• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of observation time on source identification of diffusion in complex networks

    2022-08-01 05:58:26ChaoyiShi史朝義QiZhang張琦andTianguangChu楚天廣
    Chinese Physics B 2022年7期
    關(guān)鍵詞:張琦

    Chaoyi Shi(史朝義), Qi Zhang(張琦), and Tianguang Chu(楚天廣),?

    1College of Engineering,Peking University,Beijing 100871,China

    2School of Information Technology and Management,University of International Business and Economics,Beijing 100105,China

    Keywords: complex network,source identification,statistical inference,partial observation

    1. Introduction

    Recent years, researchers have witnessed tremendous growth in studies concerning the diffusion processes in complex networks, such as modeling epidemic spreading,[1–4]identifying influential spreaders,[5–9]and analyzing diffusion dynamics.[10–12]Among a plethora of research thrusts, the problem of identifying the diffusion sources in complex networks based on observed information has gathered increasing attention due to its broad applications in such problems as identifying the origin of a rumor,[13,14]locating the source of epidemic,[15–18]and so on. Clearly, studies in this direction are crucial in preventing or controlling spread of adverse or detrimental influences in a network system consisting of large amount of interconnected individuals or nodes.

    Basically, source identification problem aims at estimating the location of source node that initiates the diffusion in a network by using certain observation information of the diffusion. So far, several approaches have been proposed to solve the source identification problem with observations that involve the states of observed nodes,[13,15–18]or the (infection) time at which the diffusion arrives at the observed nodes.[14,19–22]Early studies often assume complete observation condition, i.e., the state of each node is observed, and make use of the measures of certain centricity to evaluate the source detection probability of the maximum likelihood(ML)estimator.[13,15]However, it is usually hard in practice to obtain complete observations of a network, since the costs for observing all nodes can be expensive and the states of some nodes may be hidden.[3,14]In view of these, considerable efforts have been devoted to the study of source identification problems under partial observation conditions, i.e., the states or infection time of only a fraction of nodes can be available.For instance,in Refs.[16–18]the authors considered a single snapshot of partial observations at a given time and proposed different propagation algorithms to find the source of diffusion in networks.There have been also works addressing source localization by exploiting observed information of propagation delays from the source, under various assumptions on delay distributions, e.g., Gaussian and uniform distributions.[19–21]Another effective approach to locating diffusion source via incomplete observations in a network makes use of statistical inference based on Monte Carlo simulations.[22–24]The basic idea of this approach is to infer the diffusion source by evaluating the similarity between the simulation data and the observed data. Essentially,the approach applies to arbitrary network structures and therefore has wide applications. Notice that most existing studies assume that the initial time of diffusion is known in estimating source location,some of them are also concerned with the impact of the size of observation set on the results.[13,15–18]

    In this paper,we intend to discuss the effect of the observation time on source identification in a diffusive network. So far in literature,little has been available concerning such an issue. Generally speaking,identification of diffusion source in a network essentially relies on the diffusion model,the observation condition,and the underlying network structure. Here we consider the case that the diffusion process is described by a discrete-time SIR model,with the initial condition of all nodes in susceptible states except one in infected state as the source.In literature, this type of models is often used to describe the spread of epidemics[16,17]and computer virus.[15,19]We consider the problem of estimating both the source location and the initial time of diffusion with snapshot of partial nodes,and formulate it as an ML estimator in terms of the marginal probabilities of a node in different states. A method based on Monte Carlo simulation(MCS)is developed to evaluate the marginal probabilities of a candidate source node,whereby to examine the effect of the observation time as well as the fraction of the observers on solutions of the concerned problem with numerical experiments on typical synthetic and real-world networks.

    2. Problem formulation

    We consider the case that the diffusion outbreak occurs at a single node and the states of only a fraction of nodes can be observed with a snapshot. The task of source identification is to determine the location of source and the initial time of diffusion in a network based on the partial observation. In the following, we will introduce the diffusion model and the ML estimator for the source identification problem.

    2.1. The diffusion model

    To describe the discrete-time SIR diffusion process, we model the underlying contact network as an undirected graphG(V,E)withNnodes,whereVis the set of nodes,E ∈V×Vis the set of edges. At timet, each nodei ∈Vhas three possible states represented by a variableXti: susceptible,Xti=S;infected,Xti=I;or recovered,Xti=R.In each time step,an infected nodeiinfects its susceptible neighborjwith probabilityλij,or recovers with probabilityμi,and no longer get infected.Thus,a susceptible nodeibecomes infected with probability,

    where?iis the set of neighbors of nodei.As mentioned above,we assume that at an unknown initial timet0,all nodes are in stateSexcept only one infected nodei0,the source,that initiates diffusion process in the network.

    2.2. Snapshot observation

    Figure 1 shows an example of the diffusion process and snapshot observation on an arbitrary graphG.

    Fig. 1. Visualization of the diffusion process and observed data on graph G. At unknown time t0, the source node i0 (red) initiates the diffusion. The red edges are the links on which the spread occurs. In this example, a snapshot of the observers (green) is taken at time T,which has three types of nodes with the state S, I, or R for each. The goal is to identify the source location and initial time of diffusion from the snapshot observation.

    2.3. Maximum likelihood estimator

    Therefore,we can formulate the source identification problem as the following ML estimator:

    and clearly,

    We will make use of the marginal probabilities instead of the joint probability in the estimator(1)to infer the source node and initial time of diffusion.

    3. Monte Carlo simulation

    Now we present an MCS approach to estimate the marginal probabilities of a node. The basic idea is that for a candidate source nodei0∈V?OTS,we perform simulations ofmtimes for the diffusion process following the SIR model on time interval [0,tmax], and sample the state of every observeri ∈Oat timet ∈Z∩[0,tmax]. Then, by examining the similarity of the samples and the snapshot to determine the source and initial time of the diffusion.

    To be specific,letYti(i0,l)be the state of nodeiat timetfor thel-th simulation with the candidate source nodei0,it is clear that

    and fort=0,

    forl=1,...,m. In simulations,a node in the network updates its state by the following rule.

    For a susceptible nodeiat timet-1,each infected neighborjwill execute an independent infection attempt with success probabilityλji,triggered by a Bernoulli trial(flipping an independent coin)that generates a random numberr0from the uniform distribution between 0 and 1 as threshold. Namely,the state of nodeiin the next steptis given by

    Similarly, for a nodeiin the stateIat time stept-1, it will execute a recovery attempt with success probabilityμiaccording to a Bernoulli trial numberr0as before, and updates its state at time steptas follows:

    According to the specification of the SIR model described before,all recovered nodes will not be infected anymore and remain the recovered state during the simulation process,i.e.,

    whereδ(·,·)denotes the Kronecker delta function. Similarly,the marginal probabilities of the nodeibeing in statesIandRat timeTare given respectively by

    Algorithm 1 MSC-based source identification algorithm Input: G(V,E);λij;μi;OTS;OTI ;OTR,tmax Output: the source location ?i0;the initial time of diffusion ?t0 for a candidate source node i0 ∈V?OTS do for l=1 to m do Sample the state Yti(i0,l)of each observer i ∈O at time t ∈Z∩[0,tmax]end for for a candidate initial time t0 ∈Z∩[T-tmax,T-1]do Evaluate the marginal probabilities P(XTi =S|i0,t0),P(XTi =I|i0,t0),i ∈O Evaluate the joint probability P(OTS,OTI ,OTR|i0,t0)by Eq.(2)),P(XTi =R|i0,t0 end for end for{?i0,?t0}=argmax )i0∈V?OTS t0∈Z∩[T-tmax,T-1]P(OTS,OTI ,OTR|i0,t0

    We remark that the algorithmic complexity for a single SIR simulation isO(N〈k〉tmax), where〈k〉is the average degree of the graphG, thus runningmsimulations for a candidate source nodei0requiresO(mN〈k〉tmax) time. In experiments we found that it is enough to takem=200 for obtaining a satisfactory identification result, further increasing the simulation times does not improve the accuracy of identification significantly.

    Compared with some related studies, our method can be implemented directly by Monte Carlo simulations,without the need of complicated calculations or additional assumptions.For instance, the methods proposed in Refs. [21,22] require to calculate the multiple integrations of joint probability for partial observations. In Ref. [24], the source likelihood was estimated by using the Gaussian weighting function.

    4. Experiments and discussion

    We give numerical experiments to examine the effect of the observation time as well as the fraction of the observers on source identification for synthetic networks and real-world networks.In all the cases a fractionγ=K/Nof nodes is available in observation at timeTfor the source identification problem, and the sourcei0and the initial timet0are estimated by Algorithm 1. The performance of the method is assessed in terms of the success rate of locating source node for different fractionγand snapshot timeT.

    4.1. Synthetic networks

    We consider three typical synthetic networks,i.e.,Erd¨os–R′enyi(ER)random network,Barab′asi–Albert(BA)scale-free network, and Watts–Strogtz (WS) small world network,[1]all containingN= 1000 nodes with average degree〈k〉 ≈6. For convenience in simulation and without loss of generality,[13,17,24]we consider uniform infection and recovery probabilities by lettingλi j=λandμi=μ. In each experiment, a node is randomly selected to initiate the diffusion at timet=0 and we run SIR process fortmaxsteps,which can be approximated by

    wheredis the diameter of a network,the first term on the left side is the maximum infection time of a node, and the second term is the average recovery time of a node. Then, the state of a fractionγof nodes is observed at timeT,whereγ ∈{0.1,0.2,...,0.9,1.0}and the snapshot timeT ∈{1,...,tmax}.We repeated the experiment 4000 times for each case to get the average success rate of located source.

    Fig.2. Effects of the snapshot time T and the fraction γ of observers on source identification results: (a)–(c)λ =0.4,μ=0.2,(d)–(f)λ =0.8,μ =0.2. The success rate of locating source on ER,BA,and WS networks,with N=1000 nodes and average degree,〈k〉≈6. The diffusion starts at t=0,a fraction γ ∈{0.2,0.4,0.6,0.8}of nodes is observed at time 1 ≤T ≤10.

    We examine the effect of the snapshot timeTand the fractionγof observers on source identification results. Existing studies mainly considered the effect ofγon source localization accuracy, regardless of considering the snapshot timeT.Our results as illustrated in Fig.2 reveal an involved influence of the two factors on source identification problem. We can see that, in general, the source identification problem will be hard to attack for observations with large time delay; and the greater the number of observed nodes,the more accurately our methods can infer the true source. Indeed, a large value ofTallows for a full development of diffusion(hence infection)in a network,this would reduce effectiveness of the snapshot information. The cases for different infection probabilityλand recovery probabilityμare similar and hence omitted.

    In more detail,F(xiàn)ig.2 indicates different trends of the success rate of source localization with respect toTandγ. For very large values ofγ(e.g.,not less than 0.8),the success rate decreases monotonically with the increase ofT; whereas for the major portion of values ofγ(e.g., (0,0.8)), the success rate first rises to a highest level and then drops down with the increase ofT. This implies that one could try to choose an optimal timeTfor observation to get more reliable results. As shown in Fig. 2, it is better in general to take a snapshot at early stage of the diffusion process, and the range for such a timeTalso depends on SIR model parametersλandμ. However,for very smallγ(e.g.,0.2)the accuracy of source localization is low in early stages of diffusion as little information about infected nodes is available. Thus, it may be difficult to infer the source at early stages of diffusion from a very small observation set.

    Figure 3 illustrates the impact of the snapshot timeTand the infection probabilityλon the success rate of locating the source, where the value ofλvaries from 0.1 to 1.0. The results are different, depending on the network structures. For the ER network,the observation timeThas little effect on the source localization when the infection probabilityλis small(e.g., (0.1,0.3)). For the other two types of networks, this is true for relatively large values ofλ(e.g., (0.1,0.4) for BA,(0.1,0.7)for WS).On the other hand,for a large value ofλ,a relatively earlier observation is in favor of source localization in ER and BA networks.For the WS network,the effect of different observation timeTis less evident in the case of larger values ofλ.

    Figure 4 depicts the average snapshot timeTof successfully locating the source for different observation fractionγ. It shows that in generalTdecreases monotonically with the increase ofγfor all networks. This implies that a snapshot of a larger observation set facilitates the inference of the source at early stages of diffusion. This is consistent with the results as shown in Fig.2. In particular,given an observation fractionγ,one could try to choose an appropriate timeTfor observation by Fig.4 to get more reliable results.

    Fig. 3. Effects of the snapshot time T and infection probability λ on success rate of locating source for ER, BA, and WS networks, with N =1000 nodes and average degree 〈k〉≈6. The diffusion starts at t =0 with λ =0.1,...,1.0 and μ =0.1, a fraction γ =0.4 of nodes is observed at time 1 ≤T ≤10.

    Fig.4. Observation time T of successfully locating the source for different fraction γ on ER,BA,and WS networks,all containing N=1000 nodes with average degree〈k〉≈6: (a)λ =0.4,μ =0.2,(b)λ =0.3,μ =0.1. The diffusion process starts at t=0 from a randomly selected node,and a snapshot of γN nodes is taken for γ ∈{0.1,0.2,...,0.9,1}.

    Fig.5. Source localization and initial time estimate results on ER,BA,and WS networks,all containing N=1000 nodes with average degree〈k〉≈6. The diffusion process starts at t =0 from a randomly selected node with λ =0.4 and μ =0.2,and a snapshot of γN nodes is taken at time T for γ ∈{0.1,0.2,...,0.9,1}and 1 ≤T ≤10. (a)Success rates of locating source node for different fraction γ. The lower and upper values of the success rate are calculated by using snapshot observation at different time T. (b)MSEs of the initial time estimates for different snapshot time T. The lower and upper values of each MSE are computed with different γ.

    Figure 5 shows the source localization and initial time estimate results for different fractionγof observers and snapshot timeT. From Fig.5(a)we can see that the success rate of locating source increases rapidly asγincreasing from a small value till to certain value (e.g., 0.6), after that, adding more observer nodes does not improve the identification accuracy significantly. Figure 5(b) gives the mean square error (MSE)of the initial time estimates for different snapshot timeT, it indicates that the snapshots taken at early stage of diffusion result in small MSE values for different graph structures.

    4.2. Real-world networks

    Furthermore,we consider two real-world network examples of email[26]and US West-Coast power grid,[27]as detailed in Table 1, which are often cited to test source identification methods in the literature.[17,18]In our experiments, the diffusion process starts att=0 from a randomly selected node,withλ ∈{0.1,0.2,..., 0.8, 0.9}andμ=0.2 respectively in each running, and a snapshot ofγNnodes is taken at timeTforγ ∈{0.05,0.1,...,0.45,0.5}and 1≤T ≤10 respectively in each time.

    Table 1. The network parameters in the experiments,N and|E|denote the network size and the number of edges,respectively.

    Fig. 6. Effects of the snapshot time T and the fraction γ of observers on source identification results for email and US West-Coast power grid. The diffusion process starts at t =0 with λ ∈{0.1,0.2,...,0.8,0.9} and μ =0.2, and a snapshot of γN nodes is taken at time T for γ ∈{0.05,0.1,...,0.45,0.5}and 1 ≤T ≤10. (a)–(d)Success rate of locating source node for different T and γ.

    Figure 6 depicts the average results over 1000 experiments. It shows an evident impact of the observation time as well as the fraction of the observers on the source identification problem,which is similar to the case of the synthetic networks. Particularly, Figs. 6(a) and 6(c) indicate that the success rate of locating source is small at early stage of the diffusion process,and it will be hard to locate the source for large observation time. Figures 6(b)and 6(d)show that,in general,the success rate of locating source increases with the number of observer for different snapshot timeT. For a small value ofT(e.g., 1), the success rate of locating source increases rapidly as the fractionγof observers increasing,whereas for a big value ofT(e.g.,7),adding more observer nodes does not improve the source localization accuracy significantly.

    5. Summary

    We have discussed the effect of the observation time as well as the size of the observation set on source identification of diffusion in a network with discrete-time SIR spreading process, under incomplete observation conditions. The method makes use of the Monte Carlo simulation in evaluation of the marginal probabilities of a node that are involved in ML estimator of the source. Numerical experiments in synthetic networks and real-world networks reveal interesting yet involved nonlinear effects of the observation time and the fraction of observers on source identification. In general,a large value of snapshot time will not be in favor of the source identification for most values of the fraction of observers,since it allows for a full development of diffusion(hence infection)in a network,reducing effectiveness of the snapshot information. In particular,for very large values of the fraction of observers,the success rate of source localization decreases monotonically with the increase of the observation time. On the other hand,however, for a very small observation set, it is usually difficult to infer the source at early stages of diffusion because little information about infected nodes is available. More complicated and interesting cases occur for neither too small nor too large values of the fraction of observers, where the success rate of source localization first rises to a highest level and then drops down with the increase of the snapshot time,indicating possible choice of an optimal observation time to get more reliable results.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 61673027 and 62106047), the Beijing Social Science Foundation (Grant No. 21GLC042),and the Humanity and Social Science Youth foundation of Ministry of Education,China(Grant No.20YJCZH228).

    猜你喜歡
    張琦
    Self-screening of the polarized electric field in wurtzite gallium nitride along[0001]direction
    Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
    全民張琦
    商界評論(2022年12期)2022-03-06 13:02:12
    自相似視角下相對貧困成因分析
    基于TXL的源代碼插樁技術(shù)研究
    張琦:家風敗壞的海南第四“虎”
    “海南虎”張琦:一位闖海者的隕落
    雜文選刊(2020年4期)2020-04-19 10:04:31
    ??谑形瘯洀堢糯蠛蠛D稀笆谆ⅰ?/a>
    曹夢媛、崔琪、張琦、趙承鋮作品
    西部縣域經(jīng)濟發(fā)展模式亟待創(chuàng)新
    好男人在线观看高清免费视频| 免费无遮挡裸体视频| 12—13女人毛片做爰片一| 少妇丰满av| 国产精品爽爽va在线观看网站| 最后的刺客免费高清国语| 色综合欧美亚洲国产小说| 欧美最黄视频在线播放免费| 亚洲电影在线观看av| 色噜噜av男人的天堂激情| 国产精品女同一区二区软件 | 久久久久久久亚洲中文字幕 | 熟女人妻精品中文字幕| 国产伦精品一区二区三区四那| 永久网站在线| 国产91精品成人一区二区三区| 岛国在线免费视频观看| 成人亚洲精品av一区二区| 免费在线观看日本一区| 免费在线观看影片大全网站| 亚洲自偷自拍三级| 麻豆成人午夜福利视频| 精品久久久久久久人妻蜜臀av| 麻豆久久精品国产亚洲av| 欧美黄色片欧美黄色片| 久久午夜亚洲精品久久| 欧美潮喷喷水| 日韩欧美国产一区二区入口| 草草在线视频免费看| 亚洲七黄色美女视频| 麻豆av噜噜一区二区三区| 在线国产一区二区在线| 亚洲精品一区av在线观看| 免费电影在线观看免费观看| 嫩草影院精品99| 欧美在线黄色| 99久久九九国产精品国产免费| 精品福利观看| 成年版毛片免费区| 国产欧美日韩精品一区二区| 韩国av一区二区三区四区| 国产aⅴ精品一区二区三区波| 国产久久久一区二区三区| 精品人妻一区二区三区麻豆 | 黄色配什么色好看| 亚洲一区二区三区不卡视频| 午夜日韩欧美国产| 少妇熟女aⅴ在线视频| 国产老妇女一区| 日本黄色视频三级网站网址| 亚洲精品在线美女| 欧美+亚洲+日韩+国产| 美女免费视频网站| 99在线人妻在线中文字幕| 偷拍熟女少妇极品色| 久久6这里有精品| 好男人在线观看高清免费视频| 老司机午夜福利在线观看视频| 高清在线国产一区| 国产激情偷乱视频一区二区| 黄色一级大片看看| 中亚洲国语对白在线视频| 久久6这里有精品| 欧美日韩亚洲国产一区二区在线观看| 免费av不卡在线播放| 亚洲美女视频黄频| 国产亚洲精品久久久com| 老女人水多毛片| 欧美区成人在线视频| 精品一区二区免费观看| 97热精品久久久久久| 别揉我奶头 嗯啊视频| 网址你懂的国产日韩在线| 男人舔女人下体高潮全视频| 亚洲欧美清纯卡通| 成人精品一区二区免费| 亚洲国产精品999在线| 欧美一区二区亚洲| 蜜桃亚洲精品一区二区三区| 麻豆成人av在线观看| 久久精品国产亚洲av香蕉五月| 老鸭窝网址在线观看| 亚洲美女搞黄在线观看 | 免费观看精品视频网站| 91午夜精品亚洲一区二区三区 | 日本撒尿小便嘘嘘汇集6| av专区在线播放| 亚洲 国产 在线| 亚洲狠狠婷婷综合久久图片| 成熟少妇高潮喷水视频| 日韩中文字幕欧美一区二区| 精品久久国产蜜桃| 免费在线观看亚洲国产| 成人高潮视频无遮挡免费网站| 婷婷色综合大香蕉| 亚洲欧美清纯卡通| 中文字幕av在线有码专区| 午夜福利在线在线| 日韩av在线大香蕉| 成年女人毛片免费观看观看9| 少妇的逼水好多| 性插视频无遮挡在线免费观看| 午夜福利在线观看吧| 美女 人体艺术 gogo| 51国产日韩欧美| 久久精品国产亚洲av天美| 国产欧美日韩精品一区二区| 熟女电影av网| 少妇丰满av| 女生性感内裤真人,穿戴方法视频| 90打野战视频偷拍视频| 欧美在线一区亚洲| 精品久久久久久久末码| 免费在线观看成人毛片| 日日摸夜夜添夜夜添小说| 精品一区二区三区人妻视频| 日本免费一区二区三区高清不卡| 色在线成人网| 99在线人妻在线中文字幕| 男插女下体视频免费在线播放| 两人在一起打扑克的视频| 蜜桃亚洲精品一区二区三区| 日韩大尺度精品在线看网址| 搞女人的毛片| 亚洲精品亚洲一区二区| 热99在线观看视频| 噜噜噜噜噜久久久久久91| 欧美激情在线99| 男人和女人高潮做爰伦理| 90打野战视频偷拍视频| 日韩av在线大香蕉| 国产成人aa在线观看| 亚洲精品456在线播放app | 国产日本99.免费观看| 久久久久久久久中文| 人妻夜夜爽99麻豆av| 草草在线视频免费看| 极品教师在线免费播放| 禁无遮挡网站| 欧美3d第一页| av在线老鸭窝| 成年版毛片免费区| 午夜福利18| 成年女人永久免费观看视频| 成人午夜高清在线视频| 精品一区二区三区视频在线| 中文字幕免费在线视频6| 欧美+日韩+精品| 每晚都被弄得嗷嗷叫到高潮| 久久精品国产自在天天线| 精品久久久久久久久av| 亚洲精品影视一区二区三区av| 免费看日本二区| 18+在线观看网站| 日韩欧美精品v在线| 精品久久久久久久末码| 99久久精品一区二区三区| 日韩欧美精品v在线| www.www免费av| 国产精品电影一区二区三区| 国产不卡一卡二| 男人的好看免费观看在线视频| 国产激情偷乱视频一区二区| 久久婷婷人人爽人人干人人爱| 久久久色成人| 欧美不卡视频在线免费观看| 长腿黑丝高跟| 蜜桃亚洲精品一区二区三区| 欧美三级亚洲精品| 日本a在线网址| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久6这里有精品| 亚洲人成网站高清观看| 2021天堂中文幕一二区在线观| 毛片一级片免费看久久久久 | 欧美激情国产日韩精品一区| 一二三四社区在线视频社区8| 亚洲一区高清亚洲精品| 每晚都被弄得嗷嗷叫到高潮| 欧美激情在线99| 人妻丰满熟妇av一区二区三区| 国产男靠女视频免费网站| 天天躁日日操中文字幕| 国产亚洲精品综合一区在线观看| 国产精品免费一区二区三区在线| 蜜桃亚洲精品一区二区三区| 大型黄色视频在线免费观看| 在线观看午夜福利视频| 国产伦一二天堂av在线观看| 欧美午夜高清在线| 国产精品亚洲av一区麻豆| 精品不卡国产一区二区三区| 天美传媒精品一区二区| 国产av麻豆久久久久久久| 成人三级黄色视频| 真人一进一出gif抽搐免费| 91狼人影院| 免费av毛片视频| 三级毛片av免费| 国产黄片美女视频| 少妇裸体淫交视频免费看高清| 亚洲天堂国产精品一区在线| 午夜福利18| 美女cb高潮喷水在线观看| 久久久久免费精品人妻一区二区| 美女黄网站色视频| 校园春色视频在线观看| 人人妻,人人澡人人爽秒播| 亚洲精品影视一区二区三区av| 波多野结衣巨乳人妻| 久久精品夜夜夜夜夜久久蜜豆| 国产人妻一区二区三区在| 国产精品乱码一区二三区的特点| 欧美日韩中文字幕国产精品一区二区三区| 中文在线观看免费www的网站| 国产av在哪里看| 嫁个100分男人电影在线观看| 国产熟女xx| 国产精品一及| 欧美日韩亚洲国产一区二区在线观看| 最好的美女福利视频网| 日韩亚洲欧美综合| 九九在线视频观看精品| 免费人成视频x8x8入口观看| 久久久久久久久中文| 欧美午夜高清在线| 亚洲av电影不卡..在线观看| 午夜福利18| 好男人在线观看高清免费视频| 欧美日韩瑟瑟在线播放| 99国产综合亚洲精品| 精品人妻一区二区三区麻豆 | 99国产精品一区二区三区| 亚洲国产欧洲综合997久久,| av黄色大香蕉| 久久亚洲精品不卡| 成年女人毛片免费观看观看9| 日韩欧美 国产精品| 69av精品久久久久久| 亚洲av中文字字幕乱码综合| 波多野结衣高清作品| 成人亚洲精品av一区二区| 男人舔奶头视频| 男人的好看免费观看在线视频| 久久精品国产亚洲av涩爱 | 特级一级黄色大片| 淫秽高清视频在线观看| 国内精品久久久久精免费| 精品国产三级普通话版| 性欧美人与动物交配| 亚洲中文字幕一区二区三区有码在线看| 91在线精品国自产拍蜜月| 免费人成在线观看视频色| 亚洲精品成人久久久久久| 简卡轻食公司| 成年女人看的毛片在线观看| 精品久久久久久久末码| 757午夜福利合集在线观看| a级毛片免费高清观看在线播放| 久久伊人香网站| 成人国产一区最新在线观看| 亚洲欧美清纯卡通| 日韩大尺度精品在线看网址| 亚洲av五月六月丁香网| 99久久成人亚洲精品观看| 国内精品一区二区在线观看| 日本五十路高清| 听说在线观看完整版免费高清| 亚洲人与动物交配视频| 免费av观看视频| 国产男靠女视频免费网站| 亚洲av.av天堂| 嫩草影院新地址| 成熟少妇高潮喷水视频| h日本视频在线播放| 我的女老师完整版在线观看| 午夜福利视频1000在线观看| 亚洲人成网站高清观看| 日韩免费av在线播放| or卡值多少钱| 91麻豆av在线| 亚洲电影在线观看av| 亚洲18禁久久av| 简卡轻食公司| 亚洲人成网站在线播放欧美日韩| 色精品久久人妻99蜜桃| 成人国产综合亚洲| 亚洲av一区综合| 窝窝影院91人妻| 宅男免费午夜| 精品人妻一区二区三区麻豆 | 免费在线观看日本一区| 日韩欧美三级三区| 真实男女啪啪啪动态图| 久久久成人免费电影| 国产成人欧美在线观看| 无遮挡黄片免费观看| bbb黄色大片| 999久久久精品免费观看国产| 久久午夜福利片| 日韩国内少妇激情av| 丰满乱子伦码专区| 丁香六月欧美| 麻豆国产97在线/欧美| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 午夜免费激情av| 少妇高潮的动态图| 国内毛片毛片毛片毛片毛片| 少妇的逼水好多| 欧美精品国产亚洲| 国产成人a区在线观看| 搡女人真爽免费视频火全软件 | 国产野战对白在线观看| 99国产综合亚洲精品| 首页视频小说图片口味搜索| 在线国产一区二区在线| 成人三级黄色视频| 69av精品久久久久久| 亚洲在线自拍视频| 波多野结衣高清无吗| 女人十人毛片免费观看3o分钟| 国产在线精品亚洲第一网站| 免费看a级黄色片| 18美女黄网站色大片免费观看| 国产探花在线观看一区二区| 美女大奶头视频| 亚洲最大成人手机在线| 91九色精品人成在线观看| 亚洲美女视频黄频| 18禁黄网站禁片午夜丰满| 亚洲国产精品合色在线| 免费电影在线观看免费观看| 在线看三级毛片| 国产视频一区二区在线看| 日韩欧美免费精品| 欧美最黄视频在线播放免费| 欧美黑人欧美精品刺激| 看免费av毛片| 成年女人永久免费观看视频| 人人妻人人看人人澡| 国产黄a三级三级三级人| av在线老鸭窝| 国产高清视频在线观看网站| 亚洲在线自拍视频| 哪里可以看免费的av片| 夜夜躁狠狠躁天天躁| 亚洲av免费在线观看| 观看免费一级毛片| 国产欧美日韩精品亚洲av| 淫妇啪啪啪对白视频| 99热只有精品国产| 国产成人a区在线观看| 精品乱码久久久久久99久播| 又黄又爽又刺激的免费视频.| 久久精品夜夜夜夜夜久久蜜豆| 欧美成人免费av一区二区三区| 无遮挡黄片免费观看| 欧美黄色淫秽网站| www日本黄色视频网| 中出人妻视频一区二区| 国内揄拍国产精品人妻在线| 黄色丝袜av网址大全| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕免费在线视频6| 少妇丰满av| 99热这里只有精品一区| 久久婷婷人人爽人人干人人爱| 欧洲精品卡2卡3卡4卡5卡区| 亚洲综合色惰| 久久国产精品人妻蜜桃| 国产av不卡久久| 窝窝影院91人妻| 国产精品日韩av在线免费观看| 国产探花在线观看一区二区| 九九热线精品视视频播放| 亚洲av中文字字幕乱码综合| av在线天堂中文字幕| 中文资源天堂在线| 日本免费a在线| 一个人看视频在线观看www免费| 51午夜福利影视在线观看| 老司机深夜福利视频在线观看| 51午夜福利影视在线观看| 成人高潮视频无遮挡免费网站| av视频在线观看入口| 少妇高潮的动态图| 十八禁人妻一区二区| 国产精品98久久久久久宅男小说| 国产精华一区二区三区| 91久久精品电影网| 两人在一起打扑克的视频| 亚洲成人精品中文字幕电影| 成熟少妇高潮喷水视频| 久久久久久久久大av| 十八禁国产超污无遮挡网站| 色哟哟·www| 少妇的逼水好多| av在线天堂中文字幕| 欧美激情国产日韩精品一区| 99久久无色码亚洲精品果冻| 亚洲成人免费电影在线观看| 好男人在线观看高清免费视频| 老熟妇仑乱视频hdxx| 一进一出抽搐动态| 欧美+亚洲+日韩+国产| 两人在一起打扑克的视频| 丁香欧美五月| 亚洲国产精品久久男人天堂| 99热只有精品国产| 精品久久久久久久人妻蜜臀av| 久久久精品欧美日韩精品| 亚洲,欧美,日韩| 久久6这里有精品| 免费av不卡在线播放| 十八禁人妻一区二区| 国内精品美女久久久久久| 亚洲国产色片| 国产av在哪里看| 国产精品久久久久久久久免 | 久久99热6这里只有精品| 美女免费视频网站| 国产成人啪精品午夜网站| 高清日韩中文字幕在线| 免费人成在线观看视频色| 淫秽高清视频在线观看| 黄色配什么色好看| 亚洲五月婷婷丁香| 国产爱豆传媒在线观看| 性欧美人与动物交配| 一区福利在线观看| 久久久久久久亚洲中文字幕 | 国产探花极品一区二区| 欧美xxxx黑人xx丫x性爽| 欧美三级亚洲精品| 亚洲成人久久爱视频| 国产精品影院久久| 99热这里只有精品一区| 男女床上黄色一级片免费看| 午夜免费男女啪啪视频观看 | 国产一区二区亚洲精品在线观看| 亚洲,欧美,日韩| 一个人观看的视频www高清免费观看| 又紧又爽又黄一区二区| 亚洲人成电影免费在线| 日本与韩国留学比较| 校园春色视频在线观看| 日本精品一区二区三区蜜桃| 91在线观看av| 嫩草影院入口| 身体一侧抽搐| 日本撒尿小便嘘嘘汇集6| 色综合亚洲欧美另类图片| 蜜桃久久精品国产亚洲av| 97超视频在线观看视频| a级一级毛片免费在线观看| 国内毛片毛片毛片毛片毛片| 亚洲专区国产一区二区| 亚洲最大成人手机在线| 99国产极品粉嫩在线观看| 午夜福利成人在线免费观看| 亚洲激情在线av| 亚洲三级黄色毛片| 乱人视频在线观看| 亚洲av二区三区四区| 久久久色成人| 亚洲成人精品中文字幕电影| 级片在线观看| 久久久久久大精品| 人妻制服诱惑在线中文字幕| 高清毛片免费观看视频网站| 日韩欧美国产一区二区入口| 99热这里只有精品一区| 十八禁网站免费在线| 91九色精品人成在线观看| 国产精品女同一区二区软件 | 亚洲美女视频黄频| 欧美成人一区二区免费高清观看| 国产成+人综合+亚洲专区| 九九热线精品视视频播放| 国产av一区在线观看免费| 国产av在哪里看| 亚洲成av人片免费观看| av天堂中文字幕网| 久久精品综合一区二区三区| 老女人水多毛片| 亚洲自拍偷在线| 国产成人影院久久av| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲,欧美精品.| 色视频www国产| 亚洲av成人不卡在线观看播放网| 日本一二三区视频观看| 国产探花极品一区二区| 亚洲熟妇中文字幕五十中出| 亚洲久久久久久中文字幕| 神马国产精品三级电影在线观看| 一级作爱视频免费观看| 在线观看免费视频日本深夜| 深爱激情五月婷婷| 国产精品野战在线观看| 草草在线视频免费看| 老司机午夜十八禁免费视频| 亚洲中文字幕一区二区三区有码在线看| 欧美在线一区亚洲| 日日摸夜夜添夜夜添av毛片 | 久久精品国产自在天天线| 非洲黑人性xxxx精品又粗又长| 永久网站在线| 久久亚洲真实| 成人永久免费在线观看视频| 国产一区二区亚洲精品在线观看| 免费观看精品视频网站| 日韩欧美一区二区三区在线观看| 亚洲男人的天堂狠狠| 五月伊人婷婷丁香| 欧美中文日本在线观看视频| 神马国产精品三级电影在线观看| 三级毛片av免费| 久久精品人妻少妇| 国产精品美女特级片免费视频播放器| 动漫黄色视频在线观看| 精品久久久久久久末码| 精品福利观看| 精品熟女少妇八av免费久了| 国内揄拍国产精品人妻在线| 麻豆一二三区av精品| 久久久久久久精品吃奶| 两个人的视频大全免费| 成年女人毛片免费观看观看9| 黄色女人牲交| 国产 一区 欧美 日韩| 一进一出好大好爽视频| 国产视频内射| 国产精品影院久久| 最新在线观看一区二区三区| 国产男靠女视频免费网站| 成年人黄色毛片网站| 成人特级黄色片久久久久久久| 亚洲aⅴ乱码一区二区在线播放| 国产精品人妻久久久久久| 亚洲av.av天堂| 精品人妻一区二区三区麻豆 | 五月玫瑰六月丁香| 一本精品99久久精品77| 男女做爰动态图高潮gif福利片| 午夜福利成人在线免费观看| 欧美日本亚洲视频在线播放| 99久久精品国产亚洲精品| 日韩人妻高清精品专区| 亚洲五月婷婷丁香| 女同久久另类99精品国产91| 一夜夜www| 国产精品不卡视频一区二区 | 国产 一区 欧美 日韩| 黄色女人牲交| 国产aⅴ精品一区二区三区波| 欧美黑人欧美精品刺激| 成人欧美大片| 久久久久久国产a免费观看| 91在线观看av| 免费看美女性在线毛片视频| 国产探花极品一区二区| 国产高清有码在线观看视频| 波多野结衣巨乳人妻| 国产精品自产拍在线观看55亚洲| 国产精品亚洲美女久久久| 嫩草影院新地址| 99久久九九国产精品国产免费| 69人妻影院| 国内精品一区二区在线观看| 国产伦人伦偷精品视频| 久久久久国产精品人妻aⅴ院| 欧美zozozo另类| .国产精品久久| 日韩高清综合在线| 亚洲电影在线观看av| 欧美色视频一区免费| 每晚都被弄得嗷嗷叫到高潮| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久亚洲av鲁大| 亚洲一区高清亚洲精品| 五月伊人婷婷丁香| 成人欧美大片| 最近最新免费中文字幕在线| 亚洲乱码一区二区免费版| 免费观看精品视频网站| 91久久精品国产一区二区成人| 91字幕亚洲| 久久国产精品人妻蜜桃| 亚洲av熟女| 久久久久亚洲av毛片大全| 国产aⅴ精品一区二区三区波| 亚洲七黄色美女视频| 成人国产一区最新在线观看| 九色国产91popny在线| 日日干狠狠操夜夜爽| 97碰自拍视频| 亚洲人成网站高清观看| 色播亚洲综合网| 自拍偷自拍亚洲精品老妇| 免费在线观看日本一区| 欧美xxxx黑人xx丫x性爽| 亚洲国产精品999在线| 99久久精品一区二区三区| 一本久久中文字幕| 男人舔女人下体高潮全视频| 国产亚洲精品av在线| 久久久国产成人免费| 九九久久精品国产亚洲av麻豆| 9191精品国产免费久久| 麻豆国产av国片精品| 欧美午夜高清在线| 亚洲国产精品合色在线| 欧美色欧美亚洲另类二区| 变态另类丝袜制服|