• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CENTRAL LIMIT THEOREM AND CONVERGENCE RATES FOR A SUPERCRITICAL BRANCHING PROCESS WITH IMMIGRATION IN A RANDOM ENVIRONMENT*

    2022-06-25 02:12:18YingqiuLI李應(yīng)求
    關(guān)鍵詞:朝暉

    Yingqiu LI (李應(yīng)求)

    Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering,School of Mathematics and Statistics,Changsha University of Science and Technology,Changsha 410004,China

    E-mail:liyq-2001@163.com

    Xulan HUANG (黃緒蘭) Zhaohui PENG (彭朝暉)

    School of Mathematics and Statistics,Changsha University of Science and Technology,Changsha 410004,China

    E-mail:1764955427@qq.com;2634931960@qq.com

    Abstract We are interested in the convergence rates of the submartingale to its limit W,where (Πn) is the usually used norming sequence and (Zn) is a supercritical branching process with immigration (Yn) in a stationary and ergodic environment ξ.Under suitable conditions,we establish the following central limit theorems and results about the rates of convergence in probability or in law:(i) W-Wn with suitable normalization converges to the normal law N (0,1),and similar results also hold for Wn+k-Wn for each fixed k∈N*;(ii) for a branching process with immigration in a finite state random environment,if W1 has a finite exponential moment,then so does W,and the decay rate of P (|W-Wn|>ε) is supergeometric;(iii) there are normalizing constants an(ξ)(that we calculate explicitly) such that an(ξ)(W-Wn) converges in law to a mixture of the Gaussian law.

    Key words Branching process with immigration;random environment;convergence rates;central limit theorem;convergence in law;convergence in probability

    1 Introduction

    A branching process with immigration in a random environment is a natural and important generalization of the Galton-Waston process.Kesten,Kozlov and Spitzer[1]gave limit laws for a random walk in a random environment by using a branching process in an independent and identically distributed (i.i.d.) random environment with one immigrant at each generation.Bansaye[2]studied a model of cell contamination by investigating a branching process in a random environment with immigration.For a supercritical branching process with immigration in a random environment,Wang and Liu[3]considered theLpconvergence aboutWn,a central limit theorem,and large and moderate deviation principles about logZn.Li and Huang[4]studied the a.s.convergence rate for the submartingale associated with a branching process with immigration in a random and varying environment.For a subcritical multitype branching process with immigration in an ergodic and stationary random environment,Key[5]found that under suitable conditions,the process converges to a proper limit law.Roitershtein[6]considered a central limit theorem and a strong law of large numbers for the partial sum of the process.Vatutin[7]used a multitype branching process with immigration that evolves in a random environment to research polling systems with random regimes of service.

    The objective of this paper is to extend the theorems of Wang,Gao and Liu[8]and Huang and Liu[9]to a branching process with immigration in a random environment.To this end,we need to overcome some significant difficulties in the proof.For example,the usual decompositionfor a branching process is no longer valid in the immigration case.Furthermore,for the convergence rate in probability,we need to have careful control of the Laplace transforms.For the convergence rate in law,since the probability ofZn→∞orZn→0 is no longer equal to 1 in immigration case,we cannot use the method in[9].

    We now explain brie fly the organization of this paper.In Section 2,we give some results about the central limit theorem and the convergence rates for a branching process with immigration in a random environment.In Sections 3-5,we prove Theorem 2.1 in Section 3,Theorem 2.2 in Section 4 and Theorem 2.3 in Section 5.

    2 Branching Process With Immigration in a Random Environment

    In general,we write N={0,1,2,...},N*={1,2,...}and R for the set of real numbers.Letξ=(ξ0,ξ1,ξ2,...) be an ergodic and stationary sequence of random variables.This sequence represents the environment.Assume that each realization ofξncorresponds to two probability distributions on N:one is the offspring distribution denoted by

    and the other is the distribution of the number of immigrants denoted by

    A branching process (Zn)n≥0with immigration (Yn)n≥0in the random environmentξcan be defined as follows:

    Here,given the environmentξ,the random variablesXn,i(n≥0,i≥1) andYn(n≥0) are all independent of each other,andXn,i(i=1,2,...) andYnhave the distributionp(ξn) and(ξn),respectively.For simplicity,we writeX0=X0,1(whose distribution isp(ξ0) conditional on the environmentξ).

    Let (Γ,Pξ) be the probability space under which the process is defined when the environmentξis given.The total probability P is usually called the annealed law.The quenched law Pξmay be considered to be the conditional probability of the annealed law P givenξ.LetY=(Y0,Y1,...) and Pξ,Ybe the conditional probability of P givenξandY.The expectation with respect to Pξ,Y(resp.Pξ,P) will be denoted by Eξ,Y(resp.Eξ,E).

    Forξ=(ξ0,ξ1,...),n≥0 andp>0,we can define

    By convention,for a random variableX,when we write EX,we suppose implicitly that the expectation EXis well-defined,but the value of this may probably be in finite.Thenmn(p)=

    whenr>n;we write

    As in[3],to include the immigrants in the family tree,we add one particle at each timen;thus we call the eternal particle,and we denoted it by 00,01,02,...with 0n:=0n-10(the juxtaposition of 00withntimes 0),considering that theYnimmigrants are direct children of 0n.To form a tree we also consider that each 0n+1is a direct child of 0n.Thus all particles of a branching process with immigration in a random environment are composed of two disjoint trees:one begins with the initial particle ? and includes all its descendants,the other begins with the eternal particle 00and all its descendants (including all the immigrants).We denote by,respectively,the number of particles in thengeneration for the two disjoint trees.We see that () is a branching process in a random environment,and that

    In this article,we always assume that

    The normalized population sizeis a nonnegative martingale with respect to the filtration Fn,and the limit

    exists a.s.with Eξ≤1.By (2.3),the process is supercritical (cf.Athreya and Karlin[10]).By (2.3) and (2.4),E=1.By Theorem 3.2 in[3]and (2.5),we know that (Wn) is a submartingale with respect to the filtration (Fn),and that the limit

    exists a.s..

    In general,we writeTnξ=(ξn,ξn+1,...) ifξ=(ξ0,ξ1,...) andn≥0.

    From Lemma 3.2 in[8],we set

    We first consider the central limit theorems onW-WnandWn+k-Wnfor fixedk≥1 with an appropriate normalization.

    Theorem 2.1Assume that (2.3) and (2.4) hold,thatexist,thatm0(2)<∞a.s.and that

    In the case wherek=∞,suppose,additionally,that Elog<∞.We write

    where,by convention,Wn+k=Wifk=∞.Then,for eachk∈N*∪{∞},asn→∞,

    For eachk∈N∪{∞},we believe that

    We notice that in the branching process without immigration in a random environment,(2.10) reduces to the results of Wang,Gao and Liu[8].

    We next show a super-geometric convergence rate in probability for a branching process with immigration in a finite state random environment under an exponential moment condition.

    Theorem 2.2For a branching process with immigration in a finite state random environment withp0(ξ0)=0,p1(ξ0)<1 a.s.and (2.8).We have that

    (a) EeθW<∞for someθ>0 if and only if Eeθ0W1<∞for someθ0>0;

    (b) if Eeθ0W1<∞for some constantθ0>0,and there existθ2>1 so that Eξeθ2Yn+j-1is uniformly bounded,then there exist constantsC>0 andγ>0 such that

    where:=essinfm0>1.

    We finally show that under a second moment condition,with an appropriate normalization,W-Wnconverges in law to a non-trivial distribution.

    Theorem 2.3Suppose thatpi(ξ0)<1 a.s.for alli∈N.Forx∈R,set Φ1(x)=,whereGis a Gaussian random variable with distributionN(0,1),independent ofWunder Pξ.Assume that (2.8) holds,thatandexist,and that<∞.Then

    As a matter of fact,(2.13) is a quenched version of a convergence result in law:it says that the quenched law of

    converges in some sense to a non-degenerate distribution.(2.14) is an annealed version of convergence in law,stating that the annealed law ofUnconverges to a non-degenerate distribution.

    If we replace ΠnwithZnand Φi(i=1,2) within (2.13) and (2.14),we get the central limit theorem (i.e.Theorem 2.1),which is a generalization of Hedye (1971,[11]) and Heyde and Brown (1971,[12]) on the Galton-Watson process,and Wang,Gao and Liu (2011,[8]) for a branching process in a random environment.Compared with Theorem 2.1,the advantage of Theorem 2.3 is that the norming factor only depends on the environment.

    3 Proof of Theorem 2.1

    We start by demonstrating a central limit theorem under a second moment condition;this plays a key role in the proof of Theorem 2.1.This result is given as Lemma 3.2,and that proof depends on the decomposition ofW-Wnshown by Lemma 3.1.In Lemma 3.1,we decomposeW-Wnin terms of(n,i) and(0n+j-1i).In general,forx>0,we write log-x=max{-logx,0}for the negative part of logx.

    Lemma 3.1For allk>0,the decomposition formula

    forWn+k-Wnholds a.s..Furthermore,if (2.4),(2.5) and (2.6) hold,and

    then we have the following decomposition ofW-Wnin terms of:

    ProofBy definition,

    From (3.1) and the dominated convergence theorem (applied to the functionsdk(j)=defined on N*equipped with the counting measure),using Theorem 3.2 in[3]and the fact that

    we can see that (3.3) holds,provided that

    We notice that under the quenched law Pξ,all the random variables~W(n,i)(i≥1),Yn+j-1(j≥1) andare independent of each other.Taking our expectation with respect to Pξ,Y,we know that (3.5) is implied by

    By Theorem 1.3 in[13]or Theorem 3 in[14],E (log-m0)2<∞implies that E~W(001)*<∞.□

    By (3.1),we can see that

    Lemma 3.2Assume that the assumptions of Theorem 2.1 hold.Setrn∈N withrn→∞.Fork∈N*∪{∞},we can define

    Fixk∈N*∪{∞}.Then,for each subsequence{n′}of N withn′→∞,there is a subsequence{n′′}of{n′}withn′′→∞such that,for a.e.ξand allx∈R,asn′′→∞,

    ProofLet

    First,we prove that there is a subsequence{n′′},such that Pξ(Bk,n′′≤x)→Φ(x) for a.e.ξand allx∈R asn′′→∞.Fixk∈N*∪{∞}.In order to use Lindeberg’s theorem,forn∈N andε>0,we consider the quantity

    where for a setA,we write Eξ(X;A) for Eξ(X1A),with 1Adenoting the indicator function ofA.For allε>0,asn→∞,

    Let{n′}be a subsequence of N.From (3.9),we choose a subsequence{n′′}for whichLk(ξ,ε,n′′)→0 a.s.,but this sequence may depend onε.We shall use a diagonal argument to select a subsequence{n′′}of{n′},whenn′′→∞,so for allε>0,Lk(ξ,ε,n′′)→0 a.s..Let

    Set{n0,i}={n′}.Due to (3.9),there is a subsequence{n1,i}of{n0,i}and a set Λ1withτ(Λ1)=1 such that?ξ∈Λ1,

    Inductively,form≥1,when Λmand{nm,i}are defined such thatτ(Λm)=1 and?ξ∈Λm,Lk(ξ,εm,nm,i)→0,and there is a subsequence{nm+1,i}?{nm,i}and a set Λm+1withτ(Λm+1)=1 such that?ξ∈Λm+1,

    Now,we consider the diagonal sequence{ni,i}i≥1andFor each fixedε>0,setm≥.Thenεm≤ε,and by the monotonicity ofLk(ξ,ε,n) inε,we can see that?ξ∈Λ,

    As{ni,i}is a subsequence of{nm,i}wheneveri>m,this implies that

    Sinceτ(Λ)=1,we have shown that for allε>0,(3.10) holds a.s..It follows that a.s.(3.10) holds for all rationalε>0,and therefore for all realε>0,by the monotonicity ofLk(ξ,ε,ni,i) inε.Therefore,according to Lindeberg’s theorem,it is a.s.that for allx∈R,asi→∞,

    Thus the lemma has been proven with{n′′}={ni,i}.

    Taking the expectation,we have

    and we know thatDk,n′′→0 Pξa.s.,thatBk,n′′converges toN(0,1) in law under Pξ,by Slutsky’s theorem (see Loeve[16]),and thatVk,n′′converges toN(0,1) in law under Pξ.Therefore,we can see that

    Proof of Theorem 2.1We will only deal with the case wherek=∞,as the case wherek∈N*can be treated similarly.First,we prove the following assertion:for each subsequence{n′}of N withn′→∞,there exists a subsequence{n′′}of{n′}withn′′→∞such that,for a.e.ξand allx,asn′′→∞,

    By (3.3),

    To show the main idea,let us consider the case whereq(ξ)=0 a.s.;i.e.,for a.e.ξ,

    In this case,(3.12) becomes

    By Lemma 3.2,for each subsequence{n′}of N withn′→∞,there exists a subsequence{n′′}of{n′}withn′′→∞such that,for a.e.ξand allx,asn′′→∞,

    According to the dominated convergence theorem,for a.e.ξand allx,asn′′→∞,

    Thus we have proven (3.11).

    Since Pξ(∪n′′,∞≤x|Zn′′>0) are distribution functions and Φ(x) is a continuous distribution function,by Dini’s Theorem (Theorem 1.11 in[17]),we can see that,for a.e.ξ,asn′′→∞,

    According to the dominated convergence theorem,(3.13) implies that,asn′′→∞,

    Thus we have proved that for each subsequence{n′}of N withn′→∞,there is a subsequence{n′′}of{n′}withn′′→∞such that (3.14) holds.Thus This gives (2.9) fork=∞.The proof fork∈N*is similar.

    Now,we begin to prove (2.10).We have proven that for each subsequence{n′}of N there is a subsequence{n′′}since that (3.13) holds,which implies that for allx∈R and a.e.ξ,asn′′→∞,

    It follows that,for allx∈R and a.e.ξ,

    so by the dominated convergence theorem,we can see that for eachx∈R,asn′′→∞,

    According to Dini’s Theorem,it follows that

    Thus we proven that for each subsequence{n′}of N,there is a subsequence{n′′}of{n′}withn′′→∞such that (3.15) holds.Hence

    This completes the proof. □

    4 Proof of Theorem 2.2

    In this section,we deal with a branching process (Zn) with immigration in a finite state random environment,where eachξntakes values in a finite set{a1,a2,...,aN}.Before the proof of Theorem 2.2,we first give four lemmas.

    The first lemma is an elementary result of the Laplace transform.

    Lemma 4.1([9],Lemma 5.1) LetXbe a random variable with EX=0.Assume that Eeδ|X|≤Kfor some constantsδ>0 andK>0.Thenwhere

    The second lemma is a generalization of a result of Huang and Liu (2014,[9],Lemma 5.2) on the branching process in a random environment about the exponential conditional moments ofWn.By (2.8) and the ergodic theorem,there exists a constantC1such that

    Lemma 4.2Let (Zn) be a branching process with immigration in a finite state random environment withm0>1 a.s..Assume that (2.8) holds and that Eξeθ0W1≤Ka.s.for some constantsθ0>0 andK>0.Then there exists constantsθ1>0,C2>0 andC3>0,such that

    ProofFrom Lemma 5.2 in[9],there exist constantsθ1>0 andC2>0 such that supna.s..Ifξ0takes values in a finite set{a1,a2,...,aN},denote

    Lemma 4.3LetX≥0 be a positive random variable such that Eet0X≤Cfor some constantst0,C>0.Then,for each 0<t1<t0,there is a constantC4depending only ont0-t1such that

    ProofUsing the mean value theorem for the functionh(t)=EetXand the fact thatx≤C4e(t0-t1) xfor some constantC4depending only on (t0-t1) and allx>0,we obtain,for allt∈(0,t1],that

    This gives the desired inequality. □

    The following lemma is a more general result than Theorem 2.2 about the supergeometric convergence rate of Pξ(|W-Wn|>ε),where we do not suppose that the environment has finite state space:

    Lemma 4.4Assume that (2.8) holds and thata>m0>1,and thatp0(ξ0)=0 a.s..If supnand supnEξeθ1Wn≤C3a.s.for some constantsθ1>0,C2>0 andC3>0,and there existθ2>1 such that Eξeθ2Yn+j-1is uniformly bounded,then there exist constantsC>0 andγ>0 such that

    ProofSetting,we haveφξ(θ)<∞for 0<θ≤θ1.Denote

    Under Pξ,random variables{(n,i)}iare independent of each other and independent of Fn,and have the common conditional distribution

    First,we prove thatfξ(θ,k)≤C5.We have,for 0<θ≤min{θ1,1},

    for 0<θ<min{,1},it follows that

    Next,we prove thatgξ(θ,k)≤C6.By Lemma 4.3,the independence betweenandYn+j-1under Pξ,and the fact that the Laplace transforms ofandYn+j-1are uniformly bounded,we have,for

    Next,by (3.3),(4.4) and (4.5),for,we see that

    Finally,for 0<θ2<min{,1},

    whereC=2C2C5C6>0,.For Pξ(Wn-W>ε),the argument is similar.□

    Proof of Theorem 2.2Notice that Eξeθ0W1depends only onξ0.Thus,whenξ0has a finite state space,the following three conditions are equivalent:

    In addition,notice thatm0>1 a.s.,since (2.8) holds,p0(ξ0)=0 andp1(ξ0)<1 a.s..According to Lemma 4.2,there exist constantsθ1>0 andC3>0 such that supnEξeθ1Wn≤C3a.s..Therefore,part (a) is a direct consequence of Lemma 4.2.

    For part (b),by Lemmas 4.2,4.3 and 4.4,we can see that (2.11) holds.Taking the expectation in (2.11) and noticing the fact that Πn≥mn,we can get (2.12). □

    5 Proof of Theorem 2.3

    Then EξFn,i=0 and VarξFn.i=1.From Lemma 3.1,we see that

    Lemma 5.1Forx∈R,let (rn)?N be a sequence of positive integers such thatrn→∞asn→∞.Suppose that (2.8) holds and that∞(ξ)∈(0,∞) a.s..Let

    ProofLet

    First,we prove that Esupx∈R|Pξ(Hn≤x)-Φ(x)|→0.By the stationarity of the environment sequence,we see that

    Notice that (F1,i)i≥1are independent and identically distributed under Pξ,by the classic central limit theorem

    Thus,the dominated convergence theorem ensures that

    Then,we prove thatIn→0 Pξa.s..By the independence betweenYn+j-1andunder Pξ,,we have

    and taking the expectation,we have

    and by calculating,

    Sincern∈N withrn→∞,exist,for each subsequence{n′}of N withn′→∞,

    and there exists a subsequence{n′′}of{n′}withn′′→∞such that

    Finally,we prove that (3.8) holds.Since

    and we know thatIn′′→0 Pξa.s.,Qn′′converges toN(0,1) in law under Pξ,by Slutsky’s theorem (see Loeve[16]),Qn′′converges toN(0,1) in law under Pξ.Thus

    Proof of Theorem 2.3Set.Notice that (2.13) implies (2.14),since

    Thus we only need to prove (2.13).For simplicity,we suppose that Pξ(W>0)=1 a.s.,in which case we have that.By (5.2),

    AsZnis independent ofFn,i(i≥1),(0n+j-1i)(i,j≥1) under Pξ,it follows that

    By Lemma 5.1,for each sequence (n′) of N withn′→∞,there exists a subsequence (n′′) of (n′) such thatn′′→∞and

    By (5.5) and the dominated convergence theorem,we can see that,for eachx∈R,

    Therefore,(5.6) holds for all rationalxand for allx∈R,by the monotonicity of the left term and the continuity of the right term.Thus,by Dini’s theorem,

    According to the dominated convergence theorem,

    Therefore,we have proved that for each subsequence (n′) of N withn′→∞,there is a subsequence (n′′) of (n′) withn′′→∞such that (5.7) holds.Thus (2.13) holds. □

    AcknowledgementsThe authors are grateful to the anonymous referees and Professor Quansheng Liu for very valuable comments and remarks which significantly contributed to improving the quality of the paper.

    猜你喜歡
    朝暉
    爬樓難、起床僵、關(guān)節(jié)痛,這究竟是什么病
    祝您健康(2024年3期)2024-03-03 13:27:39
    芙蓉國里盡朝暉
    白玫瑰與郁金香
    三只蚊子
    自動鉛筆
    三江源頭盡朝暉
    中國火炬(2015年8期)2015-07-25 10:45:50
    唆拜(外一首)
    文藝論壇(2015年23期)2015-03-04 07:57:15
    Equivalent pipe algorithm for metal spiral casing and its application in hydraulic transient computation based on equiangular spiral model*
    厚棉襖
    椅子樹
    a级毛片在线看网站| xxx大片免费视频| 久久精品久久久久久噜噜老黄| 91aial.com中文字幕在线观看| 国产熟女午夜一区二区三区| a级毛片在线看网站| 欧美精品人与动牲交sv欧美| 制服丝袜香蕉在线| 插逼视频在线观看| 精品人妻一区二区三区麻豆| 国产成人精品婷婷| 精品人妻熟女毛片av久久网站| 亚洲国产精品成人久久小说| 久久国产亚洲av麻豆专区| 校园人妻丝袜中文字幕| 亚洲综合色网址| 国产国语露脸激情在线看| 国产午夜精品一二区理论片| 亚洲性久久影院| 久久久a久久爽久久v久久| 狠狠精品人妻久久久久久综合| 啦啦啦啦在线视频资源| 999精品在线视频| 久久精品国产鲁丝片午夜精品| 日本欧美视频一区| 赤兔流量卡办理| 国产欧美亚洲国产| 久久女婷五月综合色啪小说| av.在线天堂| 久久免费观看电影| 亚洲精品久久久久久婷婷小说| 精品国产乱码久久久久久小说| 日韩制服骚丝袜av| 国产精品欧美亚洲77777| 男男h啪啪无遮挡| 最近的中文字幕免费完整| 精品一品国产午夜福利视频| 亚洲人成77777在线视频| 免费女性裸体啪啪无遮挡网站| 久久久久久久久久久免费av| 中文字幕亚洲精品专区| 美女福利国产在线| 日韩精品有码人妻一区| 亚洲一码二码三码区别大吗| 少妇精品久久久久久久| 午夜91福利影院| 七月丁香在线播放| 少妇人妻 视频| 极品人妻少妇av视频| 国产国拍精品亚洲av在线观看| 免费久久久久久久精品成人欧美视频 | 精品一区二区三区视频在线| 18禁在线无遮挡免费观看视频| 校园人妻丝袜中文字幕| 边亲边吃奶的免费视频| 国产又爽黄色视频| 国产精品一区www在线观看| 成年人午夜在线观看视频| 欧美精品亚洲一区二区| 热99国产精品久久久久久7| 最近中文字幕高清免费大全6| 街头女战士在线观看网站| 亚洲色图 男人天堂 中文字幕 | 搡女人真爽免费视频火全软件| 久久97久久精品| 亚洲精品国产av蜜桃| 日韩熟女老妇一区二区性免费视频| 久久精品久久久久久噜噜老黄| 高清不卡的av网站| 欧美成人午夜免费资源| 在线看a的网站| 边亲边吃奶的免费视频| 啦啦啦在线观看免费高清www| 大香蕉97超碰在线| 97超碰精品成人国产| 亚洲精品,欧美精品| 国产综合精华液| 欧美3d第一页| 国产男女超爽视频在线观看| 国产精品三级大全| 飞空精品影院首页| 全区人妻精品视频| 国产黄频视频在线观看| 十分钟在线观看高清视频www| 国产亚洲午夜精品一区二区久久| 老司机影院毛片| 精品亚洲乱码少妇综合久久| 国产精品久久久久久精品古装| 亚洲精品久久午夜乱码| 一区在线观看完整版| 色94色欧美一区二区| 男女午夜视频在线观看 | 最新中文字幕久久久久| 午夜激情久久久久久久| 一二三四中文在线观看免费高清| 少妇人妻精品综合一区二区| 国产免费又黄又爽又色| 日韩在线高清观看一区二区三区| 欧美激情 高清一区二区三区| 少妇被粗大的猛进出69影院 | 亚洲精品一区蜜桃| 精品卡一卡二卡四卡免费| 日韩中文字幕视频在线看片| 中国三级夫妇交换| 多毛熟女@视频| 夫妻午夜视频| 欧美少妇被猛烈插入视频| 婷婷色综合大香蕉| 亚洲内射少妇av| 精品久久国产蜜桃| 男女国产视频网站| 热re99久久国产66热| 欧美日韩亚洲高清精品| 中国美白少妇内射xxxbb| 亚洲人成77777在线视频| 一区二区三区精品91| 爱豆传媒免费全集在线观看| 黄片播放在线免费| 亚洲欧美中文字幕日韩二区| 久久久久久人妻| 久久久精品免费免费高清| 九草在线视频观看| 国产黄色免费在线视频| 色吧在线观看| 嫩草影院入口| 欧美亚洲日本最大视频资源| 欧美日韩综合久久久久久| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美中文字幕日韩二区| 亚洲第一av免费看| 女性生殖器流出的白浆| 精品国产露脸久久av麻豆| 少妇的逼水好多| 晚上一个人看的免费电影| 亚洲欧美清纯卡通| 搡老乐熟女国产| 精品久久久久久电影网| 免费观看av网站的网址| 97超碰精品成人国产| 日韩欧美一区视频在线观看| 欧美激情极品国产一区二区三区 | 2021少妇久久久久久久久久久| 午夜精品国产一区二区电影| 99国产精品免费福利视频| 午夜福利在线观看免费完整高清在| 精品熟女少妇av免费看| 男女啪啪激烈高潮av片| 视频在线观看一区二区三区| 亚洲精品美女久久久久99蜜臀 | 热99久久久久精品小说推荐| 成年人免费黄色播放视频| 久久鲁丝午夜福利片| 大话2 男鬼变身卡| 国产免费福利视频在线观看| 捣出白浆h1v1| 精品熟女少妇av免费看| 大香蕉久久成人网| 国产麻豆69| 国产av国产精品国产| 久久久a久久爽久久v久久| 日韩一本色道免费dvd| 91在线精品国自产拍蜜月| 精品亚洲成国产av| 欧美日韩成人在线一区二区| 99久久精品国产国产毛片| 久久久欧美国产精品| 欧美bdsm另类| 亚洲精品第二区| 伦理电影大哥的女人| 亚洲综合色网址| 妹子高潮喷水视频| 高清黄色对白视频在线免费看| 搡老乐熟女国产| 黑人巨大精品欧美一区二区蜜桃 | 国产精品久久久久久精品古装| 老司机影院毛片| 亚洲欧洲日产国产| 涩涩av久久男人的天堂| 久久99蜜桃精品久久| 一级毛片我不卡| 精品一区二区三卡| 欧美精品人与动牲交sv欧美| 日韩精品有码人妻一区| 亚洲成国产人片在线观看| 最近中文字幕高清免费大全6| 久久影院123| 男女国产视频网站| 国产国拍精品亚洲av在线观看| 男人操女人黄网站| 亚洲精品乱码久久久久久按摩| 肉色欧美久久久久久久蜜桃| 久久鲁丝午夜福利片| 亚洲av日韩在线播放| 亚洲av中文av极速乱| 精品午夜福利在线看| av在线播放精品| 成年av动漫网址| 成人亚洲精品一区在线观看| 亚洲天堂av无毛| 美女国产视频在线观看| 色哟哟·www| 久久久精品94久久精品| 在线观看国产h片| 国产亚洲欧美精品永久| 大码成人一级视频| 久久精品国产自在天天线| 一级毛片 在线播放| 久久人人爽av亚洲精品天堂| av一本久久久久| 亚洲精品成人av观看孕妇| 久久亚洲国产成人精品v| www.av在线官网国产| 亚洲精品美女久久久久99蜜臀 | 一级,二级,三级黄色视频| 免费观看无遮挡的男女| 亚洲精品一二三| 一级毛片 在线播放| 丰满饥渴人妻一区二区三| 人体艺术视频欧美日本| 中文字幕av电影在线播放| 亚洲国产看品久久| 99久久中文字幕三级久久日本| 久久99热6这里只有精品| 国产有黄有色有爽视频| 国产免费视频播放在线视频| 人妻一区二区av| 亚洲精品色激情综合| 久热久热在线精品观看| 男的添女的下面高潮视频| 卡戴珊不雅视频在线播放| 成年动漫av网址| 亚洲av成人精品一二三区| 亚洲五月色婷婷综合| 人体艺术视频欧美日本| 国产免费视频播放在线视频| 亚洲欧美成人精品一区二区| 国产国拍精品亚洲av在线观看| 成年av动漫网址| 亚洲一区二区三区欧美精品| 一区二区三区四区激情视频| 亚洲av综合色区一区| 免费人成在线观看视频色| 高清在线视频一区二区三区| 免费黄网站久久成人精品| 91成人精品电影| 国产精品久久久av美女十八| 十八禁高潮呻吟视频| 在线观看www视频免费| 欧美3d第一页| 97精品久久久久久久久久精品| 9热在线视频观看99| 国产精品麻豆人妻色哟哟久久| 免费av不卡在线播放| 草草在线视频免费看| 国精品久久久久久国模美| 最近2019中文字幕mv第一页| 宅男免费午夜| 夫妻性生交免费视频一级片| 伊人亚洲综合成人网| 一级片'在线观看视频| 美女福利国产在线| a级毛色黄片| 亚洲欧美日韩另类电影网站| 99热这里只有是精品在线观看| 三上悠亚av全集在线观看| av黄色大香蕉| 久久国产精品大桥未久av| 国产极品粉嫩免费观看在线| 日韩三级伦理在线观看| 最近的中文字幕免费完整| 91精品三级在线观看| 极品人妻少妇av视频| 日本av手机在线免费观看| 久久韩国三级中文字幕| 久久久精品区二区三区| 亚洲精品美女久久av网站| 2022亚洲国产成人精品| www.熟女人妻精品国产 | 美女脱内裤让男人舔精品视频| 777米奇影视久久| www日本在线高清视频| 久久狼人影院| a级毛片在线看网站| 人人妻人人添人人爽欧美一区卜| 精品99又大又爽又粗少妇毛片| 久久久久久久久久久免费av| 爱豆传媒免费全集在线观看| 9热在线视频观看99| 巨乳人妻的诱惑在线观看| 这个男人来自地球电影免费观看 | 亚洲精品aⅴ在线观看| 高清不卡的av网站| 亚洲精品美女久久av网站| 搡老乐熟女国产| 国产淫语在线视频| 午夜激情久久久久久久| 黄色 视频免费看| 在线天堂最新版资源| 久久这里只有精品19| 亚洲国产最新在线播放| 亚洲国产精品成人久久小说| 三级国产精品片| 精品99又大又爽又粗少妇毛片| 免费看不卡的av| 欧美+日韩+精品| 国产av码专区亚洲av| 亚洲精品视频女| 日韩不卡一区二区三区视频在线| 精品久久国产蜜桃| 亚洲精品av麻豆狂野| 9热在线视频观看99| 中文字幕免费在线视频6| 久久人妻熟女aⅴ| 亚洲国产av新网站| 午夜激情av网站| 久久久久久久久久人人人人人人| 国产精品欧美亚洲77777| 亚洲国产成人一精品久久久| 久久99一区二区三区| 在线观看国产h片| 如何舔出高潮| 成年美女黄网站色视频大全免费| 两个人看的免费小视频| 精品亚洲成a人片在线观看| av网站免费在线观看视频| 狂野欧美激情性xxxx在线观看| 国产精品久久久久久精品古装| 99re6热这里在线精品视频| 2022亚洲国产成人精品| 久久人人爽人人爽人人片va| 国产成人免费无遮挡视频| 九色亚洲精品在线播放| 亚洲av在线观看美女高潮| 久久av网站| 国产精品久久久久久久电影| 精品一区二区三区四区五区乱码 | 免费日韩欧美在线观看| 国产亚洲精品第一综合不卡 | 最近中文字幕高清免费大全6| 三上悠亚av全集在线观看| 亚洲欧美一区二区三区黑人 | 一级片'在线观看视频| 少妇人妻精品综合一区二区| 久久久久精品人妻al黑| 亚洲成国产人片在线观看| 欧美成人午夜精品| 欧美最新免费一区二区三区| 久久午夜综合久久蜜桃| 18禁观看日本| 高清黄色对白视频在线免费看| 国产精品女同一区二区软件| 亚洲精品一区蜜桃| 日韩av在线免费看完整版不卡| 久久 成人 亚洲| 日韩一区二区视频免费看| 亚洲欧洲国产日韩| 在线免费观看不下载黄p国产| 不卡视频在线观看欧美| 久久97久久精品| 成年人免费黄色播放视频| 久久99热这里只频精品6学生| 久久久久久久久久成人| 久久青草综合色| 免费看光身美女| 天堂8中文在线网| 亚洲国产看品久久| 观看av在线不卡| 美国免费a级毛片| 另类精品久久| 久久av网站| 国产精品国产三级专区第一集| 国产男女内射视频| 最近手机中文字幕大全| 丝袜在线中文字幕| 日韩精品免费视频一区二区三区 | 最黄视频免费看| 国产精品久久久久成人av| 蜜桃在线观看..| 久久久久久伊人网av| 国产无遮挡羞羞视频在线观看| 欧美精品一区二区大全| 99九九在线精品视频| 欧美激情国产日韩精品一区| 丰满乱子伦码专区| 久久久a久久爽久久v久久| 欧美bdsm另类| 久久99热6这里只有精品| 交换朋友夫妻互换小说| 七月丁香在线播放| 一本大道久久a久久精品| 在线天堂中文资源库| 亚洲内射少妇av| 日日啪夜夜爽| 成人手机av| www日本在线高清视频| 国产精品麻豆人妻色哟哟久久| 国产精品.久久久| 26uuu在线亚洲综合色| 国产 精品1| 成年女人在线观看亚洲视频| 视频区图区小说| 性色av一级| 天天操日日干夜夜撸| 啦啦啦视频在线资源免费观看| 欧美变态另类bdsm刘玥| 99久久中文字幕三级久久日本| 国产成人欧美| 母亲3免费完整高清在线观看 | 男人操女人黄网站| 国产老妇伦熟女老妇高清| 国产成人精品在线电影| 激情五月婷婷亚洲| 亚洲精品成人av观看孕妇| 亚洲国产日韩一区二区| 爱豆传媒免费全集在线观看| 午夜激情av网站| av有码第一页| 一区二区av电影网| 色视频在线一区二区三区| 欧美丝袜亚洲另类| 亚洲国产日韩一区二区| 亚洲综合色惰| 亚洲四区av| 久久久久久久久久成人| 亚洲国产精品专区欧美| 三级国产精品片| 久久久亚洲精品成人影院| 国产av国产精品国产| 成年女人在线观看亚洲视频| 久久久久久久久久人人人人人人| 色视频在线一区二区三区| 又黄又爽又刺激的免费视频.| 日本与韩国留学比较| 少妇猛男粗大的猛烈进出视频| 日韩精品免费视频一区二区三区 | 久久国产亚洲av麻豆专区| 亚洲欧美成人精品一区二区| 五月玫瑰六月丁香| 亚洲国产欧美日韩在线播放| freevideosex欧美| 高清不卡的av网站| 亚洲,欧美精品.| 成人国语在线视频| 亚洲三级黄色毛片| 视频区图区小说| 少妇 在线观看| 欧美日韩一区二区视频在线观看视频在线| 综合色丁香网| 免费看不卡的av| 亚洲天堂av无毛| 亚洲精品成人av观看孕妇| 亚洲第一区二区三区不卡| 欧美人与性动交α欧美软件 | 一级毛片电影观看| 欧美日韩亚洲高清精品| 母亲3免费完整高清在线观看 | 男女高潮啪啪啪动态图| 人妻 亚洲 视频| 亚洲欧美成人综合另类久久久| 9热在线视频观看99| 国产成人精品福利久久| 国产男女内射视频| 久热久热在线精品观看| 久久久久久久久久久免费av| 免费人成在线观看视频色| 亚洲精品456在线播放app| 欧美xxⅹ黑人| 啦啦啦中文免费视频观看日本| 夜夜爽夜夜爽视频| 国产一区二区在线观看日韩| 国产精品久久久久久精品电影小说| 国产欧美亚洲国产| 亚洲内射少妇av| 久久精品国产亚洲av天美| 亚洲av中文av极速乱| 一级毛片我不卡| 在线精品无人区一区二区三| 国产欧美另类精品又又久久亚洲欧美| 免费看av在线观看网站| 男女免费视频国产| 看免费av毛片| 精品人妻在线不人妻| 久久久久久伊人网av| 另类精品久久| 人成视频在线观看免费观看| 热re99久久国产66热| 尾随美女入室| 国产男人的电影天堂91| 精品99又大又爽又粗少妇毛片| 日韩av在线免费看完整版不卡| 性色avwww在线观看| 久久久久精品人妻al黑| 国产精品三级大全| 精品亚洲成a人片在线观看| 制服诱惑二区| 九色亚洲精品在线播放| 精品国产露脸久久av麻豆| xxxhd国产人妻xxx| 欧美变态另类bdsm刘玥| 女人精品久久久久毛片| 久久精品久久久久久久性| 久久人妻熟女aⅴ| av国产久精品久网站免费入址| 黑丝袜美女国产一区| 久久久久久久精品精品| 男人添女人高潮全过程视频| 日韩制服骚丝袜av| 97在线人人人人妻| av福利片在线| a级毛色黄片| 男人操女人黄网站| 久久久久久久大尺度免费视频| 超色免费av| 熟女人妻精品中文字幕| 国产女主播在线喷水免费视频网站| 男人爽女人下面视频在线观看| 狠狠婷婷综合久久久久久88av| 在线观看免费高清a一片| 国产在线免费精品| 91精品伊人久久大香线蕉| 亚洲经典国产精华液单| 精品国产国语对白av| 夫妻性生交免费视频一级片| 最后的刺客免费高清国语| 99视频精品全部免费 在线| 97精品久久久久久久久久精品| 日韩不卡一区二区三区视频在线| 国产日韩欧美亚洲二区| 少妇的丰满在线观看| 日韩一区二区视频免费看| 啦啦啦视频在线资源免费观看| 国产精品久久久久久久电影| 老司机影院成人| 美女大奶头黄色视频| 丝袜在线中文字幕| 一边亲一边摸免费视频| 五月开心婷婷网| 国产成人aa在线观看| 亚洲av成人精品一二三区| 考比视频在线观看| 9191精品国产免费久久| av在线观看视频网站免费| 精品亚洲成国产av| 黄片播放在线免费| 大话2 男鬼变身卡| 久久久久久久大尺度免费视频| 日韩av免费高清视频| 国产探花极品一区二区| 精品少妇内射三级| 国产有黄有色有爽视频| 国产片特级美女逼逼视频| 久久久久久久久久久久大奶| 国产老妇伦熟女老妇高清| 永久免费av网站大全| 秋霞在线观看毛片| 男女啪啪激烈高潮av片| 中文字幕精品免费在线观看视频 | 国产成人av激情在线播放| 精品一品国产午夜福利视频| 欧美精品国产亚洲| 国产一区有黄有色的免费视频| 免费在线观看黄色视频的| 999精品在线视频| 国产极品天堂在线| 秋霞在线观看毛片| 亚洲激情五月婷婷啪啪| 曰老女人黄片| 久久久亚洲精品成人影院| 黄色视频在线播放观看不卡| 国产精品国产三级专区第一集| 建设人人有责人人尽责人人享有的| 只有这里有精品99| 久久久久久人人人人人| 最黄视频免费看| av在线app专区| 大片电影免费在线观看免费| 国产精品国产av在线观看| 精品第一国产精品| 少妇高潮的动态图| av电影中文网址| 交换朋友夫妻互换小说| a级毛色黄片| 亚洲国产av影院在线观看| 日韩精品免费视频一区二区三区 | 黑人巨大精品欧美一区二区蜜桃 | 久久毛片免费看一区二区三区| av在线播放精品| 精品熟女少妇av免费看| 一边摸一边做爽爽视频免费| 日本wwww免费看| 久久精品aⅴ一区二区三区四区 | 一级毛片电影观看| 国产欧美亚洲国产| 免费日韩欧美在线观看| 中文欧美无线码| 乱码一卡2卡4卡精品| 亚洲精品国产色婷婷电影| 看十八女毛片水多多多| 国产片特级美女逼逼视频| 如日韩欧美国产精品一区二区三区| 久久精品国产a三级三级三级| 国国产精品蜜臀av免费| 女人久久www免费人成看片| 国产片特级美女逼逼视频| 欧美亚洲 丝袜 人妻 在线| 亚洲精品一区蜜桃| 91久久精品国产一区二区三区| 看十八女毛片水多多多| 国产精品久久久久久精品电影小说| 免费观看a级毛片全部| 丝袜喷水一区| 成人18禁高潮啪啪吃奶动态图| 成人免费观看视频高清| 五月天丁香电影| 亚洲美女黄色视频免费看|