QYZDYSSW-JSC032 and ZDBS-LY-JSC009), the Chinese–Austrian Cooperative Research and Development Project (Grant No. GJHZ201950), the Shanghai Science and Technology Innovation Action Plan Program, China (Grant No. 17511106202), the Program of Shanghai Academic Research Leader, China (Grant No. 19XD1404600), the Shanghai Youth Top Talent Program, Shanghai Sailing Program,China (Grant Nos. 19YF1456200 and 19YF1456400), the K.C. Wong Education Foundation, China (Grant No. GJTD-2019-11), and the NCBiR within the Polish–China (Grant No.WPC/130/NIR-Si/2018).

    猜你喜歡
    李進(jìn)林家
    發(fā)錢
    遼河(2025年1期)2025-02-08 00:00:00
    林家陽(yáng)作品
    Evolution of surfaces and mechanisms of contact electrification between metals and polymers
    部編版初中歷史教學(xué)細(xì)節(jié)素材的運(yùn)用方法
    Dense coding capacity in correlated noisy channels with weak measurement*
    林家琪、李鴻禹作品
    常用輔助線在圓中的運(yùn)用
    林家立設(shè)計(jì)作品
    把自己“吹”進(jìn)監(jiān)獄
    有趣的發(fā)現(xiàn)
    少妇人妻久久综合中文| 在线观看一区二区三区激情| 亚洲精品一二三| 免费观看av网站的网址| 只有这里有精品99| 黄色一级大片看看| 亚洲欧美成人精品一区二区| 国产av一区二区精品久久| 久久天堂一区二区三区四区| 99国产精品免费福利视频| 国产老妇伦熟女老妇高清| 亚洲精品美女久久久久99蜜臀 | 免费在线观看视频国产中文字幕亚洲 | 丁香六月天网| 十八禁高潮呻吟视频| 国产亚洲精品第一综合不卡| 中文字幕人妻丝袜一区二区 | 国产片特级美女逼逼视频| 国产精品久久久久久精品古装| 日韩制服丝袜自拍偷拍| 青春草视频在线免费观看| 日本黄色日本黄色录像| 交换朋友夫妻互换小说| av福利片在线| 自拍欧美九色日韩亚洲蝌蚪91| 校园人妻丝袜中文字幕| 亚洲精品久久午夜乱码| 嫩草影院入口| 男人爽女人下面视频在线观看| 老司机靠b影院| tube8黄色片| 欧美激情极品国产一区二区三区| 欧美激情高清一区二区三区 | 五月天丁香电影| 老汉色∧v一级毛片| 国产又爽黄色视频| 国产在线视频一区二区| 精品免费久久久久久久清纯 | 亚洲精品aⅴ在线观看| 欧美日韩视频精品一区| 成年女人毛片免费观看观看9 | 捣出白浆h1v1| 久久免费观看电影| 国产精品秋霞免费鲁丝片| 丰满迷人的少妇在线观看| 亚洲综合精品二区| 国产精品一二三区在线看| 亚洲第一av免费看| 亚洲精品美女久久久久99蜜臀 | 国产精品一区二区精品视频观看| 下体分泌物呈黄色| 亚洲欧美精品综合一区二区三区| 天堂俺去俺来也www色官网| 黄网站色视频无遮挡免费观看| 自线自在国产av| 韩国精品一区二区三区| 亚洲av在线观看美女高潮| 午夜影院在线不卡| 亚洲成人国产一区在线观看 | av在线观看视频网站免费| 国产片内射在线| 午夜激情av网站| 秋霞伦理黄片| 伊人亚洲综合成人网| 欧美中文综合在线视频| 一边摸一边做爽爽视频免费| 免费在线观看完整版高清| 久久性视频一级片| 毛片一级片免费看久久久久| 精品亚洲成a人片在线观看| 夫妻性生交免费视频一级片| 大码成人一级视频| 久久久久国产精品人妻一区二区| 熟女av电影| 又大又爽又粗| 国产av国产精品国产| 女的被弄到高潮叫床怎么办| 夫妻性生交免费视频一级片| 欧美日韩亚洲国产一区二区在线观看 | 国产人伦9x9x在线观看| 亚洲精品中文字幕在线视频| 亚洲av电影在线进入| 女人精品久久久久毛片| 欧美精品亚洲一区二区| 人人妻人人爽人人添夜夜欢视频| 国产一区二区在线观看av| 99九九在线精品视频| 国产日韩欧美亚洲二区| 男女下面插进去视频免费观看| 亚洲综合色网址| 美女国产高潮福利片在线看| 深夜精品福利| 亚洲av男天堂| 国产精品99久久99久久久不卡 | 大片免费播放器 马上看| 新久久久久国产一级毛片| 国产av精品麻豆| 中文字幕色久视频| 人人妻人人添人人爽欧美一区卜| 久久久久久久精品精品| 久久午夜综合久久蜜桃| 国产在视频线精品| 晚上一个人看的免费电影| 91精品三级在线观看| 欧美人与性动交α欧美精品济南到| 亚洲色图综合在线观看| 精品亚洲乱码少妇综合久久| 老鸭窝网址在线观看| 一级毛片电影观看| 另类精品久久| 久久久国产精品麻豆| 精品一区二区免费观看| 老司机亚洲免费影院| 成年动漫av网址| 婷婷色麻豆天堂久久| 青青草视频在线视频观看| 晚上一个人看的免费电影| 国产免费现黄频在线看| 一边亲一边摸免费视频| 在线免费观看不下载黄p国产| 欧美变态另类bdsm刘玥| 国产一区二区三区av在线| 免费观看性生交大片5| 日韩制服丝袜自拍偷拍| 久久免费观看电影| 国产成人av激情在线播放| 天天躁夜夜躁狠狠躁躁| 欧美在线一区亚洲| 久久午夜综合久久蜜桃| 久久久久久久国产电影| 高清黄色对白视频在线免费看| 男女边吃奶边做爰视频| 亚洲成人一二三区av| 午夜福利免费观看在线| 国产片内射在线| 丝袜在线中文字幕| 夫妻性生交免费视频一级片| www.精华液| 妹子高潮喷水视频| 99国产综合亚洲精品| 日本av免费视频播放| 啦啦啦在线观看免费高清www| 男女高潮啪啪啪动态图| 天美传媒精品一区二区| 亚洲四区av| 亚洲一区中文字幕在线| 中文字幕制服av| 18禁国产床啪视频网站| 老鸭窝网址在线观看| 一本—道久久a久久精品蜜桃钙片| 中文字幕av电影在线播放| 伊人久久大香线蕉亚洲五| 国产在线视频一区二区| 天天操日日干夜夜撸| 国产黄色免费在线视频| 可以免费在线观看a视频的电影网站 | 欧美日韩精品网址| 午夜影院在线不卡| 99国产综合亚洲精品| 日韩 欧美 亚洲 中文字幕| 亚洲av中文av极速乱| 久久综合国产亚洲精品| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品无大码| 9191精品国产免费久久| 熟女av电影| 亚洲国产av影院在线观看| 男人爽女人下面视频在线观看| 精品视频人人做人人爽| 亚洲第一青青草原| 久久韩国三级中文字幕| 久久精品国产综合久久久| 亚洲精品日本国产第一区| 伊人久久大香线蕉亚洲五| 精品酒店卫生间| 亚洲av男天堂| 男男h啪啪无遮挡| 在线亚洲精品国产二区图片欧美| 亚洲视频免费观看视频| 在线看a的网站| 国产成人免费观看mmmm| 国产成人免费无遮挡视频| 久热爱精品视频在线9| 18禁动态无遮挡网站| 男女无遮挡免费网站观看| 精品酒店卫生间| 69精品国产乱码久久久| 精品一区二区三区av网在线观看 | 国产97色在线日韩免费| 国产精品秋霞免费鲁丝片| 伦理电影免费视频| 国产日韩欧美视频二区| 国产淫语在线视频| 人体艺术视频欧美日本| 欧美日韩视频精品一区| 国产精品秋霞免费鲁丝片| 国产免费又黄又爽又色| 19禁男女啪啪无遮挡网站| 制服诱惑二区| 久久久久久久久免费视频了| 一二三四在线观看免费中文在| 少妇精品久久久久久久| 国产成人精品在线电影| 一区在线观看完整版| 成人漫画全彩无遮挡| 丰满饥渴人妻一区二区三| 久久天堂一区二区三区四区| 七月丁香在线播放| 亚洲三区欧美一区| 国产成人精品久久二区二区91 | 如何舔出高潮| 久久免费观看电影| 我要看黄色一级片免费的| 热99久久久久精品小说推荐| 国产成人免费观看mmmm| 婷婷成人精品国产| 日韩av在线免费看完整版不卡| 国产av国产精品国产| avwww免费| 久久久久精品久久久久真实原创| 最近2019中文字幕mv第一页| 丝袜美腿诱惑在线| 国产免费视频播放在线视频| 赤兔流量卡办理| 精品一区二区三区四区五区乱码 | 亚洲专区中文字幕在线 | 如何舔出高潮| 十八禁人妻一区二区| 午夜91福利影院| 国产一卡二卡三卡精品 | 18禁观看日本| 大香蕉久久成人网| 曰老女人黄片| 精品国产乱码久久久久久男人| 青青草视频在线视频观看| 搡老岳熟女国产| 中文字幕人妻熟女乱码| 激情视频va一区二区三区| 成年美女黄网站色视频大全免费| 国产成人a∨麻豆精品| 考比视频在线观看| 国产一区二区在线观看av| 国产亚洲一区二区精品| 亚洲一区二区三区欧美精品| 美女国产高潮福利片在线看| 肉色欧美久久久久久久蜜桃| 99久久综合免费| 国产一卡二卡三卡精品 | 免费黄网站久久成人精品| 麻豆av在线久日| 美国免费a级毛片| 国产精品二区激情视频| 啦啦啦在线观看免费高清www| 成年av动漫网址| 亚洲av中文av极速乱| 无限看片的www在线观看| 欧美日本中文国产一区发布| 成人影院久久| 久久精品aⅴ一区二区三区四区| 人人妻人人澡人人看| 国产精品国产三级国产专区5o| 精品国产乱码久久久久久男人| 久久精品久久精品一区二区三区| 亚洲精华国产精华液的使用体验| 亚洲欧洲日产国产| 日韩电影二区| 成年女人毛片免费观看观看9 | 一级爰片在线观看| 日韩精品有码人妻一区| 青春草国产在线视频| 大话2 男鬼变身卡| 亚洲自偷自拍图片 自拍| 国产成人精品福利久久| 久久午夜综合久久蜜桃| 久久毛片免费看一区二区三区| 亚洲精品乱久久久久久| 久久精品国产a三级三级三级| a级毛片在线看网站| 婷婷色综合www| 国产一区二区三区综合在线观看| 亚洲情色 制服丝袜| 美女午夜性视频免费| 亚洲伊人久久精品综合| 18禁观看日本| 少妇被粗大猛烈的视频| 亚洲欧美激情在线| 视频在线观看一区二区三区| 国产 精品1| 国产av码专区亚洲av| 中文字幕av电影在线播放| 亚洲第一青青草原| 制服人妻中文乱码| 精品人妻在线不人妻| 国产成人91sexporn| av不卡在线播放| 天天躁夜夜躁狠狠躁躁| 五月天丁香电影| 免费黄频网站在线观看国产| 天堂中文最新版在线下载| 久热爱精品视频在线9| av在线app专区| 成人毛片60女人毛片免费| 国产日韩一区二区三区精品不卡| 涩涩av久久男人的天堂| 久久性视频一级片| 高清欧美精品videossex| 男女床上黄色一级片免费看| 一本—道久久a久久精品蜜桃钙片| 欧美亚洲日本最大视频资源| 天天操日日干夜夜撸| 精品少妇内射三级| 亚洲国产精品999| 国产成人欧美在线观看 | 免费在线观看黄色视频的| 99久久综合免费| 男女无遮挡免费网站观看| av在线观看视频网站免费| 欧美国产精品一级二级三级| a 毛片基地| 欧美黑人精品巨大| 人成视频在线观看免费观看| 久久久久国产一级毛片高清牌| 2021少妇久久久久久久久久久| 18禁观看日本| 国产成人精品在线电影| 亚洲国产av影院在线观看| 丰满少妇做爰视频| 精品亚洲成国产av| 人体艺术视频欧美日本| 一本色道久久久久久精品综合| 免费在线观看视频国产中文字幕亚洲 | 啦啦啦 在线观看视频| 最黄视频免费看| 国产免费视频播放在线视频| av线在线观看网站| 国产福利在线免费观看视频| 免费av中文字幕在线| 黄网站色视频无遮挡免费观看| www.av在线官网国产| 桃花免费在线播放| 国产黄色视频一区二区在线观看| 欧美激情极品国产一区二区三区| 日韩中文字幕视频在线看片| 亚洲欧美激情在线| 国产av码专区亚洲av| 国产高清国产精品国产三级| 黑人巨大精品欧美一区二区蜜桃| 国产精品 国内视频| netflix在线观看网站| 国产又色又爽无遮挡免| 在线观看三级黄色| 欧美97在线视频| 大码成人一级视频| 日韩精品免费视频一区二区三区| 国产精品 欧美亚洲| 国产精品香港三级国产av潘金莲 | 色婷婷久久久亚洲欧美| 交换朋友夫妻互换小说| 一二三四在线观看免费中文在| 老鸭窝网址在线观看| 曰老女人黄片| 亚洲精品视频女| 国产精品99久久99久久久不卡 | 国产精品久久久久久久久免| 操出白浆在线播放| 老熟女久久久| 七月丁香在线播放| 免费少妇av软件| 亚洲av福利一区| 欧美在线黄色| 亚洲精品国产一区二区精华液| 美女午夜性视频免费| 亚洲综合色网址| 久久狼人影院| 久久久久精品国产欧美久久久 | 久久人人爽人人片av| 日韩av在线免费看完整版不卡| 国产黄色视频一区二区在线观看| 汤姆久久久久久久影院中文字幕| 亚洲精品国产区一区二| 在线观看免费午夜福利视频| 人人妻,人人澡人人爽秒播 | 亚洲欧洲精品一区二区精品久久久 | 在线看a的网站| 老司机影院成人| 成人毛片60女人毛片免费| 下体分泌物呈黄色| 十八禁人妻一区二区| 久久久精品区二区三区| 中文字幕人妻熟女乱码| 亚洲精品一区蜜桃| 777米奇影视久久| 久久精品熟女亚洲av麻豆精品| 熟女少妇亚洲综合色aaa.| 亚洲精品久久成人aⅴ小说| 国产亚洲午夜精品一区二区久久| 亚洲精品一二三| 黄片播放在线免费| 国产一区二区激情短视频 | 国产一区二区激情短视频 | 波野结衣二区三区在线| 中国国产av一级| 亚洲图色成人| 亚洲精品久久久久久婷婷小说| 好男人视频免费观看在线| 久久天堂一区二区三区四区| 狂野欧美激情性xxxx| 久久久久久人人人人人| 久热这里只有精品99| 亚洲精华国产精华液的使用体验| 女人精品久久久久毛片| 精品国产超薄肉色丝袜足j| 制服丝袜香蕉在线| 精品一区二区三区av网在线观看 | 美女视频免费永久观看网站| 男女下面插进去视频免费观看| 99久久综合免费| 午夜福利,免费看| 免费观看性生交大片5| 亚洲av日韩精品久久久久久密 | 国产 精品1| 婷婷色麻豆天堂久久| 妹子高潮喷水视频| 久久久精品国产亚洲av高清涩受| 国产精品久久久av美女十八| 夫妻午夜视频| 高清视频免费观看一区二区| 亚洲成人手机| 男女之事视频高清在线观看 | 婷婷成人精品国产| 亚洲国产av新网站| 美女午夜性视频免费| 久久久精品94久久精品| 精品少妇黑人巨大在线播放| 9191精品国产免费久久| 交换朋友夫妻互换小说| 啦啦啦啦在线视频资源| 久久久精品国产亚洲av高清涩受| 国产免费又黄又爽又色| 久久影院123| 无遮挡黄片免费观看| 一级片'在线观看视频| 久久久欧美国产精品| 日韩成人av中文字幕在线观看| 看十八女毛片水多多多| 2021少妇久久久久久久久久久| 老鸭窝网址在线观看| 精品国产超薄肉色丝袜足j| 国产极品粉嫩免费观看在线| 午夜影院在线不卡| 中文字幕最新亚洲高清| 国产人伦9x9x在线观看| kizo精华| 黄色毛片三级朝国网站| 黄频高清免费视频| 秋霞在线观看毛片| 人人妻人人澡人人看| 国产一区有黄有色的免费视频| svipshipincom国产片| 午夜福利,免费看| 少妇猛男粗大的猛烈进出视频| 中文字幕人妻丝袜制服| 韩国av在线不卡| 婷婷色综合大香蕉| 午夜福利视频在线观看免费| 国产片内射在线| 成年人免费黄色播放视频| 黄色毛片三级朝国网站| 欧美xxⅹ黑人| 国产亚洲一区二区精品| 亚洲伊人久久精品综合| 80岁老熟妇乱子伦牲交| 啦啦啦视频在线资源免费观看| 国产av精品麻豆| 在现免费观看毛片| 欧美日韩一区二区视频在线观看视频在线| 一级毛片我不卡| 天天操日日干夜夜撸| 秋霞在线观看毛片| 亚洲精品久久久久久婷婷小说| 亚洲欧美一区二区三区国产| 69精品国产乱码久久久| 国产一区有黄有色的免费视频| 久久久久精品国产欧美久久久 | 久久久久久人人人人人| 精品午夜福利在线看| 少妇被粗大的猛进出69影院| 少妇猛男粗大的猛烈进出视频| 亚洲欧美一区二区三区黑人| 久久久精品区二区三区| e午夜精品久久久久久久| 久热这里只有精品99| xxxhd国产人妻xxx| 中文字幕人妻丝袜制服| 韩国高清视频一区二区三区| 日本vs欧美在线观看视频| 日韩电影二区| av在线播放精品| 男女之事视频高清在线观看 | 亚洲图色成人| svipshipincom国产片| 在线天堂中文资源库| 欧美国产精品va在线观看不卡| 又大又爽又粗| 日日啪夜夜爽| 国产人伦9x9x在线观看| 天天添夜夜摸| 最近2019中文字幕mv第一页| 久久精品久久久久久噜噜老黄| 国产色婷婷99| 天堂8中文在线网| 99精国产麻豆久久婷婷| 麻豆乱淫一区二区| 日本wwww免费看| 国产淫语在线视频| 中文字幕av电影在线播放| 亚洲国产精品一区二区三区在线| 国产精品久久久久久精品古装| 成人国产av品久久久| 又粗又硬又长又爽又黄的视频| 国产成人一区二区在线| 无限看片的www在线观看| 十八禁人妻一区二区| 国产乱人偷精品视频| 精品一区在线观看国产| 老司机影院毛片| 欧美日韩精品网址| bbb黄色大片| 秋霞伦理黄片| 毛片一级片免费看久久久久| a级毛片在线看网站| 自线自在国产av| 国产亚洲午夜精品一区二区久久| 国产精品.久久久| 老司机在亚洲福利影院| 99热国产这里只有精品6| 青春草视频在线免费观看| 看免费av毛片| 人成视频在线观看免费观看| 天天躁夜夜躁狠狠躁躁| 一级毛片电影观看| 天天添夜夜摸| 韩国高清视频一区二区三区| 爱豆传媒免费全集在线观看| 91精品三级在线观看| 欧美国产精品va在线观看不卡| 成人黄色视频免费在线看| 国产日韩欧美在线精品| xxxhd国产人妻xxx| 天天操日日干夜夜撸| 999久久久国产精品视频| 国产亚洲午夜精品一区二区久久| videosex国产| 国产精品免费视频内射| 亚洲美女视频黄频| 久久久精品免费免费高清| 丝袜美足系列| 18在线观看网站| 国产亚洲av片在线观看秒播厂| 亚洲av电影在线观看一区二区三区| 欧美激情极品国产一区二区三区| 国产 精品1| 久久这里只有精品19| 久久久精品免费免费高清| 王馨瑶露胸无遮挡在线观看| 欧美日韩成人在线一区二区| 国产一区有黄有色的免费视频| 精品少妇久久久久久888优播| 男女下面插进去视频免费观看| 天天躁夜夜躁狠狠躁躁| 亚洲精品国产色婷婷电影| 亚洲av电影在线进入| 麻豆精品久久久久久蜜桃| 爱豆传媒免费全集在线观看| 日韩,欧美,国产一区二区三区| 欧美国产精品va在线观看不卡| 欧美日韩一级在线毛片| 精品人妻在线不人妻| 咕卡用的链子| 亚洲熟女精品中文字幕| h视频一区二区三区| 美女福利国产在线| 免费高清在线观看视频在线观看| 欧美精品高潮呻吟av久久| 啦啦啦中文免费视频观看日本| 电影成人av| 新久久久久国产一级毛片| 色视频在线一区二区三区| 国产精品久久久久久人妻精品电影 | 国产福利在线免费观看视频| 免费黄网站久久成人精品| 成人18禁高潮啪啪吃奶动态图| 丝袜美腿诱惑在线| 悠悠久久av| √禁漫天堂资源中文www| 最近中文字幕2019免费版| 亚洲精品中文字幕在线视频| www.精华液| 叶爱在线成人免费视频播放| 热re99久久精品国产66热6| 一级片'在线观看视频| 国产精品一区二区在线观看99| 久久精品久久久久久久性| 欧美日韩亚洲国产一区二区在线观看 | 欧美精品av麻豆av| 美女午夜性视频免费| 成人18禁高潮啪啪吃奶动态图| 日本黄色日本黄色录像| 美国免费a级毛片| 欧美精品人与动牲交sv欧美| 在线观看www视频免费| 久久精品久久久久久噜噜老黄| 一级爰片在线观看| 久久午夜综合久久蜜桃| videosex国产|