• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Heterogeneous integration of GaSb layer on(100)Si substrate by ion-slicing technique

    2022-08-01 06:02:02RenJieLiu劉仁杰JiaJieLin林家杰ZhengHaoShen沈正皓JiaLiangSun孫嘉良TianGuiYou游天桂JinLi李進(jìn)MinLiao廖敏andYiChunZhou周益春
    Chinese Physics B 2022年7期
    關(guān)鍵詞:李進(jìn)林家

    Ren-Jie Liu(劉仁杰), Jia-Jie Lin(林家杰), Zheng-Hao Shen(沈正皓), Jia-Liang Sun(孫嘉良),Tian-Gui You(游天桂),§, Jin Li(李進(jìn)), Min Liao(廖敏), and Yi-Chun Zhou(周益春)

    1Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education,School of Materials Science and Engineering,Xiangtan University,Xiangtan 411105,China

    2Hunan Provincial Key Laboratory of Thin Film Materials and Devices,School of Materials Science and Engineering,Xiangtan University,Xiangtan 411105,China

    3College of Information Science and Engineering,Jiaxing University,Jiaxing 314001,China

    4State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Science(CAS),Shanghai 200050,China

    5Beijing Semicore ZKX Electronics Equipment Co.,Ltd,Beijing 100000,China

    Keywords: ion-slicing technique,heterogeneous integration,GaSbOI

    1. Introduction

    Among III–V compound semiconductors, the GaSb is a particularly significant semiconductor since its lattice parameter can be easily matched to various ternary and quaternary III–V compounds whose band gaps cover a wide range from~0.3 eV to 1.58 eV,e.g., 0.8 μm–4.3 μm.[1]Furthermore, it makes the detection of longer wavelengths(8 μm–14 μm)possible with intersubband absorption in the antimonide based superlattice. These have attracted huge attention in the development of GaSb applications in the fabrication of high-speed and microwave devices, infrared detectors, and long-wavelength lasers.[1–3]Additionally,the GaSb-based devices are a promising candidate for a variety of military and civil applications in long-wavelength regimes,such as infrared imaging sensors for missile and surveillance systems, fire detection, and monitoring environmental pollution.

    However,owing to the difficulty in fabricating,the semiinsulating GaSb substrate is not available currently, which limits its widespread applications. Heteroepitaxial growth of GaSb-based devices on GaAs substrates and Si substrates as an integration strategy has attracted considerable attention due to the numerous advantages in optoelectronic devices that can be enabled, including monolithically integrated lasers, detectors, solar cells, and transistors.[3–7]Nevertheless, this integration strategy is challenged by the conjunction of large lattice and polarity mismatches, especially for the heteroepitaxial growth on Si substrate(13%lattice mismatch with GaSb).These large mismatches easily give rise to planar defects,the antiphase boundaries (APBs) and misfit dislocations in epitaxial layers, which can reduce the device performance and reliability. Fortunately, ion-slicing technique appears to conduce to the further development of heterogeneous integration between the mismatched materials. Ion-slicing technique was developed first by Bruel in 1995,and now it has been successfully applied to the mass production of Si-on-insulator wafers(SOI).[8]In the ion-slicing technique, the light elemental ion implantation followed by wafer bonding and annealing allows relatively thick layer to slice and transfer from a donor substrate to a host material without worrying about the physical mismatch in heteroepitaxial growth. During annealing,the vacancies are introduced by the ion implantation and light elemental ions precipitate into the formation of platelet defects in nanometer dimensions, which progressively grow by Ostwald ripening.[9,10]With the concentration of the implanted ions increasing in platelet defect, the platelet defect evolves and finally coalesce to form micro-cracks.[9]The further thermal evolution of the micro-cracks leads to the fracture phenomenon, including blistering or exfoliating on the surface.When a stiffener is intentionally bonded onto the wafer surface, the overall layer, parallel to the wafer surface, can be split.[11]Hence, the ion-slicing technique can not only avoid physically mismatching materials to achieve heterogeneous integration, but also directly peel from the single crystal substrate to produce high- quality single crystal films. Furthermore,one substrate can be transferred multiple times to reduce the cost,which is important especially for the expensive materials. This method has been extended to the area of compound semiconductors,such as Si-based InP,SiC,GaN,and Ga2O3,LiTbO3.[12–16]Some researches of the exfoliation or blistering behaviors of GaSb under different ion implantation conditions have been conducted,[17–19]but no report shows that the highquality GaSb layer has been transferred onto the Si substrate successfully by ion-slicing technique so far.

    In this study,the splitting mechanism of GaSb is analyzed in detail. Combining direct wafer bonding, the GaSb layer is successfully transferred onto the Si/SiO2substrate to form high-quality GaSb-on-insulator(GaSbOI)structure.

    2. Experimental details

    The 350-μm-thick N-type (100) GaSb wafers having 2-inch(1 inch=2.54 cm)diameter were used in this study. The GaSb wafers were implanted by 75-keV H ions supplied from Nissin-implanter,respectively,with a fluence of 2×1016cm-2and 5×1016cm-2at room temperature.In order to avoid channeling effects,the 7°off the wafer normal was performed deliberately during the implantation process. After implantation,some of the GaSb wafers were cut into small samples for being characterized. Some of the samples implanted with 2×1016-cm-2and 5×1016-cm-2H ions were annealed at 200°C and 150°C with a constant flux of N2, respectively. The optical microscope (OM), Leica DM4000M, was used to characterize the surface morphologies of the samples. The strain variations under different annealing temperatures were characterized by x-ray diffraction(XRD)with Pilips X’Pert x-ray diffractometer. The cross-sectional transmission electron microscopy (XTEM), JEOL 2100F field-emission transmission electron microscope, was adopted to characterize the defects introduced by ion implantation. The quality of the different regions in sample was examined by selected area electron diffraction(SAED).Combined with direct wafer bonding,the GaSb layer was successfully transferred onto the Si/SiO2substrate. The surface topography was characterized by atomic force microscope (AFM) with Bruker Multimode 8. The structure of the GaSbOI substrate was characterized by crosssectional scanning electron microscopy (SEM) JEOL 7800F.The quality of the transferred GaSb layer after being annealed at different temperatures was examined by XRD and Raman excited by a 514.5-nm laser through using the Horiba Scientific LabRAM HR.

    3. Results and discussion

    In order to analyze the blistering behaviors, the GaSb samples implanted with 2×1016-cm-2and 5×1016-cm-2H ions are annealed at 200°C for 1 h. It is obvious that there is no change on the surface of sample implanted with 2×1016-cm-2H ions, while there are many bubbles and exfoliations on the surface of sample implanted with 5×1016-cm-2H ions as shown in Figs.1(a)and 1(b). The blistering efficiency depends on the extent of the damage produced by ion implantation because it affects the microstructure of the implanted sample. This microstructure is affected by the ion fluence.[20]The low ion fluence forms not only a small number of defects,but also the internal pressure of the defects which is not enough to overcome the facture energy of substrate,so no bubbles occur on the surface, which is regarded as a behavior of sample implanted with 2×1016-cm-2H ions. Owing to the nature of easy oxidation, the annealing temperature for GaSb must be lower. Therefore, the GaSb samples implanted with 5×1016-cm-2H ions are annealed at 150°C for 3 min and 1 h, respectively. As shown in Fig. 1(c), when the annealing time is 3 min,a large number of uniformly distributed bubbles appear on the surface. With the annealing time extending to 1 h, there is no significant increase in the volume of the bubbles,while some exfoliations occur on the surface as shown in Fig.1(d).During annealing,the defects need enough energy to migrate and coalesce together. Hence,for the GaSb implanted with 5×1016-cm-2H ions, the annealing at 150°C can meet the energy demand for the defect evolution to deform the surface causing blistering or exfoliation, which is necessary for the GaSb layer transfer.

    Fig. 1. OM image of GaSb implanted with (a) 2×1016-cm-2 H ions, (b)5×1016-cm-2 H ions after being annealed at 200 °C for 1 h,5×1016-cm-2 H ions after being annealed at 150 °C for(c)3 min and(d)1 h.

    During annealing, the driving force of defect evolution is the strain introduced by the ion implantation. The XRD is used to analyze the strain variation of the GaSb sample implanted with 5×1016-cm-2H ions after being annealed at different temperatures. Figure 2(a)shows theω/2θXRD scans along the GaSb (004) reflections. Compared with the virgin GaSb, the implanted GaSb sample presents additional scattered intensity for angles lower than the Bragg angle,indicating that there is an out-of-plane tensile strain introduced by ion implantation.[21]As reported early , the most distant fringe from the Bragg angle corresponds to the maximum strain in the GaSb sample.[21]With the temperature increasing,the additional scattered intensity decreases gradually until it disappears completely at 130°C. It indicates that the increase in the annealing temperature promotes the evolution of defects,resulting in the release of strain. The 130°C corresponds to a defect transition temperature,at which the strain introduced by ion implantation is fully released. In order to analyze the defect formation, the XTEM is utilized to characterize the microstructure for the GaSb sample implanted with 5×1016-cm-2H ions after being annealed at 130°C.Figure 2(b)shows the cross-sectional TEM image and the inset displays the H ion distribution and displacement per atom(DPA)distribution simulated by SRIM 2008.[22]The DPA is commonly used to evaluate the degree of radiation damage to materials.It is obvious that the ion implantation gives rise to a damaged layer consisting of large density of defects in the GaSb sample as shown by the red dashed line. The damaged layer is 250-nm thick and 500-nm away from the surface. The maximum damage is around the upper boundary of damaged layer, while the peak of the H ion distribution is located in the middle of the damaged layer. Figure 2(c)shows the high-resolution TEM image for the damaged layer region in Fig. 2(b). Some platelet defects,parallel to the surface,appear in the damaged layer. Just like the H ion implantation into the Si substrate,the implanted H ions and some of the vacancies generated by the implantation coprecipitate during annealing and from two-dimensional circular objects named platelet defect.[10]The platelet defects serve as the precursors of the microcracks, which are essential for the layer splitting. Hence, the formation of platelet defects causes the strain to release, corresponding to the results of Fig.2(a). With the temperature increasing,the driving force of the evolution of platelet defects is the pressure inside the defects instead of the strain introduced by ion implantation. Figure 2(d) shows the SAED images corresponding to the three regions in Fig.2(b). The diffraction patterns in three regions show regular and bright spots rather than diffraction rings,which proves that the 5×1016-cm-2H ion implantation does not make the lattice amorphous in GaSb. However, the spots in region 1 are a little bigger than the spots in region 2,which means that in region 1 there are much heavier lattices disordered than in region 2. All the implanted ions go through region 1 to region 2. It is reasonable to think that the multiple collisions between the ions and lattice atoms in region 1 cause the much heavier lattice to disorder. Hence, the implantation condition of 5×1016-cm-2H ions is suitable to the splitting of the GaSb layer.

    Fig. 2. (a) Patterns of ω/2θ XRD scan along GaSb (004) reflections for virgin GaSb and GaSb implanted with 5×1016-cm-2 H ions after being annealed at different temperatures;(b)cross-sectional TEM image of GaSb implanted with 5×1016-cm-2 H ions after being annealed at 130 °C;(c)high-resolution TEM image for the damaged layer in panel(b);(d)SAED images corresponding to the three regions in panel(b).

    Based on the analysis of the splitting mechanism of GaSb,the process of GaSb layer transfer by ion-slicing technique is shown in Fig. 3. Firstly, the GaSb wafer is implanted with 5×1016-cm-2H ions at 75 keV. Then, the implanted GaSb wafer is bonded with a 4-inch SiO2/Si(100)substrate directly after the surface has been activated by O2plasma. The O2plasma activation can remove the contaminants and increase the density of the dangling bonds on the wafer surface,which is beneficial to achieving high bonding strength at low temperature. Subsequently, the bonding pair of GaSb/SiO2/Si (100)is annealed at 150°C for 1 h in a furnace with an N2atmosphere to achieve the GaSb layer transfer.

    Fig.3. Flowchart of our scheme for GaSb layer transfer by ion-slicing technique.

    Figure 4(a) shows the images of the bonding pair of of GaSb/SiO2/Si(100)after being annealed at 150°C for 1 h. It is obvious that the upper GaSb wafer is broken up into small pieces. With linear thermal expansion coefficients of Si and GaSb being 2.6×10-6C-1and 7.75×10-6C-1, there is a large thermal mismatch between Si and GaSb. During annealing,a huge thermal stress introduced by the large thermal mismatch exceeds the fracture energy of GaSb,causing the GaSb wafer to be broken. The annealing process needs to be further optimized to reduce the thermal stress, including reducing the rate of heating and cooling. After removing the pieces of GaSb wafer,the GaSb layer is transferred onto the SiO2/Si substrate to fabricate the GaSbOI substrate, which is shown in Fig.4(b). Owing to the huge thermal stress resulting from debonding,the GaSb layer in some region is not successfully transferred onto the SiO2/Si substrate.The surface topography of the GaSb is characterized by AFM as shown in Fig. 4(c).The scan covers an area of 5 μm×5 μm.The transferred GaSb layer has a high surface roughness of 27 nm, which should be polished to be sufficiently smooth for subsequent epitaxial growth. The GaSbOI substrate shows distinct three layers,including GaSb layer,SiO2layer,and Si substrate,respectively,as shown in Fig.4(d). The thickness of GaSb layer is around 630 nm,corresponding to the maximum peak of H ion distribution in Fig.2(b). Figure 4(e)shows a typical cross-sectional TEM image of GaSbOI, which reveals a sharp and smooth bonding interface between GaSb substrate and SiO2/Si substrate. The quality of the transferred GaSb layer is evaluated by high-angle annular dark field-STEM (HAADF-STEM) as shown in Fig. 4(f). In the HAADF-STEM image, the atoms of GaSb are arranged in regular lattice structure without any visible misfit dislocations, which proves that the GaSb layer has a perfect single-crystal structure.

    Fig.4. (a)Photo for GaSb/Si bonding pair after being annealed at 150 °C for 1 h;(b)photo of GaSb layer transferred on Si substrate;(c)AFM image for transferred GaSb layer;(d)SEM image of GaSbOI structure;(e)cross-sectional TEM image of GaSbOI;(f)HAADF-STEM image for transferred GaSb layer.

    The quantitative characterization of the quality of the transferred GaSb layer is evaluated by x-ray rocking curve(XRC)measurement. The normalized(004)XRDs of the bulk GaSb substrate and the transferred GaSb layer before and after being annealed at 200°C are shown in Fig. 5(a). Obviously, an additional scattering peak appears to be lower than the Bragg angle of GaSb, while the peak disappears after being annealed at 200°C. Additionally, the full width at half maximum (FWHM) of the XRCs of the GaSb layer before and after being annealed remains constant, about 77 arcsec,which is slightly higher than that for the bulk GaSb substrate(20 arcsec). Therefore,it is reasonable to speculate that there are some defects in the transferred GaSb layer,which reduces the crystalline quality and cannot be recovered after being annealed at 200°C.The FWHMs of the XRCs of the GaSb layer before and after being annealed are significantly larger than that of virgin GaSb. The ion implantation will introduce a damaged layer containing large density of defects in the GaSb substrate as shown in Fig.2(b).Although the GaSb layer splitting occurs in the damaged layer,there are still many residual defects in the transferred GaSb layer. After being annealed at 200°C,only part of the defects recombin and disappear due to the restricted energy.Hence,these residual defects in the GaSb layer causes significantly larger FWHM of the XRCs even after being annealed at 200°C. In order to characterize the defects in the as-transferred GaSb layer,the Raman spectrum is utilized to analyze the components of the region near to the surface of the GaSb layer before and after being annealed at 200°C as shown in Fig.5(b). The GaSb layer is found to have typical first-order TO mode and LO mode before and after being annealed, and so is the virgin GaSb substrate, while an additional peak appears at around 155 cm-1for the GaSb before being annealed as shown by the black dashed line square.As reported early,during annealing,the segregation of Sb element easily happens to form a peak at about 155 cm-1in Raman scattering spectrum.[23]After being annealed at 200°C,it is reasonable to believe that the atoms near to the surface of GaSb layer are rearranged to recover the crystalline structure.Hence, the annealing at 200°C is essential for GaSb layer to improve its crystalline structure.

    Fig.5. (a)Normalized(004)XRCs for bulk GaSb substrate and transferred GaSb layer before and after being annealed at 200 °C; (b) normalized Raman spectrum for virgin GaSb and transferred GaSb layer before and after being annealed at 200 °C.

    4. Conclusions and perspectives

    In this work, we analyzed the blistering and exfoliation behaviors of GaSb after H ion implantation and confirm the suitable ion implantation fluence of 5×1016-cm-2H ions for GaSb layer transfer. During annealing, the strain introduced by the H ion implantation as the driving force accelerates the coprecipitation of the implanted H ions and some of the vacancies generated by the implantation to form the platelet defect. With the temperature increasing, the pressure inside the platelet defects,instead of the strain introduced by ion implantation,drives the platelet defects to evolve. Based on the analysis of the splitting mechanism of GaSb,the monolithic integration of high-quality GaSb layer with SiO2/Si substrate is successfully achieved by the ion-slicing technique. The crystalline quality of the GaSb layer can be further improved by annealing at 200°C.The high-quality heterogeneous integration of GaSb on the SiO2/Si substrate promises to become a novel platform for infrared applications.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China (Grant No. 2017YFE0131300),the National Natural Science Foundation of China (Grant Nos.U1732268,61874128,11622545,61851406,11705262,61875220, and 61804157), the Frontier Science Key Program of Chinese Academy of Sciences(Grant Nos.QYZDYSSW-JSC032 and ZDBS-LY-JSC009), the Chinese–Austrian Cooperative Research and Development Project (Grant No. GJHZ201950), the Shanghai Science and Technology Innovation Action Plan Program, China (Grant No. 17511106202), the Program of Shanghai Academic Research Leader, China (Grant No. 19XD1404600), the Shanghai Youth Top Talent Program, Shanghai Sailing Program,China (Grant Nos. 19YF1456200 and 19YF1456400), the K.C. Wong Education Foundation, China (Grant No. GJTD-2019-11), and the NCBiR within the Polish–China (Grant No.WPC/130/NIR-Si/2018).

    猜你喜歡
    李進(jìn)林家
    發(fā)錢
    遼河(2025年1期)2025-02-08 00:00:00
    林家陽(yáng)作品
    Evolution of surfaces and mechanisms of contact electrification between metals and polymers
    部編版初中歷史教學(xué)細(xì)節(jié)素材的運(yùn)用方法
    Dense coding capacity in correlated noisy channels with weak measurement*
    林家琪、李鴻禹作品
    常用輔助線在圓中的運(yùn)用
    林家立設(shè)計(jì)作品
    把自己“吹”進(jìn)監(jiān)獄
    有趣的發(fā)現(xiàn)
    成年av动漫网址| 日本一本二区三区精品| 能在线免费观看的黄片| 国产真实乱freesex| 日韩亚洲欧美综合| 99在线视频只有这里精品首页| 99热6这里只有精品| 韩国高清视频一区二区三区| 国产乱来视频区| 麻豆乱淫一区二区| 日韩 亚洲 欧美在线| 少妇人妻精品综合一区二区| 美女高潮的动态| 中文乱码字字幕精品一区二区三区 | 精品少妇黑人巨大在线播放 | 丝袜美腿在线中文| 国产在视频线精品| 精品一区二区三区视频在线| 免费在线观看成人毛片| 亚洲欧美精品综合久久99| 尤物成人国产欧美一区二区三区| 99热这里只有是精品50| 国产激情偷乱视频一区二区| 欧美不卡视频在线免费观看| 欧美日韩精品成人综合77777| 听说在线观看完整版免费高清| 成人性生交大片免费视频hd| 黄色欧美视频在线观看| 久久久久久九九精品二区国产| 国产成人免费观看mmmm| 亚洲四区av| videos熟女内射| 欧美最新免费一区二区三区| 九九久久精品国产亚洲av麻豆| 两个人视频免费观看高清| 欧美丝袜亚洲另类| 国产精品人妻久久久久久| 在线观看av片永久免费下载| 噜噜噜噜噜久久久久久91| 国产老妇伦熟女老妇高清| 午夜久久久久精精品| 色综合色国产| 国产精品,欧美在线| 嫩草影院精品99| 男女下面进入的视频免费午夜| 内地一区二区视频在线| 中文在线观看免费www的网站| 国产淫语在线视频| 九草在线视频观看| 色网站视频免费| 免费无遮挡裸体视频| 91午夜精品亚洲一区二区三区| 国产黄a三级三级三级人| 在现免费观看毛片| a级一级毛片免费在线观看| 麻豆久久精品国产亚洲av| 精品午夜福利在线看| 国产在视频线精品| 久久久精品大字幕| 午夜日本视频在线| 免费观看性生交大片5| 91精品国产九色| 搞女人的毛片| 亚洲综合色惰| 久久久国产成人免费| 青春草视频在线免费观看| 国内精品美女久久久久久| av又黄又爽大尺度在线免费看 | 久久久精品大字幕| 亚洲精品久久久久久婷婷小说 | 精品久久久噜噜| 国内精品美女久久久久久| 又粗又硬又长又爽又黄的视频| 亚洲最大成人手机在线| 国产激情偷乱视频一区二区| 亚洲成人中文字幕在线播放| 午夜亚洲福利在线播放| 直男gayav资源| 精品不卡国产一区二区三区| 高清av免费在线| 久99久视频精品免费| 看片在线看免费视频| 汤姆久久久久久久影院中文字幕 | 嫩草影院入口| 久久久精品大字幕| ponron亚洲| 国产精品日韩av在线免费观看| 日韩 亚洲 欧美在线| 亚洲精华国产精华液的使用体验| 看非洲黑人一级黄片| 久久韩国三级中文字幕| 一级爰片在线观看| 男女啪啪激烈高潮av片| 亚洲av一区综合| 欧美成人精品欧美一级黄| 欧美激情久久久久久爽电影| 爱豆传媒免费全集在线观看| 99热6这里只有精品| 麻豆成人av视频| 97人妻精品一区二区三区麻豆| 两个人视频免费观看高清| 亚洲精品乱码久久久v下载方式| av福利片在线观看| 欧美一区二区国产精品久久精品| 极品教师在线视频| 插逼视频在线观看| 久久精品综合一区二区三区| 亚洲av电影不卡..在线观看| av福利片在线观看| 久久久久久大精品| 午夜精品国产一区二区电影 | 国产精品永久免费网站| 成人毛片60女人毛片免费| 国产精品三级大全| 久久精品久久久久久久性| 国产精品乱码一区二三区的特点| 美女黄网站色视频| 麻豆乱淫一区二区| 国产老妇女一区| 久久婷婷人人爽人人干人人爱| 亚洲av电影在线观看一区二区三区 | 国产高清视频在线观看网站| 乱系列少妇在线播放| 亚洲欧美成人精品一区二区| 精品久久久久久电影网 | 国产乱人视频| 岛国在线免费视频观看| 亚洲在线自拍视频| 国产爱豆传媒在线观看| 精品免费久久久久久久清纯| 久久久精品大字幕| 精品久久久久久久久亚洲| 午夜福利在线观看吧| 久久久久久久亚洲中文字幕| 只有这里有精品99| 一区二区三区乱码不卡18| 精品国内亚洲2022精品成人| 只有这里有精品99| 嫩草影院入口| 日韩在线高清观看一区二区三区| 国产伦精品一区二区三区视频9| 久久久久九九精品影院| 99热精品在线国产| 3wmmmm亚洲av在线观看| 亚洲国产精品成人久久小说| 两性午夜刺激爽爽歪歪视频在线观看| 免费av毛片视频| 国产精品嫩草影院av在线观看| 国产精品野战在线观看| 少妇丰满av| 99久久精品国产国产毛片| 美女被艹到高潮喷水动态| 日产精品乱码卡一卡2卡三| 69人妻影院| 亚洲天堂国产精品一区在线| av在线观看视频网站免费| 亚洲av熟女| 国产亚洲av片在线观看秒播厂 | 精华霜和精华液先用哪个| 久久午夜福利片| 99热精品在线国产| 久久婷婷人人爽人人干人人爱| 久久久久网色| 国产白丝娇喘喷水9色精品| av又黄又爽大尺度在线免费看 | 边亲边吃奶的免费视频| 99国产精品一区二区蜜桃av| 日韩一区二区视频免费看| 国产三级在线视频| 18禁裸乳无遮挡免费网站照片| av专区在线播放| 久久国产乱子免费精品| 中文乱码字字幕精品一区二区三区 | 看免费成人av毛片| 精品久久久久久久久av| 内地一区二区视频在线| 欧美又色又爽又黄视频| 免费观看的影片在线观看| 欧美日本视频| 久久久成人免费电影| 老司机影院成人| 色5月婷婷丁香| 99热网站在线观看| 美女高潮的动态| 最近中文字幕2019免费版| 九色成人免费人妻av| 超碰97精品在线观看| 99视频精品全部免费 在线| 男女边吃奶边做爰视频| 精品人妻一区二区三区麻豆| av播播在线观看一区| 一区二区三区乱码不卡18| 看黄色毛片网站| 26uuu在线亚洲综合色| 亚洲av免费高清在线观看| 日日摸夜夜添夜夜添av毛片| 中文精品一卡2卡3卡4更新| 国产视频内射| av在线蜜桃| 免费观看人在逋| 国产高清三级在线| 成人国产麻豆网| 国产麻豆成人av免费视频| 国产精品一区二区三区四区免费观看| a级毛片免费高清观看在线播放| 欧美另类亚洲清纯唯美| 婷婷色麻豆天堂久久 | 国产爱豆传媒在线观看| 18禁裸乳无遮挡免费网站照片| 在线播放无遮挡| 亚洲国产精品专区欧美| 超碰97精品在线观看| 日本-黄色视频高清免费观看| 成人漫画全彩无遮挡| 精品久久久久久久久久久久久| 亚洲精品日韩在线中文字幕| 久久久久九九精品影院| 黄色一级大片看看| 久久久精品94久久精品| 国产精品麻豆人妻色哟哟久久 | 日本爱情动作片www.在线观看| 久久久精品大字幕| 久久99热这里只有精品18| 欧美色视频一区免费| 精品少妇黑人巨大在线播放 | 一个人看视频在线观看www免费| 亚洲自偷自拍三级| 99久国产av精品| 纵有疾风起免费观看全集完整版 | 亚洲最大成人手机在线| 国产精品1区2区在线观看.| 成人特级av手机在线观看| 久久久久久久久久久丰满| 婷婷色麻豆天堂久久 | 国产精品国产三级专区第一集| 嫩草影院入口| 日日摸夜夜添夜夜添av毛片| 精品久久国产蜜桃| 直男gayav资源| 国产极品天堂在线| 2021少妇久久久久久久久久久| 亚洲最大成人中文| 偷拍熟女少妇极品色| 精品久久久噜噜| 日韩精品有码人妻一区| 成年免费大片在线观看| 久久久亚洲精品成人影院| 午夜老司机福利剧场| 内射极品少妇av片p| 亚洲18禁久久av| 特大巨黑吊av在线直播| 午夜福利在线在线| 国产美女午夜福利| 午夜福利网站1000一区二区三区| 性插视频无遮挡在线免费观看| 国产又色又爽无遮挡免| 免费电影在线观看免费观看| 亚洲精品乱码久久久v下载方式| 亚洲精品,欧美精品| 禁无遮挡网站| av天堂中文字幕网| 两个人视频免费观看高清| 麻豆一二三区av精品| 免费电影在线观看免费观看| 久久久久久久久久久丰满| 亚洲成人精品中文字幕电影| 久久久久网色| 美女脱内裤让男人舔精品视频| 免费看美女性在线毛片视频| 啦啦啦观看免费观看视频高清| 亚洲欧洲国产日韩| 国产v大片淫在线免费观看| 天天躁夜夜躁狠狠久久av| 最近手机中文字幕大全| 亚洲成色77777| 我要搜黄色片| 亚洲欧美成人精品一区二区| 欧美性猛交黑人性爽| 国产高清三级在线| 99久久中文字幕三级久久日本| 国产精品蜜桃在线观看| 成人三级黄色视频| 欧美3d第一页| 久久99精品国语久久久| 少妇熟女欧美另类| 久久久亚洲精品成人影院| 亚洲最大成人手机在线| av.在线天堂| 国产免费视频播放在线视频 | 亚洲欧美日韩东京热| 午夜福利高清视频| 人体艺术视频欧美日本| 日本猛色少妇xxxxx猛交久久| 中文字幕免费在线视频6| 精品久久久久久久人妻蜜臀av| 国产精品综合久久久久久久免费| eeuss影院久久| 午夜福利视频1000在线观看| 麻豆一二三区av精品| 国产成人freesex在线| 日本色播在线视频| 国产黄片视频在线免费观看| 久久久久久久国产电影| 精品国产一区二区三区久久久樱花 | 国产91av在线免费观看| 成人亚洲欧美一区二区av| av免费在线看不卡| 日韩av在线大香蕉| 少妇的逼水好多| 欧美日韩在线观看h| 综合色丁香网| 99久久人妻综合| 纵有疾风起免费观看全集完整版 | 婷婷色综合大香蕉| 亚洲国产最新在线播放| 久久这里有精品视频免费| 欧美日本亚洲视频在线播放| 国产免费视频播放在线视频 | 欧美日韩国产亚洲二区| 最新中文字幕久久久久| 国内精品宾馆在线| 中文资源天堂在线| 久久这里只有精品中国| 国产精品嫩草影院av在线观看| 欧美潮喷喷水| 爱豆传媒免费全集在线观看| 一级爰片在线观看| 国产亚洲91精品色在线| 天堂网av新在线| 日韩欧美三级三区| 午夜久久久久精精品| 日本wwww免费看| 精品99又大又爽又粗少妇毛片| 免费观看a级毛片全部| 麻豆乱淫一区二区| 村上凉子中文字幕在线| 免费看日本二区| av在线观看视频网站免费| 在线免费观看不下载黄p国产| 日本黄大片高清| 亚洲综合精品二区| 国产午夜福利久久久久久| 能在线免费看毛片的网站| 亚洲成色77777| 少妇猛男粗大的猛烈进出视频 | 亚洲精华国产精华液的使用体验| 精品久久久久久久久av| 赤兔流量卡办理| 变态另类丝袜制服| 久久这里有精品视频免费| 99在线人妻在线中文字幕| 丝袜喷水一区| 黑人高潮一二区| 国产精品麻豆人妻色哟哟久久 | 老司机影院成人| 欧美三级亚洲精品| 国产精品熟女久久久久浪| 国产av码专区亚洲av| 一区二区三区免费毛片| 中文亚洲av片在线观看爽| 一区二区三区乱码不卡18| 精品不卡国产一区二区三区| 一边摸一边抽搐一进一小说| av.在线天堂| 国产亚洲av嫩草精品影院| av.在线天堂| 国产亚洲精品久久久com| 欧美日韩综合久久久久久| 一区二区三区免费毛片| 在线a可以看的网站| 丰满少妇做爰视频| 国产午夜福利久久久久久| 一本一本综合久久| 国产精品综合久久久久久久免费| 国产麻豆成人av免费视频| 天天躁夜夜躁狠狠久久av| 人妻少妇偷人精品九色| 日韩精品青青久久久久久| 国产麻豆成人av免费视频| 国内少妇人妻偷人精品xxx网站| 国产真实乱freesex| 国产女主播在线喷水免费视频网站 | 少妇人妻精品综合一区二区| 2021天堂中文幕一二区在线观| 国产69精品久久久久777片| 村上凉子中文字幕在线| 成人亚洲精品av一区二区| 精品久久久久久久久亚洲| 国产91av在线免费观看| 久久久久久伊人网av| 观看免费一级毛片| 又粗又硬又长又爽又黄的视频| 国产淫语在线视频| 我要看日韩黄色一级片| 欧美+日韩+精品| 视频中文字幕在线观看| 看十八女毛片水多多多| 一本久久精品| 精品一区二区三区人妻视频| 少妇人妻精品综合一区二区| 国产真实伦视频高清在线观看| 蜜桃亚洲精品一区二区三区| 久久精品久久久久久噜噜老黄 | 国产成人福利小说| 中国美白少妇内射xxxbb| 免费大片18禁| 成人高潮视频无遮挡免费网站| 日本免费a在线| 九草在线视频观看| 免费观看性生交大片5| 麻豆一二三区av精品| 少妇的逼好多水| 麻豆一二三区av精品| 国产精品,欧美在线| 国产一级毛片在线| 久久婷婷人人爽人人干人人爱| 老女人水多毛片| 国产成年人精品一区二区| 欧美97在线视频| 欧美一区二区国产精品久久精品| 亚洲,欧美,日韩| 丝袜美腿在线中文| 精品熟女少妇av免费看| 亚洲国产色片| 久久99精品国语久久久| 精品久久久久久成人av| 日韩三级伦理在线观看| 赤兔流量卡办理| 综合色丁香网| 一级黄色大片毛片| 国产精品熟女久久久久浪| 国产乱人视频| 久热久热在线精品观看| 久久婷婷人人爽人人干人人爱| 真实男女啪啪啪动态图| 国产精品三级大全| 国产探花极品一区二区| 一区二区三区乱码不卡18| 成人毛片60女人毛片免费| 国产中年淑女户外野战色| 亚洲精品日韩av片在线观看| 一边亲一边摸免费视频| videos熟女内射| 亚洲美女视频黄频| 晚上一个人看的免费电影| 2022亚洲国产成人精品| 久久久国产成人免费| 色网站视频免费| 欧美zozozo另类| 日韩国内少妇激情av| 成人漫画全彩无遮挡| 小蜜桃在线观看免费完整版高清| av又黄又爽大尺度在线免费看 | 九九在线视频观看精品| 日本av手机在线免费观看| 高清av免费在线| 99久久成人亚洲精品观看| 精品久久久久久久久亚洲| 欧美3d第一页| 亚洲自拍偷在线| 久久精品国产亚洲网站| 成人三级黄色视频| 高清在线视频一区二区三区 | 国产91av在线免费观看| 日韩欧美三级三区| 国产伦精品一区二区三区四那| 一级毛片久久久久久久久女| 网址你懂的国产日韩在线| 2021少妇久久久久久久久久久| 亚洲精品亚洲一区二区| 蜜桃亚洲精品一区二区三区| 国产成人91sexporn| 一级毛片aaaaaa免费看小| 中国国产av一级| 看十八女毛片水多多多| 亚洲欧美日韩高清专用| 国产三级在线视频| 色尼玛亚洲综合影院| 99在线人妻在线中文字幕| 欧美日韩国产亚洲二区| 六月丁香七月| 精品一区二区三区人妻视频| 建设人人有责人人尽责人人享有的 | 亚洲欧美日韩卡通动漫| 欧美区成人在线视频| 国产美女午夜福利| 日韩中字成人| 国产日韩欧美在线精品| av在线天堂中文字幕| .国产精品久久| 国产真实乱freesex| 欧美日韩在线观看h| 国产在视频线在精品| 国产成人福利小说| 天天一区二区日本电影三级| 一边摸一边抽搐一进一小说| 国产乱人视频| 午夜精品国产一区二区电影 | 欧美一区二区精品小视频在线| 国产精品一二三区在线看| 久久99热这里只有精品18| 久久这里有精品视频免费| 日日干狠狠操夜夜爽| 欧美三级亚洲精品| 久久99热6这里只有精品| 日韩中字成人| 啦啦啦观看免费观看视频高清| 一级毛片久久久久久久久女| 美女脱内裤让男人舔精品视频| 非洲黑人性xxxx精品又粗又长| 亚洲欧洲国产日韩| 国产欧美日韩精品一区二区| 校园人妻丝袜中文字幕| 欧美三级亚洲精品| 午夜激情欧美在线| 国产亚洲5aaaaa淫片| 超碰97精品在线观看| 日本午夜av视频| 亚洲av不卡在线观看| 亚洲精品成人久久久久久| 亚洲不卡免费看| av免费在线看不卡| 成人综合一区亚洲| 97在线视频观看| 久久久久久久久中文| 欧美性猛交╳xxx乱大交人| 亚洲欧美日韩东京热| 国产成人a∨麻豆精品| 波野结衣二区三区在线| 一区二区三区乱码不卡18| 亚洲中文字幕日韩| 一级毛片我不卡| 精品国产一区二区三区久久久樱花 | 婷婷六月久久综合丁香| 国产 一区 欧美 日韩| 久久久久久国产a免费观看| 可以在线观看毛片的网站| 变态另类丝袜制服| 成人欧美大片| 久久精品综合一区二区三区| 国产在线男女| 淫秽高清视频在线观看| 不卡视频在线观看欧美| 日韩亚洲欧美综合| 婷婷色综合大香蕉| 一级毛片aaaaaa免费看小| 丝袜美腿在线中文| 精品人妻偷拍中文字幕| 亚洲精品乱码久久久v下载方式| 一级毛片电影观看 | 搡老妇女老女人老熟妇| 寂寞人妻少妇视频99o| 久热久热在线精品观看| АⅤ资源中文在线天堂| 伦理电影大哥的女人| 简卡轻食公司| 亚洲怡红院男人天堂| 久久久欧美国产精品| 丰满少妇做爰视频| 中文欧美无线码| 欧美一级a爱片免费观看看| av在线播放精品| 午夜福利高清视频| 在线播放国产精品三级| 99九九线精品视频在线观看视频| 久久精品91蜜桃| 欧美成人精品欧美一级黄| 精品久久久久久久久av| 免费av不卡在线播放| 青春草国产在线视频| 黑人高潮一二区| 黄色配什么色好看| 三级毛片av免费| 亚洲国产精品专区欧美| 高清视频免费观看一区二区 | 国产黄色视频一区二区在线观看 | 午夜激情欧美在线| 亚洲精品,欧美精品| 国产91av在线免费观看| 婷婷六月久久综合丁香| 国产一区有黄有色的免费视频 | 天天躁日日操中文字幕| 日韩精品青青久久久久久| 国产又黄又爽又无遮挡在线| 一夜夜www| 国内少妇人妻偷人精品xxx网站| 亚洲国产精品国产精品| 成人漫画全彩无遮挡| 欧美不卡视频在线免费观看| 国产精品久久视频播放| 大话2 男鬼变身卡| 晚上一个人看的免费电影| 97在线视频观看| 在线天堂最新版资源| 欧美成人精品欧美一级黄| 久久久久久久午夜电影| 国产精品久久久久久久电影| 晚上一个人看的免费电影| 一级毛片电影观看 | 一个人观看的视频www高清免费观看| 午夜日本视频在线| 亚洲av成人精品一区久久| 69av精品久久久久久| 日本五十路高清| 亚洲三级黄色毛片| 久久午夜福利片| 久久国产乱子免费精品| 欧美变态另类bdsm刘玥| 国产精华一区二区三区| 国内揄拍国产精品人妻在线| 中文资源天堂在线| 亚洲国产精品成人久久小说| 国产成人91sexporn| 国产精品乱码一区二三区的特点| 少妇人妻精品综合一区二区|