• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Heterogeneous integration of GaSb layer on(100)Si substrate by ion-slicing technique

    2022-08-01 06:02:02RenJieLiu劉仁杰JiaJieLin林家杰ZhengHaoShen沈正皓JiaLiangSun孫嘉良TianGuiYou游天桂JinLi李進(jìn)MinLiao廖敏andYiChunZhou周益春
    Chinese Physics B 2022年7期
    關(guān)鍵詞:李進(jìn)林家

    Ren-Jie Liu(劉仁杰), Jia-Jie Lin(林家杰), Zheng-Hao Shen(沈正皓), Jia-Liang Sun(孫嘉良),Tian-Gui You(游天桂),§, Jin Li(李進(jìn)), Min Liao(廖敏), and Yi-Chun Zhou(周益春)

    1Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education,School of Materials Science and Engineering,Xiangtan University,Xiangtan 411105,China

    2Hunan Provincial Key Laboratory of Thin Film Materials and Devices,School of Materials Science and Engineering,Xiangtan University,Xiangtan 411105,China

    3College of Information Science and Engineering,Jiaxing University,Jiaxing 314001,China

    4State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Science(CAS),Shanghai 200050,China

    5Beijing Semicore ZKX Electronics Equipment Co.,Ltd,Beijing 100000,China

    Keywords: ion-slicing technique,heterogeneous integration,GaSbOI

    1. Introduction

    Among III–V compound semiconductors, the GaSb is a particularly significant semiconductor since its lattice parameter can be easily matched to various ternary and quaternary III–V compounds whose band gaps cover a wide range from~0.3 eV to 1.58 eV,e.g., 0.8 μm–4.3 μm.[1]Furthermore, it makes the detection of longer wavelengths(8 μm–14 μm)possible with intersubband absorption in the antimonide based superlattice. These have attracted huge attention in the development of GaSb applications in the fabrication of high-speed and microwave devices, infrared detectors, and long-wavelength lasers.[1–3]Additionally,the GaSb-based devices are a promising candidate for a variety of military and civil applications in long-wavelength regimes,such as infrared imaging sensors for missile and surveillance systems, fire detection, and monitoring environmental pollution.

    However,owing to the difficulty in fabricating,the semiinsulating GaSb substrate is not available currently, which limits its widespread applications. Heteroepitaxial growth of GaSb-based devices on GaAs substrates and Si substrates as an integration strategy has attracted considerable attention due to the numerous advantages in optoelectronic devices that can be enabled, including monolithically integrated lasers, detectors, solar cells, and transistors.[3–7]Nevertheless, this integration strategy is challenged by the conjunction of large lattice and polarity mismatches, especially for the heteroepitaxial growth on Si substrate(13%lattice mismatch with GaSb).These large mismatches easily give rise to planar defects,the antiphase boundaries (APBs) and misfit dislocations in epitaxial layers, which can reduce the device performance and reliability. Fortunately, ion-slicing technique appears to conduce to the further development of heterogeneous integration between the mismatched materials. Ion-slicing technique was developed first by Bruel in 1995,and now it has been successfully applied to the mass production of Si-on-insulator wafers(SOI).[8]In the ion-slicing technique, the light elemental ion implantation followed by wafer bonding and annealing allows relatively thick layer to slice and transfer from a donor substrate to a host material without worrying about the physical mismatch in heteroepitaxial growth. During annealing,the vacancies are introduced by the ion implantation and light elemental ions precipitate into the formation of platelet defects in nanometer dimensions, which progressively grow by Ostwald ripening.[9,10]With the concentration of the implanted ions increasing in platelet defect, the platelet defect evolves and finally coalesce to form micro-cracks.[9]The further thermal evolution of the micro-cracks leads to the fracture phenomenon, including blistering or exfoliating on the surface.When a stiffener is intentionally bonded onto the wafer surface, the overall layer, parallel to the wafer surface, can be split.[11]Hence, the ion-slicing technique can not only avoid physically mismatching materials to achieve heterogeneous integration, but also directly peel from the single crystal substrate to produce high- quality single crystal films. Furthermore,one substrate can be transferred multiple times to reduce the cost,which is important especially for the expensive materials. This method has been extended to the area of compound semiconductors,such as Si-based InP,SiC,GaN,and Ga2O3,LiTbO3.[12–16]Some researches of the exfoliation or blistering behaviors of GaSb under different ion implantation conditions have been conducted,[17–19]but no report shows that the highquality GaSb layer has been transferred onto the Si substrate successfully by ion-slicing technique so far.

    In this study,the splitting mechanism of GaSb is analyzed in detail. Combining direct wafer bonding, the GaSb layer is successfully transferred onto the Si/SiO2substrate to form high-quality GaSb-on-insulator(GaSbOI)structure.

    2. Experimental details

    The 350-μm-thick N-type (100) GaSb wafers having 2-inch(1 inch=2.54 cm)diameter were used in this study. The GaSb wafers were implanted by 75-keV H ions supplied from Nissin-implanter,respectively,with a fluence of 2×1016cm-2and 5×1016cm-2at room temperature.In order to avoid channeling effects,the 7°off the wafer normal was performed deliberately during the implantation process. After implantation,some of the GaSb wafers were cut into small samples for being characterized. Some of the samples implanted with 2×1016-cm-2and 5×1016-cm-2H ions were annealed at 200°C and 150°C with a constant flux of N2, respectively. The optical microscope (OM), Leica DM4000M, was used to characterize the surface morphologies of the samples. The strain variations under different annealing temperatures were characterized by x-ray diffraction(XRD)with Pilips X’Pert x-ray diffractometer. The cross-sectional transmission electron microscopy (XTEM), JEOL 2100F field-emission transmission electron microscope, was adopted to characterize the defects introduced by ion implantation. The quality of the different regions in sample was examined by selected area electron diffraction(SAED).Combined with direct wafer bonding,the GaSb layer was successfully transferred onto the Si/SiO2substrate. The surface topography was characterized by atomic force microscope (AFM) with Bruker Multimode 8. The structure of the GaSbOI substrate was characterized by crosssectional scanning electron microscopy (SEM) JEOL 7800F.The quality of the transferred GaSb layer after being annealed at different temperatures was examined by XRD and Raman excited by a 514.5-nm laser through using the Horiba Scientific LabRAM HR.

    3. Results and discussion

    In order to analyze the blistering behaviors, the GaSb samples implanted with 2×1016-cm-2and 5×1016-cm-2H ions are annealed at 200°C for 1 h. It is obvious that there is no change on the surface of sample implanted with 2×1016-cm-2H ions, while there are many bubbles and exfoliations on the surface of sample implanted with 5×1016-cm-2H ions as shown in Figs.1(a)and 1(b). The blistering efficiency depends on the extent of the damage produced by ion implantation because it affects the microstructure of the implanted sample. This microstructure is affected by the ion fluence.[20]The low ion fluence forms not only a small number of defects,but also the internal pressure of the defects which is not enough to overcome the facture energy of substrate,so no bubbles occur on the surface, which is regarded as a behavior of sample implanted with 2×1016-cm-2H ions. Owing to the nature of easy oxidation, the annealing temperature for GaSb must be lower. Therefore, the GaSb samples implanted with 5×1016-cm-2H ions are annealed at 150°C for 3 min and 1 h, respectively. As shown in Fig. 1(c), when the annealing time is 3 min,a large number of uniformly distributed bubbles appear on the surface. With the annealing time extending to 1 h, there is no significant increase in the volume of the bubbles,while some exfoliations occur on the surface as shown in Fig.1(d).During annealing,the defects need enough energy to migrate and coalesce together. Hence,for the GaSb implanted with 5×1016-cm-2H ions, the annealing at 150°C can meet the energy demand for the defect evolution to deform the surface causing blistering or exfoliation, which is necessary for the GaSb layer transfer.

    Fig. 1. OM image of GaSb implanted with (a) 2×1016-cm-2 H ions, (b)5×1016-cm-2 H ions after being annealed at 200 °C for 1 h,5×1016-cm-2 H ions after being annealed at 150 °C for(c)3 min and(d)1 h.

    During annealing, the driving force of defect evolution is the strain introduced by the ion implantation. The XRD is used to analyze the strain variation of the GaSb sample implanted with 5×1016-cm-2H ions after being annealed at different temperatures. Figure 2(a)shows theω/2θXRD scans along the GaSb (004) reflections. Compared with the virgin GaSb, the implanted GaSb sample presents additional scattered intensity for angles lower than the Bragg angle,indicating that there is an out-of-plane tensile strain introduced by ion implantation.[21]As reported early , the most distant fringe from the Bragg angle corresponds to the maximum strain in the GaSb sample.[21]With the temperature increasing,the additional scattered intensity decreases gradually until it disappears completely at 130°C. It indicates that the increase in the annealing temperature promotes the evolution of defects,resulting in the release of strain. The 130°C corresponds to a defect transition temperature,at which the strain introduced by ion implantation is fully released. In order to analyze the defect formation, the XTEM is utilized to characterize the microstructure for the GaSb sample implanted with 5×1016-cm-2H ions after being annealed at 130°C.Figure 2(b)shows the cross-sectional TEM image and the inset displays the H ion distribution and displacement per atom(DPA)distribution simulated by SRIM 2008.[22]The DPA is commonly used to evaluate the degree of radiation damage to materials.It is obvious that the ion implantation gives rise to a damaged layer consisting of large density of defects in the GaSb sample as shown by the red dashed line. The damaged layer is 250-nm thick and 500-nm away from the surface. The maximum damage is around the upper boundary of damaged layer, while the peak of the H ion distribution is located in the middle of the damaged layer. Figure 2(c)shows the high-resolution TEM image for the damaged layer region in Fig. 2(b). Some platelet defects,parallel to the surface,appear in the damaged layer. Just like the H ion implantation into the Si substrate,the implanted H ions and some of the vacancies generated by the implantation coprecipitate during annealing and from two-dimensional circular objects named platelet defect.[10]The platelet defects serve as the precursors of the microcracks, which are essential for the layer splitting. Hence, the formation of platelet defects causes the strain to release, corresponding to the results of Fig.2(a). With the temperature increasing,the driving force of the evolution of platelet defects is the pressure inside the defects instead of the strain introduced by ion implantation. Figure 2(d) shows the SAED images corresponding to the three regions in Fig.2(b). The diffraction patterns in three regions show regular and bright spots rather than diffraction rings,which proves that the 5×1016-cm-2H ion implantation does not make the lattice amorphous in GaSb. However, the spots in region 1 are a little bigger than the spots in region 2,which means that in region 1 there are much heavier lattices disordered than in region 2. All the implanted ions go through region 1 to region 2. It is reasonable to think that the multiple collisions between the ions and lattice atoms in region 1 cause the much heavier lattice to disorder. Hence, the implantation condition of 5×1016-cm-2H ions is suitable to the splitting of the GaSb layer.

    Fig. 2. (a) Patterns of ω/2θ XRD scan along GaSb (004) reflections for virgin GaSb and GaSb implanted with 5×1016-cm-2 H ions after being annealed at different temperatures;(b)cross-sectional TEM image of GaSb implanted with 5×1016-cm-2 H ions after being annealed at 130 °C;(c)high-resolution TEM image for the damaged layer in panel(b);(d)SAED images corresponding to the three regions in panel(b).

    Based on the analysis of the splitting mechanism of GaSb,the process of GaSb layer transfer by ion-slicing technique is shown in Fig. 3. Firstly, the GaSb wafer is implanted with 5×1016-cm-2H ions at 75 keV. Then, the implanted GaSb wafer is bonded with a 4-inch SiO2/Si(100)substrate directly after the surface has been activated by O2plasma. The O2plasma activation can remove the contaminants and increase the density of the dangling bonds on the wafer surface,which is beneficial to achieving high bonding strength at low temperature. Subsequently, the bonding pair of GaSb/SiO2/Si (100)is annealed at 150°C for 1 h in a furnace with an N2atmosphere to achieve the GaSb layer transfer.

    Fig.3. Flowchart of our scheme for GaSb layer transfer by ion-slicing technique.

    Figure 4(a) shows the images of the bonding pair of of GaSb/SiO2/Si(100)after being annealed at 150°C for 1 h. It is obvious that the upper GaSb wafer is broken up into small pieces. With linear thermal expansion coefficients of Si and GaSb being 2.6×10-6C-1and 7.75×10-6C-1, there is a large thermal mismatch between Si and GaSb. During annealing,a huge thermal stress introduced by the large thermal mismatch exceeds the fracture energy of GaSb,causing the GaSb wafer to be broken. The annealing process needs to be further optimized to reduce the thermal stress, including reducing the rate of heating and cooling. After removing the pieces of GaSb wafer,the GaSb layer is transferred onto the SiO2/Si substrate to fabricate the GaSbOI substrate, which is shown in Fig.4(b). Owing to the huge thermal stress resulting from debonding,the GaSb layer in some region is not successfully transferred onto the SiO2/Si substrate.The surface topography of the GaSb is characterized by AFM as shown in Fig. 4(c).The scan covers an area of 5 μm×5 μm.The transferred GaSb layer has a high surface roughness of 27 nm, which should be polished to be sufficiently smooth for subsequent epitaxial growth. The GaSbOI substrate shows distinct three layers,including GaSb layer,SiO2layer,and Si substrate,respectively,as shown in Fig.4(d). The thickness of GaSb layer is around 630 nm,corresponding to the maximum peak of H ion distribution in Fig.2(b). Figure 4(e)shows a typical cross-sectional TEM image of GaSbOI, which reveals a sharp and smooth bonding interface between GaSb substrate and SiO2/Si substrate. The quality of the transferred GaSb layer is evaluated by high-angle annular dark field-STEM (HAADF-STEM) as shown in Fig. 4(f). In the HAADF-STEM image, the atoms of GaSb are arranged in regular lattice structure without any visible misfit dislocations, which proves that the GaSb layer has a perfect single-crystal structure.

    Fig.4. (a)Photo for GaSb/Si bonding pair after being annealed at 150 °C for 1 h;(b)photo of GaSb layer transferred on Si substrate;(c)AFM image for transferred GaSb layer;(d)SEM image of GaSbOI structure;(e)cross-sectional TEM image of GaSbOI;(f)HAADF-STEM image for transferred GaSb layer.

    The quantitative characterization of the quality of the transferred GaSb layer is evaluated by x-ray rocking curve(XRC)measurement. The normalized(004)XRDs of the bulk GaSb substrate and the transferred GaSb layer before and after being annealed at 200°C are shown in Fig. 5(a). Obviously, an additional scattering peak appears to be lower than the Bragg angle of GaSb, while the peak disappears after being annealed at 200°C. Additionally, the full width at half maximum (FWHM) of the XRCs of the GaSb layer before and after being annealed remains constant, about 77 arcsec,which is slightly higher than that for the bulk GaSb substrate(20 arcsec). Therefore,it is reasonable to speculate that there are some defects in the transferred GaSb layer,which reduces the crystalline quality and cannot be recovered after being annealed at 200°C.The FWHMs of the XRCs of the GaSb layer before and after being annealed are significantly larger than that of virgin GaSb. The ion implantation will introduce a damaged layer containing large density of defects in the GaSb substrate as shown in Fig.2(b).Although the GaSb layer splitting occurs in the damaged layer,there are still many residual defects in the transferred GaSb layer. After being annealed at 200°C,only part of the defects recombin and disappear due to the restricted energy.Hence,these residual defects in the GaSb layer causes significantly larger FWHM of the XRCs even after being annealed at 200°C. In order to characterize the defects in the as-transferred GaSb layer,the Raman spectrum is utilized to analyze the components of the region near to the surface of the GaSb layer before and after being annealed at 200°C as shown in Fig.5(b). The GaSb layer is found to have typical first-order TO mode and LO mode before and after being annealed, and so is the virgin GaSb substrate, while an additional peak appears at around 155 cm-1for the GaSb before being annealed as shown by the black dashed line square.As reported early,during annealing,the segregation of Sb element easily happens to form a peak at about 155 cm-1in Raman scattering spectrum.[23]After being annealed at 200°C,it is reasonable to believe that the atoms near to the surface of GaSb layer are rearranged to recover the crystalline structure.Hence, the annealing at 200°C is essential for GaSb layer to improve its crystalline structure.

    Fig.5. (a)Normalized(004)XRCs for bulk GaSb substrate and transferred GaSb layer before and after being annealed at 200 °C; (b) normalized Raman spectrum for virgin GaSb and transferred GaSb layer before and after being annealed at 200 °C.

    4. Conclusions and perspectives

    In this work, we analyzed the blistering and exfoliation behaviors of GaSb after H ion implantation and confirm the suitable ion implantation fluence of 5×1016-cm-2H ions for GaSb layer transfer. During annealing, the strain introduced by the H ion implantation as the driving force accelerates the coprecipitation of the implanted H ions and some of the vacancies generated by the implantation to form the platelet defect. With the temperature increasing, the pressure inside the platelet defects,instead of the strain introduced by ion implantation,drives the platelet defects to evolve. Based on the analysis of the splitting mechanism of GaSb,the monolithic integration of high-quality GaSb layer with SiO2/Si substrate is successfully achieved by the ion-slicing technique. The crystalline quality of the GaSb layer can be further improved by annealing at 200°C.The high-quality heterogeneous integration of GaSb on the SiO2/Si substrate promises to become a novel platform for infrared applications.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China (Grant No. 2017YFE0131300),the National Natural Science Foundation of China (Grant Nos.U1732268,61874128,11622545,61851406,11705262,61875220, and 61804157), the Frontier Science Key Program of Chinese Academy of Sciences(Grant Nos.QYZDYSSW-JSC032 and ZDBS-LY-JSC009), the Chinese–Austrian Cooperative Research and Development Project (Grant No. GJHZ201950), the Shanghai Science and Technology Innovation Action Plan Program, China (Grant No. 17511106202), the Program of Shanghai Academic Research Leader, China (Grant No. 19XD1404600), the Shanghai Youth Top Talent Program, Shanghai Sailing Program,China (Grant Nos. 19YF1456200 and 19YF1456400), the K.C. Wong Education Foundation, China (Grant No. GJTD-2019-11), and the NCBiR within the Polish–China (Grant No.WPC/130/NIR-Si/2018).

    猜你喜歡
    李進(jìn)林家
    發(fā)錢
    遼河(2025年1期)2025-02-08 00:00:00
    林家陽(yáng)作品
    Evolution of surfaces and mechanisms of contact electrification between metals and polymers
    部編版初中歷史教學(xué)細(xì)節(jié)素材的運(yùn)用方法
    Dense coding capacity in correlated noisy channels with weak measurement*
    林家琪、李鴻禹作品
    常用輔助線在圓中的運(yùn)用
    林家立設(shè)計(jì)作品
    把自己“吹”進(jìn)監(jiān)獄
    有趣的發(fā)現(xiàn)
    男女下面进入的视频免费午夜 | 午夜福利成人在线免费观看| 露出奶头的视频| 国产亚洲欧美在线一区二区| 一本久久中文字幕| 国产激情久久老熟女| 黄色毛片三级朝国网站| 精品国产超薄肉色丝袜足j| 国产xxxxx性猛交| 午夜福利免费观看在线| 热99re8久久精品国产| 9色porny在线观看| 国产精品99久久99久久久不卡| 午夜影院日韩av| 久久香蕉国产精品| 两性夫妻黄色片| 亚洲第一欧美日韩一区二区三区| 午夜日韩欧美国产| 神马国产精品三级电影在线观看 | 涩涩av久久男人的天堂| videosex国产| 色精品久久人妻99蜜桃| 多毛熟女@视频| 欧美绝顶高潮抽搐喷水| 日韩成人在线观看一区二区三区| 国产成人精品在线电影| 麻豆国产av国片精品| 高清在线国产一区| 国产精品免费视频内射| 婷婷六月久久综合丁香| 一级,二级,三级黄色视频| 中文字幕色久视频| 日韩国内少妇激情av| ponron亚洲| 久久婷婷人人爽人人干人人爱 | 9热在线视频观看99| 色在线成人网| 成在线人永久免费视频| 久久久久久亚洲精品国产蜜桃av| 久久久久久久久中文| 麻豆久久精品国产亚洲av| 1024香蕉在线观看| 久久九九热精品免费| 伦理电影免费视频| 精品国产亚洲在线| 亚洲久久久国产精品| www.www免费av| 亚洲av电影不卡..在线观看| 成年版毛片免费区| 国产精品久久久久久精品电影 | 欧美日韩亚洲国产一区二区在线观看| 在线十欧美十亚洲十日本专区| 亚洲伊人色综图| 国产三级黄色录像| 老司机午夜十八禁免费视频| 国产亚洲精品av在线| 精品电影一区二区在线| videosex国产| 国内精品久久久久久久电影| 国产伦一二天堂av在线观看| 日本欧美视频一区| 母亲3免费完整高清在线观看| 成人三级做爰电影| 曰老女人黄片| 亚洲片人在线观看| 高清毛片免费观看视频网站| 免费在线观看日本一区| 欧美亚洲日本最大视频资源| 免费在线观看完整版高清| 一级,二级,三级黄色视频| 午夜成年电影在线免费观看| 黑人巨大精品欧美一区二区mp4| 午夜a级毛片| 最近最新中文字幕大全免费视频| 久久久久精品国产欧美久久久| 一二三四在线观看免费中文在| 久久狼人影院| 久久亚洲真实| 丰满人妻熟妇乱又伦精品不卡| 97人妻天天添夜夜摸| 国产不卡一卡二| 51午夜福利影视在线观看| 在线av久久热| 在线十欧美十亚洲十日本专区| 搡老岳熟女国产| 国产高清有码在线观看视频 | 99热只有精品国产| www.熟女人妻精品国产| 啦啦啦韩国在线观看视频| 99久久99久久久精品蜜桃| 91九色精品人成在线观看| 又黄又爽又免费观看的视频| 午夜激情av网站| 精品国产亚洲在线| 97人妻精品一区二区三区麻豆 | 12—13女人毛片做爰片一| 午夜免费成人在线视频| 99热只有精品国产| av视频在线观看入口| 午夜免费激情av| 黄色片一级片一级黄色片| 婷婷丁香在线五月| 9色porny在线观看| 日韩国内少妇激情av| 亚洲国产毛片av蜜桃av| 男女下面插进去视频免费观看| 欧美日韩亚洲国产一区二区在线观看| 999久久久精品免费观看国产| 天堂动漫精品| bbb黄色大片| 亚洲国产欧美网| 涩涩av久久男人的天堂| 亚洲精品久久国产高清桃花| 真人做人爱边吃奶动态| 国产xxxxx性猛交| 母亲3免费完整高清在线观看| 国产人伦9x9x在线观看| 侵犯人妻中文字幕一二三四区| 久久人人97超碰香蕉20202| 日本 av在线| 午夜福利在线观看吧| av天堂久久9| 久久久久久免费高清国产稀缺| 国产精品,欧美在线| 青草久久国产| 久久久久久久久免费视频了| 免费在线观看视频国产中文字幕亚洲| 国产野战对白在线观看| a级毛片在线看网站| 国产人伦9x9x在线观看| 欧美+亚洲+日韩+国产| or卡值多少钱| 国产精品亚洲av一区麻豆| 又黄又粗又硬又大视频| 不卡一级毛片| 日本精品一区二区三区蜜桃| 麻豆av在线久日| 九色国产91popny在线| 色哟哟哟哟哟哟| 欧美日韩中文字幕国产精品一区二区三区 | 日韩一卡2卡3卡4卡2021年| 成人精品一区二区免费| avwww免费| 十八禁人妻一区二区| 人妻丰满熟妇av一区二区三区| 午夜福利高清视频| 亚洲精品中文字幕一二三四区| 国产亚洲欧美精品永久| 久久香蕉精品热| 19禁男女啪啪无遮挡网站| 免费不卡黄色视频| 亚洲欧美日韩另类电影网站| 久久久久久国产a免费观看| aaaaa片日本免费| 久久精品亚洲熟妇少妇任你| 黄片小视频在线播放| 69精品国产乱码久久久| 久久精品亚洲熟妇少妇任你| АⅤ资源中文在线天堂| 操美女的视频在线观看| 中文亚洲av片在线观看爽| 一二三四社区在线视频社区8| 国产麻豆成人av免费视频| 久久精品亚洲精品国产色婷小说| 丰满的人妻完整版| 午夜老司机福利片| 久久国产精品影院| 免费高清在线观看日韩| 色av中文字幕| 身体一侧抽搐| 免费女性裸体啪啪无遮挡网站| 欧美中文综合在线视频| 在线观看www视频免费| 欧美日韩中文字幕国产精品一区二区三区 | 精品卡一卡二卡四卡免费| 日韩 欧美 亚洲 中文字幕| a在线观看视频网站| 久久国产亚洲av麻豆专区| 日本欧美视频一区| 久久性视频一级片| 亚洲中文日韩欧美视频| 国产私拍福利视频在线观看| bbb黄色大片| 亚洲国产精品合色在线| 亚洲熟妇熟女久久| 国产亚洲欧美精品永久| 欧美+亚洲+日韩+国产| 国产精品av久久久久免费| 午夜精品久久久久久毛片777| 欧美久久黑人一区二区| 999久久久精品免费观看国产| 午夜福利免费观看在线| 九色国产91popny在线| 亚洲伊人色综图| a级毛片在线看网站| 黄色毛片三级朝国网站| av欧美777| 久9热在线精品视频| 亚洲一区二区三区不卡视频| 91麻豆精品激情在线观看国产| 免费在线观看黄色视频的| 国产免费男女视频| 国产黄a三级三级三级人| 久久久国产成人精品二区| 一级黄色大片毛片| 天天添夜夜摸| 欧美色欧美亚洲另类二区 | 欧美日韩中文字幕国产精品一区二区三区 | 成人永久免费在线观看视频| 一二三四社区在线视频社区8| 少妇的丰满在线观看| 午夜两性在线视频| 免费看美女性在线毛片视频| 亚洲色图综合在线观看| 国产精品久久久久久精品电影 | 国产熟女xx| 黄色女人牲交| 日韩一卡2卡3卡4卡2021年| 侵犯人妻中文字幕一二三四区| 90打野战视频偷拍视频| 夜夜躁狠狠躁天天躁| 久久久久亚洲av毛片大全| 美女高潮喷水抽搐中文字幕| 久久午夜亚洲精品久久| 一边摸一边抽搐一进一出视频| 99在线人妻在线中文字幕| 亚洲欧美精品综合久久99| 中文字幕精品免费在线观看视频| 欧美日本亚洲视频在线播放| 国产精品自产拍在线观看55亚洲| 中文字幕色久视频| 国产成+人综合+亚洲专区| 波多野结衣高清无吗| 国产一区二区在线av高清观看| 禁无遮挡网站| 91老司机精品| 欧美日韩黄片免| 岛国视频午夜一区免费看| 午夜福利在线观看吧| 国产精品 欧美亚洲| 777久久人妻少妇嫩草av网站| av欧美777| 啪啪无遮挡十八禁网站| 欧美中文综合在线视频| 九色亚洲精品在线播放| 国产精品自产拍在线观看55亚洲| 亚洲情色 制服丝袜| 日韩成人在线观看一区二区三区| 一级作爱视频免费观看| 久久精品91蜜桃| av在线天堂中文字幕| 伦理电影免费视频| 国产xxxxx性猛交| bbb黄色大片| 一级a爱视频在线免费观看| 久久久精品欧美日韩精品| 中文字幕最新亚洲高清| 午夜a级毛片| 热99re8久久精品国产| 侵犯人妻中文字幕一二三四区| 精品国产乱码久久久久久男人| 91老司机精品| 国产av一区二区精品久久| 99久久国产精品久久久| 一区二区三区高清视频在线| a在线观看视频网站| 成人永久免费在线观看视频| 亚洲久久久国产精品| 成熟少妇高潮喷水视频| 日本五十路高清| 后天国语完整版免费观看| 不卡av一区二区三区| 国产精品一区二区三区四区久久 | 黄色a级毛片大全视频| 美女大奶头视频| 亚洲人成电影免费在线| 亚洲 欧美 日韩 在线 免费| 久久天躁狠狠躁夜夜2o2o| 色播在线永久视频| 国产一区二区在线av高清观看| 亚洲精品国产一区二区精华液| 日本免费一区二区三区高清不卡 | 午夜福利高清视频| 成人手机av| 国语自产精品视频在线第100页| 久久久国产精品麻豆| 久久人妻av系列| 久久久国产欧美日韩av| 国产麻豆成人av免费视频| 精品国产超薄肉色丝袜足j| 一级片免费观看大全| 好看av亚洲va欧美ⅴa在| 十八禁网站免费在线| 正在播放国产对白刺激| 日韩欧美一区二区三区在线观看| 校园春色视频在线观看| 中文字幕人成人乱码亚洲影| 亚洲第一欧美日韩一区二区三区| 欧美av亚洲av综合av国产av| av片东京热男人的天堂| 人人妻人人澡欧美一区二区 | 午夜福利18| 一级作爱视频免费观看| 每晚都被弄得嗷嗷叫到高潮| 国产av又大| 欧美成人午夜精品| www.www免费av| 亚洲av五月六月丁香网| 69av精品久久久久久| 香蕉久久夜色| 日韩视频一区二区在线观看| 久久久久久久久中文| 亚洲成人国产一区在线观看| 天堂影院成人在线观看| 91麻豆精品激情在线观看国产| 精品久久久久久成人av| 国产三级在线视频| 欧美丝袜亚洲另类 | 色综合欧美亚洲国产小说| 久久久久亚洲av毛片大全| 在线观看日韩欧美| 午夜视频精品福利| 久久香蕉激情| 午夜视频精品福利| 波多野结衣一区麻豆| 一级黄色大片毛片| 国产成人影院久久av| 成人国产综合亚洲| 亚洲一码二码三码区别大吗| 岛国在线观看网站| av视频在线观看入口| 香蕉久久夜色| 日韩欧美免费精品| 亚洲午夜理论影院| 欧美日韩亚洲综合一区二区三区_| 中文字幕av电影在线播放| www.999成人在线观看| 正在播放国产对白刺激| 国产蜜桃级精品一区二区三区| 亚洲avbb在线观看| 欧美黑人精品巨大| 欧美日韩亚洲国产一区二区在线观看| 午夜a级毛片| 欧美成人免费av一区二区三区| 久久国产乱子伦精品免费另类| 精品一区二区三区四区五区乱码| 午夜免费成人在线视频| 国产麻豆69| 久久久久久人人人人人| 国产麻豆成人av免费视频| ponron亚洲| 午夜精品久久久久久毛片777| 久久婷婷成人综合色麻豆| 欧美成狂野欧美在线观看| 亚洲国产高清在线一区二区三 | 三级毛片av免费| 日本免费一区二区三区高清不卡 | 97人妻精品一区二区三区麻豆 | 精品第一国产精品| 国产精品一区二区三区四区久久 | 香蕉久久夜色| 国产av精品麻豆| 欧美日本视频| 久久人妻熟女aⅴ| 国产亚洲精品一区二区www| or卡值多少钱| 欧美乱色亚洲激情| 69av精品久久久久久| 激情在线观看视频在线高清| 免费搜索国产男女视频| 亚洲精品一卡2卡三卡4卡5卡| 国产精品 国内视频| 国产精品一区二区精品视频观看| 丝袜人妻中文字幕| 中文亚洲av片在线观看爽| 高清毛片免费观看视频网站| 欧美亚洲日本最大视频资源| 国产极品粉嫩免费观看在线| 久久久久亚洲av毛片大全| 日韩一卡2卡3卡4卡2021年| 久久久久亚洲av毛片大全| 极品人妻少妇av视频| 国产av在哪里看| 欧美色欧美亚洲另类二区 | 日韩欧美在线二视频| 国产不卡一卡二| 亚洲国产中文字幕在线视频| 国产蜜桃级精品一区二区三区| 伦理电影免费视频| 亚洲一码二码三码区别大吗| 曰老女人黄片| 午夜福利在线观看吧| 女同久久另类99精品国产91| 禁无遮挡网站| 欧美一区二区精品小视频在线| 国产极品粉嫩免费观看在线| 涩涩av久久男人的天堂| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产精品999在线| 欧美成人免费av一区二区三区| 男女下面进入的视频免费午夜 | 日韩欧美国产在线观看| 男女床上黄色一级片免费看| 真人做人爱边吃奶动态| 久久人妻福利社区极品人妻图片| 亚洲最大成人中文| 一级片免费观看大全| 国产亚洲av高清不卡| 电影成人av| 国产精品亚洲一级av第二区| 制服诱惑二区| 国产精品久久久久久亚洲av鲁大| www国产在线视频色| av在线播放免费不卡| 国内久久婷婷六月综合欲色啪| 免费av毛片视频| 制服人妻中文乱码| 天堂√8在线中文| 黄色毛片三级朝国网站| 久久人妻福利社区极品人妻图片| 美女国产高潮福利片在线看| 久久久久九九精品影院| 午夜视频精品福利| 成人国语在线视频| avwww免费| 欧美大码av| 国产欧美日韩精品亚洲av| 窝窝影院91人妻| 亚洲人成77777在线视频| 搞女人的毛片| 中国美女看黄片| 不卡一级毛片| 精品一区二区三区四区五区乱码| 巨乳人妻的诱惑在线观看| 美女扒开内裤让男人捅视频| 午夜免费观看网址| 啦啦啦韩国在线观看视频| 精品久久久久久久毛片微露脸| 免费在线观看视频国产中文字幕亚洲| 色精品久久人妻99蜜桃| 久久婷婷成人综合色麻豆| 国产成人av教育| 此物有八面人人有两片| 成人国语在线视频| 色综合亚洲欧美另类图片| 精品国产乱子伦一区二区三区| av有码第一页| 无限看片的www在线观看| 久久精品国产亚洲av高清一级| 在线观看66精品国产| 亚洲色图 男人天堂 中文字幕| 日韩免费av在线播放| 日本vs欧美在线观看视频| 午夜福利欧美成人| 欧美大码av| 国产精品九九99| 咕卡用的链子| 久久亚洲真实| 成人av一区二区三区在线看| 欧美精品啪啪一区二区三区| 夜夜爽天天搞| 精品国产亚洲在线| 日本vs欧美在线观看视频| 亚洲国产看品久久| 九色国产91popny在线| 女性生殖器流出的白浆| 久久精品亚洲熟妇少妇任你| 亚洲人成电影观看| 久久人人97超碰香蕉20202| 可以免费在线观看a视频的电影网站| 亚洲精品久久成人aⅴ小说| 国产日韩一区二区三区精品不卡| 国产一区二区激情短视频| 国产免费男女视频| 嫁个100分男人电影在线观看| 老熟妇仑乱视频hdxx| 国产成人欧美在线观看| 午夜免费观看网址| 热re99久久国产66热| 高清黄色对白视频在线免费看| 亚洲中文字幕日韩| 无人区码免费观看不卡| 亚洲国产看品久久| 日韩大尺度精品在线看网址 | 亚洲欧美精品综合一区二区三区| 国产熟女午夜一区二区三区| 国产三级在线视频| 亚洲天堂国产精品一区在线| 国产精品爽爽va在线观看网站 | 黄色 视频免费看| 免费不卡黄色视频| 欧美午夜高清在线| 在线国产一区二区在线| 亚洲国产精品成人综合色| 麻豆久久精品国产亚洲av| 十分钟在线观看高清视频www| 久久亚洲精品不卡| 黄色毛片三级朝国网站| 亚洲aⅴ乱码一区二区在线播放 | 国产亚洲av高清不卡| 一进一出抽搐动态| 男人舔女人下体高潮全视频| 一级毛片女人18水好多| 精品免费久久久久久久清纯| 国产99白浆流出| 久久久久久亚洲精品国产蜜桃av| 91麻豆精品激情在线观看国产| 男男h啪啪无遮挡| 国产精品久久久久久人妻精品电影| 精品国产超薄肉色丝袜足j| av片东京热男人的天堂| 国产私拍福利视频在线观看| netflix在线观看网站| 电影成人av| 亚洲专区中文字幕在线| 午夜久久久在线观看| 亚洲精品粉嫩美女一区| 在线十欧美十亚洲十日本专区| 久久九九热精品免费| 久久久国产欧美日韩av| 久久久久久久久免费视频了| 日本免费a在线| 国产亚洲精品久久久久久毛片| 很黄的视频免费| 一区二区日韩欧美中文字幕| 国产1区2区3区精品| 高清黄色对白视频在线免费看| 老汉色∧v一级毛片| 狂野欧美激情性xxxx| 亚洲,欧美精品.| 咕卡用的链子| 大香蕉久久成人网| 亚洲自拍偷在线| 久久人人爽av亚洲精品天堂| 久久中文字幕一级| 精品一区二区三区视频在线观看免费| 在线av久久热| 中文字幕人妻丝袜一区二区| 搞女人的毛片| 69精品国产乱码久久久| 午夜a级毛片| 一级毛片高清免费大全| 1024视频免费在线观看| 韩国精品一区二区三区| 中文字幕最新亚洲高清| 久久人妻福利社区极品人妻图片| 亚洲精品在线美女| 精品久久蜜臀av无| 亚洲精品美女久久av网站| 欧美激情久久久久久爽电影 | 亚洲成人精品中文字幕电影| 精品一区二区三区av网在线观看| 少妇裸体淫交视频免费看高清 | 免费观看精品视频网站| 男女下面插进去视频免费观看| 黄色 视频免费看| 亚洲av电影不卡..在线观看| 国产三级黄色录像| 国产精品98久久久久久宅男小说| 国内精品久久久久久久电影| 午夜福利一区二区在线看| 看黄色毛片网站| 久久精品91无色码中文字幕| 免费看a级黄色片| 国产在线精品亚洲第一网站| 91av网站免费观看| 老汉色∧v一级毛片| 亚洲免费av在线视频| 国产主播在线观看一区二区| 亚洲av成人一区二区三| 午夜福利视频1000在线观看 | 黑人欧美特级aaaaaa片| 少妇裸体淫交视频免费看高清 | 人妻丰满熟妇av一区二区三区| 久久精品国产亚洲av高清一级| 12—13女人毛片做爰片一| 熟女少妇亚洲综合色aaa.| 国产一区二区激情短视频| 久热爱精品视频在线9| 夜夜夜夜夜久久久久| 久久精品国产清高在天天线| 香蕉久久夜色| 欧美色视频一区免费| 久久精品aⅴ一区二区三区四区| 精品国产国语对白av| 一区二区三区精品91| 国产一区在线观看成人免费| 看片在线看免费视频| 久久亚洲真实| 国产野战对白在线观看| 免费在线观看日本一区| 亚洲黑人精品在线| 波多野结衣高清无吗| 9色porny在线观看| 国产高清有码在线观看视频 | 黑人操中国人逼视频| 大香蕉久久成人网| 久久狼人影院| 国产亚洲精品av在线| 男人操女人黄网站| 日韩 欧美 亚洲 中文字幕| 精品卡一卡二卡四卡免费| 成年人黄色毛片网站| 日韩 欧美 亚洲 中文字幕| 99国产精品99久久久久| 禁无遮挡网站| 亚洲男人天堂网一区| 中文字幕高清在线视频| 性色av乱码一区二区三区2| 国产亚洲精品久久久久久毛片| 亚洲人成电影免费在线| 久久人人精品亚洲av| 亚洲男人的天堂狠狠| 88av欧美| 国产伦一二天堂av在线观看|