• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural evolution in deformation-induced rejuvenation in metallic glasses:A cavity perspective?

    2019-04-13 01:14:34ShaoqinJiang江少欽YongHuang黃勇andMaozhiLi李茂枝
    Chinese Physics B 2019年4期
    關鍵詞:黃勇

    Shaoqin Jiang(江少欽),Yong Huang(黃勇),and Maozhi Li(李茂枝)

    Department of Physics,Beijing Key Laboratory of Opto-electronic Functional Materials&Micro-nano Devices,Renmin University of China,Beijing 100872,China

    1.Introduction

    Recently,the rejuvenation of metallic glasses has attracted much interest,since it is a promising approach for improving the plasticity of metallic glasses and thereby enhancing their potential applicability as structural materials.[1–10]Experimentally,various approaches have been developed for achieving the rejuvenation of metallic glasses.It was found that rejuvenation of bulk metallic glasses can be achieved through elastostatic compression for high strength and large plasticity.[1–3]The mechanism was attributed to the irreversible structural changes based on the generation of free volume.Similarly,shot-peening of pre-annealed metallic glasses can also realize the mechanically induced rejuvenation.[4]It was argued that shot-peening may induce the part of the free volume distribution associated with flow defects.It was also found that plastic deformation by the high-pressure torsion technique can also effectively rejuvenate the structure of metallic glasses.[5]Further study revealed a transition of the deformation mode from heterogeneous, localized deformation to homogeneous deformation in Zr50Cu40Al10bulk metallic glass and attributed the transition to a change in the local atomic environment in the rejuvenated volume.[6]Moreover,ion irradiation was also found to rejuvenate metallic glasses,leading to significant tensile ductility and plastic deformation,while electron diffraction indicated subtle signatures of structural changes of metallic glasses.[7]Very recently,thermal cycling induced rejuvenation of metallic glasses was also achieved in experiments.[8]It was explained that thermal cycling induced rejuvenation results from the intrinsic nonuniformity of the glass structure,and thermal cycling introduces heterogeneities which effectively induces flow and improves plasticity.In addition,a method was proposed via molecular dynamics simulations to control the level rejuvenation through systematic thermal processing,and crucial conditions for rejuvenation were clarified.[9]

    Although plenty of studies have been devoted to rejuvenation of amorphous materials,the evolution of atomic structures in rejuvenation is still elusive.Using Monte Carlo simulation for a binary Lennard–Jones mixture,rejuvenation in glasses was observed via mechanical loading and the pair correlation functions were analyzed for understanding the structure evolution in rejuvenation.[10]However,no details of the atomic structure information related to rejuvenation were provided.As indicated above,the increase of the free volume and its distribution in metallic glasses plays important roles in rejuvenation.[1–4,6,8,11–13]However,the characteristic of free volume in rejuvenation or how free volume influences rejuvenation of metallic glasses is not clear,either.On the other hand,the free volume was defined as the Voronoi-cell volume minus the volume of atom.[14]This free volume is a thermodynamic quantity,and cannot reflect the topological information of atoms packing for the structural evolution.[15]It has been revealed that there exist cavities in metallic glasses,[16]which is often regarded as a topology-based defect due to packing deficiencies in metallic liquids and glasses.[15–21]The formation of large cavities in metallic glasses is the result of mechanical instability.[18–20]Moreover,cavities in metallic glasses can be measured by positron annihilation life time measurements.[22–24]Therefore,characterization of cavities in metallic glasses may provide new insight into the structure property relationship.

    In this work,we performed classical molecular dynamics simulations to investigate the structural evolution in deformation-induced rejuvenation in Cu80Zr20metallic glasses by characterizing cavities.The creation and annihilation of cavities in deformation process is found to be responsible for the underlying structural basis of rejuvenation in metallic glasses.In deformation process,cavities prefer to form in the relatively densely packed regions,leading to the irreversible rearrangements in metallic glasses.The characteristic of cavities provides a universal structural description for both aging and rejuvenation mechanism in metallic glasses.

    2.Model and simulation method

    In our studies,classic molecular dynamic(MD)simulations were performed for Cu80Zr20metallic alloy and a realistic embedded atom method potential was employed to describe the interatomic interactions.[25]All of the simulations were performed using the large-scale atomic/molecular massively parallel simulator(LAMMPS)package.[26]The structure contains 4×104atoms in a cubic box with periodic boundary conditions applied in three dimensions.The initial configuration was melted and equilibrated at T=2000 K for 0.2 ns in isothermal–isobaric(NPT)ensemble,and then cooled down to 300 K with four different cooling rates of 0.1 K/ps,1 K/ps,10 K/ps,and 100 K/ps,respectively.In these processes,the box size was adjusted to give a zero pressure.The samples were further relaxed at300K in canonical(NVT)ensemble for 0.4 ns.In our MD simulations,temperature and pressure were controlled with Nose–Hoover thermostat and barostat,respectively.To examine the deformation-induced rejuvenation in four metallic glass samples,uniaxial compression along the Z direction with constant strain rate was applied to the samples at 300 K.Periodic boundary conditions were applied in the X and Y directions.

    In our work,the cavities in metallic glasses were characterized in terms of the numerical algorithm developed by Sastry et al.[17]In this algorithm,Voronoi and Delaunay tessellations were constructed with the atomic radii of Cu (1.28 A° ) and Zr (1.59 A° ) taken into account, and an exclusion radius was applied to determine the void regions and the volumes of cavities.According to previous studies,[17]1.4 times of the atomic radii of Cu and Zr were chosen as the exclusion radii for Cu and Zr atoms,respectively,which are comparable to the distances that pair correlation functions start to be nonzero.[28]More details about the algorithm can be found in Ref.[17].The connectivity of nearest neighboring cavities was also considered,[27]so that a rigorous and precise cavity in metallic glasses can be quantitatively defined and characterized.

    3.Results and discussions

    Figure 1 shows the potential energy and volume per atom in four samples with different cooling rates as a function of temperature in the cooling process.Both the potential energy and the volume decrease as the temperature decreases,exhibiting a kink below a certain temperature, and indicating the glass transition in four samples.It can be seen that the slower the cooling rate,the lower the potential energy,and the smaller the volume per atom,indicating that four metallic glassy samples with different states are obtained.

    Fig.1.The evolution of(a)potential energy per atom and(b)volume per atom as the samples are cooled from 2000 K to 300 K with four different cooling rates.

    First,we investigate the temperature evolution of cavities in four samples in the cooling process.As shown in Fig.2,both the total volume and the number of cavities decrease significantly as the temperature decreases,indicating that there exist numerous cavities in high temperature liquids,and the cavities are rapidly annihilated in the cooling process.It can be seen that in high temperature liquids, both volume and number of cavities are almost the same in four samples, independent of the cooling rate. As temperature decreases below about 1400 K, both volume and number of cavities change with cooling rate.Slower cooling rate accelerates the annihilation of cavities in both volume and number as shown in Fig.2,leading to the least cavities in the sample of 0.1 K/ps.This indicates that the sample of 0.1 K/ps can be relaxed much more adequately,so that more cavities are annihilated in the cooling process.In addition,the aging effect in the cooling process with different cooling rates can be well characterized by the annihilation of cavities,so that cavities can be used to characterize the metallic glasses at different glassy states.

    Fig.2.The evolution of(a)total volume and(b)total number of cavities of four different specimens as a function of temperature from 2000 K to 300 K.

    Next,we analyze the evolution of the cavities in deformation process.Figure 3(a)shows the strain–stress curves in four samples as the compressive deformation is applied.The yield stress increases as the cooling rate is decreased.There is almost no overshoot in the strain–stress curve in the sample of 100 K/ps.As the cooling rate decreases,the overshoot becomes more significant.As the strain goes beyond the yield point,the stress in the samples with slower cooling rates decreases,and the strain–stress curves almost collapse together as the strain is over 15%.Figure 3(b)shows the evolution of potential energy with the strain.Before compression,the potential energies in four samples are different.As the external stress is applied,the potential energy in all samples increases as the strain increases.The increase in potential energy is much more drastic in the sample of 0.1 K/ps.As the strain increases,the difference in potential energy in the four samples becomes smaller and almost the same as the strain reaches about 40%.This indicates that these glassy samples are rejuvenated to higher energy states,and the aging effect produced in the cooling process in four samples can be completely erased by applying mechanical deformation.This is consistent with previous studies.[10]It can be seen that rejuvenation of metallic glasses can be achieved by applying mechanical deformation.

    Fig.3.(a)Strain–stress curves of four metallic glassy samples in compressive deformation;(b)evolution of potential energies in four samples in deformation process.The inset in panel(b)shows the evolution of the potential energy in four samples up to 40%strain.

    To understand the underlying structural basis of the deformation induced rejuvenation of metallic glasses,the evolution of the cavities in four samples in deformation process is analyzed.Figure 4 shows the change of volume and number of cavities with strain.Both the total volume and number of cavities in these samples decrease a little as the strain increases to before 5%.This indicates that some cavities are shrunk or annihilated under the deformation in the apparent elastic regime.In the sample of 0.1 K/ps,the volume and number of cavities do not change much with strain smaller than 5%.This implies that the sample is adequately relaxed in the cooling process with a cooling rate of 0.1 K/ps,so that the compressive deformation does not induce further decrease in the volume or number of cavities.However,in the samples of 1 K/ps and 10 K/ps,the deformation induces significant decrease in the volume and number of cavities before 5%.In the sample of 100 K/ps,the volume and number of cavities do not change much,either.This is because this sample is yielded quickly as the strain exceeds 2%.As the strain is larger than 5%,the total volume and number of cavities in all samples increase as the samples are further deformed.The increase is more drastic in the sample of 0.1 K/ps,indicating that the local atomic rearrangement is more significant and more cavities are generated in this sample under deformation.As the strain is larger than 15%,the volume and number of cavities become similar in four samples.This behavior is quite similar to the potential energy in the deformation process.Thus,four metallic glassy samples at different states obtained in cooling processes are rejuvenated into a higher energy state with similar potential energy and atomic structure feature.It can be seen that the aging history in four samples is finally erased by the deformation induced rejuvenation.Moreover,the generation and annihilation of cavities in metallic glassy samples play a key role in both aging and rejuvenation processes.As shown above,while the annihilation of cavities dominates in the aging process,the generation of cavities essentially controls the rejuvenation process.Therefore,the characteristics of cavities provide a generic description for both aging and rejuvenation in metallic glasses.

    Fig.4.The evolution of(a)volume and(b)number of cavities in four metallic glassy samples in compressive deformation process.

    To get further insight into the relationship between cavities and rejuvenation in metallic glasses,we investigate the role of each element in the creation of cavities in the deformation process.Figure 5 shows the variation of the percentage of Cu and Zr around cavities with strain in the sample of 0.1 K/ps,respectively.It can be seen that while the percentage of Cu around cavities increases with strain,the percentage of Zr is fluctuating,and does not change much in the deformation process.This indicates that new cavities are essentially created around Cu atoms,leading to the increase of Cu atoms around cavities.This also implies that most atomic irreversible rearrangements take place around Cu atoms,which is consistent with the characterization of atomic rearrangements in metallic glasses.[29]

    Fig.5.Variation of the percentage of(a)Cu and(b)Zr atoms around cavities compared to the total number of atoms in the metallic glassy sample of 0.1 K/ps with strain.

    We also investigate the relationship between the creation of cavities and atomic clusters in the deformation process. Figure 6 shows the major populated clusters with and without cavities surrounded at different strains.It can be seen that while much more icosahedral clusters are populated in the regions without cavities,only a small fraction of icosahedral clusters are located around cavities,indicating the dense packing feature of icosahedral clusters.In contrast,while the fraction of icosahedral clusters decreases monotonically with the increase of the strain,the fraction of icosahedral clusters located around cavities does not change much with the strain.This implies that the decrease of icosahedral clusters in the regions without cavities is accompanied with the creation of cavities,and icosahedral clusters are mainly transformed to some lowpopulated clusters in the deformation process.[30]On the other hand,the population of the major clusters around cavities does not vary much with the strain.This indicates that the plastic deformation mainly changes the atomic environments in the regions without cavities,although the fraction of atomic clusters changes with strain.[31,32]This also indicates that if only atomic clusters and their evolution are characterized in the rejuvenation process,one cannot obtain the generic structure feature for better understanding of the rejuvenation mechanism in metallic glasses.

    Figure7further confirms this point.Figure7(a)shows the cavity distribution in the sample of 0.1 K/ps at a strain of 5%,and figure 7(b)shows the volume difference of cavities between the strain of 5.2%and 5%,which indicates the creation and annihilation of cavities in the deformation process.The red circles mark the region without cavities in Fig.7(a),and the corresponding volume difference in cavities in Fig.7(b),respectively.It can be seen that the big cavities are mainly created in the densely packed region,not in the so-called loosely packed region.[33,34]Moreover,there are some small cavities populated around such regions,and the length scale is far beyond the nearest neighbor distance.This clearly demonstrates that new cavities are mainly created in the densely packing regions.

    Fig.6.Population of the major atomic clusters(a)without and(b)with cavities surrounded in the metallic glassy sample of 0.1 K/ps.

    Fig.7.(a)Snapshot of cavity distribution in the sample of 0.1 K/ps at a strain of 5%;(b)the volume difference of cavities between the strain of 5.2%and 5%.The cross-section in the middle of the sample along the X direction is taken for the illustration.The color bar represents the cavity volume in panel(a)and volume difference in panel(b),respectively.The circles mark the regions without cavity in panel(a)and the corresponding volume difference in panel(b).

    4.Conclusion

    The rejuvenation of metallic glasses has been realized by applying compressive deformation.Metallic glasses in different energy states have been rejuvenated into a higher energy state with similar potential energy.Numerous cavities are created in this process,which is the main underlying structural basis of rejuvenation of metallic glasses.Moreover,cavities tend to be formed in the densely packed regions.The creation of cavities essentially facilitates the irreversible rearrangements in plastic deformation.

    [1]Concustell A,Mear F O,Surinach S,Baro M D and Greer A L 2009 Phil.Mag.Lett.89 831

    [2]Ke H B,Wen P,Peng H L,Wang W H and Greer A L 2011 Scr.Mater.64 966

    [3]Zhang M,Wang Y M,Li F X,Jiang S Q,Li M Z and Liu L 2017 Sci.Rep.7 625

    [4]Zhang Y,Wang W H and Greer A L 2006 Nat.Mater.5 857

    [5]Dmowski W,Yokoyama Y,Chuang A,Ren Y,Umemoto M,Tsuchiya K,Inoue A and Egami T 2010 Acta Mater.58 429

    [6]Meng F Q,Tsuchiya K,Seiichiro I I and Yokoyama Y 2012 Appl.Phys.Lett.101 121914

    [7]Magagnosc D J,Kumar G,Schroers J,Felfer P,Cairney J M and Gianola D S 2014 Acta Mater.74 165

    [8]Ketov S V,Sun Y H,Nachum S,Lu Z,Checchi A,Beraldin A R,Bai H Y,Wang W H,Louzguine-Luzgin D V,Carpenter M A and Greer A L 2015 Nature 524 200

    [9]Wakeda M,Saida J,Li J and Ogata S 2015 Sci.Rep.5 10545

    [10]Utz M,Debenedetti P G and Stillinger F H 2000 Phys.Rev.Lett.84 1471

    [11]Ding J,Cheng Y Q and Ma E 2014 Acta Mater.69 343

    [12]Heggen M,Spaepen F and Feuerbacher M 2005 J.Appl.Phys.97 033506

    [13]Struik L C E 1997 Polymer 38 4053

    [14]Spaepen F 2006 Scr.Mater.54 363

    [15]Cohen M H and Turnbull D 1959 J.Chem.Phys.31 1164

    [16]Sheng H W,Ma E and Kramer M J 2012 JOM 64 856

    [17]Sastry S,Corti D S,Debenedetti P G and Stillinger F H 1997 Phys.Rev.E 56 5524

    [18]WangXD,AryalS,ZhongC,ChingWY,ShengHW,ZhangH,Zhang D X,Cao Q P and Jiang J Z 2015 Sci.Rep.5 9184

    [19]Guan P,Lu S,Spector M J B,Valavala P K and Falk M L 2013 Phys.Rev.Lett.110 185502

    [20]Pan S P,Feng S D,Qiao J W,Wang W M and Qin J Y 2016 J.Alloys Compd.664 65

    [21]Sastry S,Corti D S,Debenedetti P G and Stillinger F H 1997 Phys.Rev.E 56 5533

    [22]Nagel C,Ratzke K,Schmidtke E,Wolff J,Geyer U and Faupel F 1998 Phys.Rev.B 57 10224

    [23]Flores K M,Suh D and Dauskardt R H 2002 J.Mater.Res.17 5

    [24]Kanungo B P,Glade S C,Asoka-Kumar P and Flores K M 2004 Intermetallics 12 1073

    [25]Mendelev MI,Kramer MJ,Ott RT,Sordelet D J,Yagodin D and Popel P 2009 Phil.Mag.89 967

    [26]Plimpton S 1995 J.Comput.Phys.117 1

    [27]Sietasma J and Thijsse B J 1995 Phys.Rev.B 52 3248

    [28]Bernal J D 1964 Proc.R.Soc.Lond.A 280 299

    [29]Shang B S,Li M Z,Yao Y G,Lu Y J and Wang W H 2014 Phys.Rev.E 90 042303

    [30]Cheng Y Q and Ma E 2011 Prog.Mater.Sci.56 379

    [31]Hu Q,Zeng X R and Fu M W 2012 J.Appl.Phys.111 083523

    [32]Peng H L,Li M Z and Wang W H 2011 Phys.Rev.Lett.106 135503

    [33]Falk M L and Langer J S 1998 Phys.Rev.E 57 7192

    [34]Spaepen F 1977 Acta Metall.25 407

    猜你喜歡
    黃勇
    Data-driven modeling of a four-dimensional stochastic projectile system
    Effect of heat treatment on microstructure and properties of single crystal copper cold-welded joints
    China Welding(2019年2期)2019-10-22 07:13:10
    喊黃勇
    歲月(2018年1期)2018-02-27 18:59:04
    Effects of rotational speeds on the performance of a centrifugal pump with a variable-pitch inducer *
    函數(shù)乘積極值性質(zhì)的一個反例
    殺人心理記
    黃勇書法作品欣賞
    廣西文學(2015年10期)2015-10-22 03:12:34
    沙漠魅影
    沙人
    黃勇:為足球而生
    足球之夜(2013年5期)2013-04-29 00:44:03
    亚洲自偷自拍三级| 又爽又黄无遮挡网站| 欧美一区二区亚洲| 美女xxoo啪啪120秒动态图 | 成人午夜高清在线视频| 成人特级av手机在线观看| 亚洲熟妇熟女久久| 国产毛片a区久久久久| 成人无遮挡网站| 国产精品爽爽va在线观看网站| 日韩欧美一区二区三区在线观看| 欧美+亚洲+日韩+国产| 永久网站在线| 精品欧美国产一区二区三| 亚洲精品影视一区二区三区av| 九色成人免费人妻av| 欧美一区二区国产精品久久精品| 美女黄网站色视频| 国产野战对白在线观看| 午夜两性在线视频| 国产探花极品一区二区| 99热这里只有是精品50| 直男gayav资源| 亚洲av不卡在线观看| 中文字幕精品亚洲无线码一区| 欧美成人a在线观看| 我要看日韩黄色一级片| 国产欧美日韩精品亚洲av| 日韩欧美精品v在线| 国产高清视频在线播放一区| 国语自产精品视频在线第100页| 麻豆一二三区av精品| 级片在线观看| 十八禁国产超污无遮挡网站| 色综合欧美亚洲国产小说| 能在线免费观看的黄片| 99riav亚洲国产免费| 一夜夜www| 中文字幕熟女人妻在线| 亚洲,欧美精品.| 国产真实伦视频高清在线观看 | 国产精品野战在线观看| av黄色大香蕉| 亚洲精品456在线播放app | 麻豆国产av国片精品| 久久性视频一级片| а√天堂www在线а√下载| 国产伦人伦偷精品视频| 免费观看人在逋| 国产精品,欧美在线| 一区福利在线观看| avwww免费| 91av网一区二区| 老熟妇仑乱视频hdxx| 熟女电影av网| 亚洲av五月六月丁香网| 精品不卡国产一区二区三区| .国产精品久久| 白带黄色成豆腐渣| 国产亚洲精品久久久久久毛片| 亚洲色图av天堂| 欧美日本视频| 99热这里只有精品一区| 99在线视频只有这里精品首页| 男女之事视频高清在线观看| 69av精品久久久久久| 99国产精品一区二区蜜桃av| 最后的刺客免费高清国语| 97热精品久久久久久| 欧美xxxx性猛交bbbb| 亚洲人成伊人成综合网2020| 精品人妻熟女av久视频| 国产成人欧美在线观看| 免费看日本二区| 国产精品久久久久久久久免 | 国产精品电影一区二区三区| a级一级毛片免费在线观看| 淫妇啪啪啪对白视频| 欧美最黄视频在线播放免费| 国产av麻豆久久久久久久| 又黄又爽又刺激的免费视频.| 中文在线观看免费www的网站| 亚洲久久久久久中文字幕| 久久久久精品国产欧美久久久| 99热这里只有精品一区| 又黄又爽又刺激的免费视频.| 高潮久久久久久久久久久不卡| 尤物成人国产欧美一区二区三区| 精品久久久久久久久久久久久| 看片在线看免费视频| 国产探花在线观看一区二区| 色综合婷婷激情| 亚洲一区二区三区不卡视频| 麻豆一二三区av精品| 在线观看舔阴道视频| 国产精品不卡视频一区二区 | 亚州av有码| 美女黄网站色视频| 亚洲18禁久久av| 久久精品影院6| 99国产综合亚洲精品| 超碰av人人做人人爽久久| 噜噜噜噜噜久久久久久91| 99在线人妻在线中文字幕| 亚洲av美国av| 亚洲激情在线av| 免费人成视频x8x8入口观看| a级毛片免费高清观看在线播放| 亚洲无线在线观看| 欧美一区二区亚洲| 精品久久国产蜜桃| 亚洲精品色激情综合| 天堂动漫精品| 午夜福利免费观看在线| 女人十人毛片免费观看3o分钟| 久久亚洲真实| 午夜老司机福利剧场| 亚洲欧美清纯卡通| 日本一二三区视频观看| 亚洲五月婷婷丁香| 一级作爱视频免费观看| 免费观看的影片在线观看| 亚洲欧美清纯卡通| 免费观看的影片在线观看| x7x7x7水蜜桃| 亚洲人成网站高清观看| 午夜视频国产福利| 好看av亚洲va欧美ⅴa在| 成人高潮视频无遮挡免费网站| 国产精品乱码一区二三区的特点| 变态另类成人亚洲欧美熟女| 成年女人看的毛片在线观看| 精品一区二区三区人妻视频| 亚洲 欧美 日韩 在线 免费| 国内精品美女久久久久久| 成人毛片a级毛片在线播放| 久久精品人妻少妇| 精品久久久久久,| 亚洲激情在线av| 国产精品爽爽va在线观看网站| 制服丝袜大香蕉在线| 91久久精品国产一区二区成人| 十八禁人妻一区二区| 国产亚洲精品久久久com| 欧美日韩亚洲国产一区二区在线观看| 国产精品久久电影中文字幕| 日本一本二区三区精品| 怎么达到女性高潮| 亚洲中文日韩欧美视频| 国产精品国产高清国产av| 波野结衣二区三区在线| 成年女人看的毛片在线观看| 午夜福利高清视频| 国产午夜精品久久久久久一区二区三区 | 高潮久久久久久久久久久不卡| 啦啦啦韩国在线观看视频| 波多野结衣巨乳人妻| 成人精品一区二区免费| 日韩国内少妇激情av| 白带黄色成豆腐渣| 亚洲国产高清在线一区二区三| 国内揄拍国产精品人妻在线| 久久婷婷人人爽人人干人人爱| 久久久久久大精品| 99久久无色码亚洲精品果冻| 午夜老司机福利剧场| x7x7x7水蜜桃| 色尼玛亚洲综合影院| 怎么达到女性高潮| 少妇的逼水好多| 天天一区二区日本电影三级| 亚洲专区国产一区二区| 久久精品人妻少妇| 精品久久久久久,| 午夜福利欧美成人| 97超视频在线观看视频| 久久久久久大精品| 免费人成视频x8x8入口观看| 高清毛片免费观看视频网站| 美女 人体艺术 gogo| 亚洲第一欧美日韩一区二区三区| 亚洲av成人精品一区久久| 国产免费男女视频| 亚洲成人免费电影在线观看| 国产高清视频在线播放一区| 亚洲激情在线av| 日韩欧美免费精品| 亚洲精品久久国产高清桃花| 亚洲av电影不卡..在线观看| 亚洲欧美日韩高清在线视频| 在线十欧美十亚洲十日本专区| 欧美又色又爽又黄视频| 国产精品av视频在线免费观看| 九色成人免费人妻av| 两个人视频免费观看高清| 久久午夜亚洲精品久久| 99久国产av精品| 夜夜躁狠狠躁天天躁| 亚洲国产日韩欧美精品在线观看| 国产白丝娇喘喷水9色精品| av在线蜜桃| 色噜噜av男人的天堂激情| 精品乱码久久久久久99久播| 嫩草影院精品99| 亚洲精品久久国产高清桃花| 亚洲精品乱码久久久v下载方式| 色5月婷婷丁香| 国产精品亚洲一级av第二区| 亚洲真实伦在线观看| 国产蜜桃级精品一区二区三区| 亚洲av电影在线进入| 美女cb高潮喷水在线观看| 夜夜夜夜夜久久久久| 一本一本综合久久| 国产成人av教育| 日韩欧美在线二视频| 99精品在免费线老司机午夜| h日本视频在线播放| 我的老师免费观看完整版| 中文字幕人成人乱码亚洲影| 亚洲国产欧美人成| 国产精品久久久久久人妻精品电影| 亚洲最大成人手机在线| 一级av片app| 久久久久久久亚洲中文字幕 | 露出奶头的视频| 免费观看的影片在线观看| 丰满人妻熟妇乱又伦精品不卡| 精品久久久久久久人妻蜜臀av| 婷婷亚洲欧美| 91字幕亚洲| 亚洲av美国av| 男女之事视频高清在线观看| 简卡轻食公司| 亚洲久久久久久中文字幕| 91狼人影院| 欧美+亚洲+日韩+国产| 一进一出好大好爽视频| 国产精品爽爽va在线观看网站| 日韩欧美精品免费久久 | 又紧又爽又黄一区二区| 亚洲精品一区av在线观看| 久久久久久国产a免费观看| 午夜老司机福利剧场| 最新在线观看一区二区三区| 99久久精品一区二区三区| 91久久精品电影网| avwww免费| 我要看日韩黄色一级片| 给我免费播放毛片高清在线观看| 老司机午夜十八禁免费视频| 国产精品电影一区二区三区| 亚洲av五月六月丁香网| 午夜免费成人在线视频| 18禁在线播放成人免费| 欧美成狂野欧美在线观看| 日韩欧美在线二视频| 老司机深夜福利视频在线观看| 国产亚洲精品久久久久久毛片| 深夜a级毛片| 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美精品免费久久 | 国产精品影院久久| 88av欧美| 啪啪无遮挡十八禁网站| 亚洲av不卡在线观看| 国产av麻豆久久久久久久| 久久热精品热| 69av精品久久久久久| 色综合欧美亚洲国产小说| 在线观看舔阴道视频| 国内精品美女久久久久久| 九九久久精品国产亚洲av麻豆| 欧美性感艳星| 色视频www国产| 天堂av国产一区二区熟女人妻| 成人国产综合亚洲| 亚洲乱码一区二区免费版| 久久精品影院6| 亚洲五月婷婷丁香| 一级av片app| 中文资源天堂在线| 1000部很黄的大片| 欧美黑人欧美精品刺激| 久久天躁狠狠躁夜夜2o2o| 成年免费大片在线观看| 少妇的逼水好多| 国产三级在线视频| 国产高清视频在线观看网站| 国模一区二区三区四区视频| 亚洲在线自拍视频| 欧美区成人在线视频| 亚洲精品成人久久久久久| 偷拍熟女少妇极品色| 日韩有码中文字幕| 免费观看精品视频网站| 中文亚洲av片在线观看爽| 深夜精品福利| 一区二区三区免费毛片| 亚洲男人的天堂狠狠| 99久久九九国产精品国产免费| 国产真实伦视频高清在线观看 | 深夜精品福利| 久久午夜福利片| 色综合欧美亚洲国产小说| 在线观看66精品国产| www日本黄色视频网| 一本久久中文字幕| 又爽又黄无遮挡网站| 欧美绝顶高潮抽搐喷水| 2021天堂中文幕一二区在线观| 琪琪午夜伦伦电影理论片6080| 最近在线观看免费完整版| 99久国产av精品| 日韩国内少妇激情av| 色噜噜av男人的天堂激情| 男插女下体视频免费在线播放| 国产 一区 欧美 日韩| 老熟妇乱子伦视频在线观看| 国产高清激情床上av| 亚洲一区高清亚洲精品| 51午夜福利影视在线观看| 乱码一卡2卡4卡精品| 我的老师免费观看完整版| 欧美性感艳星| 在线播放国产精品三级| 91字幕亚洲| 亚洲欧美日韩卡通动漫| 高潮久久久久久久久久久不卡| 最好的美女福利视频网| 国模一区二区三区四区视频| 波多野结衣巨乳人妻| 在线观看一区二区三区| 亚洲欧美日韩高清专用| 久久精品国产亚洲av涩爱 | 中亚洲国语对白在线视频| 丁香六月欧美| 亚洲乱码一区二区免费版| 最近最新免费中文字幕在线| 精品国内亚洲2022精品成人| 18禁黄网站禁片免费观看直播| 给我免费播放毛片高清在线观看| 欧美日韩国产亚洲二区| 久久中文看片网| 欧美黄色淫秽网站| 亚洲一区二区三区色噜噜| 天美传媒精品一区二区| 高潮久久久久久久久久久不卡| 久久国产乱子免费精品| 十八禁人妻一区二区| 亚洲国产日韩欧美精品在线观看| 国产三级在线视频| 淫秽高清视频在线观看| 精品久久久久久久久久久久久| 国产乱人伦免费视频| 香蕉av资源在线| 麻豆av噜噜一区二区三区| 日本黄色视频三级网站网址| 欧美性猛交╳xxx乱大交人| 老女人水多毛片| 国产午夜精品久久久久久一区二区三区 | 亚洲avbb在线观看| 国产免费一级a男人的天堂| 制服丝袜大香蕉在线| 精品久久久久久久久久免费视频| 国产野战对白在线观看| 午夜福利视频1000在线观看| 国产午夜精品论理片| 亚洲av.av天堂| aaaaa片日本免费| 亚洲人成网站在线播放欧美日韩| 国产精品自产拍在线观看55亚洲| 欧美国产日韩亚洲一区| 97碰自拍视频| 久久天躁狠狠躁夜夜2o2o| 中文字幕高清在线视频| 亚洲综合色惰| 成年免费大片在线观看| 精品一区二区三区视频在线观看免费| 搡老妇女老女人老熟妇| 日韩大尺度精品在线看网址| 美女免费视频网站| 99在线视频只有这里精品首页| 国产毛片a区久久久久| a级毛片免费高清观看在线播放| 尤物成人国产欧美一区二区三区| 午夜福利在线在线| 亚洲成av人片免费观看| 国产精品亚洲美女久久久| 日本精品一区二区三区蜜桃| av女优亚洲男人天堂| 黄色配什么色好看| 久久久久久国产a免费观看| 高清在线国产一区| 日本五十路高清| 桃红色精品国产亚洲av| 国产免费男女视频| 亚洲精品粉嫩美女一区| 亚洲不卡免费看| 婷婷精品国产亚洲av在线| 桃红色精品国产亚洲av| 亚洲欧美日韩东京热| 国产精品三级大全| 尤物成人国产欧美一区二区三区| 最好的美女福利视频网| 国产精品嫩草影院av在线观看 | 免费一级毛片在线播放高清视频| 日韩欧美一区二区三区在线观看| 99热这里只有是精品在线观看 | 亚洲av免费高清在线观看| 老熟妇乱子伦视频在线观看| or卡值多少钱| 观看免费一级毛片| 欧美在线黄色| 美女 人体艺术 gogo| 国产精品久久久久久久电影| 成人午夜高清在线视频| 18+在线观看网站| 亚洲18禁久久av| 亚洲久久久久久中文字幕| 人人妻,人人澡人人爽秒播| 久久亚洲真实| 午夜日韩欧美国产| 亚洲av免费在线观看| 一卡2卡三卡四卡精品乱码亚洲| 神马国产精品三级电影在线观看| 毛片女人毛片| 激情在线观看视频在线高清| 欧美性猛交╳xxx乱大交人| 免费人成在线观看视频色| 丰满的人妻完整版| 成人鲁丝片一二三区免费| 国产乱人视频| 午夜精品在线福利| 黄色日韩在线| 搡老妇女老女人老熟妇| 午夜视频国产福利| 男女床上黄色一级片免费看| 亚洲国产精品久久男人天堂| 久久国产乱子伦精品免费另类| 亚洲成人久久爱视频| 亚洲精品在线美女| 久久天躁狠狠躁夜夜2o2o| 日韩国内少妇激情av| 乱人视频在线观看| 免费在线观看日本一区| 精品一区二区免费观看| 精品午夜福利视频在线观看一区| 久久精品人妻少妇| 一夜夜www| 色综合婷婷激情| 国产国拍精品亚洲av在线观看| 级片在线观看| 国产主播在线观看一区二区| 国产69精品久久久久777片| 91午夜精品亚洲一区二区三区 | 少妇人妻精品综合一区二区 | 99国产极品粉嫩在线观看| 精品一区二区三区视频在线| 小说图片视频综合网站| 亚洲七黄色美女视频| 一本综合久久免费| 露出奶头的视频| 国产伦精品一区二区三区四那| 亚洲熟妇中文字幕五十中出| 乱码一卡2卡4卡精品| 黄色女人牲交| 中文字幕免费在线视频6| 亚洲精品日韩av片在线观看| 在线看三级毛片| 在线观看av片永久免费下载| 久久九九热精品免费| 国产精品98久久久久久宅男小说| 岛国在线免费视频观看| 国产精品99久久久久久久久| 18禁在线播放成人免费| 在线国产一区二区在线| 色哟哟·www| 久久久精品大字幕| 亚洲,欧美精品.| 观看免费一级毛片| 一进一出好大好爽视频| 欧美高清性xxxxhd video| 日韩欧美精品v在线| 欧美丝袜亚洲另类 | 丁香欧美五月| 欧美黄色淫秽网站| av中文乱码字幕在线| 午夜激情福利司机影院| 精品人妻偷拍中文字幕| 久久久国产成人免费| 人妻夜夜爽99麻豆av| 久久九九热精品免费| 亚洲 欧美 日韩 在线 免费| 国产成人影院久久av| 午夜两性在线视频| 97热精品久久久久久| 欧美日韩综合久久久久久 | 黄色视频,在线免费观看| 99久久99久久久精品蜜桃| 亚洲无线在线观看| 人人妻人人看人人澡| 国产精品爽爽va在线观看网站| 亚洲中文日韩欧美视频| a级毛片a级免费在线| 免费av观看视频| 噜噜噜噜噜久久久久久91| 国产精品不卡视频一区二区 | 欧美日韩国产亚洲二区| 免费大片18禁| 亚洲欧美日韩东京热| 日本a在线网址| 757午夜福利合集在线观看| а√天堂www在线а√下载| 久久精品国产亚洲av涩爱 | 国产精品久久电影中文字幕| 一a级毛片在线观看| 欧美另类亚洲清纯唯美| 日本 av在线| 免费黄网站久久成人精品 | 日本在线视频免费播放| 日本 av在线| 久久久久精品国产欧美久久久| 亚洲激情在线av| 久久国产精品人妻蜜桃| 亚洲av美国av| 亚洲欧美日韩高清在线视频| 少妇的逼好多水| 国产激情偷乱视频一区二区| 国产一区二区激情短视频| 中文字幕高清在线视频| 嫩草影院精品99| 国产成+人综合+亚洲专区| 超碰av人人做人人爽久久| 久久久久久久久久成人| 久久6这里有精品| 亚洲色图av天堂| 最后的刺客免费高清国语| 久久精品91蜜桃| 国产精品嫩草影院av在线观看 | 脱女人内裤的视频| 色哟哟·www| 91九色精品人成在线观看| 精品免费久久久久久久清纯| 久久久久国产精品人妻aⅴ院| 69av精品久久久久久| 亚洲精品一卡2卡三卡4卡5卡| 欧美xxxx黑人xx丫x性爽| 日韩中文字幕欧美一区二区| 日韩亚洲欧美综合| 成人av一区二区三区在线看| 国产成人aa在线观看| 又粗又爽又猛毛片免费看| 两人在一起打扑克的视频| 97人妻精品一区二区三区麻豆| 欧美另类亚洲清纯唯美| 国产私拍福利视频在线观看| 国内精品久久久久精免费| 久久久久久大精品| 国产精品99久久久久久久久| 亚洲aⅴ乱码一区二区在线播放| 日本成人三级电影网站| 1024手机看黄色片| 91午夜精品亚洲一区二区三区 | 在线播放国产精品三级| 亚洲自偷自拍三级| 精品久久久久久久人妻蜜臀av| 国产精品精品国产色婷婷| 少妇熟女aⅴ在线视频| 欧美xxxx黑人xx丫x性爽| 国产一级毛片七仙女欲春2| 无人区码免费观看不卡| 日韩成人在线观看一区二区三区| 欧美高清性xxxxhd video| 在线免费观看的www视频| 丁香六月欧美| 国产精品女同一区二区软件 | 身体一侧抽搐| 三级毛片av免费| 97人妻精品一区二区三区麻豆| 搡老熟女国产l中国老女人| 亚洲av第一区精品v没综合| av天堂中文字幕网| 久久久色成人| av中文乱码字幕在线| 欧美另类亚洲清纯唯美| 99热只有精品国产| 中文字幕av在线有码专区| 一个人免费在线观看电影| av福利片在线观看| av女优亚洲男人天堂| 国产午夜精品久久久久久一区二区三区 | 在线观看舔阴道视频| 日韩av在线大香蕉| 久久精品91蜜桃| 亚洲人成伊人成综合网2020| 欧美bdsm另类| 又黄又爽又刺激的免费视频.| 淫秽高清视频在线观看| 又黄又爽又免费观看的视频| 国产精华一区二区三区| 欧美+亚洲+日韩+国产| 欧美成人免费av一区二区三区| 黄片小视频在线播放| 亚洲中文日韩欧美视频| 亚洲国产精品成人综合色| 不卡一级毛片| 最新在线观看一区二区三区| 日韩欧美一区二区三区在线观看| 欧美最黄视频在线播放免费| 欧美日韩乱码在线| 久久香蕉精品热| 非洲黑人性xxxx精品又粗又长| 一区福利在线观看| 精品国内亚洲2022精品成人|