• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of observation time on source identification of diffusion in complex networks

    2022-08-01 05:58:26ChaoyiShi史朝義QiZhang張琦andTianguangChu楚天廣
    Chinese Physics B 2022年7期
    關(guān)鍵詞:張琦

    Chaoyi Shi(史朝義), Qi Zhang(張琦), and Tianguang Chu(楚天廣),?

    1College of Engineering,Peking University,Beijing 100871,China

    2School of Information Technology and Management,University of International Business and Economics,Beijing 100105,China

    Keywords: complex network,source identification,statistical inference,partial observation

    1. Introduction

    Recent years, researchers have witnessed tremendous growth in studies concerning the diffusion processes in complex networks, such as modeling epidemic spreading,[1–4]identifying influential spreaders,[5–9]and analyzing diffusion dynamics.[10–12]Among a plethora of research thrusts, the problem of identifying the diffusion sources in complex networks based on observed information has gathered increasing attention due to its broad applications in such problems as identifying the origin of a rumor,[13,14]locating the source of epidemic,[15–18]and so on. Clearly, studies in this direction are crucial in preventing or controlling spread of adverse or detrimental influences in a network system consisting of large amount of interconnected individuals or nodes.

    Basically, source identification problem aims at estimating the location of source node that initiates the diffusion in a network by using certain observation information of the diffusion. So far, several approaches have been proposed to solve the source identification problem with observations that involve the states of observed nodes,[13,15–18]or the (infection) time at which the diffusion arrives at the observed nodes.[14,19–22]Early studies often assume complete observation condition, i.e., the state of each node is observed, and make use of the measures of certain centricity to evaluate the source detection probability of the maximum likelihood(ML)estimator.[13,15]However, it is usually hard in practice to obtain complete observations of a network, since the costs for observing all nodes can be expensive and the states of some nodes may be hidden.[3,14]In view of these, considerable efforts have been devoted to the study of source identification problems under partial observation conditions, i.e., the states or infection time of only a fraction of nodes can be available.For instance,in Refs.[16–18]the authors considered a single snapshot of partial observations at a given time and proposed different propagation algorithms to find the source of diffusion in networks.There have been also works addressing source localization by exploiting observed information of propagation delays from the source, under various assumptions on delay distributions, e.g., Gaussian and uniform distributions.[19–21]Another effective approach to locating diffusion source via incomplete observations in a network makes use of statistical inference based on Monte Carlo simulations.[22–24]The basic idea of this approach is to infer the diffusion source by evaluating the similarity between the simulation data and the observed data. Essentially,the approach applies to arbitrary network structures and therefore has wide applications. Notice that most existing studies assume that the initial time of diffusion is known in estimating source location,some of them are also concerned with the impact of the size of observation set on the results.[13,15–18]

    In this paper,we intend to discuss the effect of the observation time on source identification in a diffusive network. So far in literature,little has been available concerning such an issue. Generally speaking,identification of diffusion source in a network essentially relies on the diffusion model,the observation condition,and the underlying network structure. Here we consider the case that the diffusion process is described by a discrete-time SIR model,with the initial condition of all nodes in susceptible states except one in infected state as the source.In literature, this type of models is often used to describe the spread of epidemics[16,17]and computer virus.[15,19]We consider the problem of estimating both the source location and the initial time of diffusion with snapshot of partial nodes,and formulate it as an ML estimator in terms of the marginal probabilities of a node in different states. A method based on Monte Carlo simulation(MCS)is developed to evaluate the marginal probabilities of a candidate source node,whereby to examine the effect of the observation time as well as the fraction of the observers on solutions of the concerned problem with numerical experiments on typical synthetic and real-world networks.

    2. Problem formulation

    We consider the case that the diffusion outbreak occurs at a single node and the states of only a fraction of nodes can be observed with a snapshot. The task of source identification is to determine the location of source and the initial time of diffusion in a network based on the partial observation. In the following, we will introduce the diffusion model and the ML estimator for the source identification problem.

    2.1. The diffusion model

    To describe the discrete-time SIR diffusion process, we model the underlying contact network as an undirected graphG(V,E)withNnodes,whereVis the set of nodes,E ∈V×Vis the set of edges. At timet, each nodei ∈Vhas three possible states represented by a variableXti: susceptible,Xti=S;infected,Xti=I;or recovered,Xti=R.In each time step,an infected nodeiinfects its susceptible neighborjwith probabilityλij,or recovers with probabilityμi,and no longer get infected.Thus,a susceptible nodeibecomes infected with probability,

    where?iis the set of neighbors of nodei.As mentioned above,we assume that at an unknown initial timet0,all nodes are in stateSexcept only one infected nodei0,the source,that initiates diffusion process in the network.

    2.2. Snapshot observation

    Figure 1 shows an example of the diffusion process and snapshot observation on an arbitrary graphG.

    Fig. 1. Visualization of the diffusion process and observed data on graph G. At unknown time t0, the source node i0 (red) initiates the diffusion. The red edges are the links on which the spread occurs. In this example, a snapshot of the observers (green) is taken at time T,which has three types of nodes with the state S, I, or R for each. The goal is to identify the source location and initial time of diffusion from the snapshot observation.

    2.3. Maximum likelihood estimator

    Therefore,we can formulate the source identification problem as the following ML estimator:

    and clearly,

    We will make use of the marginal probabilities instead of the joint probability in the estimator(1)to infer the source node and initial time of diffusion.

    3. Monte Carlo simulation

    Now we present an MCS approach to estimate the marginal probabilities of a node. The basic idea is that for a candidate source nodei0∈V?OTS,we perform simulations ofmtimes for the diffusion process following the SIR model on time interval [0,tmax], and sample the state of every observeri ∈Oat timet ∈Z∩[0,tmax]. Then, by examining the similarity of the samples and the snapshot to determine the source and initial time of the diffusion.

    To be specific,letYti(i0,l)be the state of nodeiat timetfor thel-th simulation with the candidate source nodei0,it is clear that

    and fort=0,

    forl=1,...,m. In simulations,a node in the network updates its state by the following rule.

    For a susceptible nodeiat timet-1,each infected neighborjwill execute an independent infection attempt with success probabilityλji,triggered by a Bernoulli trial(flipping an independent coin)that generates a random numberr0from the uniform distribution between 0 and 1 as threshold. Namely,the state of nodeiin the next steptis given by

    Similarly, for a nodeiin the stateIat time stept-1, it will execute a recovery attempt with success probabilityμiaccording to a Bernoulli trial numberr0as before, and updates its state at time steptas follows:

    According to the specification of the SIR model described before,all recovered nodes will not be infected anymore and remain the recovered state during the simulation process,i.e.,

    whereδ(·,·)denotes the Kronecker delta function. Similarly,the marginal probabilities of the nodeibeing in statesIandRat timeTare given respectively by

    Algorithm 1 MSC-based source identification algorithm Input: G(V,E);λij;μi;OTS;OTI ;OTR,tmax Output: the source location ?i0;the initial time of diffusion ?t0 for a candidate source node i0 ∈V?OTS do for l=1 to m do Sample the state Yti(i0,l)of each observer i ∈O at time t ∈Z∩[0,tmax]end for for a candidate initial time t0 ∈Z∩[T-tmax,T-1]do Evaluate the marginal probabilities P(XTi =S|i0,t0),P(XTi =I|i0,t0),i ∈O Evaluate the joint probability P(OTS,OTI ,OTR|i0,t0)by Eq.(2)),P(XTi =R|i0,t0 end for end for{?i0,?t0}=argmax )i0∈V?OTS t0∈Z∩[T-tmax,T-1]P(OTS,OTI ,OTR|i0,t0

    We remark that the algorithmic complexity for a single SIR simulation isO(N〈k〉tmax), where〈k〉is the average degree of the graphG, thus runningmsimulations for a candidate source nodei0requiresO(mN〈k〉tmax) time. In experiments we found that it is enough to takem=200 for obtaining a satisfactory identification result, further increasing the simulation times does not improve the accuracy of identification significantly.

    Compared with some related studies, our method can be implemented directly by Monte Carlo simulations,without the need of complicated calculations or additional assumptions.For instance, the methods proposed in Refs. [21,22] require to calculate the multiple integrations of joint probability for partial observations. In Ref. [24], the source likelihood was estimated by using the Gaussian weighting function.

    4. Experiments and discussion

    We give numerical experiments to examine the effect of the observation time as well as the fraction of the observers on source identification for synthetic networks and real-world networks.In all the cases a fractionγ=K/Nof nodes is available in observation at timeTfor the source identification problem, and the sourcei0and the initial timet0are estimated by Algorithm 1. The performance of the method is assessed in terms of the success rate of locating source node for different fractionγand snapshot timeT.

    4.1. Synthetic networks

    We consider three typical synthetic networks,i.e.,Erd¨os–R′enyi(ER)random network,Barab′asi–Albert(BA)scale-free network, and Watts–Strogtz (WS) small world network,[1]all containingN= 1000 nodes with average degree〈k〉 ≈6. For convenience in simulation and without loss of generality,[13,17,24]we consider uniform infection and recovery probabilities by lettingλi j=λandμi=μ. In each experiment, a node is randomly selected to initiate the diffusion at timet=0 and we run SIR process fortmaxsteps,which can be approximated by

    wheredis the diameter of a network,the first term on the left side is the maximum infection time of a node, and the second term is the average recovery time of a node. Then, the state of a fractionγof nodes is observed at timeT,whereγ ∈{0.1,0.2,...,0.9,1.0}and the snapshot timeT ∈{1,...,tmax}.We repeated the experiment 4000 times for each case to get the average success rate of located source.

    Fig.2. Effects of the snapshot time T and the fraction γ of observers on source identification results: (a)–(c)λ =0.4,μ=0.2,(d)–(f)λ =0.8,μ =0.2. The success rate of locating source on ER,BA,and WS networks,with N=1000 nodes and average degree,〈k〉≈6. The diffusion starts at t=0,a fraction γ ∈{0.2,0.4,0.6,0.8}of nodes is observed at time 1 ≤T ≤10.

    We examine the effect of the snapshot timeTand the fractionγof observers on source identification results. Existing studies mainly considered the effect ofγon source localization accuracy, regardless of considering the snapshot timeT.Our results as illustrated in Fig.2 reveal an involved influence of the two factors on source identification problem. We can see that, in general, the source identification problem will be hard to attack for observations with large time delay; and the greater the number of observed nodes,the more accurately our methods can infer the true source. Indeed, a large value ofTallows for a full development of diffusion(hence infection)in a network,this would reduce effectiveness of the snapshot information. The cases for different infection probabilityλand recovery probabilityμare similar and hence omitted.

    In more detail,F(xiàn)ig.2 indicates different trends of the success rate of source localization with respect toTandγ. For very large values ofγ(e.g.,not less than 0.8),the success rate decreases monotonically with the increase ofT; whereas for the major portion of values ofγ(e.g., (0,0.8)), the success rate first rises to a highest level and then drops down with the increase ofT. This implies that one could try to choose an optimal timeTfor observation to get more reliable results. As shown in Fig. 2, it is better in general to take a snapshot at early stage of the diffusion process, and the range for such a timeTalso depends on SIR model parametersλandμ. However,for very smallγ(e.g.,0.2)the accuracy of source localization is low in early stages of diffusion as little information about infected nodes is available. Thus, it may be difficult to infer the source at early stages of diffusion from a very small observation set.

    Figure 3 illustrates the impact of the snapshot timeTand the infection probabilityλon the success rate of locating the source, where the value ofλvaries from 0.1 to 1.0. The results are different, depending on the network structures. For the ER network,the observation timeThas little effect on the source localization when the infection probabilityλis small(e.g., (0.1,0.3)). For the other two types of networks, this is true for relatively large values ofλ(e.g., (0.1,0.4) for BA,(0.1,0.7)for WS).On the other hand,for a large value ofλ,a relatively earlier observation is in favor of source localization in ER and BA networks.For the WS network,the effect of different observation timeTis less evident in the case of larger values ofλ.

    Figure 4 depicts the average snapshot timeTof successfully locating the source for different observation fractionγ. It shows that in generalTdecreases monotonically with the increase ofγfor all networks. This implies that a snapshot of a larger observation set facilitates the inference of the source at early stages of diffusion. This is consistent with the results as shown in Fig.2. In particular,given an observation fractionγ,one could try to choose an appropriate timeTfor observation by Fig.4 to get more reliable results.

    Fig. 3. Effects of the snapshot time T and infection probability λ on success rate of locating source for ER, BA, and WS networks, with N =1000 nodes and average degree 〈k〉≈6. The diffusion starts at t =0 with λ =0.1,...,1.0 and μ =0.1, a fraction γ =0.4 of nodes is observed at time 1 ≤T ≤10.

    Fig.4. Observation time T of successfully locating the source for different fraction γ on ER,BA,and WS networks,all containing N=1000 nodes with average degree〈k〉≈6: (a)λ =0.4,μ =0.2,(b)λ =0.3,μ =0.1. The diffusion process starts at t=0 from a randomly selected node,and a snapshot of γN nodes is taken for γ ∈{0.1,0.2,...,0.9,1}.

    Fig.5. Source localization and initial time estimate results on ER,BA,and WS networks,all containing N=1000 nodes with average degree〈k〉≈6. The diffusion process starts at t =0 from a randomly selected node with λ =0.4 and μ =0.2,and a snapshot of γN nodes is taken at time T for γ ∈{0.1,0.2,...,0.9,1}and 1 ≤T ≤10. (a)Success rates of locating source node for different fraction γ. The lower and upper values of the success rate are calculated by using snapshot observation at different time T. (b)MSEs of the initial time estimates for different snapshot time T. The lower and upper values of each MSE are computed with different γ.

    Figure 5 shows the source localization and initial time estimate results for different fractionγof observers and snapshot timeT. From Fig.5(a)we can see that the success rate of locating source increases rapidly asγincreasing from a small value till to certain value (e.g., 0.6), after that, adding more observer nodes does not improve the identification accuracy significantly. Figure 5(b) gives the mean square error (MSE)of the initial time estimates for different snapshot timeT, it indicates that the snapshots taken at early stage of diffusion result in small MSE values for different graph structures.

    4.2. Real-world networks

    Furthermore,we consider two real-world network examples of email[26]and US West-Coast power grid,[27]as detailed in Table 1, which are often cited to test source identification methods in the literature.[17,18]In our experiments, the diffusion process starts att=0 from a randomly selected node,withλ ∈{0.1,0.2,..., 0.8, 0.9}andμ=0.2 respectively in each running, and a snapshot ofγNnodes is taken at timeTforγ ∈{0.05,0.1,...,0.45,0.5}and 1≤T ≤10 respectively in each time.

    Table 1. The network parameters in the experiments,N and|E|denote the network size and the number of edges,respectively.

    Fig. 6. Effects of the snapshot time T and the fraction γ of observers on source identification results for email and US West-Coast power grid. The diffusion process starts at t =0 with λ ∈{0.1,0.2,...,0.8,0.9} and μ =0.2, and a snapshot of γN nodes is taken at time T for γ ∈{0.05,0.1,...,0.45,0.5}and 1 ≤T ≤10. (a)–(d)Success rate of locating source node for different T and γ.

    Figure 6 depicts the average results over 1000 experiments. It shows an evident impact of the observation time as well as the fraction of the observers on the source identification problem,which is similar to the case of the synthetic networks. Particularly, Figs. 6(a) and 6(c) indicate that the success rate of locating source is small at early stage of the diffusion process,and it will be hard to locate the source for large observation time. Figures 6(b)and 6(d)show that,in general,the success rate of locating source increases with the number of observer for different snapshot timeT. For a small value ofT(e.g., 1), the success rate of locating source increases rapidly as the fractionγof observers increasing,whereas for a big value ofT(e.g.,7),adding more observer nodes does not improve the source localization accuracy significantly.

    5. Summary

    We have discussed the effect of the observation time as well as the size of the observation set on source identification of diffusion in a network with discrete-time SIR spreading process, under incomplete observation conditions. The method makes use of the Monte Carlo simulation in evaluation of the marginal probabilities of a node that are involved in ML estimator of the source. Numerical experiments in synthetic networks and real-world networks reveal interesting yet involved nonlinear effects of the observation time and the fraction of observers on source identification. In general,a large value of snapshot time will not be in favor of the source identification for most values of the fraction of observers,since it allows for a full development of diffusion(hence infection)in a network,reducing effectiveness of the snapshot information. In particular,for very large values of the fraction of observers,the success rate of source localization decreases monotonically with the increase of the observation time. On the other hand,however, for a very small observation set, it is usually difficult to infer the source at early stages of diffusion because little information about infected nodes is available. More complicated and interesting cases occur for neither too small nor too large values of the fraction of observers, where the success rate of source localization first rises to a highest level and then drops down with the increase of the snapshot time,indicating possible choice of an optimal observation time to get more reliable results.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 61673027 and 62106047), the Beijing Social Science Foundation (Grant No. 21GLC042),and the Humanity and Social Science Youth foundation of Ministry of Education,China(Grant No.20YJCZH228).

    猜你喜歡
    張琦
    Self-screening of the polarized electric field in wurtzite gallium nitride along[0001]direction
    Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
    全民張琦
    商界評論(2022年12期)2022-03-06 13:02:12
    自相似視角下相對貧困成因分析
    基于TXL的源代碼插樁技術(shù)研究
    張琦:家風敗壞的海南第四“虎”
    “海南虎”張琦:一位闖海者的隕落
    雜文選刊(2020年4期)2020-04-19 10:04:31
    ??谑形瘯洀堢糯蠛蠛D稀笆谆ⅰ?/a>
    曹夢媛、崔琪、張琦、趙承鋮作品
    西部縣域經(jīng)濟發(fā)展模式亟待創(chuàng)新
    国精品久久久久久国模美| av视频免费观看在线观看| 美国免费a级毛片| 国产成人啪精品午夜网站| 最黄视频免费看| 免费观看人在逋| 国产一区二区三区综合在线观看| 久久婷婷青草| 纯流量卡能插随身wifi吗| 午夜福利影视在线免费观看| 成人18禁高潮啪啪吃奶动态图| 成人国产麻豆网| 色精品久久人妻99蜜桃| 亚洲成人av在线免费| av视频免费观看在线观看| 久久久久久久国产电影| 欧美乱码精品一区二区三区| 青春草亚洲视频在线观看| 看非洲黑人一级黄片| 国产女主播在线喷水免费视频网站| 免费黄频网站在线观看国产| 亚洲精品成人av观看孕妇| 中文字幕色久视频| 午夜日本视频在线| 一个人免费看片子| 国产精品国产三级国产专区5o| 久久国产亚洲av麻豆专区| 男女高潮啪啪啪动态图| 日韩一卡2卡3卡4卡2021年| 成人毛片60女人毛片免费| 人人妻人人爽人人添夜夜欢视频| 精品国产超薄肉色丝袜足j| 在线 av 中文字幕| 亚洲欧美一区二区三区久久| 少妇猛男粗大的猛烈进出视频| 男女高潮啪啪啪动态图| 精品一区二区三区四区五区乱码 | 9191精品国产免费久久| 国产精品女同一区二区软件| 成人国产麻豆网| 日韩av不卡免费在线播放| www.av在线官网国产| 国产又色又爽无遮挡免| 亚洲美女搞黄在线观看| 97人妻天天添夜夜摸| 亚洲成人手机| 美女脱内裤让男人舔精品视频| 精品一品国产午夜福利视频| 国产精品蜜桃在线观看| 亚洲 欧美一区二区三区| 在线天堂中文资源库| 国产欧美亚洲国产| 亚洲国产精品999| 精品一品国产午夜福利视频| 视频在线观看一区二区三区| 精品亚洲成国产av| 久久久久国产精品人妻一区二区| 国产精品嫩草影院av在线观看| 久久精品久久精品一区二区三区| 777米奇影视久久| 最近最新中文字幕大全免费视频 | 高清欧美精品videossex| 天美传媒精品一区二区| 亚洲av电影在线观看一区二区三区| 在线观看三级黄色| 国产精品秋霞免费鲁丝片| 两性夫妻黄色片| 人成视频在线观看免费观看| 国产精品av久久久久免费| 高清视频免费观看一区二区| 欧美在线黄色| av线在线观看网站| 国产精品久久久久久精品古装| 啦啦啦啦在线视频资源| 国产精品99久久99久久久不卡 | 国产又色又爽无遮挡免| www.自偷自拍.com| 亚洲精品国产区一区二| 少妇 在线观看| 欧美乱码精品一区二区三区| 亚洲精品av麻豆狂野| 亚洲精品久久午夜乱码| 欧美日韩视频高清一区二区三区二| 我要看黄色一级片免费的| 亚洲欧美色中文字幕在线| 超色免费av| 久久精品国产综合久久久| 国产成人精品久久二区二区91 | 老司机影院成人| 国产精品人妻久久久影院| 国产成人欧美在线观看 | 亚洲成国产人片在线观看| av免费观看日本| 久久性视频一级片| 一区二区三区精品91| 又大又爽又粗| 欧美日韩综合久久久久久| 五月开心婷婷网| 欧美av亚洲av综合av国产av | 免费高清在线观看日韩| 亚洲男人天堂网一区| 精品视频人人做人人爽| 乱人伦中国视频| 久久久精品区二区三区| 97精品久久久久久久久久精品| 日韩欧美精品免费久久| 国精品久久久久久国模美| 国产亚洲最大av| 一级片'在线观看视频| 两个人看的免费小视频| 欧美另类一区| 男女国产视频网站| √禁漫天堂资源中文www| 桃花免费在线播放| 老司机在亚洲福利影院| 久久久精品94久久精品| 国产精品亚洲av一区麻豆 | 国产片特级美女逼逼视频| 免费在线观看视频国产中文字幕亚洲 | 黑人巨大精品欧美一区二区蜜桃| 久久久久久免费高清国产稀缺| 秋霞在线观看毛片| 男人爽女人下面视频在线观看| 亚洲自偷自拍图片 自拍| 天美传媒精品一区二区| 黄片播放在线免费| 啦啦啦中文免费视频观看日本| 精品一区二区三区av网在线观看 | 亚洲综合精品二区| 亚洲成人手机| 91精品伊人久久大香线蕉| 黄色怎么调成土黄色| 精品一区二区三区av网在线观看 | 水蜜桃什么品种好| 久久久久网色| 日韩 亚洲 欧美在线| 精品少妇一区二区三区视频日本电影 | 波野结衣二区三区在线| 亚洲在久久综合| 老汉色av国产亚洲站长工具| 亚洲国产精品999| 深夜精品福利| 午夜福利,免费看| 午夜福利,免费看| 国产精品.久久久| 亚洲av日韩精品久久久久久密 | 久久影院123| 777米奇影视久久| 日本vs欧美在线观看视频| 一级毛片 在线播放| 久久久久国产一级毛片高清牌| 亚洲欧洲精品一区二区精品久久久 | 男女之事视频高清在线观看 | 成年人午夜在线观看视频| 少妇 在线观看| 国产成人欧美| 国产亚洲一区二区精品| 女人被躁到高潮嗷嗷叫费观| 老熟女久久久| 国产成人系列免费观看| 女的被弄到高潮叫床怎么办| 亚洲精品一区蜜桃| 97在线人人人人妻| 久久国产精品男人的天堂亚洲| 亚洲国产看品久久| 日本欧美视频一区| 亚洲人成网站在线观看播放| 国产一卡二卡三卡精品 | 精品国产一区二区三区四区第35| a 毛片基地| 丰满少妇做爰视频| 男女边吃奶边做爰视频| 黄片播放在线免费| 人人澡人人妻人| 一本色道久久久久久精品综合| 成人国产麻豆网| 各种免费的搞黄视频| 国产亚洲午夜精品一区二区久久| √禁漫天堂资源中文www| svipshipincom国产片| 国产亚洲午夜精品一区二区久久| 久久久久人妻精品一区果冻| 久久人人爽av亚洲精品天堂| 我的亚洲天堂| 午夜91福利影院| 高清欧美精品videossex| 老司机影院成人| 亚洲欧美日韩另类电影网站| 黄网站色视频无遮挡免费观看| 国产一级毛片在线| 欧美在线黄色| 在线精品无人区一区二区三| 99国产综合亚洲精品| 亚洲精品aⅴ在线观看| 亚洲av中文av极速乱| 精品久久蜜臀av无| 成人手机av| 一区二区av电影网| 午夜老司机福利片| 久久久久国产一级毛片高清牌| 男女国产视频网站| 午夜久久久在线观看| 成人漫画全彩无遮挡| 中文字幕精品免费在线观看视频| 男人爽女人下面视频在线观看| 亚洲三区欧美一区| 中文字幕制服av| 亚洲成人免费av在线播放| 两个人免费观看高清视频| 99国产精品免费福利视频| 老汉色av国产亚洲站长工具| 国产高清不卡午夜福利| 久久精品人人爽人人爽视色| 美女大奶头黄色视频| 久久性视频一级片| 久久久久精品久久久久真实原创| 国产熟女午夜一区二区三区| 一级毛片 在线播放| 一本色道久久久久久精品综合| www.熟女人妻精品国产| 久久 成人 亚洲| 精品久久久精品久久久| 久热爱精品视频在线9| 亚洲欧美激情在线| 亚洲av成人不卡在线观看播放网 | 中国三级夫妇交换| 国产精品女同一区二区软件| 亚洲国产精品成人久久小说| 国产在线一区二区三区精| 亚洲成av片中文字幕在线观看| 欧美精品一区二区大全| 人人妻人人澡人人看| 啦啦啦在线免费观看视频4| 97精品久久久久久久久久精品| 亚洲第一av免费看| www.av在线官网国产| 成人毛片60女人毛片免费| 亚洲精品乱久久久久久| 国产99久久九九免费精品| 国产黄色视频一区二区在线观看| 涩涩av久久男人的天堂| 啦啦啦 在线观看视频| 两性夫妻黄色片| 啦啦啦啦在线视频资源| 久久久久久免费高清国产稀缺| 十八禁高潮呻吟视频| 黄片小视频在线播放| 欧美精品人与动牲交sv欧美| e午夜精品久久久久久久| 国产人伦9x9x在线观看| 综合色丁香网| 亚洲精品av麻豆狂野| 亚洲精品日本国产第一区| 在线观看www视频免费| av线在线观看网站| 午夜福利乱码中文字幕| videosex国产| 日韩人妻精品一区2区三区| 国产极品粉嫩免费观看在线| 日本猛色少妇xxxxx猛交久久| 激情视频va一区二区三区| 久热爱精品视频在线9| 美女视频免费永久观看网站| 国产日韩欧美在线精品| 免费在线观看完整版高清| 免费观看人在逋| 街头女战士在线观看网站| 日本av免费视频播放| 狂野欧美激情性xxxx| 中国国产av一级| 国产老妇伦熟女老妇高清| 婷婷成人精品国产| 老熟女久久久| 黄片小视频在线播放| 亚洲国产精品一区二区三区在线| 亚洲av国产av综合av卡| 成人国产av品久久久| 老司机靠b影院| 女的被弄到高潮叫床怎么办| avwww免费| 国产精品av久久久久免费| 日本av免费视频播放| 国产97色在线日韩免费| 两个人看的免费小视频| 午夜日韩欧美国产| 啦啦啦啦在线视频资源| 欧美97在线视频| 黑丝袜美女国产一区| 婷婷色麻豆天堂久久| 久久久国产一区二区| 搡老乐熟女国产| 夜夜骑夜夜射夜夜干| 18禁动态无遮挡网站| 国产日韩欧美在线精品| 男女床上黄色一级片免费看| 亚洲国产精品一区二区三区在线| 观看av在线不卡| 国产人伦9x9x在线观看| 亚洲成人手机| 18禁动态无遮挡网站| 亚洲国产精品999| 狠狠婷婷综合久久久久久88av| 在线观看免费午夜福利视频| 一级毛片电影观看| 好男人视频免费观看在线| 亚洲欧美日韩另类电影网站| 美女午夜性视频免费| 波野结衣二区三区在线| 91国产中文字幕| 七月丁香在线播放| 国产99久久九九免费精品| 国产日韩欧美视频二区| 嫩草影视91久久| 国产精品二区激情视频| 一级,二级,三级黄色视频| 亚洲一卡2卡3卡4卡5卡精品中文| 女人精品久久久久毛片| 国产av国产精品国产| 国产亚洲av高清不卡| 精品亚洲成a人片在线观看| 深夜精品福利| 最近最新中文字幕大全免费视频 | 精品人妻在线不人妻| 看免费成人av毛片| 黄片无遮挡物在线观看| 国产精品 国内视频| 一本—道久久a久久精品蜜桃钙片| 久久久久久久精品精品| 最近手机中文字幕大全| 丁香六月天网| 成人亚洲精品一区在线观看| 99香蕉大伊视频| 黑人欧美特级aaaaaa片| 我要看黄色一级片免费的| videos熟女内射| 黄色一级大片看看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧洲日产国产| 无限看片的www在线观看| 亚洲伊人色综图| 久久鲁丝午夜福利片| 两性夫妻黄色片| 搡老乐熟女国产| 下体分泌物呈黄色| 天天影视国产精品| 成人亚洲精品一区在线观看| 欧美人与性动交α欧美精品济南到| 自拍欧美九色日韩亚洲蝌蚪91| 又黄又粗又硬又大视频| 亚洲国产成人一精品久久久| 亚洲av在线观看美女高潮| 亚洲图色成人| av在线老鸭窝| 搡老岳熟女国产| 80岁老熟妇乱子伦牲交| 国产一卡二卡三卡精品 | 一级a爱视频在线免费观看| 日韩成人av中文字幕在线观看| 日本av手机在线免费观看| 国精品久久久久久国模美| av在线播放精品| 亚洲四区av| 久久久久久久久久久久大奶| 国产淫语在线视频| 国产成人一区二区在线| 丝袜人妻中文字幕| 免费av中文字幕在线| 亚洲三区欧美一区| 老汉色av国产亚洲站长工具| 99香蕉大伊视频| 午夜日韩欧美国产| 无遮挡黄片免费观看| 美女大奶头黄色视频| 日本av手机在线免费观看| 午夜精品国产一区二区电影| 你懂的网址亚洲精品在线观看| 国产一区亚洲一区在线观看| 欧美精品亚洲一区二区| 国产成人一区二区在线| 性少妇av在线| 国产片特级美女逼逼视频| 人妻 亚洲 视频| 看非洲黑人一级黄片| 丰满少妇做爰视频| 秋霞伦理黄片| 欧美亚洲 丝袜 人妻 在线| 少妇猛男粗大的猛烈进出视频| 亚洲少妇的诱惑av| 亚洲国产欧美一区二区综合| 免费av中文字幕在线| 18禁动态无遮挡网站| 欧美黄色片欧美黄色片| 欧美日韩综合久久久久久| 国产精品 欧美亚洲| 精品少妇一区二区三区视频日本电影 | 午夜日韩欧美国产| tube8黄色片| 国产极品天堂在线| 国精品久久久久久国模美| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美一区二区三区黑人| 久久热在线av| av在线app专区| 亚洲精品视频女| 精品一区二区三区av网在线观看 | 国产日韩一区二区三区精品不卡| 天堂俺去俺来也www色官网| 国产欧美亚洲国产| 99热国产这里只有精品6| a级毛片黄视频| 成年人免费黄色播放视频| 可以免费在线观看a视频的电影网站 | videos熟女内射| 欧美日韩成人在线一区二区| 亚洲成人手机| 男女无遮挡免费网站观看| 大香蕉久久成人网| 丝袜美足系列| 赤兔流量卡办理| 两性夫妻黄色片| 中文字幕av电影在线播放| 国产免费又黄又爽又色| 亚洲精品久久久久久婷婷小说| 美女福利国产在线| h视频一区二区三区| 成人国产麻豆网| 777久久人妻少妇嫩草av网站| 91精品三级在线观看| 性少妇av在线| 一二三四在线观看免费中文在| 女性生殖器流出的白浆| 日本猛色少妇xxxxx猛交久久| 亚洲精品中文字幕在线视频| 成年美女黄网站色视频大全免费| 青青草视频在线视频观看| 国产成人系列免费观看| 亚洲美女黄色视频免费看| 最近手机中文字幕大全| 国产精品二区激情视频| 99热网站在线观看| 九色亚洲精品在线播放| 国产成人精品福利久久| xxx大片免费视频| 悠悠久久av| 精品福利永久在线观看| 啦啦啦视频在线资源免费观看| 日韩电影二区| 国产极品粉嫩免费观看在线| 国产精品99久久99久久久不卡 | 久久综合国产亚洲精品| 亚洲av在线观看美女高潮| 亚洲激情五月婷婷啪啪| 亚洲国产最新在线播放| 深夜精品福利| 免费久久久久久久精品成人欧美视频| 最近中文字幕高清免费大全6| 亚洲欧洲精品一区二区精品久久久 | 少妇人妻 视频| 久久韩国三级中文字幕| 欧美日韩亚洲高清精品| 亚洲精品一二三| 日本av免费视频播放| 综合色丁香网| 秋霞伦理黄片| 性少妇av在线| 一级黄片播放器| 肉色欧美久久久久久久蜜桃| 精品一区二区三区av网在线观看 | 热re99久久精品国产66热6| 久久久久久久久久久久大奶| 婷婷色综合www| 国产一区二区激情短视频 | 国产在线视频一区二区| 免费久久久久久久精品成人欧美视频| 一区在线观看完整版| av不卡在线播放| 国产欧美亚洲国产| 两个人看的免费小视频| 巨乳人妻的诱惑在线观看| 菩萨蛮人人尽说江南好唐韦庄| 丰满饥渴人妻一区二区三| 国产精品久久久久久人妻精品电影 | 国产激情久久老熟女| 精品人妻一区二区三区麻豆| 中文字幕人妻熟女乱码| 亚洲欧美精品综合一区二区三区| 午夜福利在线免费观看网站| 成人漫画全彩无遮挡| 亚洲国产看品久久| 精品一区二区免费观看| 超碰97精品在线观看| 亚洲精品视频女| a 毛片基地| 肉色欧美久久久久久久蜜桃| 高清不卡的av网站| 免费看不卡的av| 又大又黄又爽视频免费| 亚洲国产欧美网| 欧美成人精品欧美一级黄| 九草在线视频观看| 精品一区二区免费观看| 亚洲欧美一区二区三区久久| 极品少妇高潮喷水抽搐| 国产在线免费精品| 少妇人妻久久综合中文| 中文字幕精品免费在线观看视频| videos熟女内射| 亚洲精品视频女| 久久久久精品性色| 最近中文字幕2019免费版| av国产精品久久久久影院| 久久天堂一区二区三区四区| 自拍欧美九色日韩亚洲蝌蚪91| 韩国精品一区二区三区| 日本色播在线视频| 亚洲三区欧美一区| 亚洲激情五月婷婷啪啪| 2021少妇久久久久久久久久久| 国产精品av久久久久免费| 国产成人免费无遮挡视频| 日韩,欧美,国产一区二区三区| 成人影院久久| 两个人免费观看高清视频| 美女扒开内裤让男人捅视频| 国产成人系列免费观看| 操美女的视频在线观看| 日韩制服丝袜自拍偷拍| 国产黄频视频在线观看| 久热爱精品视频在线9| 亚洲国产精品一区二区三区在线| 亚洲婷婷狠狠爱综合网| 亚洲中文av在线| 人人妻人人添人人爽欧美一区卜| 日韩一区二区视频免费看| 高清av免费在线| 国产日韩欧美亚洲二区| 又大又黄又爽视频免费| 老汉色∧v一级毛片| 十八禁人妻一区二区| 黄色视频在线播放观看不卡| 久久人妻熟女aⅴ| 久久精品亚洲熟妇少妇任你| videosex国产| 一二三四中文在线观看免费高清| 精品视频人人做人人爽| 18禁裸乳无遮挡动漫免费视频| 丝瓜视频免费看黄片| 国产 一区精品| 秋霞在线观看毛片| 亚洲一区二区三区欧美精品| 曰老女人黄片| 精品国产乱码久久久久久男人| 啦啦啦中文免费视频观看日本| 久久天堂一区二区三区四区| 国产精品欧美亚洲77777| 欧美av亚洲av综合av国产av | 精品国产超薄肉色丝袜足j| 亚洲人成电影观看| 韩国高清视频一区二区三区| 十八禁人妻一区二区| 一边摸一边做爽爽视频免费| 亚洲激情五月婷婷啪啪| 97精品久久久久久久久久精品| 一级片免费观看大全| 国产精品嫩草影院av在线观看| 色网站视频免费| 日韩欧美精品免费久久| 大陆偷拍与自拍| 午夜福利影视在线免费观看| 最近中文字幕2019免费版| netflix在线观看网站| 五月开心婷婷网| 精品少妇内射三级| 欧美最新免费一区二区三区| 中文字幕av电影在线播放| 欧美日本中文国产一区发布| 天美传媒精品一区二区| 捣出白浆h1v1| 天美传媒精品一区二区| 午夜福利,免费看| 日韩成人av中文字幕在线观看| 中文字幕人妻丝袜一区二区 | 久久久精品免费免费高清| 国产激情久久老熟女| 国产又爽黄色视频| 亚洲综合色网址| 国产xxxxx性猛交| 美女扒开内裤让男人捅视频| 国产精品香港三级国产av潘金莲 | 亚洲av男天堂| 国产精品麻豆人妻色哟哟久久| 国产欧美日韩综合在线一区二区| 亚洲美女搞黄在线观看| 国产一区二区在线观看av| 嫩草影视91久久| 七月丁香在线播放| 午夜影院在线不卡| 亚洲国产中文字幕在线视频| 热99久久久久精品小说推荐| 久久热在线av| 亚洲国产日韩一区二区| 91精品国产国语对白视频| 欧美最新免费一区二区三区| 国产在视频线精品| 亚洲精品aⅴ在线观看| 九色亚洲精品在线播放| 这个男人来自地球电影免费观看 | 国产成人精品久久二区二区91 | 日韩欧美一区视频在线观看| 国产成人欧美在线观看 | 国产精品人妻久久久影院| 日韩 欧美 亚洲 中文字幕| 激情五月婷婷亚洲| 中文字幕人妻丝袜一区二区 | 国产成人一区二区在线|