• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Data-driven modeling of a four-dimensional stochastic projectile system

    2022-08-01 06:00:54YongHuang黃勇andYangLi李揚
    Chinese Physics B 2022年7期
    關(guān)鍵詞:黃勇李揚

    Yong Huang(黃勇) and Yang Li(李揚)

    1School of Energy and Power Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    2School of Automation,Nanjing University of Science and Technology,Nanjing 210094,China

    Keywords: data-driven modeling,machine learning,projectile systems,Kramers–Moyal formulas

    1. Introduction

    Motion of a projectile is generally influenced by all sorts of forces and fluctuations in practical case.Its dynamical modeling based on classical mechanics is therefore not always accurate enough, and the analysis of its dynamical behaviors is not very reliable consequently.Fortunately,there are more and more available observable, experimental or simulated data in the projectile system with the development of the scientific tools and simulation capabilities. Thus, how to discover the governing laws of the projectile from data is of much importance in engineering fields.

    Recently, many researchers have proposed various datadriven methods to extract the governing equations of complex nonlinear phenomena. For instance, the sparse identification of nonlinear dynamics method was devised to learn the deterministic ordinary[1,2]or partial[3–5]differential equations from time series data. Then,Boninsegnaet al.[6]extended this approach to extract stochastic dynamical systems with Gaussian noise via Kramers–Moyal formulas. Li and Duan[7,8]made further efforts to propose the non-local Kramers–Moyal formulas and developed a data-driven approach to find the stochastic differential equations with both (Gaussian) Brownian motion and (non-Gaussian) L′evy motion from sample path data. The theory of Koopman operator can also be used to discover the deterministic and stochastic differential equations from data.[9–11]There are also some data-driven methods based on neural networks to learn dynamical systems from sample paths.[12–15]Additionally, some researchers are devoted to developing techniques to extract the dynamical behaviors such as mean exit time[16,17]and most probable path.[18,19]

    Compared with the Koopman operator method,the neural network method and many other methods for system identification, the sparse learning based on the Kramers–Moyal formulas used in this study has the advantages that its computation speed is very fast and it is easy to program. Thus,in this paper we aim to apply the data-driven method based on the Kramers–Moyal formulas to the projectile systems. The article is arranged as follows. In Section 2, we describe the projectile systems and present its It?o stochastic differential equation. In Section 3,we introduce the Kramers–Moyal formulas and show the numerical method to learn the drift and diffusion terms for this system from simulated sample path data.Section 4 exhibits the comparison of the identification results and the real system. Finally, the conclusions are presented in Section 5.

    2. Projectile systems

    In order to generalize the data-driven method to the projectile systems, we simulate some sample path data based on the known model and identify the stochastic dynamical system from the data in this work. Formally, the angle motion equation of the projectile has the following form:[20]

    Fig.1. The model of the projectile system.

    Here,ξ,ηandζdenote the three axes of the projectile coordinate system,Oξindicates the direction of the projectile axis,Oηpoints upwards and is perpendicular toOξ,andOζis perpendicular to the planeOξηpointing right. The state variablesωηandωζrepresent rotational angular velocity corresponding toηandζaxes,respectively. The other two variablesδ1andδ2indicate the vertical and horizontal components of the attack angleδ, which is the angle between the projectile axis and its velocity. The model of the projectile system with the axes and parameters is visualized in Fig.1.The structure and aerodynamic parameters in the equation are listed in Tables 1 and 2,respectively.

    Table 1. Structure parameters.

    Table 2. Aerodynamic parameters.

    The variablevdenotes the velocity of the projectile during its flight in air, which can be easily influenced in general. In consideration of the random disturbances of air, the speed is assumed asv= ˉv+ξt,where ˉv=1012.3 m/s and the scalar stochastic processξtis a white Gaussian noise satisfying E[ξt]=0 and E[ξtξs]=2κδ(t-s). The noise intensity is chosen asκ=50 in the following computation.

    Note that there exist some nonlinear terms about noise in Eq. (1). After the expansion of these nonlinear terms and neglecting of the higher order terms, we reduce it as the following standard It?o stochastic differential equation:

    where the random vectorXt=[δ1,δ2,ωη,ωζ]T,the drift coefficient

    and the diffusion coefficienta=σσTwith the functionσ,

    3. Theory and method

    According to the Fokker–Planck equation corresponding to stochastic differential equation (2), the drift and diffusion coefficients dominate the probabilistic structure of the solution processXt.[21]Therefore, the discovery of the stochastic governing laws from sample path data completely depends on the identification of the drift and diffusion terms.

    The Kramers–Moyal formulas can be used to extract the underlying stochastic dynamical systems from data,which express the drift and diffusion coefficients in terms of the sample paths of the solution process.[6,22]For our systems,these equations can be formulated as

    wherebi(x)denotesi-th component of the drift vectorb(x)in Eq. (3), andaij(x) indicatesij-th component of the diffusion matrixa(x). Then the driftb(x)and diffusiona(x)can be estimated by approximately computing the limit expressions on the right-hand side in terms of sample path data ofXt.

    Assume that there exists a pair of data sets for the stochastic processXtcontainingMelements,respectively,

    where everyyiis the image point ofxiafter a small evolution timehfori=1,2,...,M. In other words,Eq.(2)is integrated by numerical integral methods such as the Runge–Kutta method from initial pointxito getyiin timeh. Note that the superscript in Eq. (5) denotes different component of vector or matrix and the subscript in Eq.(6)indicates different data.It is also necessary to choose a dictionary of basis functionsΨ(x)=[ψ1(x),ψ2(x),...,ψK(x)]to approximate the drift and diffusion terms. The results will be better if we seek as rich type of the basis functions as possible, while the amount of work is immense and polynomial basis functions are sufficiently accurate for most cases. Thus we select polynomial functions as the dictionary in this research.

    Assume that the system has ergodic property and every component of the drift coefficient is estimated asbi(x)=∑Kk=1cikψk(x),i=1,2,3,4. Moreover, the limit expressions on the left-hand side of Kramers–Moyal formulas can be approximated by finite differences. Above all,we can derive the following group of linear equations via Eqs.(5)and(6):

    The solution to Eq. (8) is generally very dense, which contains many non-dominant terms close to zero. For the sake of seeking the least coefficients without loss of reliability and avoiding overfitting,the sparse solution should be enforced by minimizing

    whereρindicates a positive Lagrange multiplier to control the degree of sparsity.

    We can use the iterating thresholding algorithm to realize the sparse learning method(9).[1,6,7]First, we can choose an appropriate pre-defined threshold parameterλas a sparsification knob. The magnitude ofλis usually chosen as about 0.1%–10%of the largest coefficient ofci. After Eq.(8)being performed to obtain a non-sparse solution, we set the coefficients smaller thanλas zero and delete the corresponding basis functions. Then the regression problem is carried out on the remaining coefficients. The procedure is iterated until no coefficients are found smaller thanλ.

    Table 3. The algorithm for identifying the drift and diffusion terms from sample path data.

    4. Results

    In the above section,we described the data-driven method to extract the stochastic dynamical systems from sample path data based on the Kramers–Moyal formulas.We now show the effectiveness of this technique applied on the projectile system introduced in Section 2.

    First, we chooseM=104initial points to construct the data setX, which are uniformly and randomly distributed in the region[-1,1]×[-1,1]×[-1,1]×[-1,1]. Given the time steph=0.0001, the image data setYis integrated via Euler scheme of the stochastic system(2). The dictionaryΨof basis functions is selected as the polynomial functions up to order 3,which contains 35 terms since the system is four-dimensional.Based on these preliminaries, we can compute the matrixAand vectorsBi,Bi jin Eqs.(7)and(10).

    Via the least square method and sparse learning, all the components of the drift and diffusion coefficients are evaluated as the linear combination of the polynomial basis functions. Since the system is four-dimensional, it is impossible to show these functions intuitively in the figures. Thus we portray them as two-dimensional surfaces by fixing two state variables.

    The learned and true functions of four components of the drift coefficient are shown in Figs.2–5,respectively. In every figure, the top panels denote the learned results and the bottom panels correspond to the true functions.The four columns of the figures indicate the cases with(i)ωη=0.5,ωζ=0.5;(ii)ωη=-0.5,ωζ=-0.5; (iii)δ1= 0.5,δ2= 0.5; (iv)δ1=-0.5,δ2=-0.5, respectively. It is seen that the estimation results agree well with the true functions of the drift terms. The third and fourth components have a small error but still within an acceptable range. This error stems from the fact that the magnitude of the two components is much larger than the first two. A coordinate transformation can lead to more accurate results.

    As mentioned above, there are 10 elements of the diffusion matrix that need to be identified from data due to the symmetry. For the sake of simplification,we just present the diagonal elementsa11,a22,a33anda44for the case ofωη=0.5,ωζ=-0.5 in Fig. 6. The results show that the accuracy of the approximation of the diffusion term is not as good as the one for the drift coefficient, while it can still capture the dynamical structures. It seems that the errors fora11anda22are relatively larger. This is because the magnitude of them is too small to be sufficiently accurate. Above all,the identification of the stochastic dynamical system is consistent enough with the real model.

    Fig.2. Comparison between learned and true function of the first component of the drift coefficient: (a)and(e)ωη =0.5,ωζ =0.5;(b)and(f)ωη =-0.5,ωζ =-0.5;(c)and(g)δ1=0.5,δ2=0.5;(d)and(h)δ1=-0.5,δ2=-0.5.

    Fig.3. Comparison between learned and true function of the second component of the drift coefficient: (a)and(e)ωη =0.5,ωζ =0.5;(b)and(f)ωη =-0.5,ωζ =-0.5;(c)and(g)δ1=0.5,δ2=0.5;(d)and(h)δ1=-0.5,δ2=-0.5.

    Fig.4. Comparison between learned and true function of the third component of the drift coefficient: (a)and(e)ωη =0.5,ωζ =0.5;(b)and(f)ωη =-0.5,ωζ =-0.5;(c)and(g)δ1=0.5,δ2=0.5;(d)and(h)δ1=-0.5,δ2=-0.5.

    Fig.5. Comparison between learned and true function of the fourth component of the drift coefficient: (a)and(e)ωη =0.5,ωζ =0.5;(b)and(f)ωη =-0.5,ωζ =-0.5;(c)and(g)δ1=0.5,δ2=0.5;(d)and(h)δ1=-0.5,δ2=-0.5.

    Fig.6. Comparison between learned and true function of the diagonal elements a11,a22,a33 and a44 of the diffusion matrix for ωη =0.5,ωζ =-0.5.

    5. Conclusion

    In summary, we have employed a data-driven method based on the Kramers–Moyal formulas to extract the stochastic model for the four-dimensional projectile systems from simulated sample path data. Specifically,the projectile system is assumed as an It?o stochastic differential equation. Then the least square method and sparse learning are applied to compute the drift coefficient and diffusion matrix, which are sufficiently accurate to the true functions. The effective approximation of the learned model to the real one implies that the data-driven method can be well applied to the projectile systems. Therefore, given the measurable time-series data, we can establish the governing equations for the projectile in the engineering field. This fact demonstrates that it has many applications in practical problems. For example, the learned model of the projectile can be used to analyze its dynamical responses so that we can improve the performances of the projectile by adjusting its shape and structure.

    Acknowledgement

    This research was supported by the Six Talent Peaks Project in Jiangsu Province,China(Grant No.JXQC-002).

    Data availability statement

    The data that support the findings of this study are openly available in GitHub.

    猜你喜歡
    黃勇李揚
    Data encryption based on a 9D complex chaotic system with quaternion for smart grid
    李揚縝治療外傷致危急重癥驗案1則
    喜糖禮盒包裝設(shè)計
    墨菲定律
    金山(2020年6期)2020-07-09 06:18:58
    Effect of heat treatment on microstructure and properties of single crystal copper cold-welded joints
    China Welding(2019年2期)2019-10-22 07:13:10
    Structural evolution in deformation-induced rejuvenation in metallic glasses:A cavity perspective?
    Effects of rotational speeds on the performance of a centrifugal pump with a variable-pitch inducer *
    函數(shù)乘積極值性質(zhì)的一個反例
    殺人心理記
    送信
    可以在线观看毛片的网站| 老熟妇仑乱视频hdxx| 国产成人系列免费观看| 90打野战视频偷拍视频| 国产精品偷伦视频观看了| 老司机午夜福利在线观看视频| 在线国产一区二区在线| 欧美成人性av电影在线观看| 精品日产1卡2卡| 在线国产一区二区在线| 久久欧美精品欧美久久欧美| 色综合站精品国产| 精品一区二区三区四区五区乱码| 韩国av一区二区三区四区| 久久久久久人人人人人| 88av欧美| 一区在线观看完整版| 久久影院123| 好看av亚洲va欧美ⅴa在| 日本wwww免费看| 欧美黑人精品巨大| a级片在线免费高清观看视频| 91精品三级在线观看| 国产成年人精品一区二区 | 欧美精品一区二区免费开放| 亚洲情色 制服丝袜| 9热在线视频观看99| 国产av在哪里看| 国产一区在线观看成人免费| 亚洲国产精品999在线| 黄色 视频免费看| 亚洲精品一卡2卡三卡4卡5卡| 精品国内亚洲2022精品成人| 老司机亚洲免费影院| 久久久国产欧美日韩av| 久久99一区二区三区| 亚洲成国产人片在线观看| 99久久99久久久精品蜜桃| 国产成人欧美| 啦啦啦 在线观看视频| 亚洲色图 男人天堂 中文字幕| 最新美女视频免费是黄的| 一二三四在线观看免费中文在| 久久狼人影院| 国产精品久久视频播放| 精品一区二区三区av网在线观看| 亚洲专区中文字幕在线| 女生性感内裤真人,穿戴方法视频| 久9热在线精品视频| 亚洲欧美日韩高清在线视频| 日韩精品青青久久久久久| 色综合站精品国产| 成年女人毛片免费观看观看9| 韩国av一区二区三区四区| 新久久久久国产一级毛片| 亚洲人成77777在线视频| 无人区码免费观看不卡| 中文字幕精品免费在线观看视频| 婷婷六月久久综合丁香| 真人一进一出gif抽搐免费| 久久人人爽av亚洲精品天堂| 亚洲专区中文字幕在线| 18禁美女被吸乳视频| 少妇的丰满在线观看| 日韩免费高清中文字幕av| 男女午夜视频在线观看| 日韩人妻精品一区2区三区| 国产激情久久老熟女| 老熟妇乱子伦视频在线观看| 精品乱码久久久久久99久播| 久久性视频一级片| 日韩大尺度精品在线看网址 | 久久中文看片网| 桃红色精品国产亚洲av| 热re99久久国产66热| 日韩精品青青久久久久久| 国产精品自产拍在线观看55亚洲| 婷婷丁香在线五月| 国产乱人伦免费视频| 久久精品国产亚洲av香蕉五月| 电影成人av| 久久伊人香网站| 在线观看66精品国产| 亚洲视频免费观看视频| 女警被强在线播放| 热99国产精品久久久久久7| 一级a爱片免费观看的视频| 满18在线观看网站| 欧美中文综合在线视频| 亚洲一区二区三区色噜噜 | 国产人伦9x9x在线观看| 欧美一区二区精品小视频在线| 成人免费观看视频高清| x7x7x7水蜜桃| 一边摸一边抽搐一进一出视频| 久久亚洲精品不卡| 国产欧美日韩一区二区精品| 看黄色毛片网站| 亚洲少妇的诱惑av| 中亚洲国语对白在线视频| 亚洲欧美激情综合另类| 大码成人一级视频| √禁漫天堂资源中文www| 国产片内射在线| 成人18禁高潮啪啪吃奶动态图| 亚洲精品成人av观看孕妇| 亚洲av美国av| 极品人妻少妇av视频| 亚洲专区字幕在线| 日韩欧美一区视频在线观看| 亚洲色图 男人天堂 中文字幕| 91精品国产国语对白视频| ponron亚洲| 日韩欧美一区视频在线观看| www.999成人在线观看| 在线永久观看黄色视频| 女人高潮潮喷娇喘18禁视频| 巨乳人妻的诱惑在线观看| 一夜夜www| 欧美中文综合在线视频| 少妇粗大呻吟视频| а√天堂www在线а√下载| 免费久久久久久久精品成人欧美视频| 女人被躁到高潮嗷嗷叫费观| 亚洲人成77777在线视频| 久久精品国产99精品国产亚洲性色 | 免费不卡黄色视频| 国产av一区在线观看免费| 国内久久婷婷六月综合欲色啪| 国产精品一区二区免费欧美| 看黄色毛片网站| 久久国产精品人妻蜜桃| 12—13女人毛片做爰片一| 午夜福利免费观看在线| 夫妻午夜视频| 老汉色∧v一级毛片| 国产欧美日韩精品亚洲av| 18禁裸乳无遮挡免费网站照片 | 午夜成年电影在线免费观看| 亚洲欧美精品综合久久99| 级片在线观看| 亚洲精品中文字幕在线视频| 久久中文字幕一级| 丰满迷人的少妇在线观看| 大型黄色视频在线免费观看| 免费人成视频x8x8入口观看| 精品国内亚洲2022精品成人| 男人舔女人下体高潮全视频| 午夜精品久久久久久毛片777| 精品久久久精品久久久| 国产一卡二卡三卡精品| 亚洲成a人片在线一区二区| 欧美不卡视频在线免费观看 | 美女福利国产在线| 日韩欧美一区视频在线观看| 久久香蕉激情| 老司机深夜福利视频在线观看| 日韩欧美一区视频在线观看| 很黄的视频免费| 国产精品国产高清国产av| 91麻豆精品激情在线观看国产 | 日本欧美视频一区| 麻豆国产av国片精品| 搡老熟女国产l中国老女人| 日韩精品免费视频一区二区三区| 欧美日韩一级在线毛片| 亚洲国产精品合色在线| 欧美黄色片欧美黄色片| 在线av久久热| 久久精品91蜜桃| 91成年电影在线观看| 欧美成人免费av一区二区三区| 天堂俺去俺来也www色官网| 久久久久久大精品| 黑人猛操日本美女一级片| 丝袜在线中文字幕| 啪啪无遮挡十八禁网站| 午夜91福利影院| 日韩精品免费视频一区二区三区| 国产精品美女特级片免费视频播放器 | 亚洲中文日韩欧美视频| 亚洲成人国产一区在线观看| 少妇的丰满在线观看| 天堂俺去俺来也www色官网| 嫩草影院精品99| 欧洲精品卡2卡3卡4卡5卡区| 国产高清视频在线播放一区| 亚洲五月天丁香| 久久国产亚洲av麻豆专区| 国产xxxxx性猛交| 香蕉国产在线看| 99久久99久久久精品蜜桃| 精品人妻在线不人妻| 69精品国产乱码久久久| 亚洲欧美精品综合一区二区三区| 日韩视频一区二区在线观看| 日本三级黄在线观看| 欧美一区二区精品小视频在线| 高清黄色对白视频在线免费看| 国产精品一区二区免费欧美| 午夜a级毛片| 久9热在线精品视频| 又黄又粗又硬又大视频| 19禁男女啪啪无遮挡网站| 欧美日韩亚洲国产一区二区在线观看| 自线自在国产av| 久久久久久久久久久久大奶| 欧美日韩国产mv在线观看视频| 午夜福利一区二区在线看| 国产成人一区二区三区免费视频网站| 少妇 在线观看| 嫩草影院精品99| 久久午夜综合久久蜜桃| 丁香欧美五月| 精品无人区乱码1区二区| 国产精品久久久久成人av| 99久久人妻综合| 亚洲精华国产精华精| 成人18禁在线播放| 免费日韩欧美在线观看| 亚洲少妇的诱惑av| 久久久精品欧美日韩精品| 免费在线观看亚洲国产| 免费在线观看视频国产中文字幕亚洲| 精品一品国产午夜福利视频| 18禁裸乳无遮挡免费网站照片 | 国产一区二区在线av高清观看| 久久久精品国产亚洲av高清涩受| 一级毛片高清免费大全| 99久久人妻综合| 日韩视频一区二区在线观看| 日本一区二区免费在线视频| 99精品在免费线老司机午夜| 国产av一区二区精品久久| 久久这里只有精品19| 男人舔女人的私密视频| 1024视频免费在线观看| 欧美国产精品va在线观看不卡| 亚洲久久久国产精品| 老司机午夜福利在线观看视频| 麻豆久久精品国产亚洲av | 色哟哟哟哟哟哟| 欧美成人性av电影在线观看| 色播在线永久视频| 长腿黑丝高跟| 国产aⅴ精品一区二区三区波| 久久久国产欧美日韩av| 国产熟女午夜一区二区三区| 亚洲中文字幕日韩| 久久人妻熟女aⅴ| 精品国产乱子伦一区二区三区| 国产又色又爽无遮挡免费看| 国产亚洲欧美98| 国产一区二区三区视频了| 亚洲欧美一区二区三区黑人| 亚洲午夜理论影院| 女生性感内裤真人,穿戴方法视频| 久久久国产一区二区| a级毛片黄视频| 超碰97精品在线观看| 色综合婷婷激情| 国产男靠女视频免费网站| 国产一卡二卡三卡精品| 69av精品久久久久久| 在线av久久热| 9热在线视频观看99| 久久精品国产亚洲av香蕉五月| 男人舔女人下体高潮全视频| 欧美在线一区亚洲| 99久久99久久久精品蜜桃| 老熟妇乱子伦视频在线观看| 亚洲欧美日韩无卡精品| 久久精品国产亚洲av高清一级| 人人妻人人爽人人添夜夜欢视频| 青草久久国产| 欧美乱色亚洲激情| 999精品在线视频| 国产亚洲精品久久久久5区| 国产在线精品亚洲第一网站| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩亚洲综合一区二区三区_| 最新美女视频免费是黄的| 亚洲av成人不卡在线观看播放网| 一个人观看的视频www高清免费观看 | 成人精品一区二区免费| 久久久久亚洲av毛片大全| a级毛片在线看网站| 我的亚洲天堂| 国产又爽黄色视频| 久久精品亚洲av国产电影网| 91九色精品人成在线观看| 国产精品国产av在线观看| 色婷婷av一区二区三区视频| 久久久久国产精品人妻aⅴ院| 精品国产美女av久久久久小说| 欧美乱妇无乱码| 日韩大尺度精品在线看网址 | 丰满的人妻完整版| 欧美日韩福利视频一区二区| 成人精品一区二区免费| 男人舔女人下体高潮全视频| 男人操女人黄网站| 国产亚洲精品综合一区在线观看 | 国产成人精品在线电影| 最新在线观看一区二区三区| 亚洲专区国产一区二区| 亚洲精品美女久久久久99蜜臀| 国产精品秋霞免费鲁丝片| 女性被躁到高潮视频| 国产91精品成人一区二区三区| 中国美女看黄片| 丰满迷人的少妇在线观看| 国产成人欧美| 久久久国产精品麻豆| 亚洲成a人片在线一区二区| 亚洲专区字幕在线| 99re在线观看精品视频| 老鸭窝网址在线观看| 亚洲avbb在线观看| 国产精品免费视频内射| 欧美黑人精品巨大| 高清黄色对白视频在线免费看| 欧美大码av| 伊人久久大香线蕉亚洲五| 欧美在线一区亚洲| 久久久久久久久免费视频了| 欧美+亚洲+日韩+国产| 精品免费久久久久久久清纯| 久久久久精品国产欧美久久久| 天堂俺去俺来也www色官网| 国产三级黄色录像| 亚洲精品国产一区二区精华液| 侵犯人妻中文字幕一二三四区| 国产三级黄色录像| 大码成人一级视频| 老司机靠b影院| 国产精品av久久久久免费| 亚洲成a人片在线一区二区| 日日摸夜夜添夜夜添小说| 男女午夜视频在线观看| 18禁美女被吸乳视频| 在线播放国产精品三级| 18禁观看日本| 精品久久久久久久毛片微露脸| 色综合欧美亚洲国产小说| 成人特级黄色片久久久久久久| www.999成人在线观看| 最近最新中文字幕大全电影3 | 女性被躁到高潮视频| 少妇裸体淫交视频免费看高清 | 色综合站精品国产| 亚洲国产欧美网| 欧美激情极品国产一区二区三区| 一级毛片高清免费大全| 成在线人永久免费视频| 中文字幕精品免费在线观看视频| 最近最新中文字幕大全免费视频| 欧美日韩瑟瑟在线播放| a级毛片在线看网站| 97人妻天天添夜夜摸| av网站免费在线观看视频| 一边摸一边抽搐一进一出视频| 在线看a的网站| 欧美性长视频在线观看| 日韩av在线大香蕉| 亚洲午夜精品一区,二区,三区| а√天堂www在线а√下载| 超碰成人久久| 亚洲av熟女| a级毛片黄视频| 人成视频在线观看免费观看| 少妇 在线观看| 中国美女看黄片| 女同久久另类99精品国产91| 两性夫妻黄色片| 超碰97精品在线观看| tocl精华| ponron亚洲| 视频区图区小说| 999久久久国产精品视频| 一进一出抽搐动态| 欧美日本亚洲视频在线播放| 国产成人欧美在线观看| 午夜a级毛片| 夫妻午夜视频| 免费在线观看完整版高清| 91老司机精品| 啦啦啦 在线观看视频| 国产精品野战在线观看 | 又黄又爽又免费观看的视频| 亚洲国产欧美一区二区综合| 亚洲中文字幕日韩| 欧美日韩一级在线毛片| 国产男靠女视频免费网站| 十分钟在线观看高清视频www| 亚洲成人免费av在线播放| 亚洲第一欧美日韩一区二区三区| 男女做爰动态图高潮gif福利片 | 精品久久久精品久久久| 久久精品国产亚洲av高清一级| 成人三级做爰电影| 日本五十路高清| 亚洲成a人片在线一区二区| 欧美日本亚洲视频在线播放| 人妻久久中文字幕网| 午夜a级毛片| 国产片内射在线| 亚洲,欧美精品.| xxx96com| 女生性感内裤真人,穿戴方法视频| 精品高清国产在线一区| 国内毛片毛片毛片毛片毛片| 欧美日韩av久久| 国产黄色免费在线视频| 亚洲一区二区三区色噜噜 | 黄网站色视频无遮挡免费观看| 午夜免费激情av| 久久婷婷成人综合色麻豆| 国产精品美女特级片免费视频播放器 | 身体一侧抽搐| 国产精品美女特级片免费视频播放器 | 欧美在线黄色| 国产人伦9x9x在线观看| 亚洲精品粉嫩美女一区| 午夜91福利影院| 亚洲欧美一区二区三区黑人| 国产精品99久久99久久久不卡| a在线观看视频网站| 亚洲 欧美 日韩 在线 免费| 99香蕉大伊视频| 亚洲av成人不卡在线观看播放网| 久久久久国产一级毛片高清牌| 久久狼人影院| 久久人人爽av亚洲精品天堂| 淫秽高清视频在线观看| 免费在线观看视频国产中文字幕亚洲| 麻豆av在线久日| 亚洲午夜精品一区,二区,三区| 欧美成人性av电影在线观看| 手机成人av网站| 超色免费av| 欧美亚洲日本最大视频资源| 亚洲成a人片在线一区二区| 啦啦啦免费观看视频1| 国内久久婷婷六月综合欲色啪| 男女床上黄色一级片免费看| 99久久99久久久精品蜜桃| а√天堂www在线а√下载| 一二三四在线观看免费中文在| 欧美成狂野欧美在线观看| 伊人久久大香线蕉亚洲五| 国产成人欧美在线观看| 亚洲激情在线av| 亚洲色图综合在线观看| 日本免费a在线| 国产精品免费视频内射| 99精品久久久久人妻精品| av中文乱码字幕在线| 校园春色视频在线观看| 99热只有精品国产| 亚洲欧美一区二区三区久久| 亚洲欧美一区二区三区黑人| 一区二区三区激情视频| 日本vs欧美在线观看视频| 一a级毛片在线观看| 两个人看的免费小视频| 天天添夜夜摸| av免费在线观看网站| 欧美色视频一区免费| 国产精品影院久久| 校园春色视频在线观看| 91精品三级在线观看| 午夜91福利影院| 电影成人av| 免费在线观看影片大全网站| www国产在线视频色| 久久天堂一区二区三区四区| 国产精品野战在线观看 | 激情视频va一区二区三区| 后天国语完整版免费观看| 新久久久久国产一级毛片| 午夜成年电影在线免费观看| 久久久水蜜桃国产精品网| 无限看片的www在线观看| 日韩人妻精品一区2区三区| 国产成人欧美| 精品久久蜜臀av无| 欧美黑人欧美精品刺激| 国产伦一二天堂av在线观看| 久久久久九九精品影院| 日韩精品青青久久久久久| 美女扒开内裤让男人捅视频| 成年人免费黄色播放视频| 老司机深夜福利视频在线观看| a在线观看视频网站| 日韩欧美国产一区二区入口| 欧美另类亚洲清纯唯美| www.999成人在线观看| 一本综合久久免费| 国产黄色免费在线视频| 亚洲伊人色综图| 校园春色视频在线观看| 国产黄a三级三级三级人| 久久精品亚洲熟妇少妇任你| 成人手机av| 国产野战对白在线观看| 最近最新中文字幕大全电影3 | 久久国产乱子伦精品免费另类| 国产人伦9x9x在线观看| 国产一区二区三区在线臀色熟女 | 欧美人与性动交α欧美精品济南到| 亚洲成人精品中文字幕电影 | 男女下面进入的视频免费午夜 | 美女 人体艺术 gogo| 日韩精品免费视频一区二区三区| 可以在线观看毛片的网站| 久久99一区二区三区| 麻豆久久精品国产亚洲av | 深夜精品福利| 老司机深夜福利视频在线观看| 大香蕉久久成人网| 亚洲少妇的诱惑av| 成人影院久久| 天天添夜夜摸| 中文亚洲av片在线观看爽| 亚洲欧美激情综合另类| 18禁国产床啪视频网站| 亚洲欧美一区二区三区久久| 一边摸一边抽搐一进一小说| 女人被躁到高潮嗷嗷叫费观| 国产亚洲欧美精品永久| 欧美日本中文国产一区发布| a级毛片黄视频| 日韩有码中文字幕| 男女做爰动态图高潮gif福利片 | 亚洲精品一卡2卡三卡4卡5卡| 国产国语露脸激情在线看| 国产主播在线观看一区二区| 精品高清国产在线一区| 在线观看午夜福利视频| 99国产极品粉嫩在线观看| 中文字幕最新亚洲高清| 亚洲九九香蕉| 黄网站色视频无遮挡免费观看| 女人精品久久久久毛片| 99精品欧美一区二区三区四区| 亚洲自偷自拍图片 自拍| 午夜精品在线福利| 久久国产精品男人的天堂亚洲| 高潮久久久久久久久久久不卡| 一夜夜www| 成人av一区二区三区在线看| www.精华液| 露出奶头的视频| 一级黄色大片毛片| 最新在线观看一区二区三区| 男女床上黄色一级片免费看| 欧美日韩瑟瑟在线播放| 女警被强在线播放| 丰满的人妻完整版| 午夜福利影视在线免费观看| 真人一进一出gif抽搐免费| 精品国产一区二区三区四区第35| 久久国产亚洲av麻豆专区| 午夜福利在线观看吧| 最好的美女福利视频网| 久久国产精品人妻蜜桃| 久久精品国产亚洲av高清一级| 久久久久久人人人人人| 色尼玛亚洲综合影院| av在线天堂中文字幕 | 一级,二级,三级黄色视频| 日韩精品青青久久久久久| 91大片在线观看| 久久人妻熟女aⅴ| 久久久久久人人人人人| www.熟女人妻精品国产| 免费高清在线观看日韩| 亚洲精品在线美女| 亚洲欧美精品综合久久99| 国产亚洲欧美在线一区二区| 国产精品亚洲一级av第二区| 久久久国产成人精品二区 | 亚洲专区字幕在线| 欧美人与性动交α欧美精品济南到| 亚洲片人在线观看| 午夜日韩欧美国产| 国产色视频综合| 国产精品香港三级国产av潘金莲| 亚洲中文日韩欧美视频| 亚洲五月婷婷丁香| 亚洲国产看品久久| 国产亚洲精品综合一区在线观看 | 波多野结衣av一区二区av| 亚洲精品久久午夜乱码| 免费搜索国产男女视频| 最好的美女福利视频网| 国产99久久九九免费精品| 久久久久久久久久久久大奶| 涩涩av久久男人的天堂| 精品国产乱子伦一区二区三区| 母亲3免费完整高清在线观看| 免费看a级黄色片| 国产99久久九九免费精品| 一边摸一边抽搐一进一小说| 亚洲国产精品sss在线观看 | 亚洲久久久国产精品| 午夜激情av网站| 成人国语在线视频| 亚洲熟妇熟女久久| 在线观看免费视频日本深夜| 99久久综合精品五月天人人| 国产精品日韩av在线免费观看 | 国产一区二区三区综合在线观看| 国产精品免费视频内射|