• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural evolution in deformation-induced rejuvenation in metallic glasses:A cavity perspective?

    2019-04-13 01:14:34ShaoqinJiang江少欽YongHuang黃勇andMaozhiLi李茂枝
    Chinese Physics B 2019年4期
    關鍵詞:黃勇

    Shaoqin Jiang(江少欽),Yong Huang(黃勇),and Maozhi Li(李茂枝)

    Department of Physics,Beijing Key Laboratory of Opto-electronic Functional Materials&Micro-nano Devices,Renmin University of China,Beijing 100872,China

    1.Introduction

    Recently,the rejuvenation of metallic glasses has attracted much interest,since it is a promising approach for improving the plasticity of metallic glasses and thereby enhancing their potential applicability as structural materials.[1–10]Experimentally,various approaches have been developed for achieving the rejuvenation of metallic glasses.It was found that rejuvenation of bulk metallic glasses can be achieved through elastostatic compression for high strength and large plasticity.[1–3]The mechanism was attributed to the irreversible structural changes based on the generation of free volume.Similarly,shot-peening of pre-annealed metallic glasses can also realize the mechanically induced rejuvenation.[4]It was argued that shot-peening may induce the part of the free volume distribution associated with flow defects.It was also found that plastic deformation by the high-pressure torsion technique can also effectively rejuvenate the structure of metallic glasses.[5]Further study revealed a transition of the deformation mode from heterogeneous, localized deformation to homogeneous deformation in Zr50Cu40Al10bulk metallic glass and attributed the transition to a change in the local atomic environment in the rejuvenated volume.[6]Moreover,ion irradiation was also found to rejuvenate metallic glasses,leading to significant tensile ductility and plastic deformation,while electron diffraction indicated subtle signatures of structural changes of metallic glasses.[7]Very recently,thermal cycling induced rejuvenation of metallic glasses was also achieved in experiments.[8]It was explained that thermal cycling induced rejuvenation results from the intrinsic nonuniformity of the glass structure,and thermal cycling introduces heterogeneities which effectively induces flow and improves plasticity.In addition,a method was proposed via molecular dynamics simulations to control the level rejuvenation through systematic thermal processing,and crucial conditions for rejuvenation were clarified.[9]

    Although plenty of studies have been devoted to rejuvenation of amorphous materials,the evolution of atomic structures in rejuvenation is still elusive.Using Monte Carlo simulation for a binary Lennard–Jones mixture,rejuvenation in glasses was observed via mechanical loading and the pair correlation functions were analyzed for understanding the structure evolution in rejuvenation.[10]However,no details of the atomic structure information related to rejuvenation were provided.As indicated above,the increase of the free volume and its distribution in metallic glasses plays important roles in rejuvenation.[1–4,6,8,11–13]However,the characteristic of free volume in rejuvenation or how free volume influences rejuvenation of metallic glasses is not clear,either.On the other hand,the free volume was defined as the Voronoi-cell volume minus the volume of atom.[14]This free volume is a thermodynamic quantity,and cannot reflect the topological information of atoms packing for the structural evolution.[15]It has been revealed that there exist cavities in metallic glasses,[16]which is often regarded as a topology-based defect due to packing deficiencies in metallic liquids and glasses.[15–21]The formation of large cavities in metallic glasses is the result of mechanical instability.[18–20]Moreover,cavities in metallic glasses can be measured by positron annihilation life time measurements.[22–24]Therefore,characterization of cavities in metallic glasses may provide new insight into the structure property relationship.

    In this work,we performed classical molecular dynamics simulations to investigate the structural evolution in deformation-induced rejuvenation in Cu80Zr20metallic glasses by characterizing cavities.The creation and annihilation of cavities in deformation process is found to be responsible for the underlying structural basis of rejuvenation in metallic glasses.In deformation process,cavities prefer to form in the relatively densely packed regions,leading to the irreversible rearrangements in metallic glasses.The characteristic of cavities provides a universal structural description for both aging and rejuvenation mechanism in metallic glasses.

    2.Model and simulation method

    In our studies,classic molecular dynamic(MD)simulations were performed for Cu80Zr20metallic alloy and a realistic embedded atom method potential was employed to describe the interatomic interactions.[25]All of the simulations were performed using the large-scale atomic/molecular massively parallel simulator(LAMMPS)package.[26]The structure contains 4×104atoms in a cubic box with periodic boundary conditions applied in three dimensions.The initial configuration was melted and equilibrated at T=2000 K for 0.2 ns in isothermal–isobaric(NPT)ensemble,and then cooled down to 300 K with four different cooling rates of 0.1 K/ps,1 K/ps,10 K/ps,and 100 K/ps,respectively.In these processes,the box size was adjusted to give a zero pressure.The samples were further relaxed at300K in canonical(NVT)ensemble for 0.4 ns.In our MD simulations,temperature and pressure were controlled with Nose–Hoover thermostat and barostat,respectively.To examine the deformation-induced rejuvenation in four metallic glass samples,uniaxial compression along the Z direction with constant strain rate was applied to the samples at 300 K.Periodic boundary conditions were applied in the X and Y directions.

    In our work,the cavities in metallic glasses were characterized in terms of the numerical algorithm developed by Sastry et al.[17]In this algorithm,Voronoi and Delaunay tessellations were constructed with the atomic radii of Cu (1.28 A° ) and Zr (1.59 A° ) taken into account, and an exclusion radius was applied to determine the void regions and the volumes of cavities.According to previous studies,[17]1.4 times of the atomic radii of Cu and Zr were chosen as the exclusion radii for Cu and Zr atoms,respectively,which are comparable to the distances that pair correlation functions start to be nonzero.[28]More details about the algorithm can be found in Ref.[17].The connectivity of nearest neighboring cavities was also considered,[27]so that a rigorous and precise cavity in metallic glasses can be quantitatively defined and characterized.

    3.Results and discussions

    Figure 1 shows the potential energy and volume per atom in four samples with different cooling rates as a function of temperature in the cooling process.Both the potential energy and the volume decrease as the temperature decreases,exhibiting a kink below a certain temperature, and indicating the glass transition in four samples.It can be seen that the slower the cooling rate,the lower the potential energy,and the smaller the volume per atom,indicating that four metallic glassy samples with different states are obtained.

    Fig.1.The evolution of(a)potential energy per atom and(b)volume per atom as the samples are cooled from 2000 K to 300 K with four different cooling rates.

    First,we investigate the temperature evolution of cavities in four samples in the cooling process.As shown in Fig.2,both the total volume and the number of cavities decrease significantly as the temperature decreases,indicating that there exist numerous cavities in high temperature liquids,and the cavities are rapidly annihilated in the cooling process.It can be seen that in high temperature liquids, both volume and number of cavities are almost the same in four samples, independent of the cooling rate. As temperature decreases below about 1400 K, both volume and number of cavities change with cooling rate.Slower cooling rate accelerates the annihilation of cavities in both volume and number as shown in Fig.2,leading to the least cavities in the sample of 0.1 K/ps.This indicates that the sample of 0.1 K/ps can be relaxed much more adequately,so that more cavities are annihilated in the cooling process.In addition,the aging effect in the cooling process with different cooling rates can be well characterized by the annihilation of cavities,so that cavities can be used to characterize the metallic glasses at different glassy states.

    Fig.2.The evolution of(a)total volume and(b)total number of cavities of four different specimens as a function of temperature from 2000 K to 300 K.

    Next,we analyze the evolution of the cavities in deformation process.Figure 3(a)shows the strain–stress curves in four samples as the compressive deformation is applied.The yield stress increases as the cooling rate is decreased.There is almost no overshoot in the strain–stress curve in the sample of 100 K/ps.As the cooling rate decreases,the overshoot becomes more significant.As the strain goes beyond the yield point,the stress in the samples with slower cooling rates decreases,and the strain–stress curves almost collapse together as the strain is over 15%.Figure 3(b)shows the evolution of potential energy with the strain.Before compression,the potential energies in four samples are different.As the external stress is applied,the potential energy in all samples increases as the strain increases.The increase in potential energy is much more drastic in the sample of 0.1 K/ps.As the strain increases,the difference in potential energy in the four samples becomes smaller and almost the same as the strain reaches about 40%.This indicates that these glassy samples are rejuvenated to higher energy states,and the aging effect produced in the cooling process in four samples can be completely erased by applying mechanical deformation.This is consistent with previous studies.[10]It can be seen that rejuvenation of metallic glasses can be achieved by applying mechanical deformation.

    Fig.3.(a)Strain–stress curves of four metallic glassy samples in compressive deformation;(b)evolution of potential energies in four samples in deformation process.The inset in panel(b)shows the evolution of the potential energy in four samples up to 40%strain.

    To understand the underlying structural basis of the deformation induced rejuvenation of metallic glasses,the evolution of the cavities in four samples in deformation process is analyzed.Figure 4 shows the change of volume and number of cavities with strain.Both the total volume and number of cavities in these samples decrease a little as the strain increases to before 5%.This indicates that some cavities are shrunk or annihilated under the deformation in the apparent elastic regime.In the sample of 0.1 K/ps,the volume and number of cavities do not change much with strain smaller than 5%.This implies that the sample is adequately relaxed in the cooling process with a cooling rate of 0.1 K/ps,so that the compressive deformation does not induce further decrease in the volume or number of cavities.However,in the samples of 1 K/ps and 10 K/ps,the deformation induces significant decrease in the volume and number of cavities before 5%.In the sample of 100 K/ps,the volume and number of cavities do not change much,either.This is because this sample is yielded quickly as the strain exceeds 2%.As the strain is larger than 5%,the total volume and number of cavities in all samples increase as the samples are further deformed.The increase is more drastic in the sample of 0.1 K/ps,indicating that the local atomic rearrangement is more significant and more cavities are generated in this sample under deformation.As the strain is larger than 15%,the volume and number of cavities become similar in four samples.This behavior is quite similar to the potential energy in the deformation process.Thus,four metallic glassy samples at different states obtained in cooling processes are rejuvenated into a higher energy state with similar potential energy and atomic structure feature.It can be seen that the aging history in four samples is finally erased by the deformation induced rejuvenation.Moreover,the generation and annihilation of cavities in metallic glassy samples play a key role in both aging and rejuvenation processes.As shown above,while the annihilation of cavities dominates in the aging process,the generation of cavities essentially controls the rejuvenation process.Therefore,the characteristics of cavities provide a generic description for both aging and rejuvenation in metallic glasses.

    Fig.4.The evolution of(a)volume and(b)number of cavities in four metallic glassy samples in compressive deformation process.

    To get further insight into the relationship between cavities and rejuvenation in metallic glasses,we investigate the role of each element in the creation of cavities in the deformation process.Figure 5 shows the variation of the percentage of Cu and Zr around cavities with strain in the sample of 0.1 K/ps,respectively.It can be seen that while the percentage of Cu around cavities increases with strain,the percentage of Zr is fluctuating,and does not change much in the deformation process.This indicates that new cavities are essentially created around Cu atoms,leading to the increase of Cu atoms around cavities.This also implies that most atomic irreversible rearrangements take place around Cu atoms,which is consistent with the characterization of atomic rearrangements in metallic glasses.[29]

    Fig.5.Variation of the percentage of(a)Cu and(b)Zr atoms around cavities compared to the total number of atoms in the metallic glassy sample of 0.1 K/ps with strain.

    We also investigate the relationship between the creation of cavities and atomic clusters in the deformation process. Figure 6 shows the major populated clusters with and without cavities surrounded at different strains.It can be seen that while much more icosahedral clusters are populated in the regions without cavities,only a small fraction of icosahedral clusters are located around cavities,indicating the dense packing feature of icosahedral clusters.In contrast,while the fraction of icosahedral clusters decreases monotonically with the increase of the strain,the fraction of icosahedral clusters located around cavities does not change much with the strain.This implies that the decrease of icosahedral clusters in the regions without cavities is accompanied with the creation of cavities,and icosahedral clusters are mainly transformed to some lowpopulated clusters in the deformation process.[30]On the other hand,the population of the major clusters around cavities does not vary much with the strain.This indicates that the plastic deformation mainly changes the atomic environments in the regions without cavities,although the fraction of atomic clusters changes with strain.[31,32]This also indicates that if only atomic clusters and their evolution are characterized in the rejuvenation process,one cannot obtain the generic structure feature for better understanding of the rejuvenation mechanism in metallic glasses.

    Figure7further confirms this point.Figure7(a)shows the cavity distribution in the sample of 0.1 K/ps at a strain of 5%,and figure 7(b)shows the volume difference of cavities between the strain of 5.2%and 5%,which indicates the creation and annihilation of cavities in the deformation process.The red circles mark the region without cavities in Fig.7(a),and the corresponding volume difference in cavities in Fig.7(b),respectively.It can be seen that the big cavities are mainly created in the densely packed region,not in the so-called loosely packed region.[33,34]Moreover,there are some small cavities populated around such regions,and the length scale is far beyond the nearest neighbor distance.This clearly demonstrates that new cavities are mainly created in the densely packing regions.

    Fig.6.Population of the major atomic clusters(a)without and(b)with cavities surrounded in the metallic glassy sample of 0.1 K/ps.

    Fig.7.(a)Snapshot of cavity distribution in the sample of 0.1 K/ps at a strain of 5%;(b)the volume difference of cavities between the strain of 5.2%and 5%.The cross-section in the middle of the sample along the X direction is taken for the illustration.The color bar represents the cavity volume in panel(a)and volume difference in panel(b),respectively.The circles mark the regions without cavity in panel(a)and the corresponding volume difference in panel(b).

    4.Conclusion

    The rejuvenation of metallic glasses has been realized by applying compressive deformation.Metallic glasses in different energy states have been rejuvenated into a higher energy state with similar potential energy.Numerous cavities are created in this process,which is the main underlying structural basis of rejuvenation of metallic glasses.Moreover,cavities tend to be formed in the densely packed regions.The creation of cavities essentially facilitates the irreversible rearrangements in plastic deformation.

    [1]Concustell A,Mear F O,Surinach S,Baro M D and Greer A L 2009 Phil.Mag.Lett.89 831

    [2]Ke H B,Wen P,Peng H L,Wang W H and Greer A L 2011 Scr.Mater.64 966

    [3]Zhang M,Wang Y M,Li F X,Jiang S Q,Li M Z and Liu L 2017 Sci.Rep.7 625

    [4]Zhang Y,Wang W H and Greer A L 2006 Nat.Mater.5 857

    [5]Dmowski W,Yokoyama Y,Chuang A,Ren Y,Umemoto M,Tsuchiya K,Inoue A and Egami T 2010 Acta Mater.58 429

    [6]Meng F Q,Tsuchiya K,Seiichiro I I and Yokoyama Y 2012 Appl.Phys.Lett.101 121914

    [7]Magagnosc D J,Kumar G,Schroers J,Felfer P,Cairney J M and Gianola D S 2014 Acta Mater.74 165

    [8]Ketov S V,Sun Y H,Nachum S,Lu Z,Checchi A,Beraldin A R,Bai H Y,Wang W H,Louzguine-Luzgin D V,Carpenter M A and Greer A L 2015 Nature 524 200

    [9]Wakeda M,Saida J,Li J and Ogata S 2015 Sci.Rep.5 10545

    [10]Utz M,Debenedetti P G and Stillinger F H 2000 Phys.Rev.Lett.84 1471

    [11]Ding J,Cheng Y Q and Ma E 2014 Acta Mater.69 343

    [12]Heggen M,Spaepen F and Feuerbacher M 2005 J.Appl.Phys.97 033506

    [13]Struik L C E 1997 Polymer 38 4053

    [14]Spaepen F 2006 Scr.Mater.54 363

    [15]Cohen M H and Turnbull D 1959 J.Chem.Phys.31 1164

    [16]Sheng H W,Ma E and Kramer M J 2012 JOM 64 856

    [17]Sastry S,Corti D S,Debenedetti P G and Stillinger F H 1997 Phys.Rev.E 56 5524

    [18]WangXD,AryalS,ZhongC,ChingWY,ShengHW,ZhangH,Zhang D X,Cao Q P and Jiang J Z 2015 Sci.Rep.5 9184

    [19]Guan P,Lu S,Spector M J B,Valavala P K and Falk M L 2013 Phys.Rev.Lett.110 185502

    [20]Pan S P,Feng S D,Qiao J W,Wang W M and Qin J Y 2016 J.Alloys Compd.664 65

    [21]Sastry S,Corti D S,Debenedetti P G and Stillinger F H 1997 Phys.Rev.E 56 5533

    [22]Nagel C,Ratzke K,Schmidtke E,Wolff J,Geyer U and Faupel F 1998 Phys.Rev.B 57 10224

    [23]Flores K M,Suh D and Dauskardt R H 2002 J.Mater.Res.17 5

    [24]Kanungo B P,Glade S C,Asoka-Kumar P and Flores K M 2004 Intermetallics 12 1073

    [25]Mendelev MI,Kramer MJ,Ott RT,Sordelet D J,Yagodin D and Popel P 2009 Phil.Mag.89 967

    [26]Plimpton S 1995 J.Comput.Phys.117 1

    [27]Sietasma J and Thijsse B J 1995 Phys.Rev.B 52 3248

    [28]Bernal J D 1964 Proc.R.Soc.Lond.A 280 299

    [29]Shang B S,Li M Z,Yao Y G,Lu Y J and Wang W H 2014 Phys.Rev.E 90 042303

    [30]Cheng Y Q and Ma E 2011 Prog.Mater.Sci.56 379

    [31]Hu Q,Zeng X R and Fu M W 2012 J.Appl.Phys.111 083523

    [32]Peng H L,Li M Z and Wang W H 2011 Phys.Rev.Lett.106 135503

    [33]Falk M L and Langer J S 1998 Phys.Rev.E 57 7192

    [34]Spaepen F 1977 Acta Metall.25 407

    猜你喜歡
    黃勇
    Data-driven modeling of a four-dimensional stochastic projectile system
    Effect of heat treatment on microstructure and properties of single crystal copper cold-welded joints
    China Welding(2019年2期)2019-10-22 07:13:10
    喊黃勇
    歲月(2018年1期)2018-02-27 18:59:04
    Effects of rotational speeds on the performance of a centrifugal pump with a variable-pitch inducer *
    函數(shù)乘積極值性質(zhì)的一個反例
    殺人心理記
    黃勇書法作品欣賞
    廣西文學(2015年10期)2015-10-22 03:12:34
    沙漠魅影
    沙人
    黃勇:為足球而生
    足球之夜(2013年5期)2013-04-29 00:44:03
    狠狠狠狠99中文字幕| 久久亚洲真实| 日韩有码中文字幕| 青青草视频在线视频观看| 91九色精品人成在线观看| 一级毛片电影观看| 国产高清videossex| 国产极品粉嫩免费观看在线| 成人国产一区最新在线观看| 一区二区三区精品91| 黄色 视频免费看| 午夜福利视频在线观看免费| 在线天堂中文资源库| 精品国产乱码久久久久久男人| 18禁国产床啪视频网站| av超薄肉色丝袜交足视频| 亚洲av国产av综合av卡| 国产激情久久老熟女| 精品高清国产在线一区| 三上悠亚av全集在线观看| 深夜精品福利| 欧美乱妇无乱码| 在线播放国产精品三级| 日本黄色视频三级网站网址 | 欧美+亚洲+日韩+国产| 国产在线观看jvid| av网站免费在线观看视频| 狂野欧美激情性xxxx| 国产1区2区3区精品| 激情视频va一区二区三区| 久热这里只有精品99| 久久精品国产亚洲av高清一级| 欧美黄色淫秽网站| 色老头精品视频在线观看| 在线观看人妻少妇| 男女下面插进去视频免费观看| 亚洲伊人久久精品综合| 亚洲午夜理论影院| 欧美人与性动交α欧美软件| 久久精品国产a三级三级三级| 精品视频人人做人人爽| 国产亚洲欧美在线一区二区| 久久香蕉激情| netflix在线观看网站| 亚洲 国产 在线| 捣出白浆h1v1| 免费在线观看黄色视频的| 久久99热这里只频精品6学生| 另类精品久久| 捣出白浆h1v1| 精品一区二区三区四区五区乱码| av电影中文网址| 欧美+亚洲+日韩+国产| 亚洲中文av在线| 久久久国产成人免费| 黄色a级毛片大全视频| 日本黄色视频三级网站网址 | 十八禁网站免费在线| 久久性视频一级片| 免费在线观看日本一区| 女人被躁到高潮嗷嗷叫费观| 日韩熟女老妇一区二区性免费视频| 波多野结衣一区麻豆| 久久人人爽av亚洲精品天堂| 在线亚洲精品国产二区图片欧美| 亚洲熟妇熟女久久| 最新的欧美精品一区二区| 高清毛片免费观看视频网站 | 不卡av一区二区三区| 成年版毛片免费区| h视频一区二区三区| 亚洲七黄色美女视频| 女人精品久久久久毛片| 曰老女人黄片| 日韩欧美三级三区| 日本一区二区免费在线视频| 高清欧美精品videossex| 久久精品国产a三级三级三级| 日本黄色日本黄色录像| 操出白浆在线播放| 99久久99久久久精品蜜桃| 91字幕亚洲| 成人亚洲精品一区在线观看| 国产单亲对白刺激| 老司机在亚洲福利影院| 国产欧美日韩一区二区三| 国产黄色免费在线视频| 怎么达到女性高潮| 亚洲 国产 在线| 国产男女超爽视频在线观看| 欧美成人免费av一区二区三区 | 黄色成人免费大全| 深夜精品福利| 日韩大片免费观看网站| 一边摸一边抽搐一进一出视频| av在线播放免费不卡| 亚洲av第一区精品v没综合| 国产男女内射视频| 精品国产亚洲在线| 午夜福利免费观看在线| 三级毛片av免费| 在线观看舔阴道视频| 人人妻,人人澡人人爽秒播| 巨乳人妻的诱惑在线观看| 成人永久免费在线观看视频 | 美女高潮到喷水免费观看| 最新在线观看一区二区三区| 久久精品亚洲av国产电影网| 午夜老司机福利片| 国产人伦9x9x在线观看| 不卡av一区二区三区| 建设人人有责人人尽责人人享有的| 久久久久久久国产电影| 午夜福利欧美成人| 日韩熟女老妇一区二区性免费视频| 丝袜人妻中文字幕| av又黄又爽大尺度在线免费看| 精品国内亚洲2022精品成人 | 精品久久蜜臀av无| 亚洲国产欧美网| 飞空精品影院首页| 宅男免费午夜| 99国产精品免费福利视频| 日韩三级视频一区二区三区| 精品乱码久久久久久99久播| 在线观看免费日韩欧美大片| 脱女人内裤的视频| 91成人精品电影| 亚洲一码二码三码区别大吗| 黄片播放在线免费| 国产野战对白在线观看| 久久久久国内视频| 亚洲国产欧美网| 色在线成人网| 亚洲中文av在线| 两性夫妻黄色片| 亚洲欧美日韩高清在线视频 | 中文字幕色久视频| 99国产精品一区二区三区| 天天影视国产精品| 欧美乱妇无乱码| 精品卡一卡二卡四卡免费| 新久久久久国产一级毛片| 亚洲黑人精品在线| 精品一区二区三区av网在线观看 | 一区二区三区精品91| 正在播放国产对白刺激| 99久久人妻综合| 精品免费久久久久久久清纯 | 中文亚洲av片在线观看爽 | aaaaa片日本免费| 色婷婷久久久亚洲欧美| 久久久久精品人妻al黑| 法律面前人人平等表现在哪些方面| 又紧又爽又黄一区二区| 大香蕉久久网| 欧美中文综合在线视频| 亚洲 国产 在线| 男女免费视频国产| 亚洲 欧美一区二区三区| 亚洲少妇的诱惑av| 汤姆久久久久久久影院中文字幕| av电影中文网址| 久久久欧美国产精品| 午夜精品久久久久久毛片777| 一区二区三区乱码不卡18| 考比视频在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲一区中文字幕在线| 成人亚洲精品一区在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看免费视频日本深夜| 免费女性裸体啪啪无遮挡网站| av一本久久久久| 少妇粗大呻吟视频| 纵有疾风起免费观看全集完整版| 午夜福利视频精品| 国产精品免费一区二区三区在线 | 欧美国产精品一级二级三级| 国产男靠女视频免费网站| 欧美精品人与动牲交sv欧美| 丰满少妇做爰视频| 欧美激情 高清一区二区三区| 一区二区av电影网| 亚洲欧美激情在线| 肉色欧美久久久久久久蜜桃| 久久青草综合色| 国产精品麻豆人妻色哟哟久久| 18在线观看网站| 热re99久久国产66热| 久久精品熟女亚洲av麻豆精品| tocl精华| 在线观看66精品国产| 视频区欧美日本亚洲| 亚洲精品国产一区二区精华液| 国产麻豆69| 亚洲一区中文字幕在线| 国产精品九九99| 精品午夜福利视频在线观看一区 | 亚洲精品自拍成人| 国产成+人综合+亚洲专区| 他把我摸到了高潮在线观看 | 国产av一区二区精品久久| 美女主播在线视频| 老司机在亚洲福利影院| 叶爱在线成人免费视频播放| 黑人欧美特级aaaaaa片| 国产精品香港三级国产av潘金莲| 久久久国产成人免费| 757午夜福利合集在线观看| 国产欧美日韩精品亚洲av| 少妇的丰满在线观看| 婷婷成人精品国产| 免费观看av网站的网址| 色播在线永久视频| 久久精品国产亚洲av香蕉五月 | 久久国产亚洲av麻豆专区| 美女午夜性视频免费| 午夜精品久久久久久毛片777| 久久久久网色| 日韩熟女老妇一区二区性免费视频| 国产成人啪精品午夜网站| 国产欧美日韩一区二区三区在线| 黄片大片在线免费观看| 亚洲午夜精品一区,二区,三区| 国产一区二区激情短视频| 午夜久久久在线观看| 久久久久久人人人人人| 这个男人来自地球电影免费观看| 757午夜福利合集在线观看| 19禁男女啪啪无遮挡网站| 法律面前人人平等表现在哪些方面| 嫩草影视91久久| 最近最新免费中文字幕在线| 在线十欧美十亚洲十日本专区| 国产欧美亚洲国产| 精品第一国产精品| 日韩成人在线观看一区二区三区| 久久国产精品大桥未久av| 一进一出抽搐动态| 国产精品久久久久久精品古装| 午夜两性在线视频| 色婷婷av一区二区三区视频| 最新的欧美精品一区二区| 亚洲成a人片在线一区二区| 久久 成人 亚洲| 中文字幕制服av| 一个人免费在线观看的高清视频| 操出白浆在线播放| 亚洲午夜理论影院| 啦啦啦免费观看视频1| 电影成人av| 久久人妻av系列| 美女视频免费永久观看网站| 日韩三级视频一区二区三区| 国产一区二区在线观看av| 亚洲欧美一区二区三区久久| 日韩成人在线观看一区二区三区| 最近最新免费中文字幕在线| 亚洲精品久久午夜乱码| 久久人人97超碰香蕉20202| 99re6热这里在线精品视频| 日韩一卡2卡3卡4卡2021年| 手机成人av网站| av有码第一页| 啦啦啦中文免费视频观看日本| 亚洲精品久久成人aⅴ小说| 菩萨蛮人人尽说江南好唐韦庄| 午夜两性在线视频| 色精品久久人妻99蜜桃| 久久精品亚洲精品国产色婷小说| 日韩视频一区二区在线观看| 亚洲精品av麻豆狂野| kizo精华| 国产精品欧美亚洲77777| 精品亚洲成a人片在线观看| 国产av又大| 午夜激情av网站| 精品国产乱码久久久久久男人| 窝窝影院91人妻| 欧美午夜高清在线| www.熟女人妻精品国产| 精品人妻在线不人妻| 日韩大片免费观看网站| 免费看a级黄色片| 久久久国产成人免费| 亚洲欧美日韩另类电影网站| 人成视频在线观看免费观看| 久久久久网色| 久久99一区二区三区| 欧美日韩国产mv在线观看视频| 一二三四社区在线视频社区8| 亚洲欧洲日产国产| h视频一区二区三区| 一本—道久久a久久精品蜜桃钙片| 中文字幕制服av| 久久性视频一级片| 日本黄色视频三级网站网址 | 欧美日韩视频精品一区| 精品一区二区三区视频在线观看免费 | xxxhd国产人妻xxx| 欧美黄色片欧美黄色片| 亚洲欧洲精品一区二区精品久久久| 啦啦啦免费观看视频1| 午夜老司机福利片| 嫩草影视91久久| 国产熟女午夜一区二区三区| 亚洲精品在线美女| 母亲3免费完整高清在线观看| 一本久久精品| 俄罗斯特黄特色一大片| 少妇猛男粗大的猛烈进出视频| 亚洲第一青青草原| 夫妻午夜视频| 在线永久观看黄色视频| svipshipincom国产片| 欧美精品高潮呻吟av久久| 午夜老司机福利片| 自线自在国产av| 欧美亚洲 丝袜 人妻 在线| 99国产精品一区二区三区| 90打野战视频偷拍视频| 黄色a级毛片大全视频| kizo精华| 亚洲情色 制服丝袜| 人妻 亚洲 视频| 日韩中文字幕视频在线看片| 啦啦啦免费观看视频1| 18禁裸乳无遮挡动漫免费视频| 黑人巨大精品欧美一区二区蜜桃| 99香蕉大伊视频| 久久久久久免费高清国产稀缺| a在线观看视频网站| 亚洲va日本ⅴa欧美va伊人久久| 叶爱在线成人免费视频播放| 成人永久免费在线观看视频 | 午夜激情av网站| 亚洲一码二码三码区别大吗| 9热在线视频观看99| 亚洲精品中文字幕一二三四区 | 嫁个100分男人电影在线观看| 一级黄色大片毛片| 欧美亚洲 丝袜 人妻 在线| 亚洲avbb在线观看| 亚洲精品在线观看二区| 精品熟女少妇八av免费久了| 成人特级黄色片久久久久久久 | 我要看黄色一级片免费的| 亚洲人成77777在线视频| 脱女人内裤的视频| 亚洲精品美女久久久久99蜜臀| 熟女少妇亚洲综合色aaa.| 人人妻人人澡人人爽人人夜夜| 天堂8中文在线网| 亚洲视频免费观看视频| av天堂久久9| 精品人妻在线不人妻| 熟女少妇亚洲综合色aaa.| 国产精品久久久av美女十八| 一本—道久久a久久精品蜜桃钙片| 亚洲伊人色综图| 一区二区av电影网| 97在线人人人人妻| 操美女的视频在线观看| 亚洲成人免费av在线播放| 亚洲人成电影免费在线| 动漫黄色视频在线观看| 香蕉国产在线看| 一二三四在线观看免费中文在| 欧美在线一区亚洲| 亚洲午夜精品一区,二区,三区| 国产成人精品在线电影| 亚洲午夜理论影院| 国产精品二区激情视频| av网站在线播放免费| 国产又爽黄色视频| av网站在线播放免费| 国产xxxxx性猛交| 狂野欧美激情性xxxx| 免费黄频网站在线观看国产| 久久久久国产一级毛片高清牌| 日本五十路高清| 亚洲人成伊人成综合网2020| 国产野战对白在线观看| 大片电影免费在线观看免费| 国产又色又爽无遮挡免费看| 伦理电影免费视频| 一本一本久久a久久精品综合妖精| 精品一区二区三区av网在线观看 | 黄色丝袜av网址大全| 日韩欧美国产一区二区入口| 国产麻豆69| 精品亚洲乱码少妇综合久久| 在线av久久热| 午夜福利视频在线观看免费| 久久这里只有精品19| 999久久久国产精品视频| 日本一区二区免费在线视频| 韩国精品一区二区三区| 精品一区二区三区四区五区乱码| 亚洲成人免费av在线播放| 99热国产这里只有精品6| 午夜激情av网站| 久久久久久久精品吃奶| 女人爽到高潮嗷嗷叫在线视频| 久久av网站| av又黄又爽大尺度在线免费看| 成年人午夜在线观看视频| 欧美人与性动交α欧美软件| 欧美黑人精品巨大| 一进一出抽搐动态| 国产亚洲av高清不卡| 久热爱精品视频在线9| 在线观看www视频免费| 99精品欧美一区二区三区四区| aaaaa片日本免费| 飞空精品影院首页| 亚洲人成电影观看| www日本在线高清视频| 女人久久www免费人成看片| 久久午夜综合久久蜜桃| 丁香欧美五月| 日韩一卡2卡3卡4卡2021年| 美女视频免费永久观看网站| 日韩人妻精品一区2区三区| 午夜福利影视在线免费观看| www.999成人在线观看| 国产精品久久电影中文字幕 | 一本综合久久免费| 成人亚洲精品一区在线观看| 怎么达到女性高潮| 亚洲成人国产一区在线观看| 精品午夜福利视频在线观看一区 | 午夜精品久久久久久毛片777| 自线自在国产av| 国产精品亚洲av一区麻豆| 精品国产一区二区三区四区第35| 国产精品一区二区在线不卡| 女性生殖器流出的白浆| 日韩免费高清中文字幕av| 交换朋友夫妻互换小说| 国产无遮挡羞羞视频在线观看| 操出白浆在线播放| 搡老岳熟女国产| 亚洲欧洲精品一区二区精品久久久| 亚洲成av片中文字幕在线观看| 日日爽夜夜爽网站| 国产伦人伦偷精品视频| 国产精品98久久久久久宅男小说| 一区在线观看完整版| 人人妻,人人澡人人爽秒播| 欧美一级毛片孕妇| 久久av网站| 男男h啪啪无遮挡| 午夜福利免费观看在线| 亚洲午夜精品一区,二区,三区| 一边摸一边抽搐一进一小说 | 久久久国产精品麻豆| 老司机深夜福利视频在线观看| 国产真人三级小视频在线观看| 国产激情久久老熟女| 欧美老熟妇乱子伦牲交| 国产精品电影一区二区三区 | 最新在线观看一区二区三区| 欧美黑人精品巨大| 日本av手机在线免费观看| 啦啦啦 在线观看视频| 午夜福利影视在线免费观看| 中亚洲国语对白在线视频| 丝袜在线中文字幕| 久久久久久亚洲精品国产蜜桃av| 日韩欧美一区视频在线观看| 亚洲精品久久午夜乱码| 丝袜美腿诱惑在线| 少妇 在线观看| 欧美日韩一级在线毛片| 极品少妇高潮喷水抽搐| 法律面前人人平等表现在哪些方面| 欧美黑人欧美精品刺激| 亚洲国产欧美网| 欧美精品人与动牲交sv欧美| 国产成人欧美| 操美女的视频在线观看| 国产av一区二区精品久久| 亚洲 欧美一区二区三区| 免费观看人在逋| 亚洲欧美精品综合一区二区三区| 99精品久久久久人妻精品| 波多野结衣av一区二区av| 夫妻午夜视频| 亚洲精品粉嫩美女一区| 欧美性长视频在线观看| a级毛片在线看网站| 每晚都被弄得嗷嗷叫到高潮| 国产97色在线日韩免费| 国产欧美日韩一区二区三| 99国产精品99久久久久| 亚洲欧美一区二区三区黑人| 精品一区二区三区视频在线观看免费 | 国产精品久久久av美女十八| 欧美大码av| 国产一区二区三区在线臀色熟女 | 一本久久精品| 国产成人影院久久av| 999久久久国产精品视频| 成人三级做爰电影| 精品人妻熟女毛片av久久网站| 无限看片的www在线观看| 亚洲人成电影观看| 亚洲少妇的诱惑av| 国产高清国产精品国产三级| 老司机影院毛片| 变态另类成人亚洲欧美熟女 | 午夜福利一区二区在线看| xxxhd国产人妻xxx| 黑丝袜美女国产一区| 777久久人妻少妇嫩草av网站| 欧美日韩福利视频一区二区| 巨乳人妻的诱惑在线观看| 色视频在线一区二区三区| 丝袜美腿诱惑在线| 国产视频一区二区在线看| 日本一区二区免费在线视频| 久久亚洲精品不卡| 99精品在免费线老司机午夜| 久久久久久久精品吃奶| 三上悠亚av全集在线观看| 欧美另类亚洲清纯唯美| 国产一区二区激情短视频| 手机成人av网站| 国产精品美女特级片免费视频播放器 | 黄色视频不卡| 五月天丁香电影| 欧美亚洲 丝袜 人妻 在线| 女人高潮潮喷娇喘18禁视频| 99热网站在线观看| 亚洲美女黄片视频| 99久久精品国产亚洲精品| 精品亚洲成国产av| 91麻豆av在线| 在线天堂中文资源库| 美女国产高潮福利片在线看| 中文字幕人妻熟女乱码| 久久国产精品男人的天堂亚洲| 久久青草综合色| 欧美在线一区亚洲| 嫩草影视91久久| 伦理电影免费视频| 久久中文字幕一级| 不卡一级毛片| 2018国产大陆天天弄谢| videosex国产| 精品少妇一区二区三区视频日本电影| av片东京热男人的天堂| 欧美黄色片欧美黄色片| 热99国产精品久久久久久7| 美女主播在线视频| 国产高清激情床上av| 真人做人爱边吃奶动态| 久久久久国内视频| 日韩成人在线观看一区二区三区| 精品少妇久久久久久888优播| 99国产精品一区二区蜜桃av | 国产精品自产拍在线观看55亚洲 | 深夜精品福利| 岛国在线观看网站| 超色免费av| 丝瓜视频免费看黄片| 国产精品一区二区在线不卡| 久久人妻熟女aⅴ| 飞空精品影院首页| 欧美另类亚洲清纯唯美| 人人妻人人澡人人爽人人夜夜| 午夜两性在线视频| 精品欧美一区二区三区在线| 国产亚洲欧美在线一区二区| 国产精品亚洲一级av第二区| 老司机午夜福利在线观看视频 | 国产亚洲午夜精品一区二区久久| 色94色欧美一区二区| 亚洲五月色婷婷综合| 夜夜夜夜夜久久久久| 99国产精品免费福利视频| 9热在线视频观看99| 日本vs欧美在线观看视频| 男女床上黄色一级片免费看| 欧美国产精品va在线观看不卡| tocl精华| 人妻 亚洲 视频| 国产亚洲精品一区二区www | 午夜福利视频精品| 超色免费av| 国产成人系列免费观看| 青青草视频在线视频观看| 一个人免费在线观看的高清视频| av不卡在线播放| 亚洲人成电影观看| 每晚都被弄得嗷嗷叫到高潮| 桃红色精品国产亚洲av| 黄色 视频免费看| 黄色片一级片一级黄色片| 搡老岳熟女国产| 国产高清国产精品国产三级| 在线天堂中文资源库| 国产在视频线精品| 亚洲精华国产精华精| 亚洲欧美激情在线| 国产精品秋霞免费鲁丝片| 国产一区有黄有色的免费视频| 国产aⅴ精品一区二区三区波| videosex国产| 欧美激情久久久久久爽电影 | av一本久久久久| 五月开心婷婷网| 色婷婷久久久亚洲欧美|