• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Divertor detachment operation in helium plasmas with ITER-like tungsten divertor in EAST

    2022-08-01 11:34:12JianbinLIU劉建斌LingyiMENG孟令義HouyangGUO郭后揚(yáng)KedongLI李克棟JichanXU許吉禪HuiqianWANG汪惠乾GuoshengXU徐國(guó)盛FangDING丁芳LingZHANG張凌YanminDUAN段艷敏BinZHANG張斌LinYU余林PingWANG汪平AngLI李昂DongguiWU吳東貴RuiDING丁銳andLiangWANG王亮
    Plasma Science and Technology 2022年7期
    關(guān)鍵詞:張斌

    Jianbin LIU(劉建斌),Lingyi MENG(孟令義),2,Houyang GUO(郭后揚(yáng)),Kedong LI(李克棟),2,Jichan XU(許吉禪),Huiqian WANG(汪惠乾),Guosheng XU(徐國(guó)盛),Fang DING(丁芳),Ling ZHANG(張凌),Yanmin DUAN(段艷敏),Bin ZHANG(張斌),Lin YU(余林),2,Ping WANG(汪平),2,Ang LI(李昂),2,Donggui WU(吳東貴),2,Rui DING(丁銳),?and Liang WANG(王亮),5,?

    1 Institute of Plasma Physics,HFIPS,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    2 University of Science and Technology of China,Hefei 230026,People’s Republic of China

    3 School of Mechanical Engineering,Anhui University of Science &Technology,Huainan 232001,People’s Republic of China

    4 General Atomics,San Diego,California 92186,United States of America

    5 Institute of Energy,Hefei Comprehensive National Science Centre,Hefei 230031,People’s Republic of China

    Abstract Detachment in helium(He)discharges has been achieved in the EAST superconducting tokamak equipped with an ITER-like tungsten divertor.This paper presents the experimental observations of divertor detachment achieved by increasing the plasma density in He discharges.During density ramp-up,the particle flux shows a clear rollover,while the electron temperature around the outer strike point is decreasing simultaneously.The divertor detachment also exhibits a significant difference from that observed in comparable deuterium(D)discharges.The density threshold of detachment in the He plasma is higher than that in the D plasma for the same heating power,and increases with the heating power.Moreover,detachment assisted with neon(Ne)seeding was also performed in L-and H-mode plasmas,pointing to the direction for reducing the density threshold of detachment in He operation.However,excessive Ne seeding causes confinement degradation during the divertor detachment phase.The precise feedback control of impurity seeding will be performed in EAST to improve the compatibility of core plasma performance with divertor detachment for future high heating power operations.

    Keywords:divertor detachment,helium plasma,density threshold,EAST

    1.Introduction

    The first non-nuclear operation phase for ITER will be conducted with hydrogen(H)or helium(He)plasmas[1,2].During this phase,divertor detachment as an ITER baseline scenario still needs to be evaluated and investigated in existing divertor tokamaks,especially those with ITER-like tungsten(W)divertors.Experimental and modeling studies on detachment in deuterium(D)plasmas have been carried out in many tokamaks,such as ASDEX-Upgrade[3],DIII-D[4,5],JET[6,7],JT-60U[8],TCV[9],HL-2A[10]and EAST[11,12].However,He plasmas for the investigation of divertor detachment have constituted only a small fraction of discharges[13–15].Previous experiments have found that the divertor detachment density threshold in He is higher than that in D,which may be due to the difference in atomic and molecular physical processes between deuterium and helium plasmas.A detailed understanding of the detachment behavior and the effect of detachment on the main plasma performance still remain elusive.

    For the first time,divertor detachment has been realized in He discharges on EAST with an ITER-like W-divertor configuration.The latest experimental studies on divertor detachment in He plasmas are presented in this paper.Section 2 introduces the dedicated experimental setup and key diagnostics.The basic features of L-mode detachment and the effects of detachment with impurity injection in He plasmas are introduced in section 3.Finally,the experimental summary is given in section 4.

    2.Experimental setup and diagnostics

    EAST featuring an ITER-like water-cooled W/Cu monoblock divertor configuration was designed for long-pulse operations in an ITER-relevant metal wall environment,providing a unique platform to address the physics and engineering issues for ITER operation[16].It is a fully superconducting tokamak with a major and minor radius ofR~1.9 m anda~0.45 m,respectively[17].The experiments were obtained mostly in upper single null(USN)discharges with lower hybrid wave(LHW)heating,electron cyclotron resonance heating(ECRH)and neutral beam injection heating.Helium was adopted as the working gas in the experiments performed for this study,which was puffed from the high-field mid-plane.Due to the higher H-mode power threshold in helium plasma in EAST[18],the detachment experiments presented in this paper were mainly obtained in USN L-mode discharges with the favorableBTdirection(the ion ?Bdrift direction towards the upper divertor).The boundary and divertor diagnostics in EAST are shown in figure 1.A total of 54 triple-divertor Langmuir probes(LPs)are embedded in the UI and UO divertor target plates through two horizontal ports,D and O.These probes serve as the main diagnostics for the divertor detachment study,with high spatial and temporal resolutions,i.e.12–18 mm(poloidally)and 20 μs,respectively.Most of the experimental data presented below were obtained with divertor triple LP arrays,capable of measuring the ion saturation current density(Jsat),positive biased potential(Vp)and floating potential(Vf).The particle flux and electron temperature at the divertor targets can be directly derived from divertor LP measurements,as introduced in[19,20].The surface temperatures of the UI and UO divertor targets are obtained by infrared(IR)cameras located in the horizontal port[21].Absolute extreme ultraviolet(AXUV)detector arrays were installed in the upper-vertical port C and horizontal port P to measure the total radiated power and distributions in the bulk plasma[22].The line emissions of the He atoms and impurities(such as W)in the mid-plane and the W-divertor are obtained from the ultraviolet(EUV)spectrometer and Div-W diagnostic system[23,24].The reflectometry and multi-channel electron cyclotron emission(ECE)diagnostics can provide information on the edge electron density(ne)and temperature(Te)profiles separately[25,26].

    3.Experimental results and discussions

    3.1.Characteristics of divertor detachment in helium L-mode discharges

    In the 2019 EAST experimental campaign,detachment with the ITER-like W-divertor was firstly performed by ramping up the plasma density in USN L-mode helium discharges[27].As commonly used in D detachment studies,the onset of the detachment in He plasma can be marked by the rollover in the ion saturation current density(Jsat)near the strike point[28].Here,the line-averaged electron density(ne)corresponding to the beginning of the rollover is defined as the divertor detachment threshold.Figure 2 shows the characteristics of a density ramp-up helium discharge withBT~2.4 T andIp~0.4 MA in the favorableBTdirection.During the density ramp-up phase,the intensity of the He I emission keeps increasing withne.The peakJsatat the UO divertor shows a clear rollover atne~4.8×1019m-3,i.e.at the Greenwald density fraction(ne/nG)~0.76.The electron temperature(Te,div)of~10 eV corresponds to the rollover of peakJsat,which is different from that in D plasma.Compared to the electron temperature,the peak surface temperature measured by the IR camera also exhibits a similar downward trend.This discharge was mainly heated by LHW(PLHW~2 MW)and ECRH(PECRH~0.8 MW).In the discharge #87173 with a high plasma edge safety factor(pitch of the magnetic field lines)q95~6,the plasma stored energy,WMHD,did not experience a noticeable reduction during the detachment phase.It is also noted that the threshold of helium detachment onset is significantly higher than that in deuterium discharges with similar plasma configuration and parameters[11].

    Figure 1.Layout of the boundary and divertor diagnostics,showing a typical USN shape in EAST.UI(O)—upper inner(outer)divertor target,LP—Langmuir probe,CH—channel of divertor LP,AXUV—absolute extreme ultraviolet detector arrays,EUV—extreme ultraviolet spectrometers,and Div-W–the multi-channel visible spectroscopic diagnostic system.

    Figure 2.(a)Contour of Jsat at the UO divertor targets for a USN L-mode discharge in He plasma with favorable BT.The lineaveraged density(ne)and the He I emission are shown in panel(b),(c)the peak surface temperature(TIR)of the target and the electron temperature(Te,div)near the strike point,(d)the auxiliary heating power including LHW and ECRH,(e)the temporal evolution of the plasma stored energy(WMHD)and the edge safety factor(q95).The green dashed line corresponds to the rollover of Jsat,indicating the onset of detachment.

    Figure 3 shows the evolutions of peakJsatand electron temperature at the UI and UO divertor targets,measured by the divertor LPs,as a function of the Greenwald density fraction.The data are obtained from three He discharges with different SOL power(PSOL)levels,together with a D discharge(#85094)closely matched to the He discharge(#87165)as a reference.More detailed information on the plasma parameters can be found in table 1.Note thatPSOLrepresents the power entering the SOL and is defined as

    wherePOhmandPauxare the ohmic power and the absorbed auxiliary heating power,respectively.Pradis the total radiated power in the core plasma measured by the AXUV system in EAST,and dW/dtis the rate of change in the plasma stored energy.Similar to D plasmas,detachment at the inner divertor occurs at much lower densities than that at the outer divertor.Te,divat the inner target in He plasmas appears to be relatively low at all densities for all the power levels,as shown in figure 3(c).Figures 3(b)and(d)show the evolutions ofJsatandTe,divon the UO divertor target with increasing density for the different SOL powers in He and D plasmas.The onset of the detached divertor operation is indicated by the rollover ofJsatat the target as the plasma density increases,which is associated with a significant reduction inTe,div,i.e.~10 eV or below.As can be seen in figure 3 and table 1,the density threshold for the onset of detachment is sensitive to the level of the SOL power and increases with the input power.The density threshold of divertor detachment at the UI target is significantly lower than that at the UO divertor.

    Figure 4 shows a direct comparison between D and He plasmas with favorableBT.The magnetic equilibria were kept as uniform and stable as possible.In particular,the position of the strike point on the UO target is well matched during the density ramp-up.The discharges presented here have plasma currentIp=0.4 MA,toroidal fieldBT=2.4 T,and total heating powerPtotal~1.1 MW,withneincreasing from~2.5×1019to~4.2×1019m-3.The edge plasma density(nedge,ρ~0.9at ρ~0.9)shown in figure 4(c)was kept nearly consistent during the density ramp-up phase.Figures 4(d)and(f)show that the electron temperature(at ρ~0.8)and the plasma stored energy(WMHD)in the He plasma have a marginally higher level than that in the D plasma,which is a general phenomenon,as observed in previous He plasma experiments in EAST.It is often found that there is a slight increase in radiation power(Prad)for He plasmas,as shown in figure 4(e).From figure 4(b)and table 1,with similar heating power,the SOL power in the He plasma(PSOL~0.75 MW)is lower than that in the D plasma(PSOL~0.9 MW).However,the divertor detachment(#87165,ne/nG~0.58,nedge,ρ~0.9~1.6×1019m-3)occurs at a marginally higher density in the He plasmas,relative to the D reference case(#85094,ne/nG~0.52,nedge,ρ~0.9~1.5×1019m-3).It is not yet clear why the density at the detachment onset at the outer divertor in He discharge is slightly different from that in the D plasma.The underlying reason responsible for the difference in the divertor detachment onset may be associated with the different atomic/molecular processes.Comparisons with SOLPS simulations for matched EAST helium discharges are underway to further clarify this.

    Figure 3.The evolutions of the peak ion saturation current density,Jsat((a),(b))and electron temperature,Te,div((c),(d))near the strike point on the UI(left)and UO(right)divertor targets with increasing density.The dashed lines indicate the onset of detachment at outer targets for the different shots.

    Table 1.Basic plasma parameters of the He and D discharges presented here.

    Initial studies on the relationship between the detachment threshold density and SOL power have also been done in D and He plasmas.Figure 5 shows the statistical results of the divertor detachment threshold in the upper outer divertor versus the power entering the SOL(PSOL)for EAST USN discharges with favorableBTdirection.Detailed information on the statistics can be found in table 1.The plasma current and the toroidal field of the statistic discharges are around 0.4 MA and 2.2–2.4 T,respectively.As shown in figure 5,the detachment threshold of normalized density in D plasmas ranges between 0.5 and 0.65 for L-mode,and between 0.6 and 0.85 for H-mode,increasing with power in both cases.The detachment density threshold in He plasmas also increases with power,but is slightly higher than that in D plasmas for L-mode,i.e.at relatively lowPSOL.Note that the detachment density threshold in He plasmas continuously increases until much higherPSOL,but still in L-mode.Therefore,it is very difficult to achieve H-mode detachment simply by density ramp-up,due to the higher power threshold of L–H transition for He discharges.

    Figure 4.Left:comparison of the main parameters between D(#85094)and He(#87165)plasmas in USN L-mode discharges.The panels from top to bottom represent(a)plasma current Ip,(b)power entering the SOL(PSOL),(c)line-averaged density ne and edge density at ρ~0.9,(d)edge electron temperature at the low-field-side mid-plane at ρ~0.8,(e)total radiation power Prad,(f)plasma stored energy WMHD.Right:equilibrium configuration for favorable BT at t~4.9 s for #85094 and t~6.3 s for #87165.

    Figure 5.The ratio of detachment threshold density to Greenwald density for UO divertor detachment in D L-mode and H-mode,as well as He L-mode discharges in EAST for favorable BT.PSOL is the plasma transport power crossing the separatrix.

    3.2.Detachment with impurity injection in helium discharges

    For future fusion devices with hot core confinement and long pulses,strong divertor detachment is required to mitigate excessive particle and heat fluxes at the divertor target.Detachment can be achieved in L-and H-mode discharges by ramping up the plasma density.However,it requires a high Greenwald density fraction(i.e.a relatively high plasma density)to achieve cold,highly detached divertor conditions[29]in the case of high heating power(see figures 3 and 5).Such high upstream density may not be compatible with high core confinement scenarios[30].As found in EAST and other tokamaks,the H-mode threshold power in the He plasma is higher than that in D plasma;thus,the density threshold to maintain the detachment is higher in He H-mode plasmas.It is also found that divertor detachment in most present tokamaks significantly reduces the plasma confinement at high densities[31].Thus,it is difficult to maintain divertor detachment in He plasmas by simply helium fueling in highpower steady-state H-mode discharges.Therefore,one effective solution is to seed impurities to achieve divertor detachment at relatively lower densities.Argon(Ar)and neon(Ne)are possible impurity seeding candidates to induce strong radiation in the divertor and edge plasma regions for promoting detachment.

    Divertor detachment in He plasmas with Ne seeding was performed during the 2019 EAST experimental campaign.Figure 6 shows the time evolution of the main parameters for a typical He L-mode discharge with Ne seeding(#94382)under the USN magnetic configuration.It was achieved at plasma currentIp=0.5 MA and toroidal magnetic fieldBT~2.4 T with favorableBT.The total heating power was approximately 4.8 MW including LHCD of 4.0 MW and ECRH of 0.8 MW,with the plasma stored energyWMHD~145 kJ and edge safety factorq95~5.4.Pure neon was injected into the plasma from the gas valve in the UO divertor SOL region with a pulse width of 75 ms and an interval of 125 ms between~5.1 and 6.4 s,as shown in figure 6(a).The line-averaged electron density(ne)increased from 4.0×1019m-3(ne/nG~0.51)before neon seeding to~5.0×1019m-3(ne/nG~0.64)after seeding,as shown in figure 6(b).With Ne gas puffing,the Ne radiation measured by the EUV spectrometer keeps increasing.Meanwhile,the total radiated power in the bulk plasma calculated by AXUV also significantly increases,i.e.from~0.6 MW at 5.4 s to~1.2 MW at 6.3 s.As shown in figure 6(c),it was also found that the radiated power did not increase immediately after Ne seeding until 5.4 s.A possible reason is that there is around 100–200 ms delay from the valve opening to the gas entering into the vacuum[32].As clearly shown in figures 6(a)and(f),Jsatin the UO divertor is significantly decreased when the neon gas is injected from the UO divertor,and is further reduced when the divertor plasma enters the detachment phase,withTe,divbeing reduced below 10 eV.The evolution of the peak surface temperature(TIR)at the UO divertor target shows a similar trend to that of the divertor electron temperature.Therefore,it should be beneficial to reduce the density threshold of detachment in He operation,consistent with the result in the D plasma.Note that the plasma stored energy is slightly degraded from~145 to~130 kJ upon detachment.

    Figure 6.The time evolutions of main parameters for a typical He L-mode discharge with Ne seeding.(a)The contour of Jsat on the UO divertor target,where the red lines correspond to the strike point(SP)position calculated from the EFIT equilibrium reconstruction and the Ne seeding waveform from the valve at the UO divertor target,respectively.(b)The line-averaged density ne and the He I emission.(c)The line emission of Ne impurity and the total radiation power(Prad,total).(d)The auxiliary heating power including LHW and ECRH.(e)The plasma stored energy WMHD and edge safety factor q95.(f)The peak temperature(TIR)at the surface of the UO divertor target and Te,div near the strike point measured by IR thermography diagnostic and divertor LPs.The black dashed line corresponds to the beginning of the decrease in Jsat and Te.

    Figure 7.The time traces of a helium H-mode discharge in EAST(shot #94396).The line-averaged electron density(ne)and Ne seeding rate are shown in panel(a).The traces shown in panels(b)and(c)are plasma stored energy(WMHD)and He line emission,respectively.The bottom panel(d)shows Jsat and the Te,div near the strike point at the UO divertor target.

    In addition,the experiment in H-mode plasmas was also studied by utilizing a small amount of pure Ne puffing from the UO target in EAST.This was performed atIp=0.45 MA andBT=2.4 T with favorableBTunder the USN magnetic configuration,withne~5.0×1019m-3,Ptotal~6.0 MW,WMHD~165 kJ,andq95~6.0.As shown in figure 7,JsatandTe,divdecreased significantly with Ne seeding.Meanwhile,the plasma stored energy,WMHD,was also reduced by about 30%.Due to the high threshold power in helium plasma and relatively open divertor geometry,too much core radiation due to the injection of Ne may adversely influence the core plasma performance and even result in H–L transition or disruptions.Therefore,accurate feedback control of impurity seeding rates is essential to maintain stable detachment for long-pulse high-performance operation in EAST and ITER.

    4.Summary

    Divertor detachment in helium plasmas has been demonstrated on EAST for the first time with pure RF heating and an ITER-like tungsten divertor.JsatandTe,divon the outer divertor target show a downward trend with the density ramping up in He plasmas,while the inner divertor plasma detaches at very low density,similar to the observations in deuterium plasmas.The density threshold for divertor detachment access in He L-mode plasmas is slightly higher than that in D L-mode plasmas for a given input power,and increases with the heating power.However,a much higher density is needed to achieve detachment in He H-mode due to the much higher power threshold for L–H transition in He than in D plasmas.The divertor detachment experiments with Ne seeding were also performed in L- and H-mode discharges with USN divertor configuration in EAST,and showed great prospects for reducing the density threshold of detachment in He operation.However,impurity seeding tends to contaminate core plasma and degrade confinement under strongly detached divertor conditions.These results will inform further investigations for the first phase of ITER operation in helium.

    Acknowledgments

    The authors would like to acknowledge the support and contributions of the EAST team.This work was supported by the National Key Research and Development Program of China(Nos.2017YFA0301300,2017YFE0402500 and 2019YFE03030000),National Natural Science Foundation of China(Nos.11905255,12005004,12022511,U1867222 and U19A20113),the Institute of Energy,Hefei Comprehensive National Science Center(No.GXXT-2020-004),AHNSF(No.2008085QA38),the CASHIPS Director’s Fund(No.BJPY2019B01)and the Key Research Program of Frontier Sciences of CAS(No.ZDBS-LY-SLH010).

    ORCID iDs

    猜你喜歡
    張斌
    夕陽(yáng)家園
    金秋(2022年10期)2022-11-25 16:28:12
    Design of three-dimensional imaging lidar optical system for large field of view scanning
    A scanning distortion correction method based ongalvanometer Lidar system?
    Lagrangian analysis of the formation and mass transport of compressible vortex rings generated by a shock tube?
    一路有你都是歌
    Dynamic measurement of beam divergence angle of different fields of view of scanning lidar?
    《花之戀》
    The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers?
    Monolithic all- fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber?
    天水同映長(zhǎng)安塔
    金秋(2018年12期)2018-09-17 09:33:08
    欧美人与性动交α欧美精品济南到| 男男h啪啪无遮挡| 国产国语露脸激情在线看| 精品久久久久久,| 啦啦啦韩国在线观看视频| а√天堂www在线а√下载| 黄网站色视频无遮挡免费观看| 精品午夜福利视频在线观看一区| 亚洲男人天堂网一区| 亚洲午夜精品一区,二区,三区| 女警被强在线播放| 亚洲熟妇中文字幕五十中出| 欧美三级亚洲精品| 精品日产1卡2卡| 免费看美女性在线毛片视频| 国产主播在线观看一区二区| 成人一区二区视频在线观看| 久久九九热精品免费| 国产欧美日韩一区二区三| 激情在线观看视频在线高清| 国产精品 欧美亚洲| 天天添夜夜摸| 日韩欧美国产一区二区入口| 久久国产亚洲av麻豆专区| a在线观看视频网站| АⅤ资源中文在线天堂| 此物有八面人人有两片| 亚洲av中文字字幕乱码综合 | 欧美日韩福利视频一区二区| 88av欧美| 波多野结衣高清无吗| netflix在线观看网站| 国产区一区二久久| 国产黄色小视频在线观看| av中文乱码字幕在线| 久久 成人 亚洲| 无人区码免费观看不卡| 色综合站精品国产| 亚洲美女黄片视频| av电影中文网址| √禁漫天堂资源中文www| 1024视频免费在线观看| 亚洲av美国av| 国产不卡一卡二| 白带黄色成豆腐渣| 在线av久久热| 成人亚洲精品一区在线观看| 一二三四在线观看免费中文在| 免费看日本二区| 51午夜福利影视在线观看| 免费看a级黄色片| 老司机深夜福利视频在线观看| 色av中文字幕| 久久精品91无色码中文字幕| 999久久久国产精品视频| 午夜久久久久精精品| 一级片免费观看大全| 99国产极品粉嫩在线观看| 91在线观看av| 婷婷丁香在线五月| 91av网站免费观看| 18禁黄网站禁片免费观看直播| 亚洲自偷自拍图片 自拍| 欧美大码av| 人成视频在线观看免费观看| 国产蜜桃级精品一区二区三区| 免费在线观看亚洲国产| 国产三级黄色录像| 97人妻精品一区二区三区麻豆 | 亚洲精品中文字幕在线视频| 波多野结衣巨乳人妻| 可以免费在线观看a视频的电影网站| 一夜夜www| 一边摸一边抽搐一进一小说| 亚洲性夜色夜夜综合| 欧美av亚洲av综合av国产av| 一边摸一边做爽爽视频免费| 亚洲精品av麻豆狂野| 亚洲免费av在线视频| 亚洲五月天丁香| 久久婷婷人人爽人人干人人爱| 日日摸夜夜添夜夜添小说| 国产成人一区二区三区免费视频网站| 一个人观看的视频www高清免费观看 | 亚洲成国产人片在线观看| 国产成人精品久久二区二区91| 日本精品一区二区三区蜜桃| 无遮挡黄片免费观看| 日本黄色视频三级网站网址| 一边摸一边做爽爽视频免费| 亚洲专区字幕在线| 日本在线视频免费播放| 可以在线观看的亚洲视频| 久久久久久久精品吃奶| 男女床上黄色一级片免费看| 欧美在线黄色| 麻豆久久精品国产亚洲av| 欧美乱色亚洲激情| 日本一本二区三区精品| 亚洲成人久久爱视频| 欧美zozozo另类| 国产av不卡久久| 欧美黑人精品巨大| 日本免费一区二区三区高清不卡| 亚洲国产精品合色在线| 高潮久久久久久久久久久不卡| 人妻久久中文字幕网| 精品熟女少妇八av免费久了| 两个人视频免费观看高清| 精品乱码久久久久久99久播| 国产一区在线观看成人免费| 日韩欧美 国产精品| 少妇 在线观看| 中文字幕精品免费在线观看视频| 91大片在线观看| 中文在线观看免费www的网站 | 亚洲精品色激情综合| 最好的美女福利视频网| 亚洲专区国产一区二区| netflix在线观看网站| 国产av一区在线观看免费| 精品熟女少妇八av免费久了| 色精品久久人妻99蜜桃| av在线天堂中文字幕| 免费电影在线观看免费观看| av中文乱码字幕在线| 色哟哟哟哟哟哟| 亚洲色图av天堂| 人人妻人人看人人澡| 国产成人啪精品午夜网站| 99精品久久久久人妻精品| 啪啪无遮挡十八禁网站| 叶爱在线成人免费视频播放| 在线永久观看黄色视频| 国产野战对白在线观看| 亚洲 欧美 日韩 在线 免费| 一区二区三区国产精品乱码| 欧美中文综合在线视频| 无人区码免费观看不卡| а√天堂www在线а√下载| 国产欧美日韩精品亚洲av| 波多野结衣高清作品| 两人在一起打扑克的视频| 精品久久蜜臀av无| 精品电影一区二区在线| 波多野结衣巨乳人妻| 亚洲精品国产一区二区精华液| 女警被强在线播放| 一本一本综合久久| 久久精品91无色码中文字幕| 男女之事视频高清在线观看| 美女高潮到喷水免费观看| 一a级毛片在线观看| 无遮挡黄片免费观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产欧美网| 精品国产乱子伦一区二区三区| 日日摸夜夜添夜夜添小说| 黄片大片在线免费观看| 51午夜福利影视在线观看| 听说在线观看完整版免费高清| 久久99热这里只有精品18| 男女下面进入的视频免费午夜 | 国产蜜桃级精品一区二区三区| 色在线成人网| 国产男靠女视频免费网站| 久久婷婷成人综合色麻豆| 精品福利观看| 777久久人妻少妇嫩草av网站| 岛国在线观看网站| 窝窝影院91人妻| 中文字幕久久专区| 天堂影院成人在线观看| 午夜福利成人在线免费观看| 精品欧美一区二区三区在线| www国产在线视频色| 精品欧美一区二区三区在线| 久久精品国产99精品国产亚洲性色| av福利片在线| 最近在线观看免费完整版| 久久九九热精品免费| www.www免费av| 桃红色精品国产亚洲av| 一区二区三区精品91| 精品久久久久久久末码| cao死你这个sao货| 免费搜索国产男女视频| 丝袜美腿诱惑在线| 久久精品国产亚洲av高清一级| 亚洲无线在线观看| 女性生殖器流出的白浆| 黄色视频不卡| 国内揄拍国产精品人妻在线 | 露出奶头的视频| 长腿黑丝高跟| 国产欧美日韩精品亚洲av| 国产黄a三级三级三级人| 国产欧美日韩精品亚洲av| 男女床上黄色一级片免费看| 日韩欧美三级三区| 欧美黑人欧美精品刺激| 亚洲精品色激情综合| 免费在线观看完整版高清| 岛国视频午夜一区免费看| 国产精品久久久av美女十八| 人人妻,人人澡人人爽秒播| 嫩草影视91久久| 老司机靠b影院| 999久久久国产精品视频| 日本黄色视频三级网站网址| 久久久久久免费高清国产稀缺| 欧美亚洲日本最大视频资源| 麻豆久久精品国产亚洲av| 国产精品综合久久久久久久免费| 亚洲av成人不卡在线观看播放网| 成人三级黄色视频| 国产三级在线视频| 午夜福利欧美成人| 亚洲第一av免费看| 亚洲片人在线观看| 天堂动漫精品| 琪琪午夜伦伦电影理论片6080| 俄罗斯特黄特色一大片| 18禁美女被吸乳视频| 丝袜人妻中文字幕| 午夜激情福利司机影院| 午夜福利成人在线免费观看| 黄色a级毛片大全视频| 国产亚洲精品一区二区www| www日本在线高清视频| 国产亚洲av高清不卡| 好男人电影高清在线观看| 丁香欧美五月| 国产高清激情床上av| 天堂√8在线中文| 免费观看人在逋| 一级片免费观看大全| 色播亚洲综合网| 在线观看日韩欧美| 日韩大码丰满熟妇| 香蕉国产在线看| 亚洲成国产人片在线观看| √禁漫天堂资源中文www| 国产精品一区二区免费欧美| 成人一区二区视频在线观看| 欧美乱码精品一区二区三区| 国语自产精品视频在线第100页| 动漫黄色视频在线观看| 99国产精品99久久久久| 色哟哟哟哟哟哟| 亚洲国产精品合色在线| 亚洲熟女毛片儿| 午夜免费成人在线视频| 村上凉子中文字幕在线| 亚洲国产精品999在线| 国产高清激情床上av| 欧美黄色片欧美黄色片| 国产精品爽爽va在线观看网站 | 午夜福利在线观看吧| 久久午夜亚洲精品久久| 久久香蕉激情| 成人国语在线视频| www.精华液| 啦啦啦观看免费观看视频高清| 观看免费一级毛片| 亚洲午夜理论影院| 中文亚洲av片在线观看爽| 久久久久亚洲av毛片大全| 国产成人系列免费观看| 亚洲激情在线av| 欧美日韩乱码在线| a在线观看视频网站| 成人国语在线视频| 亚洲人成网站高清观看| 久久久久免费精品人妻一区二区 | 亚洲全国av大片| 久久精品国产亚洲av香蕉五月| 波多野结衣高清作品| 俄罗斯特黄特色一大片| 99riav亚洲国产免费| 国产极品粉嫩免费观看在线| 男女那种视频在线观看| 久久精品亚洲精品国产色婷小说| 熟女电影av网| 搡老岳熟女国产| 国产精品日韩av在线免费观看| 男女视频在线观看网站免费 | 午夜亚洲福利在线播放| 午夜精品在线福利| 亚洲第一欧美日韩一区二区三区| 国产99久久九九免费精品| 日本熟妇午夜| 久久精品91蜜桃| 美女免费视频网站| 国产午夜精品久久久久久| а√天堂www在线а√下载| 后天国语完整版免费观看| 日本在线视频免费播放| 搡老熟女国产l中国老女人| 夜夜看夜夜爽夜夜摸| 亚洲自拍偷在线| 日韩三级视频一区二区三区| 在线天堂中文资源库| 一边摸一边抽搐一进一小说| 国产成人一区二区三区免费视频网站| 国产精品 欧美亚洲| netflix在线观看网站| 欧美日韩黄片免| 日韩 欧美 亚洲 中文字幕| 亚洲av电影在线进入| 一区二区三区精品91| 91麻豆av在线| 日日爽夜夜爽网站| 日本成人三级电影网站| 国产男靠女视频免费网站| 波多野结衣高清作品| 中亚洲国语对白在线视频| 亚洲第一欧美日韩一区二区三区| 免费观看精品视频网站| 色婷婷久久久亚洲欧美| 午夜免费成人在线视频| 欧美黄色片欧美黄色片| 啪啪无遮挡十八禁网站| 最新在线观看一区二区三区| 啦啦啦韩国在线观看视频| 女同久久另类99精品国产91| 国产在线观看jvid| 视频区欧美日本亚洲| 在线观看免费日韩欧美大片| 国产精品 欧美亚洲| 国产伦一二天堂av在线观看| 黄色 视频免费看| 亚洲男人天堂网一区| 久久亚洲真实| 欧美中文日本在线观看视频| 亚洲 欧美一区二区三区| 精品少妇一区二区三区视频日本电影| 村上凉子中文字幕在线| 亚洲av日韩精品久久久久久密| av视频在线观看入口| 日韩有码中文字幕| 午夜福利成人在线免费观看| 美国免费a级毛片| 国产精品影院久久| 一个人免费在线观看的高清视频| 亚洲色图 男人天堂 中文字幕| 一级片免费观看大全| 欧美中文综合在线视频| 精品免费久久久久久久清纯| 国产成人影院久久av| 亚洲国产中文字幕在线视频| 欧美日本视频| 午夜福利高清视频| 精品国产美女av久久久久小说| 国产午夜精品久久久久久| 在线观看免费日韩欧美大片| 国产精品久久电影中文字幕| 久久久久免费精品人妻一区二区 | 久久精品aⅴ一区二区三区四区| 国产一区二区三区在线臀色熟女| 真人一进一出gif抽搐免费| 亚洲中文日韩欧美视频| 午夜福利18| 国产黄a三级三级三级人| 两性夫妻黄色片| 成人三级做爰电影| 色播在线永久视频| 免费在线观看影片大全网站| 男人舔女人下体高潮全视频| 久久久精品欧美日韩精品| 女警被强在线播放| 日日夜夜操网爽| 精品少妇一区二区三区视频日本电影| www日本黄色视频网| 90打野战视频偷拍视频| 国产真实乱freesex| 最近最新中文字幕大全电影3 | 男人舔女人的私密视频| 国产私拍福利视频在线观看| 日本 欧美在线| 国产区一区二久久| 在线观看舔阴道视频| 一区二区三区高清视频在线| 欧美黄色片欧美黄色片| 日韩大码丰满熟妇| 成人亚洲精品av一区二区| 国产久久久一区二区三区| 18禁美女被吸乳视频| 一二三四在线观看免费中文在| 男女做爰动态图高潮gif福利片| 国产亚洲欧美在线一区二区| 国产欧美日韩精品亚洲av| 亚洲精品中文字幕一二三四区| 亚洲国产精品久久男人天堂| 动漫黄色视频在线观看| 黄色视频不卡| 精品一区二区三区四区五区乱码| 午夜日韩欧美国产| 国产野战对白在线观看| 免费观看人在逋| 美女扒开内裤让男人捅视频| 亚洲av五月六月丁香网| 在线观看一区二区三区| 国产精品 国内视频| 最近最新中文字幕大全电影3 | 国产成人系列免费观看| 国产亚洲精品久久久久5区| 色综合欧美亚洲国产小说| 女性被躁到高潮视频| 丰满的人妻完整版| 国产熟女午夜一区二区三区| 亚洲精品av麻豆狂野| 久久欧美精品欧美久久欧美| 国产精品日韩av在线免费观看| 美女 人体艺术 gogo| 黑人操中国人逼视频| 午夜影院日韩av| 啪啪无遮挡十八禁网站| 91大片在线观看| 麻豆久久精品国产亚洲av| 久久久久久大精品| aaaaa片日本免费| 熟妇人妻久久中文字幕3abv| 一a级毛片在线观看| 精品久久久久久久末码| 精品一区二区三区av网在线观看| 少妇粗大呻吟视频| 天天添夜夜摸| 久久久久国产一级毛片高清牌| 黑人巨大精品欧美一区二区mp4| 老汉色av国产亚洲站长工具| bbb黄色大片| 亚洲专区字幕在线| 国产主播在线观看一区二区| 18禁裸乳无遮挡免费网站照片 | 看黄色毛片网站| 午夜福利在线在线| 国产黄色小视频在线观看| 国产精品久久电影中文字幕| 久久久久久免费高清国产稀缺| videosex国产| 国产成人系列免费观看| 成人三级黄色视频| 免费看十八禁软件| 99精品在免费线老司机午夜| 亚洲精品一区av在线观看| 欧美黑人巨大hd| 亚洲 欧美一区二区三区| 人人妻人人澡欧美一区二区| 免费搜索国产男女视频| 黑人欧美特级aaaaaa片| 午夜福利在线在线| 欧美成人性av电影在线观看| 级片在线观看| 日本免费一区二区三区高清不卡| 久久精品91无色码中文字幕| 国产亚洲欧美精品永久| 午夜两性在线视频| 亚洲久久久国产精品| 日本一区二区免费在线视频| 亚洲av成人一区二区三| 村上凉子中文字幕在线| 一级片免费观看大全| 亚洲欧美日韩高清在线视频| 日韩精品青青久久久久久| 精品免费久久久久久久清纯| 人妻久久中文字幕网| 欧美成人午夜精品| 黄色女人牲交| 日本一区二区免费在线视频| netflix在线观看网站| 国产精品香港三级国产av潘金莲| 亚洲欧美激情综合另类| 亚洲五月色婷婷综合| 亚洲熟妇熟女久久| 老司机午夜十八禁免费视频| 欧美性长视频在线观看| 亚洲第一青青草原| 午夜精品久久久久久毛片777| 亚洲一区二区三区不卡视频| 国产精品香港三级国产av潘金莲| 一区二区三区精品91| 黑人操中国人逼视频| av在线播放免费不卡| 亚洲色图 男人天堂 中文字幕| 久久久久久久久中文| 国产主播在线观看一区二区| 精品熟女少妇八av免费久了| 岛国在线观看网站| 亚洲精品美女久久av网站| 午夜福利成人在线免费观看| 在线观看www视频免费| 欧美zozozo另类| 午夜免费鲁丝| 午夜福利欧美成人| 在线观看日韩欧美| 国产精品99久久99久久久不卡| 久久久国产精品麻豆| 日韩欧美在线二视频| 韩国精品一区二区三区| 一边摸一边抽搐一进一小说| 免费一级毛片在线播放高清视频| 一区二区日韩欧美中文字幕| 免费在线观看黄色视频的| 欧美不卡视频在线免费观看 | 最好的美女福利视频网| 高清毛片免费观看视频网站| 亚洲午夜理论影院| 国产欧美日韩一区二区三| 久久久久久亚洲精品国产蜜桃av| 在线观看www视频免费| 欧美日韩亚洲综合一区二区三区_| 亚洲国产中文字幕在线视频| 国产精品影院久久| 这个男人来自地球电影免费观看| 好看av亚洲va欧美ⅴa在| 日韩欧美三级三区| 亚洲av电影不卡..在线观看| 黄色 视频免费看| 一夜夜www| 久久 成人 亚洲| 一进一出好大好爽视频| 两人在一起打扑克的视频| 亚洲精品国产区一区二| 色播亚洲综合网| 亚洲一区二区三区不卡视频| 亚洲精品美女久久av网站| 亚洲第一电影网av| 美女大奶头视频| 国产国语露脸激情在线看| 亚洲三区欧美一区| а√天堂www在线а√下载| 精品高清国产在线一区| 美女高潮喷水抽搐中文字幕| 欧美日韩亚洲国产一区二区在线观看| www.自偷自拍.com| 两性夫妻黄色片| 亚洲午夜精品一区,二区,三区| 久久久精品欧美日韩精品| 国内精品久久久久精免费| 日韩欧美一区二区三区在线观看| 亚洲第一欧美日韩一区二区三区| 韩国精品一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜两性在线视频| 亚洲精华国产精华精| 欧美激情久久久久久爽电影| 听说在线观看完整版免费高清| 精品国内亚洲2022精品成人| 国产91精品成人一区二区三区| 午夜福利成人在线免费观看| 色在线成人网| 欧美色欧美亚洲另类二区| 午夜视频精品福利| 亚洲成av人片免费观看| 一级a爱视频在线免费观看| 国产亚洲精品久久久久5区| 国产1区2区3区精品| 99热只有精品国产| 丰满人妻熟妇乱又伦精品不卡| 中文字幕人成人乱码亚洲影| 国内精品久久久久久久电影| 亚洲国产欧美日韩在线播放| 午夜免费激情av| 黄色成人免费大全| 国产精品久久久久久人妻精品电影| 国产免费男女视频| 制服丝袜大香蕉在线| 91九色精品人成在线观看| 90打野战视频偷拍视频| 黄色毛片三级朝国网站| 久久久水蜜桃国产精品网| 国产高清videossex| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品自产拍在线观看55亚洲| 一级毛片女人18水好多| 国产精品一区二区三区四区久久 | 亚洲午夜精品一区,二区,三区| 午夜亚洲福利在线播放| 成人永久免费在线观看视频| 黄色视频,在线免费观看| 亚洲午夜理论影院| 成人亚洲精品一区在线观看| 成人一区二区视频在线观看| 亚洲,欧美精品.| 成人18禁高潮啪啪吃奶动态图| 黄色女人牲交| 国产精品永久免费网站| 久久婷婷人人爽人人干人人爱| 欧洲精品卡2卡3卡4卡5卡区| 成人三级黄色视频| 成人亚洲精品av一区二区| 亚洲欧美日韩无卡精品| 夜夜夜夜夜久久久久| 欧美又色又爽又黄视频| 久久久精品国产亚洲av高清涩受| 12—13女人毛片做爰片一| 精品欧美国产一区二区三| 国产一区二区三区视频了| 午夜精品在线福利| 黄色 视频免费看| 精品欧美国产一区二区三| 老汉色∧v一级毛片| 欧美色视频一区免费| 久久婷婷成人综合色麻豆| 国产av又大| 久久久久久九九精品二区国产 | 色精品久久人妻99蜜桃| 侵犯人妻中文字幕一二三四区| 久久久久久久精品吃奶| 成人国产综合亚洲| 欧美在线一区亚洲| 白带黄色成豆腐渣| 麻豆av在线久日| 欧美成人午夜精品|