• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Heterogeneous integration of GaSb layer on(100)Si substrate by ion-slicing technique

    2022-08-01 06:02:02RenJieLiu劉仁杰JiaJieLin林家杰ZhengHaoShen沈正皓JiaLiangSun孫嘉良TianGuiYou游天桂JinLi李進(jìn)MinLiao廖敏andYiChunZhou周益春
    Chinese Physics B 2022年7期
    關(guān)鍵詞:李進(jìn)林家

    Ren-Jie Liu(劉仁杰), Jia-Jie Lin(林家杰), Zheng-Hao Shen(沈正皓), Jia-Liang Sun(孫嘉良),Tian-Gui You(游天桂),§, Jin Li(李進(jìn)), Min Liao(廖敏), and Yi-Chun Zhou(周益春)

    1Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education,School of Materials Science and Engineering,Xiangtan University,Xiangtan 411105,China

    2Hunan Provincial Key Laboratory of Thin Film Materials and Devices,School of Materials Science and Engineering,Xiangtan University,Xiangtan 411105,China

    3College of Information Science and Engineering,Jiaxing University,Jiaxing 314001,China

    4State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Science(CAS),Shanghai 200050,China

    5Beijing Semicore ZKX Electronics Equipment Co.,Ltd,Beijing 100000,China

    Keywords: ion-slicing technique,heterogeneous integration,GaSbOI

    1. Introduction

    Among III–V compound semiconductors, the GaSb is a particularly significant semiconductor since its lattice parameter can be easily matched to various ternary and quaternary III–V compounds whose band gaps cover a wide range from~0.3 eV to 1.58 eV,e.g., 0.8 μm–4.3 μm.[1]Furthermore, it makes the detection of longer wavelengths(8 μm–14 μm)possible with intersubband absorption in the antimonide based superlattice. These have attracted huge attention in the development of GaSb applications in the fabrication of high-speed and microwave devices, infrared detectors, and long-wavelength lasers.[1–3]Additionally,the GaSb-based devices are a promising candidate for a variety of military and civil applications in long-wavelength regimes,such as infrared imaging sensors for missile and surveillance systems, fire detection, and monitoring environmental pollution.

    However,owing to the difficulty in fabricating,the semiinsulating GaSb substrate is not available currently, which limits its widespread applications. Heteroepitaxial growth of GaSb-based devices on GaAs substrates and Si substrates as an integration strategy has attracted considerable attention due to the numerous advantages in optoelectronic devices that can be enabled, including monolithically integrated lasers, detectors, solar cells, and transistors.[3–7]Nevertheless, this integration strategy is challenged by the conjunction of large lattice and polarity mismatches, especially for the heteroepitaxial growth on Si substrate(13%lattice mismatch with GaSb).These large mismatches easily give rise to planar defects,the antiphase boundaries (APBs) and misfit dislocations in epitaxial layers, which can reduce the device performance and reliability. Fortunately, ion-slicing technique appears to conduce to the further development of heterogeneous integration between the mismatched materials. Ion-slicing technique was developed first by Bruel in 1995,and now it has been successfully applied to the mass production of Si-on-insulator wafers(SOI).[8]In the ion-slicing technique, the light elemental ion implantation followed by wafer bonding and annealing allows relatively thick layer to slice and transfer from a donor substrate to a host material without worrying about the physical mismatch in heteroepitaxial growth. During annealing,the vacancies are introduced by the ion implantation and light elemental ions precipitate into the formation of platelet defects in nanometer dimensions, which progressively grow by Ostwald ripening.[9,10]With the concentration of the implanted ions increasing in platelet defect, the platelet defect evolves and finally coalesce to form micro-cracks.[9]The further thermal evolution of the micro-cracks leads to the fracture phenomenon, including blistering or exfoliating on the surface.When a stiffener is intentionally bonded onto the wafer surface, the overall layer, parallel to the wafer surface, can be split.[11]Hence, the ion-slicing technique can not only avoid physically mismatching materials to achieve heterogeneous integration, but also directly peel from the single crystal substrate to produce high- quality single crystal films. Furthermore,one substrate can be transferred multiple times to reduce the cost,which is important especially for the expensive materials. This method has been extended to the area of compound semiconductors,such as Si-based InP,SiC,GaN,and Ga2O3,LiTbO3.[12–16]Some researches of the exfoliation or blistering behaviors of GaSb under different ion implantation conditions have been conducted,[17–19]but no report shows that the highquality GaSb layer has been transferred onto the Si substrate successfully by ion-slicing technique so far.

    In this study,the splitting mechanism of GaSb is analyzed in detail. Combining direct wafer bonding, the GaSb layer is successfully transferred onto the Si/SiO2substrate to form high-quality GaSb-on-insulator(GaSbOI)structure.

    2. Experimental details

    The 350-μm-thick N-type (100) GaSb wafers having 2-inch(1 inch=2.54 cm)diameter were used in this study. The GaSb wafers were implanted by 75-keV H ions supplied from Nissin-implanter,respectively,with a fluence of 2×1016cm-2and 5×1016cm-2at room temperature.In order to avoid channeling effects,the 7°off the wafer normal was performed deliberately during the implantation process. After implantation,some of the GaSb wafers were cut into small samples for being characterized. Some of the samples implanted with 2×1016-cm-2and 5×1016-cm-2H ions were annealed at 200°C and 150°C with a constant flux of N2, respectively. The optical microscope (OM), Leica DM4000M, was used to characterize the surface morphologies of the samples. The strain variations under different annealing temperatures were characterized by x-ray diffraction(XRD)with Pilips X’Pert x-ray diffractometer. The cross-sectional transmission electron microscopy (XTEM), JEOL 2100F field-emission transmission electron microscope, was adopted to characterize the defects introduced by ion implantation. The quality of the different regions in sample was examined by selected area electron diffraction(SAED).Combined with direct wafer bonding,the GaSb layer was successfully transferred onto the Si/SiO2substrate. The surface topography was characterized by atomic force microscope (AFM) with Bruker Multimode 8. The structure of the GaSbOI substrate was characterized by crosssectional scanning electron microscopy (SEM) JEOL 7800F.The quality of the transferred GaSb layer after being annealed at different temperatures was examined by XRD and Raman excited by a 514.5-nm laser through using the Horiba Scientific LabRAM HR.

    3. Results and discussion

    In order to analyze the blistering behaviors, the GaSb samples implanted with 2×1016-cm-2and 5×1016-cm-2H ions are annealed at 200°C for 1 h. It is obvious that there is no change on the surface of sample implanted with 2×1016-cm-2H ions, while there are many bubbles and exfoliations on the surface of sample implanted with 5×1016-cm-2H ions as shown in Figs.1(a)and 1(b). The blistering efficiency depends on the extent of the damage produced by ion implantation because it affects the microstructure of the implanted sample. This microstructure is affected by the ion fluence.[20]The low ion fluence forms not only a small number of defects,but also the internal pressure of the defects which is not enough to overcome the facture energy of substrate,so no bubbles occur on the surface, which is regarded as a behavior of sample implanted with 2×1016-cm-2H ions. Owing to the nature of easy oxidation, the annealing temperature for GaSb must be lower. Therefore, the GaSb samples implanted with 5×1016-cm-2H ions are annealed at 150°C for 3 min and 1 h, respectively. As shown in Fig. 1(c), when the annealing time is 3 min,a large number of uniformly distributed bubbles appear on the surface. With the annealing time extending to 1 h, there is no significant increase in the volume of the bubbles,while some exfoliations occur on the surface as shown in Fig.1(d).During annealing,the defects need enough energy to migrate and coalesce together. Hence,for the GaSb implanted with 5×1016-cm-2H ions, the annealing at 150°C can meet the energy demand for the defect evolution to deform the surface causing blistering or exfoliation, which is necessary for the GaSb layer transfer.

    Fig. 1. OM image of GaSb implanted with (a) 2×1016-cm-2 H ions, (b)5×1016-cm-2 H ions after being annealed at 200 °C for 1 h,5×1016-cm-2 H ions after being annealed at 150 °C for(c)3 min and(d)1 h.

    During annealing, the driving force of defect evolution is the strain introduced by the ion implantation. The XRD is used to analyze the strain variation of the GaSb sample implanted with 5×1016-cm-2H ions after being annealed at different temperatures. Figure 2(a)shows theω/2θXRD scans along the GaSb (004) reflections. Compared with the virgin GaSb, the implanted GaSb sample presents additional scattered intensity for angles lower than the Bragg angle,indicating that there is an out-of-plane tensile strain introduced by ion implantation.[21]As reported early , the most distant fringe from the Bragg angle corresponds to the maximum strain in the GaSb sample.[21]With the temperature increasing,the additional scattered intensity decreases gradually until it disappears completely at 130°C. It indicates that the increase in the annealing temperature promotes the evolution of defects,resulting in the release of strain. The 130°C corresponds to a defect transition temperature,at which the strain introduced by ion implantation is fully released. In order to analyze the defect formation, the XTEM is utilized to characterize the microstructure for the GaSb sample implanted with 5×1016-cm-2H ions after being annealed at 130°C.Figure 2(b)shows the cross-sectional TEM image and the inset displays the H ion distribution and displacement per atom(DPA)distribution simulated by SRIM 2008.[22]The DPA is commonly used to evaluate the degree of radiation damage to materials.It is obvious that the ion implantation gives rise to a damaged layer consisting of large density of defects in the GaSb sample as shown by the red dashed line. The damaged layer is 250-nm thick and 500-nm away from the surface. The maximum damage is around the upper boundary of damaged layer, while the peak of the H ion distribution is located in the middle of the damaged layer. Figure 2(c)shows the high-resolution TEM image for the damaged layer region in Fig. 2(b). Some platelet defects,parallel to the surface,appear in the damaged layer. Just like the H ion implantation into the Si substrate,the implanted H ions and some of the vacancies generated by the implantation coprecipitate during annealing and from two-dimensional circular objects named platelet defect.[10]The platelet defects serve as the precursors of the microcracks, which are essential for the layer splitting. Hence, the formation of platelet defects causes the strain to release, corresponding to the results of Fig.2(a). With the temperature increasing,the driving force of the evolution of platelet defects is the pressure inside the defects instead of the strain introduced by ion implantation. Figure 2(d) shows the SAED images corresponding to the three regions in Fig.2(b). The diffraction patterns in three regions show regular and bright spots rather than diffraction rings,which proves that the 5×1016-cm-2H ion implantation does not make the lattice amorphous in GaSb. However, the spots in region 1 are a little bigger than the spots in region 2,which means that in region 1 there are much heavier lattices disordered than in region 2. All the implanted ions go through region 1 to region 2. It is reasonable to think that the multiple collisions between the ions and lattice atoms in region 1 cause the much heavier lattice to disorder. Hence, the implantation condition of 5×1016-cm-2H ions is suitable to the splitting of the GaSb layer.

    Fig. 2. (a) Patterns of ω/2θ XRD scan along GaSb (004) reflections for virgin GaSb and GaSb implanted with 5×1016-cm-2 H ions after being annealed at different temperatures;(b)cross-sectional TEM image of GaSb implanted with 5×1016-cm-2 H ions after being annealed at 130 °C;(c)high-resolution TEM image for the damaged layer in panel(b);(d)SAED images corresponding to the three regions in panel(b).

    Based on the analysis of the splitting mechanism of GaSb,the process of GaSb layer transfer by ion-slicing technique is shown in Fig. 3. Firstly, the GaSb wafer is implanted with 5×1016-cm-2H ions at 75 keV. Then, the implanted GaSb wafer is bonded with a 4-inch SiO2/Si(100)substrate directly after the surface has been activated by O2plasma. The O2plasma activation can remove the contaminants and increase the density of the dangling bonds on the wafer surface,which is beneficial to achieving high bonding strength at low temperature. Subsequently, the bonding pair of GaSb/SiO2/Si (100)is annealed at 150°C for 1 h in a furnace with an N2atmosphere to achieve the GaSb layer transfer.

    Fig.3. Flowchart of our scheme for GaSb layer transfer by ion-slicing technique.

    Figure 4(a) shows the images of the bonding pair of of GaSb/SiO2/Si(100)after being annealed at 150°C for 1 h. It is obvious that the upper GaSb wafer is broken up into small pieces. With linear thermal expansion coefficients of Si and GaSb being 2.6×10-6C-1and 7.75×10-6C-1, there is a large thermal mismatch between Si and GaSb. During annealing,a huge thermal stress introduced by the large thermal mismatch exceeds the fracture energy of GaSb,causing the GaSb wafer to be broken. The annealing process needs to be further optimized to reduce the thermal stress, including reducing the rate of heating and cooling. After removing the pieces of GaSb wafer,the GaSb layer is transferred onto the SiO2/Si substrate to fabricate the GaSbOI substrate, which is shown in Fig.4(b). Owing to the huge thermal stress resulting from debonding,the GaSb layer in some region is not successfully transferred onto the SiO2/Si substrate.The surface topography of the GaSb is characterized by AFM as shown in Fig. 4(c).The scan covers an area of 5 μm×5 μm.The transferred GaSb layer has a high surface roughness of 27 nm, which should be polished to be sufficiently smooth for subsequent epitaxial growth. The GaSbOI substrate shows distinct three layers,including GaSb layer,SiO2layer,and Si substrate,respectively,as shown in Fig.4(d). The thickness of GaSb layer is around 630 nm,corresponding to the maximum peak of H ion distribution in Fig.2(b). Figure 4(e)shows a typical cross-sectional TEM image of GaSbOI, which reveals a sharp and smooth bonding interface between GaSb substrate and SiO2/Si substrate. The quality of the transferred GaSb layer is evaluated by high-angle annular dark field-STEM (HAADF-STEM) as shown in Fig. 4(f). In the HAADF-STEM image, the atoms of GaSb are arranged in regular lattice structure without any visible misfit dislocations, which proves that the GaSb layer has a perfect single-crystal structure.

    Fig.4. (a)Photo for GaSb/Si bonding pair after being annealed at 150 °C for 1 h;(b)photo of GaSb layer transferred on Si substrate;(c)AFM image for transferred GaSb layer;(d)SEM image of GaSbOI structure;(e)cross-sectional TEM image of GaSbOI;(f)HAADF-STEM image for transferred GaSb layer.

    The quantitative characterization of the quality of the transferred GaSb layer is evaluated by x-ray rocking curve(XRC)measurement. The normalized(004)XRDs of the bulk GaSb substrate and the transferred GaSb layer before and after being annealed at 200°C are shown in Fig. 5(a). Obviously, an additional scattering peak appears to be lower than the Bragg angle of GaSb, while the peak disappears after being annealed at 200°C. Additionally, the full width at half maximum (FWHM) of the XRCs of the GaSb layer before and after being annealed remains constant, about 77 arcsec,which is slightly higher than that for the bulk GaSb substrate(20 arcsec). Therefore,it is reasonable to speculate that there are some defects in the transferred GaSb layer,which reduces the crystalline quality and cannot be recovered after being annealed at 200°C.The FWHMs of the XRCs of the GaSb layer before and after being annealed are significantly larger than that of virgin GaSb. The ion implantation will introduce a damaged layer containing large density of defects in the GaSb substrate as shown in Fig.2(b).Although the GaSb layer splitting occurs in the damaged layer,there are still many residual defects in the transferred GaSb layer. After being annealed at 200°C,only part of the defects recombin and disappear due to the restricted energy.Hence,these residual defects in the GaSb layer causes significantly larger FWHM of the XRCs even after being annealed at 200°C. In order to characterize the defects in the as-transferred GaSb layer,the Raman spectrum is utilized to analyze the components of the region near to the surface of the GaSb layer before and after being annealed at 200°C as shown in Fig.5(b). The GaSb layer is found to have typical first-order TO mode and LO mode before and after being annealed, and so is the virgin GaSb substrate, while an additional peak appears at around 155 cm-1for the GaSb before being annealed as shown by the black dashed line square.As reported early,during annealing,the segregation of Sb element easily happens to form a peak at about 155 cm-1in Raman scattering spectrum.[23]After being annealed at 200°C,it is reasonable to believe that the atoms near to the surface of GaSb layer are rearranged to recover the crystalline structure.Hence, the annealing at 200°C is essential for GaSb layer to improve its crystalline structure.

    Fig.5. (a)Normalized(004)XRCs for bulk GaSb substrate and transferred GaSb layer before and after being annealed at 200 °C; (b) normalized Raman spectrum for virgin GaSb and transferred GaSb layer before and after being annealed at 200 °C.

    4. Conclusions and perspectives

    In this work, we analyzed the blistering and exfoliation behaviors of GaSb after H ion implantation and confirm the suitable ion implantation fluence of 5×1016-cm-2H ions for GaSb layer transfer. During annealing, the strain introduced by the H ion implantation as the driving force accelerates the coprecipitation of the implanted H ions and some of the vacancies generated by the implantation to form the platelet defect. With the temperature increasing, the pressure inside the platelet defects,instead of the strain introduced by ion implantation,drives the platelet defects to evolve. Based on the analysis of the splitting mechanism of GaSb,the monolithic integration of high-quality GaSb layer with SiO2/Si substrate is successfully achieved by the ion-slicing technique. The crystalline quality of the GaSb layer can be further improved by annealing at 200°C.The high-quality heterogeneous integration of GaSb on the SiO2/Si substrate promises to become a novel platform for infrared applications.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China (Grant No. 2017YFE0131300),the National Natural Science Foundation of China (Grant Nos.U1732268,61874128,11622545,61851406,11705262,61875220, and 61804157), the Frontier Science Key Program of Chinese Academy of Sciences(Grant Nos.QYZDYSSW-JSC032 and ZDBS-LY-JSC009), the Chinese–Austrian Cooperative Research and Development Project (Grant No. GJHZ201950), the Shanghai Science and Technology Innovation Action Plan Program, China (Grant No. 17511106202), the Program of Shanghai Academic Research Leader, China (Grant No. 19XD1404600), the Shanghai Youth Top Talent Program, Shanghai Sailing Program,China (Grant Nos. 19YF1456200 and 19YF1456400), the K.C. Wong Education Foundation, China (Grant No. GJTD-2019-11), and the NCBiR within the Polish–China (Grant No.WPC/130/NIR-Si/2018).

    猜你喜歡
    李進(jìn)林家
    發(fā)錢
    遼河(2025年1期)2025-02-08 00:00:00
    林家陽(yáng)作品
    Evolution of surfaces and mechanisms of contact electrification between metals and polymers
    部編版初中歷史教學(xué)細(xì)節(jié)素材的運(yùn)用方法
    Dense coding capacity in correlated noisy channels with weak measurement*
    林家琪、李鴻禹作品
    常用輔助線在圓中的運(yùn)用
    林家立設(shè)計(jì)作品
    把自己“吹”進(jìn)監(jiān)獄
    有趣的發(fā)現(xiàn)
    精品第一国产精品| av卡一久久| av免费观看日本| 婷婷色麻豆天堂久久| 女人久久www免费人成看片| 久热这里只有精品99| 三上悠亚av全集在线观看| 亚洲国产欧美日韩在线播放| 国产日韩欧美视频二区| 97人妻天天添夜夜摸| 老司机亚洲免费影院| 一区二区三区乱码不卡18| 好男人视频免费观看在线| 国产99久久九九免费精品| 午夜免费鲁丝| 精品一区在线观看国产| 国产精品亚洲av一区麻豆 | 国产精品一二三区在线看| 久久久久国产精品人妻一区二区| 九色亚洲精品在线播放| 九色亚洲精品在线播放| 在线 av 中文字幕| 嫩草影院入口| 我要看黄色一级片免费的| 日韩免费高清中文字幕av| 色视频在线一区二区三区| 黄色怎么调成土黄色| 日日摸夜夜添夜夜爱| netflix在线观看网站| 欧美日韩国产mv在线观看视频| 99久久综合免费| netflix在线观看网站| 国产乱来视频区| 女的被弄到高潮叫床怎么办| 欧美日韩亚洲高清精品| av线在线观看网站| 欧美av亚洲av综合av国产av | 男女国产视频网站| 丰满乱子伦码专区| 各种免费的搞黄视频| 亚洲精品乱久久久久久| 久久久精品国产亚洲av高清涩受| 中文字幕人妻熟女乱码| 中文欧美无线码| 香蕉国产在线看| 日韩精品有码人妻一区| 精品国产乱码久久久久久小说| 久久精品久久久久久噜噜老黄| 别揉我奶头~嗯~啊~动态视频 | 午夜精品国产一区二区电影| 高清在线视频一区二区三区| 美女中出高潮动态图| 一区福利在线观看| 蜜桃在线观看..| 免费看不卡的av| 赤兔流量卡办理| 国产不卡av网站在线观看| 精品人妻一区二区三区麻豆| 亚洲精品一区蜜桃| 精品视频人人做人人爽| 久久久精品免费免费高清| 亚洲久久久国产精品| 捣出白浆h1v1| 午夜福利,免费看| 午夜福利乱码中文字幕| h视频一区二区三区| 精品国产一区二区三区四区第35| 日本91视频免费播放| 青春草视频在线免费观看| 18禁国产床啪视频网站| 欧美日本中文国产一区发布| 久久久国产精品麻豆| 男女免费视频国产| 国产成人精品无人区| 一区二区三区精品91| 亚洲欧美成人综合另类久久久| 亚洲欧洲国产日韩| 成人国语在线视频| svipshipincom国产片| 久久青草综合色| 王馨瑶露胸无遮挡在线观看| 亚洲精品国产av成人精品| 国产精品熟女久久久久浪| 亚洲欧美一区二区三区国产| 黄网站色视频无遮挡免费观看| 三上悠亚av全集在线观看| 女人高潮潮喷娇喘18禁视频| 热99久久久久精品小说推荐| 国产精品av久久久久免费| 色精品久久人妻99蜜桃| 街头女战士在线观看网站| 亚洲av男天堂| 黄片无遮挡物在线观看| 在线观看免费日韩欧美大片| 免费观看a级毛片全部| 精品久久久久久电影网| 自拍欧美九色日韩亚洲蝌蚪91| 成人漫画全彩无遮挡| 男男h啪啪无遮挡| 在线 av 中文字幕| 精品福利永久在线观看| 精品酒店卫生间| 国产av码专区亚洲av| 欧美黄色片欧美黄色片| 亚洲在久久综合| av在线老鸭窝| 精品人妻在线不人妻| 黄色视频不卡| 亚洲中文av在线| 精品福利永久在线观看| 亚洲欧洲国产日韩| 久久久精品94久久精品| 欧美乱码精品一区二区三区| 国产黄色视频一区二区在线观看| 狠狠精品人妻久久久久久综合| 无遮挡黄片免费观看| 亚洲欧美成人精品一区二区| 丝袜美腿诱惑在线| 街头女战士在线观看网站| 一本—道久久a久久精品蜜桃钙片| 国产精品 欧美亚洲| 亚洲 欧美一区二区三区| 亚洲精品日本国产第一区| 婷婷色av中文字幕| 少妇精品久久久久久久| 高清视频免费观看一区二区| 中文字幕另类日韩欧美亚洲嫩草| 精品福利永久在线观看| 亚洲欧美成人综合另类久久久| 久久午夜综合久久蜜桃| 无限看片的www在线观看| 精品国产超薄肉色丝袜足j| 亚洲少妇的诱惑av| 中文字幕人妻丝袜一区二区 | 在线观看国产h片| 色播在线永久视频| 久久久久久免费高清国产稀缺| 在线观看人妻少妇| 少妇被粗大的猛进出69影院| 亚洲欧美日韩另类电影网站| av女优亚洲男人天堂| 悠悠久久av| 精品一品国产午夜福利视频| 欧美人与善性xxx| 叶爱在线成人免费视频播放| 婷婷色麻豆天堂久久| 桃花免费在线播放| 国产精品三级大全| 9191精品国产免费久久| 99热全是精品| 午夜影院在线不卡| 国产在线免费精品| 男女下面插进去视频免费观看| 亚洲av成人精品一二三区| www.熟女人妻精品国产| 久久精品国产综合久久久| 国产精品国产三级国产专区5o| 亚洲国产毛片av蜜桃av| 亚洲男人天堂网一区| 色网站视频免费| 欧美亚洲 丝袜 人妻 在线| 成人国语在线视频| 少妇猛男粗大的猛烈进出视频| 秋霞在线观看毛片| 国产野战对白在线观看| 亚洲视频免费观看视频| 国产av码专区亚洲av| 亚洲天堂av无毛| 成人影院久久| 最近手机中文字幕大全| 飞空精品影院首页| 80岁老熟妇乱子伦牲交| 免费女性裸体啪啪无遮挡网站| 两性夫妻黄色片| 欧美少妇被猛烈插入视频| 欧美乱码精品一区二区三区| 热re99久久精品国产66热6| av在线老鸭窝| 日韩熟女老妇一区二区性免费视频| 亚洲精品久久久久久婷婷小说| 日韩大片免费观看网站| 国产成人a∨麻豆精品| 一边摸一边做爽爽视频免费| 丁香六月天网| 人妻一区二区av| 久久人妻熟女aⅴ| bbb黄色大片| 国产精品欧美亚洲77777| 99九九在线精品视频| 美女视频免费永久观看网站| 少妇被粗大的猛进出69影院| 亚洲国产精品一区二区三区在线| 最黄视频免费看| 亚洲av电影在线观看一区二区三区| 美国免费a级毛片| 蜜桃国产av成人99| 亚洲人成网站在线观看播放| 午夜福利,免费看| 大陆偷拍与自拍| 亚洲熟女精品中文字幕| 成人国语在线视频| 国精品久久久久久国模美| 天堂俺去俺来也www色官网| 精品一品国产午夜福利视频| 中文字幕另类日韩欧美亚洲嫩草| 十八禁人妻一区二区| 两性夫妻黄色片| 欧美最新免费一区二区三区| 大陆偷拍与自拍| 男人操女人黄网站| 天堂8中文在线网| 麻豆精品久久久久久蜜桃| 黄色一级大片看看| 亚洲av国产av综合av卡| 国产精品人妻久久久影院| 王馨瑶露胸无遮挡在线观看| 天天躁夜夜躁狠狠躁躁| 国产一卡二卡三卡精品 | 91aial.com中文字幕在线观看| 亚洲精品国产一区二区精华液| 亚洲欧美清纯卡通| 乱人伦中国视频| 成人亚洲精品一区在线观看| 精品一区二区免费观看| 好男人视频免费观看在线| 亚洲图色成人| 亚洲中文av在线| 精品国产一区二区久久| xxxhd国产人妻xxx| 丰满饥渴人妻一区二区三| 国产精品国产av在线观看| 国产有黄有色有爽视频| 国产97色在线日韩免费| 久久国产亚洲av麻豆专区| 老汉色∧v一级毛片| 欧美黄色片欧美黄色片| 一级,二级,三级黄色视频| 久久久国产一区二区| 午夜福利影视在线免费观看| 欧美av亚洲av综合av国产av | 两个人看的免费小视频| 激情视频va一区二区三区| 人人妻人人爽人人添夜夜欢视频| 肉色欧美久久久久久久蜜桃| 狂野欧美激情性xxxx| 国产片特级美女逼逼视频| avwww免费| 欧美精品一区二区大全| 又粗又硬又长又爽又黄的视频| 精品国产国语对白av| 亚洲av在线观看美女高潮| 亚洲av日韩精品久久久久久密 | 美女高潮到喷水免费观看| 午夜av观看不卡| 校园人妻丝袜中文字幕| 欧美亚洲日本最大视频资源| 亚洲,欧美,日韩| 日本av免费视频播放| 啦啦啦中文免费视频观看日本| 三上悠亚av全集在线观看| 啦啦啦 在线观看视频| 少妇人妻 视频| 王馨瑶露胸无遮挡在线观看| 国产野战对白在线观看| 亚洲第一区二区三区不卡| 亚洲av福利一区| 97人妻天天添夜夜摸| a级片在线免费高清观看视频| 汤姆久久久久久久影院中文字幕| 欧美久久黑人一区二区| 亚洲av综合色区一区| 国产在线视频一区二区| 精品一区二区三区四区五区乱码 | 美女扒开内裤让男人捅视频| 欧美亚洲日本最大视频资源| 天天添夜夜摸| 欧美国产精品一级二级三级| 亚洲国产欧美日韩在线播放| 看十八女毛片水多多多| 大片电影免费在线观看免费| 国产一级毛片在线| 一级毛片黄色毛片免费观看视频| 夫妻午夜视频| 黄色 视频免费看| 久久女婷五月综合色啪小说| 亚洲一级一片aⅴ在线观看| 老司机影院成人| 国产午夜精品一二区理论片| av免费观看日本| 亚洲精品国产av成人精品| 国产成人系列免费观看| 色婷婷av一区二区三区视频| 乱人伦中国视频| av免费观看日本| 亚洲欧美激情在线| 久久天躁狠狠躁夜夜2o2o | 亚洲成人免费av在线播放| 少妇被粗大猛烈的视频| 老汉色∧v一级毛片| 亚洲精品日韩在线中文字幕| 一二三四在线观看免费中文在| 一级毛片黄色毛片免费观看视频| 美国免费a级毛片| 成人免费观看视频高清| 久久97久久精品| 亚洲精品一二三| 熟女少妇亚洲综合色aaa.| 亚洲伊人色综图| 亚洲色图 男人天堂 中文字幕| 97精品久久久久久久久久精品| 亚洲av日韩在线播放| 精品国产国语对白av| 欧美激情极品国产一区二区三区| 日本爱情动作片www.在线观看| 宅男免费午夜| 中国国产av一级| avwww免费| 99久久精品国产亚洲精品| 纯流量卡能插随身wifi吗| 亚洲美女黄色视频免费看| 国产精品99久久99久久久不卡 | 一区二区三区激情视频| 在线观看免费日韩欧美大片| 热re99久久精品国产66热6| 亚洲精品日韩在线中文字幕| 一边摸一边做爽爽视频免费| 超色免费av| 97人妻天天添夜夜摸| 久久99一区二区三区| 一本久久精品| 香蕉丝袜av| 亚洲 欧美一区二区三区| 日韩精品免费视频一区二区三区| 美女扒开内裤让男人捅视频| 久久精品aⅴ一区二区三区四区| 在线观看三级黄色| 亚洲国产看品久久| 亚洲欧洲日产国产| 久久久欧美国产精品| 夫妻午夜视频| 热99久久久久精品小说推荐| av天堂久久9| 在线观看免费视频网站a站| 久久久久视频综合| 天天影视国产精品| 美女扒开内裤让男人捅视频| 国产av一区二区精品久久| 又粗又硬又长又爽又黄的视频| tube8黄色片| 中国三级夫妇交换| 天天躁狠狠躁夜夜躁狠狠躁| 爱豆传媒免费全集在线观看| 一二三四中文在线观看免费高清| a级片在线免费高清观看视频| 中文字幕最新亚洲高清| a级片在线免费高清观看视频| 亚洲精品国产色婷婷电影| avwww免费| 国产精品免费大片| 午夜免费男女啪啪视频观看| 成人18禁高潮啪啪吃奶动态图| 免费看不卡的av| 国产视频首页在线观看| 国产成人一区二区在线| 国产精品三级大全| 高清在线视频一区二区三区| 免费高清在线观看视频在线观看| 99久国产av精品国产电影| 韩国高清视频一区二区三区| 午夜福利免费观看在线| 一区二区三区四区激情视频| 成人亚洲精品一区在线观看| 人妻人人澡人人爽人人| 肉色欧美久久久久久久蜜桃| 国产片特级美女逼逼视频| 男女下面插进去视频免费观看| www日本在线高清视频| 久久人妻熟女aⅴ| 不卡av一区二区三区| 男女免费视频国产| 狂野欧美激情性bbbbbb| 一区二区三区精品91| 日韩中文字幕欧美一区二区 | 青春草亚洲视频在线观看| 精品一区二区三卡| √禁漫天堂资源中文www| 欧美黑人精品巨大| 久久热在线av| 国产在线视频一区二区| 99久久综合免费| 精品国产一区二区三区久久久樱花| 99九九在线精品视频| 丝袜美腿诱惑在线| 亚洲国产精品成人久久小说| 母亲3免费完整高清在线观看| 国产精品免费视频内射| 青草久久国产| 久久久久久久大尺度免费视频| 婷婷色综合大香蕉| www.自偷自拍.com| 一本—道久久a久久精品蜜桃钙片| 一级爰片在线观看| 免费av中文字幕在线| 赤兔流量卡办理| 成人18禁高潮啪啪吃奶动态图| 欧美人与善性xxx| 国产av国产精品国产| 亚洲av日韩精品久久久久久密 | 午夜激情av网站| 亚洲精品日韩在线中文字幕| 国产成人欧美| 国产麻豆69| 新久久久久国产一级毛片| 国产一区亚洲一区在线观看| 午夜福利一区二区在线看| 久久影院123| 精品人妻熟女毛片av久久网站| 免费观看性生交大片5| 久久久国产精品麻豆| 精品卡一卡二卡四卡免费| 免费观看人在逋| 亚洲四区av| 母亲3免费完整高清在线观看| 一级黄片播放器| 在线观看免费日韩欧美大片| 久久久久久人妻| 色吧在线观看| 一个人免费看片子| 亚洲国产av新网站| 蜜桃国产av成人99| 亚洲精品,欧美精品| 我要看黄色一级片免费的| 成年人免费黄色播放视频| 欧美中文综合在线视频| www.自偷自拍.com| 香蕉国产在线看| 亚洲五月色婷婷综合| 亚洲国产精品一区二区三区在线| 欧美日韩视频高清一区二区三区二| 久久精品aⅴ一区二区三区四区| 免费不卡黄色视频| 9热在线视频观看99| 国产一区二区激情短视频 | 国产免费现黄频在线看| 久久热在线av| 1024香蕉在线观看| 男女高潮啪啪啪动态图| 国产精品久久久av美女十八| 青草久久国产| 欧美 亚洲 国产 日韩一| 亚洲精品美女久久久久99蜜臀 | 黑人猛操日本美女一级片| 免费黄网站久久成人精品| av片东京热男人的天堂| 一区二区日韩欧美中文字幕| 亚洲精品久久成人aⅴ小说| 日韩中文字幕视频在线看片| 久久毛片免费看一区二区三区| 国产精品一区二区在线不卡| 欧美激情极品国产一区二区三区| 超碰成人久久| 大香蕉久久成人网| 黄网站色视频无遮挡免费观看| 日韩av在线免费看完整版不卡| 国产精品嫩草影院av在线观看| 天天添夜夜摸| av卡一久久| 久久鲁丝午夜福利片| 成人漫画全彩无遮挡| 黄色一级大片看看| 久久精品亚洲熟妇少妇任你| 免费人妻精品一区二区三区视频| av线在线观看网站| 欧美中文综合在线视频| 亚洲精品美女久久av网站| 美国免费a级毛片| a级毛片在线看网站| 丝袜在线中文字幕| 亚洲免费av在线视频| 久热这里只有精品99| 国产成人av激情在线播放| 久久国产精品大桥未久av| 欧美日韩av久久| 亚洲熟女精品中文字幕| 久久人人97超碰香蕉20202| 观看av在线不卡| 亚洲精品国产av蜜桃| 国产熟女午夜一区二区三区| 老司机靠b影院| 婷婷色综合大香蕉| 纯流量卡能插随身wifi吗| 操出白浆在线播放| 久久人人97超碰香蕉20202| 久久精品久久久久久噜噜老黄| 性色av一级| 国产精品无大码| 老熟女久久久| www.熟女人妻精品国产| 久久久久久久久久久免费av| 黄色视频在线播放观看不卡| 在线观看免费午夜福利视频| 精品视频人人做人人爽| 国产av国产精品国产| 大话2 男鬼变身卡| 丝袜在线中文字幕| 国产男人的电影天堂91| 久久久久精品人妻al黑| 热99国产精品久久久久久7| 国产极品天堂在线| 新久久久久国产一级毛片| 国产片内射在线| 国产免费现黄频在线看| 国产黄色视频一区二区在线观看| 国产国语露脸激情在线看| 精品视频人人做人人爽| 亚洲精品av麻豆狂野| 国产福利在线免费观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 深夜精品福利| av不卡在线播放| 日本av免费视频播放| 少妇精品久久久久久久| 我的亚洲天堂| 男女免费视频国产| 韩国高清视频一区二区三区| 91aial.com中文字幕在线观看| 另类精品久久| 人人妻人人澡人人看| 国产深夜福利视频在线观看| 一级毛片 在线播放| 女人被躁到高潮嗷嗷叫费观| 精品国产一区二区久久| 伊人久久国产一区二区| 精品久久久久久电影网| 国产在线一区二区三区精| 久久久精品国产亚洲av高清涩受| 亚洲国产精品国产精品| 精品午夜福利在线看| 国产成人午夜福利电影在线观看| 天堂8中文在线网| 成人亚洲精品一区在线观看| 一级毛片我不卡| 午夜福利网站1000一区二区三区| 国产黄色视频一区二区在线观看| 久久精品亚洲av国产电影网| 狠狠精品人妻久久久久久综合| 七月丁香在线播放| 美女中出高潮动态图| 精品第一国产精品| 久久久久久久久久久免费av| 国产精品熟女久久久久浪| 视频在线观看一区二区三区| 建设人人有责人人尽责人人享有的| 国产熟女午夜一区二区三区| 丝瓜视频免费看黄片| 国产成人免费观看mmmm| 午夜福利乱码中文字幕| 亚洲精品国产色婷婷电影| 熟女av电影| 日日爽夜夜爽网站| 久久久久久久久久久免费av| 人妻人人澡人人爽人人| 51午夜福利影视在线观看| 777久久人妻少妇嫩草av网站| 青草久久国产| 欧美av亚洲av综合av国产av | 成人午夜精彩视频在线观看| 毛片一级片免费看久久久久| 欧美在线一区亚洲| 亚洲av成人不卡在线观看播放网 | 国产一区亚洲一区在线观看| 国产欧美亚洲国产| 亚洲欧美一区二区三区国产| 日日撸夜夜添| 深夜精品福利| 亚洲国产精品成人久久小说| 久久这里只有精品19| 免费在线观看完整版高清| 欧美国产精品va在线观看不卡| 欧美日韩福利视频一区二区| 热99久久久久精品小说推荐| 夜夜骑夜夜射夜夜干| 午夜av观看不卡| 午夜福利乱码中文字幕| 丰满少妇做爰视频| 欧美精品一区二区免费开放| 一区福利在线观看| 亚洲欧美一区二区三区久久| 日本av免费视频播放| 在线观看免费视频网站a站| netflix在线观看网站| 香蕉国产在线看| 欧美黑人精品巨大| 一区二区三区乱码不卡18| 免费观看a级毛片全部| 亚洲精品久久成人aⅴ小说| 欧美日韩国产mv在线观看视频| 国产一区二区三区av在线| 午夜福利乱码中文字幕| 欧美乱码精品一区二区三区| 免费观看a级毛片全部| 亚洲人成网站在线观看播放| 国产精品久久久久成人av| 亚洲一卡2卡3卡4卡5卡精品中文| 久久毛片免费看一区二区三区| 我要看黄色一级片免费的| bbb黄色大片| 国产成人一区二区在线| 亚洲欧美中文字幕日韩二区| 久久久精品国产亚洲av高清涩受| 亚洲,欧美,日韩| 欧美精品亚洲一区二区| 最近最新中文字幕免费大全7| 老汉色av国产亚洲站长工具| 国产精品一区二区精品视频观看|