• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions

    2022-03-12 07:44:54PeiSenLi李裴森JunPingPeng彭俊平YueGuoHu胡悅國YanRuiGuo郭顏瑞WeiChengQiu邱偉成RuiNanWu吳瑞楠MengChunPan潘孟春JiaFeiHu胡佳飛DiXiangChen陳棣湘andQiZhang張琦
    Chinese Physics B 2022年3期
    關(guān)鍵詞:張琦胡佳

    Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悅國), Yan-Rui Guo(郭顏瑞),Wei-Cheng Qiu(邱偉成), Rui-Nan Wu(吳瑞楠), Meng-Chun Pan(潘孟春),Jia-Fei Hu(胡佳飛), Di-Xiang Chen(陳棣湘), and Qi Zhang(張琦)

    College of Intelligence Science and Technology,National University of Defense Technology,Changsha 410073,China

    Keywords: magnetoresistance effect,graphene,magnetic junctions,spintronics

    1. Introduction

    As one of the primary spintronic devices, the magnetic tunnel junction (MTJ) consisting of an insulating barrier between two metallic ferromagnetic (FM) layers has many applications, such as magnetic field sensors, magnetic random access memories(MRAM),microwave devices,spin logic circuits,etc.[1-7]The magnetizations in two FM layers are decoupled by the barrier layer and are able to switch independently from each other. Driven by the applied magnetic field,the different relative orientations of the magnetizations correspond to diverse resistance values, thus realizing the sensing and detection of external magnetic fields.[8,9]In order to improve the signal-to-noise ratio and reduce the power consumption, the barrier layer is usually required to be as thin as possible while still maintaining a large tunneling magnetoresistance(TMR).This is difficult for the traditional barrier materials such as Al2O3and MgO,because there always exist several problems like pinholes,trap states and defects in these metal oxides, which can induce the shot noise and seriously compromise the performance of MTJs. Meanwhile,the experimental TMR ratio of this kind of MTJ has reached closely to the level of its theoretical value and is extremely hard to make any further breakthrough.[10]Hence, it is now an urgent demand to seek for a new material with excellent properties for the current applications of MTJs.

    Graphene, a two-dimensional (2D) honeycomb material of carbon atoms, has aroused much interest due to the superior properties since its discovery.[11-14]The high in-plane carrier mobility and low spin-orbit coupling in graphene can create long spin lifetimes and diffusion lengths, enabling the realizing of lateral spin devices with novel features and functions.[15-19]On the contrary, the weak out-of-plane conductivity of this atomically thin material makes it an effective insulator for the transport perpendicular to the plane,thus providing an alternative choice for the barrier material of MTJs.[20,21]Encouragingly, as expected, it has been theoretically predicted that the graphene-based MTJ has an extraordinarily large TMR ratio due to its almost perfect spin filtering effect atKpoint at the graphene/FM interface.[22,23]Provided that this prediction comes true, it will be significantly beneficial to the application of MTJs. Given this, a variety of graphene-based MTJs with current-perpendicularto-the-plane (CPP) geometry have been successively realized experimentally.[20,24-30]

    Nowadays,the interface between the graphene interlayer and the bottom FM layer is formed mainly by transferring graphene (grown through chemical vapor deposition (CVD)or mechanically exfoliated from graphite flake) onto the bottom electrode.[20,24-26]It is almost inevitable to introduce the oxidation and contamination into the graphene/FM interface because the bottom electrode is exposed to air in the fabrication process and this impure interface may induce the spin-flip scattering. To this end, some novel schemes were put forward. For example, (i) a suspended graphene membrane is made over a hole,followed by depositing ferromagnetic metals on both sides of graphene; (ii) a graphene layer directly grows on the top of the bottom FM layer.[27-30]However,the experimentally observed TMR ratio was improved merely to a small extent with the value much less than the predicted value,whereas the fabrication procedure became more complicated,which is likely to introduce new potential problems. As an example, the‘Mexican hat’shape of the suspended graphene can form after the FM layer has been deposited and the induced strain locally affects the atomic-scale contact between graphene and FM layers.[28]Besides, there still exist several questions and issues about the growth mechanism of graphene on FM transition metals, and arduous efforts are still needed to improve the graphene quality.[31]Back to the transferring method:the exfoliated graphene usually has a high quality but its size is limited to dozens of microns, which is not scalable for application, so wet transfer of CVD graphene is still the most simple and practical approach. On the other hand, the permalloy(or NiFe),as one of the ferromagnetic materials,is commonly used as the FM electrode of MTJs for the following two merits. Firstly, it has a relatively high spin polarization, which is beneficial to a large TMR ratio. Secondly, the NiFe film has a low coercivity, which is an extremely important property for its application in sensors. According to these considerations, we chose the NiFe film as the FM electrode material. Although the wet transfer method has been reported for fabricating NiFe/graphene/NiFe vertical junctions,[24,25]the anisotropic magnetoresistance (AMR) contribution to the magnetoresistance(MR)effect was not studied. According to the early report,a significant AMR signal was observed in the NiFe/graphene/NiFe devices with exfoliated graphene,[32]so it must be excluded by some powerful experimental evidences.

    In this work, we demonstrate the evident MR effect in MTJs consisting of a single layer of graphene between two NiFe electrodes in a relatively simple manner by transferring CVD graphene onto the bottom FM electrode. Meanwhile,the MR ratio dependence on the magnetic field direction is obtained and validates that the origin of MR effect in our devices is not the AMR. The MR curve shows two resistance states hinging on the magnetization alignment configuration between two FM electrodes, with an MR ratio of 0.17% at room temperature. As the bias current increases, the MR magnitude manifests a typical monotonic downward trend,which further excludes the contribution from AMR. In addition, it is found that the current-voltage(I-V)characteristic shows a linear behavior,which indicates the ohmic contacts at the interfaces and the metallic transport behavior of vertical graphene junctions.

    2. Fabrication and characterization

    For the purpose of rapidly constructing the graphenebased MTJ to demonstrate its MR effect, we chose the approach to directly transferring graphene onto the bottom electrode. In addition, as the mechanical exfoliation process of graphite generally involves tedious identification and positioning of the graphene flakes, the CVD grown graphene on the copper foil was selected as the barrier interlayer in this work,which is also conducive to realizing the wafer-scale fabrication of MTJ devices.

    Fig.1. (a)Fabrication procedure of MTJ sample,showing(i)NiFe(30 nm)thin film deposition for the bottom electrode, (ii) transferring CVD grown graphene onto bottom electrode, (iii) patterning graphene by O2 plasma etching, and (iv) NiFe (50 nm) thin film deposition for top electrode. (b)Schematical measurement configuration of MTJ sample.

    Figure 1(a) shows that the sample fabrication process of the MTJs in detail.Prior to graphene transfer,the bottom electrode stripes were prepared on an SiO2/Si substrate in which the SiO2layer is 300-nm thick, by using the UV lithography and e-beam evaporation. Specifically, an NiFe thin film with a thickness of 30 nm was deposited on a photoresist-patterned substrate at a 1-°A/s rate, and then the patterned bottom electrode was obtained by using a standard lift-off technique.Subsequently,graphene on the copper foil was transferred onto the bottom NiFe film with assistance of polymethyl methacrylate(PMMA) which had been spin-coated on graphene to serve as the supporting layer. The details of the wet transfer process are as follows. 1)The copper foil was dissolved by etching in the CuSO4/HCl mixed solution and then the PMMA with graphene was rinsed in deionized water several times.2) We transferred the graphene/PMMA bilayer to the target substrate and let it dry naturally in order to increase the adhesion. 3)The PMMA was removed by soaking in the hot acetone. The next step was to remove the unnecessary graphene apart from the position of junctions by 3-min O2plasma etching with a power of 200 W. After that, the 50-nm-thick top NiFe electrode was fabricated by using a similar process to that used for fabricating the bottom electrode. The only difference was that we used the e-beam lithography rather than the UV lithography in view of the extremely narrow top NiFe stripe.Finally,the Ti(50 nm)/Au(70 nm)contact electrode was deposited through e-beam evaporation, thus forming a fourprobe structure. The measurement configuration of MTJs is schematically displayed in Fig.1(b). When the current flowed from the top electrode to the bottom electrode,the corresponding voltage between the two electrodes was measured at the same time. The external magnetic field(0°)was applied along the long axial direction of the top electrode. It is worthy to point out that as the width of the bottom electrode is much larger than that of the top one,it is easier for magnetization in the bottom FM layer to switch under the applied magnetic field due to the weaker shape anisotropy,thus realizing the different switching fields of the two FM layers.

    Fig. 2. Characterization results of fabricated MTJs. (a) Optical image of typical MTJ,with inset displaying MTJ array taken by optical microscopy.(b) AFM image of graphene before transfer (upper one) and AFM images after transfer(lower two),of which the lower right one is the magnified image of the dotted box region in the lower left one. (c) Raman spectrum of transferred graphene. (d) 2D band of graphene and its single Lorentzian fitting peak.

    Figure 2 indicates a series of characterization measures to estimate the quality of our samples during and after the fabrication. Figure 2(a) shows an MTJ picture taken by optical microscope. The inset displays a top-view optical photograph of the final MTJ array. As shown in Fig.2(b),the atomic force microscopy (AFM) was used to evaluate the cleanliness and flatness of graphene in the transferring process. The upper one and lower two are the AFM images of graphene before and after being transferred onto the bottom electrode stripe,respectively. It can be clearly seen that the graphene cleanliness was basically maintained without any obvious polymer residue. Meanwhile, in order to characterize the thickness and quality of graphene, the Raman spectrum was obtained with a laser excitation wavelength of 532 nm from the transferred graphene as shown in Figs.2(c)and 2(d). Based on the fact that the intensity of 2D (2700 cm-1) peak is larger than that of the G (1590 cm-1) peak and the symmetric 2D band can be fitted into a perfect single Lorentzian peak, it is concluded that the graphene monolayer exists on the bottom NiFe electrode.[33,34]Additionally, no obvious D peak is observed,implying that reasonably high-quality graphene after transfer was obtained,since its intensity reflects the number of defects.

    3. Results and discussion

    After verifying the feasibility of the fabrication method mentioned above,we prepare numerous MTJ samples and investigate their transport behaviors. As seen in Fig. 3(a), the resistance as a function of the magnetic field (R-Hcurve) is obtained with a bias current of 500 μA at room temperature.It presents two prominent resistance states (parallel and antiparallel)under a sweeping magnetic field along the long axial direction of top electrode (defined as 0°), demonstrating the existence of MR effect in graphene-based MTJs. The switching fields of the bottom and top NiFe electrode can be identified to be about 20 Oe(1 Oe=79.5775 A/m)and 50 Oe. An MR ratio of 0.17% at room temperature is clearly observed by using the MR calculation formulaMR=(RAP-Rp)/Rp,whereRAPandRpare parallel and anti-parallel resistance,respectively. Assuming the spin polarizations (P) of two FM electrodes are the same, we can calculate the value ofPto be 2.9%by adopting the Julliere’s formulaMR=2P1P2/(1-P1P2).What figure 3(b)shows is theR-Hcurve when the magnetic field is applied along the 90°direction(perpendicular to the long axial direction of top electrode). Like in the case of 0°direction,it also manifests the distinct resistance switching.Note that the magnetization reversing is accompanied with a gradual rotation process, which can be attributed to the demagnetizing field caused by shape anisotropy of the magnetic film. The identical positive MR ratio for these two cases validates that the origin of MR effect in our device is not from the AMR. As for the current-voltage characteristic, theI-Vcurve in Fig. 3(c) exhibits a linearly changing trend, revealing the metallic transport behavior of graphene-based MTJs.This is in consistence with most of the recent experimental results.[24-26,28-30]As previously reported, it is believed that there exists a strong hybridization between theπorbitals of graphene and the metal d states of FM electrode,which gives rise to the formation of the hybridization-induced electronic states of graphene around the Fermi energy.[35]This is the key factor resulting in the ohmic contact and metallic transport behavior in our devices. Although the nonlinearI-Vcurve has been discovered in some graphene-based MTJ devices before,it is commonly believed that this originates from the influence of bottom electrode oxidation and contamination residues.[28]Finally,we measure the AMR effect of the bottom NiFe electrode and the related results are shown in Fig. 3(d). As we can see, the resistance of the bottom electrode is much larger than that of the junction and theR-Hcurve is also exceedingly different,which further verifies the results credibility of our devices.

    Fig.3. Transport measurement results of MTJ sample. Typical R-H curve at room temperature with 500-μA bias current when the magnetic field is swept along(a)0° and(b)90° directions. (c)I-V curve at room temperature under zero magnetic field. (d)AMR effect measurement of bottom NiFe electrode,with red(blue)arrows indicating corresponding magnetic field sweeping from a positive(negative)maximum to a negative(positive)maximum.

    Fig.4. (a)The R-H curves of MTJ sample under different bias currents,which are shifted with a fixed offset;(b)bias dependence of the MR ratio.

    Furthermore,in order to reveal the magnetoresistance dependence on the bias, the transport measurements under different bias currents are carried on at room temperature and the related results are displayed in Figs.4(a)and 4(b). For a better display, we add a constant offset among the fourR-Hcurves in Fig.4(a). It is obvious that the MR ratio depends strongly on the bias and manifests a monotonic downward trend as the bias current increases. This is a typical phenomenon for the tunneling magnetoresistance and has been predicted to occur in a wide variety of MTJs.[36,37]It is believed to arise from the interface states and barrier height changed by the bias,which has been theoretically studied in the Ni/graphene/Ni MTJ.[38]In addition,it should be pointed out that this bias dependence of the magnetoresistance is also an powerful evidence for excluding the contribution from AMR that increases with the bias increasing.

    4. Conclusions

    In this work, a vertical NiFe/graphene/NiFe junction is fabricated in a simple and easy way by transferring the CVD grown monolayer graphene onto the bottom FM electrode.Through the spin transport measurement under a in-plane sweeping magnetic field,the MR effect in the graphene-based junction is demonstrated experimentally, manifesting the distinct high and low resistance states. An MR ratio of 0.17%with a corresponding spin polarization of 2.9%is obtained at room temperature. In order to exclude the contribution from AMR, the magnetic field direction dependence of MR ratio is obtained and shows an identical positive MR ratio for the 0°and 90°directions. Moreover,the MR magnitude depends strongly on the bias and displays a typical monotonic downward trend with the bias current increasing,which further validates that the MR effect in our device is not from the AMR.In addition,the linearI-Vcharacteristic verifies that graphene works not as a tunnel barrier but as a conducting layer, and the transport property in graphene vertical junctions is metallic. Our work is beneficial to further understanding the spin transport behavior in graphene spintronic devices and can also provide a template for fabricating the analogous nano-devices based on 2D materials.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 62004223) and the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics,China(Grant No.KF202012).

    猜你喜歡
    張琦胡佳
    Effect of observation time on source identification of diffusion in complex networks
    媽媽家的門
    Self-screening of the polarized electric field in wurtzite gallium nitride along[0001]direction
    Entanglement generation and protection for two atoms in the presence of two parallel mirrors
    自相似視角下相對貧困成因分析
    基于TXL的源代碼插樁技術(shù)研究
    山歌
    當代音樂(2018年3期)2018-05-14 18:46:07
    孝順的外婆
    西部縣域經(jīng)濟發(fā)展模式亟待創(chuàng)新
    Expansion characteristics of twin combustion gas jets with high pressure in cylindrical filling liquid chamber*
    亚洲人与动物交配视频| 别揉我奶头~嗯~啊~动态视频| 一进一出抽搐动态| 欧美另类亚洲清纯唯美| 真人做人爱边吃奶动态| 九九在线视频观看精品| 日韩欧美精品v在线| 亚洲国产欧洲综合997久久,| 男人的好看免费观看在线视频| 婷婷丁香在线五月| 黄色一级大片看看| 亚洲自拍偷在线| 成人特级av手机在线观看| 午夜免费激情av| 免费黄网站久久成人精品| 久久久久久久久久成人| 亚洲精品亚洲一区二区| 亚洲精品国产成人久久av| 在现免费观看毛片| 99热精品在线国产| 嫩草影视91久久| 十八禁网站免费在线| www.www免费av| 国产精品久久电影中文字幕| 内射极品少妇av片p| 97碰自拍视频| 亚洲性夜色夜夜综合| 亚洲国产色片| 大又大粗又爽又黄少妇毛片口| 久久香蕉精品热| 国产主播在线观看一区二区| 色精品久久人妻99蜜桃| 日韩欧美国产在线观看| 精品福利观看| 国产伦精品一区二区三区视频9| 亚洲七黄色美女视频| 亚洲成a人片在线一区二区| 国产欧美日韩精品一区二区| 久久欧美精品欧美久久欧美| 99在线人妻在线中文字幕| 免费观看的影片在线观看| 精品久久久久久久久久久久久| 成人国产综合亚洲| 97人妻精品一区二区三区麻豆| 淫秽高清视频在线观看| 一级av片app| 中国美白少妇内射xxxbb| 97碰自拍视频| а√天堂www在线а√下载| 桃色一区二区三区在线观看| 欧美绝顶高潮抽搐喷水| 一级a爱片免费观看的视频| 亚洲最大成人av| 51国产日韩欧美| 国产激情偷乱视频一区二区| 人人妻,人人澡人人爽秒播| 国产精品日韩av在线免费观看| 麻豆国产av国片精品| 精品久久久久久久久久免费视频| 国产高潮美女av| 免费高清视频大片| 99热6这里只有精品| 可以在线观看毛片的网站| 欧美日韩黄片免| 88av欧美| 别揉我奶头~嗯~啊~动态视频| 国内精品久久久久精免费| 亚洲电影在线观看av| 久久精品国产清高在天天线| 亚洲欧美日韩高清专用| 少妇的逼水好多| 欧美+亚洲+日韩+国产| 欧美一区二区国产精品久久精品| 亚洲一区高清亚洲精品| 国产免费男女视频| 草草在线视频免费看| 男女视频在线观看网站免费| 真实男女啪啪啪动态图| 亚洲 国产 在线| 噜噜噜噜噜久久久久久91| 少妇人妻精品综合一区二区 | 国产免费一级a男人的天堂| 日韩欧美三级三区| 久久久国产成人免费| 亚洲在线自拍视频| 欧美日本亚洲视频在线播放| 色播亚洲综合网| 亚洲不卡免费看| 波野结衣二区三区在线| 99久久中文字幕三级久久日本| 亚洲精品久久国产高清桃花| 国产在线精品亚洲第一网站| 成人国产一区最新在线观看| 男女之事视频高清在线观看| 在线播放国产精品三级| 我的老师免费观看完整版| 哪里可以看免费的av片| 精品无人区乱码1区二区| 欧美一级a爱片免费观看看| 国产视频一区二区在线看| 熟女人妻精品中文字幕| 精品久久久久久久人妻蜜臀av| 国产午夜福利久久久久久| 国产黄a三级三级三级人| 欧美色视频一区免费| 日日夜夜操网爽| 亚洲av日韩精品久久久久久密| 色综合站精品国产| 桃色一区二区三区在线观看| 免费观看精品视频网站| 久久久久久久亚洲中文字幕| 97超视频在线观看视频| 色综合站精品国产| 国产精品久久视频播放| 极品教师在线视频| 极品教师在线视频| 尤物成人国产欧美一区二区三区| 久久久久精品国产欧美久久久| 少妇的逼水好多| 亚洲第一区二区三区不卡| 日本色播在线视频| 麻豆国产97在线/欧美| 色精品久久人妻99蜜桃| 亚洲一区高清亚洲精品| 99热精品在线国产| av天堂中文字幕网| 亚洲真实伦在线观看| 亚洲自偷自拍三级| 成人午夜高清在线视频| 国产成人aa在线观看| 国产综合懂色| 亚洲精品在线观看二区| 啪啪无遮挡十八禁网站| 中文在线观看免费www的网站| av.在线天堂| 亚洲av美国av| 国产亚洲欧美98| 黄色一级大片看看| 欧美黑人欧美精品刺激| 国产美女午夜福利| 一个人看的www免费观看视频| 日日撸夜夜添| 精品无人区乱码1区二区| 成人高潮视频无遮挡免费网站| 国产主播在线观看一区二区| 一本一本综合久久| 午夜日韩欧美国产| 九九久久精品国产亚洲av麻豆| 99久久精品国产国产毛片| 成人欧美大片| 一a级毛片在线观看| 最后的刺客免费高清国语| 日韩大尺度精品在线看网址| 亚洲成人久久性| 听说在线观看完整版免费高清| 国产精品久久久久久久久免| 精品一区二区三区人妻视频| 国产精品精品国产色婷婷| 特大巨黑吊av在线直播| 亚洲一区二区三区色噜噜| 亚洲av日韩精品久久久久久密| 蜜桃亚洲精品一区二区三区| 久久久久久九九精品二区国产| 偷拍熟女少妇极品色| 久久精品国产亚洲av天美| 不卡一级毛片| 听说在线观看完整版免费高清| 亚洲久久久久久中文字幕| 夜夜看夜夜爽夜夜摸| 久久久久久大精品| 欧美极品一区二区三区四区| 国产爱豆传媒在线观看| 欧美zozozo另类| 乱码一卡2卡4卡精品| 欧美+亚洲+日韩+国产| 99国产精品一区二区蜜桃av| 少妇的逼水好多| avwww免费| 麻豆成人午夜福利视频| 国产精品一区二区三区四区免费观看 | 最近在线观看免费完整版| 日韩在线高清观看一区二区三区 | 无人区码免费观看不卡| 欧美区成人在线视频| 精品久久久久久久久av| 久久精品国产99精品国产亚洲性色| 亚洲专区国产一区二区| 国产精品爽爽va在线观看网站| 成人二区视频| 日韩欧美 国产精品| 亚洲av一区综合| 蜜桃久久精品国产亚洲av| 成人毛片a级毛片在线播放| av在线天堂中文字幕| 国内久久婷婷六月综合欲色啪| 人妻夜夜爽99麻豆av| 日韩强制内射视频| 国产 一区 欧美 日韩| 日韩欧美国产一区二区入口| 亚洲黑人精品在线| 成人一区二区视频在线观看| 97人妻精品一区二区三区麻豆| 国产亚洲av嫩草精品影院| 亚洲国产日韩欧美精品在线观看| 国内揄拍国产精品人妻在线| 亚洲一区高清亚洲精品| 22中文网久久字幕| 亚洲精品久久国产高清桃花| 日韩,欧美,国产一区二区三区 | 亚洲,欧美,日韩| 美女高潮喷水抽搐中文字幕| 日韩欧美在线二视频| 成人国产一区最新在线观看| 日本欧美国产在线视频| 黄色配什么色好看| 美女xxoo啪啪120秒动态图| 日本在线视频免费播放| 99国产极品粉嫩在线观看| 中亚洲国语对白在线视频| 国产精品人妻久久久久久| 久久精品国产亚洲av香蕉五月| 午夜激情欧美在线| 小说图片视频综合网站| 女人十人毛片免费观看3o分钟| 午夜精品一区二区三区免费看| 欧美日本亚洲视频在线播放| 午夜爱爱视频在线播放| 久久香蕉精品热| 超碰av人人做人人爽久久| 最近最新中文字幕大全电影3| 99国产极品粉嫩在线观看| 久久久久九九精品影院| 久久久久国产精品人妻aⅴ院| 亚洲熟妇中文字幕五十中出| 中文在线观看免费www的网站| 欧美日本亚洲视频在线播放| 狂野欧美白嫩少妇大欣赏| 婷婷精品国产亚洲av| 黄色丝袜av网址大全| 成年女人看的毛片在线观看| 偷拍熟女少妇极品色| 欧美一级a爱片免费观看看| 久久精品国产自在天天线| 国产麻豆成人av免费视频| 网址你懂的国产日韩在线| 国产av不卡久久| 免费黄网站久久成人精品| 午夜福利在线在线| 午夜精品久久久久久毛片777| 成人国产综合亚洲| 校园人妻丝袜中文字幕| 欧美潮喷喷水| 免费不卡的大黄色大毛片视频在线观看 | 日韩高清综合在线| 淫妇啪啪啪对白视频| 国产男靠女视频免费网站| 一本一本综合久久| 国产在线男女| 最好的美女福利视频网| 高清日韩中文字幕在线| 亚洲av成人av| 精品久久久久久久末码| 99热这里只有精品一区| 色5月婷婷丁香| 欧美bdsm另类| www.www免费av| 国内精品久久久久精免费| 国产乱人视频| 国产精品精品国产色婷婷| 国产精品久久久久久久久免| 网址你懂的国产日韩在线| 97超视频在线观看视频| 成人性生交大片免费视频hd| 亚洲中文日韩欧美视频| 午夜影院日韩av| 91久久精品国产一区二区成人| 观看免费一级毛片| 日韩精品青青久久久久久| 亚洲va在线va天堂va国产| 久久精品国产亚洲av涩爱 | 久久精品国产亚洲av香蕉五月| 亚洲一区高清亚洲精品| 精品人妻1区二区| a在线观看视频网站| 免费看光身美女| 国国产精品蜜臀av免费| 免费观看精品视频网站| 亚洲av免费在线观看| 特大巨黑吊av在线直播| 亚洲国产精品sss在线观看| 午夜爱爱视频在线播放| 日韩欧美 国产精品| 午夜免费激情av| 99久久九九国产精品国产免费| or卡值多少钱| 看片在线看免费视频| 日日撸夜夜添| 中文字幕人妻熟人妻熟丝袜美| 日本色播在线视频| 国产精品伦人一区二区| 少妇人妻一区二区三区视频| 国产视频内射| 久久久午夜欧美精品| 久久九九热精品免费| 老熟妇乱子伦视频在线观看| 69av精品久久久久久| 赤兔流量卡办理| 天堂√8在线中文| 国产精品永久免费网站| 少妇被粗大猛烈的视频| 免费看日本二区| av天堂在线播放| 精品一区二区三区视频在线| 悠悠久久av| 免费观看的影片在线观看| 在线a可以看的网站| 搡老妇女老女人老熟妇| 欧美+日韩+精品| 欧美一区二区国产精品久久精品| 窝窝影院91人妻| 亚洲18禁久久av| 国产精品永久免费网站| 丰满的人妻完整版| 国内久久婷婷六月综合欲色啪| 搡老岳熟女国产| 欧美丝袜亚洲另类 | 可以在线观看的亚洲视频| 欧美日韩综合久久久久久 | 特级一级黄色大片| 九九热线精品视视频播放| 亚洲欧美日韩高清在线视频| 日韩欧美一区二区三区在线观看| 欧美极品一区二区三区四区| 久久精品夜夜夜夜夜久久蜜豆| 欧美中文日本在线观看视频| 日本五十路高清| 久久久国产成人免费| 国产视频一区二区在线看| 亚洲五月天丁香| 又黄又爽又免费观看的视频| 女人十人毛片免费观看3o分钟| 亚洲午夜理论影院| 精品一区二区免费观看| 中出人妻视频一区二区| 少妇被粗大猛烈的视频| 在线免费观看不下载黄p国产 | a在线观看视频网站| 三级男女做爰猛烈吃奶摸视频| 啪啪无遮挡十八禁网站| 在线a可以看的网站| 亚洲精品影视一区二区三区av| 天天一区二区日本电影三级| 99国产精品一区二区蜜桃av| 亚洲av二区三区四区| 亚洲欧美日韩卡通动漫| 亚洲经典国产精华液单| 性色avwww在线观看| av天堂中文字幕网| 春色校园在线视频观看| 国产免费一级a男人的天堂| 给我免费播放毛片高清在线观看| 午夜福利在线观看免费完整高清在 | 日韩精品有码人妻一区| 特大巨黑吊av在线直播| 久久亚洲精品不卡| 亚洲图色成人| 99热只有精品国产| 天堂网av新在线| 97超视频在线观看视频| 国产探花在线观看一区二区| 国产黄a三级三级三级人| 窝窝影院91人妻| 男女边吃奶边做爰视频| 国产亚洲精品综合一区在线观看| 免费观看人在逋| 内射极品少妇av片p| 一夜夜www| 少妇熟女aⅴ在线视频| 少妇裸体淫交视频免费看高清| 日日摸夜夜添夜夜添av毛片 | 国产白丝娇喘喷水9色精品| 午夜亚洲福利在线播放| 成人高潮视频无遮挡免费网站| 变态另类丝袜制服| 国产单亲对白刺激| 欧美+日韩+精品| 午夜福利欧美成人| 美女cb高潮喷水在线观看| 日韩欧美国产在线观看| 麻豆久久精品国产亚洲av| 欧美性感艳星| 99热这里只有是精品50| 午夜福利欧美成人| 三级毛片av免费| 黄色日韩在线| 亚洲熟妇熟女久久| 色尼玛亚洲综合影院| 久久精品91蜜桃| 嫩草影院新地址| 美女被艹到高潮喷水动态| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美激情综合另类| 999久久久精品免费观看国产| 亚洲av第一区精品v没综合| 国产激情偷乱视频一区二区| 久久99热这里只有精品18| 午夜激情福利司机影院| av天堂中文字幕网| 我要看日韩黄色一级片| 亚洲国产精品久久男人天堂| av天堂中文字幕网| 日日撸夜夜添| 啦啦啦啦在线视频资源| 色综合色国产| 淫秽高清视频在线观看| 美女被艹到高潮喷水动态| www.色视频.com| 亚洲久久久久久中文字幕| www日本黄色视频网| 97超级碰碰碰精品色视频在线观看| 亚洲av五月六月丁香网| 国产男人的电影天堂91| 内地一区二区视频在线| 午夜福利在线在线| 国产淫片久久久久久久久| 亚洲av二区三区四区| 91久久精品国产一区二区成人| 91在线观看av| 亚洲熟妇中文字幕五十中出| 久久草成人影院| 波多野结衣高清无吗| 国产欧美日韩一区二区精品| h日本视频在线播放| 亚洲av熟女| 伊人久久精品亚洲午夜| 88av欧美| 日韩欧美在线二视频| 一区二区三区高清视频在线| 日本爱情动作片www.在线观看 | 精品一区二区三区av网在线观看| 18禁黄网站禁片免费观看直播| 亚洲人与动物交配视频| 色哟哟哟哟哟哟| 18禁裸乳无遮挡免费网站照片| 少妇高潮的动态图| 在线观看美女被高潮喷水网站| 成人国产一区最新在线观看| 国内精品久久久久久久电影| 国产三级在线视频| 老司机福利观看| 99久久中文字幕三级久久日本| 精品国内亚洲2022精品成人| 超碰av人人做人人爽久久| 黄色配什么色好看| 久久国内精品自在自线图片| 亚洲 国产 在线| 欧美中文日本在线观看视频| 亚洲综合色惰| 国产在线男女| 欧美在线一区亚洲| 亚洲电影在线观看av| 狂野欧美白嫩少妇大欣赏| 少妇人妻一区二区三区视频| 国产在视频线在精品| 国产精品人妻久久久影院| 又爽又黄a免费视频| 变态另类丝袜制服| 不卡视频在线观看欧美| 日本爱情动作片www.在线观看 | 亚洲无线观看免费| 国产精品一及| 亚洲成a人片在线一区二区| 午夜福利在线观看免费完整高清在 | 精品久久久噜噜| 丰满人妻一区二区三区视频av| 国产精品永久免费网站| eeuss影院久久| 久久草成人影院| 国产精品无大码| 欧美丝袜亚洲另类 | 一级黄片播放器| 一区二区三区高清视频在线| 久久午夜亚洲精品久久| 一区二区三区激情视频| 色综合站精品国产| 国产在视频线在精品| 久久亚洲精品不卡| 国产成人a区在线观看| 我要看日韩黄色一级片| 在线观看66精品国产| 最近在线观看免费完整版| 国产三级在线视频| 久久精品国产亚洲av天美| 久久婷婷人人爽人人干人人爱| 久久久国产成人精品二区| 97碰自拍视频| 久久久国产成人免费| 99久久九九国产精品国产免费| 精品免费久久久久久久清纯| 欧美人与善性xxx| 狂野欧美激情性xxxx在线观看| 亚洲中文日韩欧美视频| 亚洲av日韩精品久久久久久密| 国产激情偷乱视频一区二区| 亚洲精品粉嫩美女一区| 国产探花在线观看一区二区| 久久人人爽人人爽人人片va| 亚洲av成人精品一区久久| 美女高潮喷水抽搐中文字幕| 十八禁国产超污无遮挡网站| 国产91精品成人一区二区三区| 亚洲天堂国产精品一区在线| 久久中文看片网| 精品久久久久久久久久免费视频| 88av欧美| 国产色婷婷99| 亚洲国产欧洲综合997久久,| 日韩大尺度精品在线看网址| 麻豆国产97在线/欧美| 亚洲成av人片在线播放无| 色播亚洲综合网| 欧美一区二区精品小视频在线| 一级av片app| 欧美黑人欧美精品刺激| 久久精品国产亚洲av涩爱 | 欧美zozozo另类| 人妻夜夜爽99麻豆av| 国产精品久久久久久久久免| 国产欧美日韩精品亚洲av| 免费看光身美女| 1024手机看黄色片| 国产一区二区在线观看日韩| 日日夜夜操网爽| 亚洲国产精品成人综合色| 麻豆久久精品国产亚洲av| 婷婷丁香在线五月| 国产成人福利小说| 国语自产精品视频在线第100页| 国产美女午夜福利| 国产免费av片在线观看野外av| 色综合婷婷激情| 国模一区二区三区四区视频| 国产三级中文精品| 色尼玛亚洲综合影院| 亚洲最大成人av| 久久香蕉精品热| 欧美丝袜亚洲另类 | 国产精品不卡视频一区二区| 欧美xxxx黑人xx丫x性爽| 精品人妻1区二区| 国产 一区 欧美 日韩| 亚洲av一区综合| 亚洲一区二区三区色噜噜| 老司机福利观看| 女生性感内裤真人,穿戴方法视频| 亚洲色图av天堂| 在线免费观看不下载黄p国产 | 18+在线观看网站| 99riav亚洲国产免费| 午夜福利18| 黄色欧美视频在线观看| 国产高清有码在线观看视频| 悠悠久久av| 亚洲不卡免费看| 中文字幕熟女人妻在线| 久久精品91蜜桃| 婷婷丁香在线五月| 琪琪午夜伦伦电影理论片6080| 波野结衣二区三区在线| 欧美色欧美亚洲另类二区| 97超视频在线观看视频| 成人高潮视频无遮挡免费网站| 精品人妻熟女av久视频| 一进一出好大好爽视频| 亚洲第一区二区三区不卡| 老司机午夜福利在线观看视频| 99在线人妻在线中文字幕| 国产乱人伦免费视频| 亚洲欧美激情综合另类| 亚洲精品色激情综合| 91在线观看av| 久久午夜亚洲精品久久| avwww免费| 国产亚洲精品av在线| 亚洲四区av| avwww免费| 欧美日本视频| 国产精华一区二区三区| 亚洲乱码一区二区免费版| 亚洲三级黄色毛片| 亚洲精华国产精华精| 午夜影院日韩av| 精品国内亚洲2022精品成人| 色精品久久人妻99蜜桃| 亚洲成人精品中文字幕电影| 黄色欧美视频在线观看| 性插视频无遮挡在线免费观看| 日韩精品青青久久久久久| av在线老鸭窝| 丝袜美腿在线中文| 欧美+亚洲+日韩+国产| 国产色爽女视频免费观看| 久久6这里有精品| av天堂在线播放| 人妻丰满熟妇av一区二区三区| 日本 欧美在线| 无遮挡黄片免费观看| 啦啦啦观看免费观看视频高清| 亚洲精华国产精华精| 国产真实伦视频高清在线观看 | 国产高清有码在线观看视频| 嫩草影视91久久| 亚洲在线自拍视频| 天天躁日日操中文字幕| 人人妻人人澡欧美一区二区|