• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Equivalent pipe algorithm for metal spiral casing and its application in hydraulic transient computation based on equiangular spiral model*

    2014-06-01 12:30:00PENGXiaodong彭小東
    關(guān)鍵詞:朝暉

    PENG Xiao-dong (彭小東)

    State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China, E-mail: mypxiaod@126.com

    YANG Zhao-hui (楊朝暉)

    Department of Water Resources of Guizhou Province, Guiyang 550002, China

    LIU Shan-jun (劉善均), JU Xiao-ming (鞠小明)

    State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China

    Equivalent pipe algorithm for metal spiral casing and its application in hydraulic transient computation based on equiangular spiral model*

    PENG Xiao-dong (彭小東)

    State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China, E-mail: mypxiaod@126.com

    YANG Zhao-hui (楊朝暉)

    Department of Water Resources of Guizhou Province, Guiyang 550002, China

    LIU Shan-jun (劉善均), JU Xiao-ming (鞠小明)

    State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China

    (Received May 20, 2013, Revised August 14, 2013)

    For the metal spiral casing of water turbines, a new equivalent pipe algorithm is developed based on the idea of equiangular spiral. Prototype tests and computations are carried out to investigate the hydraulic transient characteristics. The computation results by using the new model are in a good agreement with the prototype test data with respect to the maximum speed of the turbine-generator unit, the maximum water hammer pressure in the spiral casing and the maximum vacuum in the draft tube. The proposed method is a significant improvement over the conventional algorithm with the accuracy increased and the error reduced by about 3%.

    equiangular spiral, metal spiral casing, equivalent pipe, hydraulic transient

    Introduction

    Hydraulic transition processes are common flow phenomena in hydropower stations, pumping stations and water supply pipe networks. Disastrous accidents might happen during hydraulic transition processes[1]. The hydraulic transition processes in hydropower stations[2], pumping stations[3,4]and water supply pipe networks were studied based on the hydraulic transient flow theory analysis[5-7], the numerical simulations[8], the model experiment, as well as engineering applications[9].

    In the hydraulic transient computation for hydropower stations, the discharge and torque characteristics diagrams of the turbine were determined by the model efficiency hill diagram and the runaway speed characteristics diagram in steady working conditions. These characteristics diagrams do not include the impact of the water inertia in the metal spiral casing under unstable working conditions. It would be difficult to accurately simulate the hydraulic transient characteristics of the metal spiral casing, owing to its variable cross section.

    In general, the metal spiral casing is short in length, so the water inertia is relatively small as compared with the water inertia in the diversion and power system. Therefore, the water inertia in the metal spiral casing is generally ignored in order to simplify the hydraulic transient numerical computation and the accuracy of the numerical computation may be reduced accordingly. However, the water inertia in the diversion and power system is a very important factor affecting the dynamic characteristics of the regulating system. Due to the complexity of the metal spiral casing, it is not easy to consider adequately the water inertia in the hydraulic transient numerical computation, and this problem must be addressed especially when the hydraulic transient characteristics are concerned. Thecharacteristics of the spiral casing were studied[10]and the concept of the equivalent pipe of the spiral casing was proposed to deal with the water inertia in the hydraulic transient numerical computation. A simple and practical equivalent pipe algorithm was deduced[11], the correctness of which is subject to doubt.

    In this study, with due consideration of the flows in the metal spiral casing of the water turbine, the spiral casing equation is derived and an equivalent pipe algorithm is developed based on the equiangular spiral idea. Numerical computations and prototype tests are carried out to investigate the hydraulic transient characteristics. Some suggestions are made to deal with the metal spiral casing in hydraulic transient numerical computations for hydropower stations.

    1. Basic assumptions and governing equations

    According to the flows in the metal spiral casing of water turbines, some assumptions are made as follows[12]:

    (1) To ignore the flow viscosity and the loss of friction.

    (2) The inside wall of the metal spiral casing is smooth and generates no vortex.

    (3) The flow in the metal spiral casing is symmetrical movement with respect to the axis of the turbine.

    So the flow in the metal spiral casing is an ideal axisymmetric potential flow. In cylindrical coordinates, the Euler equation takes the following form

    Combining Eq.(2) and Eq.(4),

    whereris the distance between any point in the metal spiral casing and the axis of the turbine, andKis the integral constant. LetQbe the discharge,r0the inner radius of the metal spiral casing inlet,R0the distance between the outer shell of the inlet cross section and the axis of the turbine,φ0the nose angle, as shown in Fig.1, we have

    Let the angle betweenVεandVbeδ, the cross section height of the metal spiral casingb, then

    For a given metal spiral casing, apparently, tanδis a constant. As the geometry indicates, only an equiangular spiral has that characteristic. Therefore, the flow line in the metal spiral casing can be approximately considered as an equiangular spiral, and the contour line equation of the metal spiral casing is that of the equiangular spiral.

    Fig.1 Perspective view of metal spiral casing and sectional view of spiral casing inlet

    Fig.2 Polar coordinates in metal spiral casing

    2. Equivalent pipe algorithm for metal spiral casing

    The Bernoulli equation for the fluid unsteady flow between the cross section -jjand -i iis in the form

    Fig.3 The diversion and power system of the large hydropower station investigated

    Fig.4 Conventional model and new model for hydraulic transient numerical computation

    Table 1 Parameters of the computation models

    When the water inertia is to be considered, in the computation, one may add an extended pipe of lengthLweand cross section areaAwebefore the turbine inlet. While the turbine output power is regulated, the turbine discharge capacity and the water hammer pressure in the penstock are inevitably affected by the water inertia.

    3.Case studies

    3.1Background of the prototype

    The diversion and power system of a large hydropower station consists of the pressure flow tunnel, the impedance surge chamber, the penstock and three turbine-generator units. The length of the pressure flow tunnel is 16 293 m and the inner diameter is 8.6 m. The net diameter of the impedance surge chamber is 22 m, and the impedance orifice is 4.0 m in diameter. The total length of the penstock is 489.5 m, and the main penstock’s diameter is 7.0 m. The rated output of each turbine-generator unit is 140 MW, the rated head is 220.0 m and the rated speed is 300 r/min. The inlet radius of the metal spiral casing is 1.368 m and the nose angle is 6.021 rad. The distance between the outer shell of the metal spiral casing inlet and the turbine axis is 5.06 m, as shown in Fig.3.

    In October 2011, the hydraulic transient prototype tests on the turbine-generator unit 1# were carried out by the group of the hydropower station proprietors and builders. The wicket gate opening curve and the turbine-generator speed curve were obtained by the turbine governor mechanism. The water hammer pressure in the metal spiral casing and the vacuum in the draft tube were measured, with the piezometers installed in the metal spiral casing and the draft tube.

    3.2Governing equations

    The governing equations include the continuity equation and the motion equation for the unsteady pressure flow in pipes. They can be written as[14]:

    wherevis the flow velocity,His the piezometric head,ais the wave velocity of the water hammer,fis the friction coefficient,Dis the pipe diameter andθis the slope angle of the pipe centerline.

    3.3Computation model

    In order to verify the equivalent pipe algorithm and its hydraulic transient characteristics given in this study, two computation models are considered as follows:

    Figures 4(a) and 4(b) are the conventional model and the new model in this paper for the hydraulic transient numerical computation, respectively, and with the additional factor,the equivalent pipe of the metal spiral casing,in the new model.

    The parameters of the computation models are given in Table 1, where the length and the cross section area of the equivalent pipe are obtained from the Eq.(16) and Eq.(17).

    Table 2 Hydraulic transient parameters of 1# unit

    3.4Solution method and boundary conditions

    The characteristics method[15,16]is used in this study. The reservoir level is taken as the inlet boundary, and the tail water level is taken as the outlet boundary. The impedance surge chamber boundary is also used, with a free water surface. The time step is set as 0.01 s. The hydraulic transient parameters are given in Table 2.

    Fig.5 Wicket gate opening curve in working condition D1

    Fig.6 Water hammer pressure in spiral casing under working condition D1

    3.5Results of the prototype tests and computations

    The two models are computed by the characteristics method, where the water inertia is ignored conventionally in the former, and, is considered in the latter, with a factor, suggested in the paper. The results of the prototype tests, and those obtained by the conventional and new models under the working condition D1are shown in Fig.5-Fig.9, where the error bars are included, and the results under the working conditions D2and D3are very similar to those under the working condition D1, therefore, they are not shown.

    Fig.7 Vacuum in draft tube under working condition D1

    Fig.8 Turbine-generator unit speed under working condition D1

    Fig.9 Water level in surge chamber under working condition D1

    Table 3 Numerical computation and prototype tests under D1, D2and D3working conditions

    4. Analyses and discussions

    The wicket gate opening curve, the speed of the turbine-generator unit, the water hammer pressure in the spiral casing and the vacuum in the draft tube are the key factors in the hydraulic transient process. The accuracy of results would show whether the model is reasonable, credible and reliable or not. The comparison between numerical computation and prototype tests in working condition D1, D2and D3is given in Table 3.Analyses are as follows.

    4.1Water hammer pressure characteristics

    The water hammer pressure and the vacuum curves reach their peak values att=3 s. The conventional model’s errors (comparing to the prototype tests) for the maximum water hammer pressure are 3.4%, 0.0% and 1.6% under the working conditions D1, D2, D3, respectively,and the new model’s errors are 1.1%, 1.5%, and 0.8%; the conventional model’s errors for the maximum vacuum in the draft tube are 5.3%, 3.2% and 4.2%,and the new model’s errors are 2.2%, 2.3%, and 0.5%, which shows the new model’s improvement for the two factors.

    4.2Turbine-generator speed characteristics

    As shown in Fig.8, the results obtained by the two models show the same tendency and are in a good agreement with the prototype tests, where the peak of the turbine-generator unit speed is at =t5 s and the errors under the three working conditions of the two models are less than 1%.

    In the start stage of the hydraulic transient process, the results obtained by the new model are still larger than those obtained by the conventional model, due to the pressure difference, because the speed of the turbine runner blades is increased in accordance with the pressure, so the turbine input power is increased. This phenomenon is reasonable.

    4.3Surge chamber water level characteristics

    The water levels in the surge chamber obtained by the two models are shown in Fig.9 and Table 3. The new model gives results in a good agreement with those obtained by the conventional model, with a difference less than 0.05 m, therefore, it can be concluded that the equivalent pipe of the metal spiral casing has almost no effect on the results of the water level in the surge chamber.

    4.4Discussions

    The spiral casing equation and the equivalent pipe algorithm are derived based on some basic assumptions. It is evident that one may ignore the flow viscosity and the loss of friction, but the assumptions (2) and (3) do have a little effect, and further improvement should be considered in these respects.

    The length is expressed by an approximate formula and the error is less than 1% as compared with the computation tests.

    For a water turbine, the inlet piezometric head can be considered as the average around the metal spiral casing, which can not be verified.

    5. Conclusions

    A new equation for the metal spiral casing is derived and an equivalent pipe algorithm is developed based on the equiangular spiral idea. It is shown that the equivalent pipe algorithm for the metal spiral casing based on the equiangular spiral idea is practical and reasonable with the equivalent pipe being considered as an extension of the penstock. The results of the prototype tests and the hydraulic transient computations by the new model (with the equivalent pipe) and the conventional model (without the equivalent pipe) are compared. It is shown that the equivalent pipe of the metal spiral casing has the following hydraulic transient characteristics:

    (1) When the equivalent pipe of the metal spiral casing is taken as an extension of the penstock, the mathematical model for the diversion and power system would be improved in the hydraulic transient computation.

    (2) The accuracy is increased and the error is evenly distributed with the use of the new model, with respect to the maximum speed of the turbine-generator unit, the maximum water hammer pressure in the spiral casing and the maximum vacuum in the draft tube, as compared with the conventional model.

    (3) The equivalent pipe of the metal spiral casing has a certain impact on the speed of the turbine-generator unit, the pressure in the spiral casing and the vacuum in the draft tube in the hydraulic transient computation results, but it has almost no effect on the water level in the surge chamber.

    [1] YANG Jian-dong, ZHAO Kun and LI Lin. Analysis on the causes of units 7 and 9 accidents at Sayano-Shushenskaya Hydropower Station[J]. Journal of Hydroelectric Engineering, 2011, (4): 226-234(in Chinese).

    [2] CHENG Yong-guang, LI Jin-ping and YANG Jian-dong. Free surface-pressurized flow in ceiling-sloping tailrace tunnel of hydropower plant: Simulation by VOF model[J]. Journal of Hydraulic Research, 2007, 45(1): 88-99.

    [3] GUO Jian-ping, ZHANG Li-xiang. Tripping transients in a complex pumping system with multi pumps in parallel[J]. Procedia Engineering, 2012, 31: 428-434.

    [4] XU Wei-hui, GAO Chuan-chang and LIU Jun et al. Hydraulic transient numerical study of super-high parameter motor-pump in drainage system for mine emergency[J]. Energy Procedia, 2012, 14: 464-469.

    [5] IZQUIERDO J., IGLESIAS P. L. Mathematical modelling of hydraulic transients in complex systems[J]. Mathematical and Computer Modelling, 2004, 39(4-5): 529-540.

    [6] HUANG Hao, ZHANG Chang-bing and XING Zhi et al. Research on hydraulic transient process based on weakly compressible fluid[J].Water Resources and Power, 2012, 30(2): 81-85(in Chinese).

    [7] ZHANG Li-xiang, ZHANG Hong-ming and WANG Zheng-jun et al. Analysis of state-changing water hammer in a long pipe[J].Journal of Hydrodynamics, Ser. B, 2004, 16(1): 52-60.

    [8] XIA Lin-sheng, CHENG Yong-guang and ZHOU Daqing. 3-D simulation of transient flow patterns in a corridor-shaped air-cushion surge chamber based on computational fluid dynamics[J]. Journal of Hydrodynamics, 2013, 25(2): 249-257.

    [9] LIANG Si-zhen, ZHANG Chang-bing and GE Jing. Research on object-oriented modeling of transient flow and application to the diversion system of hydropower station[J]. Journal of Hydraulic Engineering, 2010, 29(1): 147-151(in Chinese).

    [10] BISWAS G., ESWARAN V. and GHAI G. et al. A numerical study on flow through the spiral casing of a hydraulic turbine[J]. International Journal for Numerical Methods in Fluids, 1998, 28(1): 143-156.

    [11] YANG Kai-lin. The study of hydraulic transient in hydropower station and pumping plant[M]. Beijing, China: China Water Power Press, 2000, 122-131(in Chinese).

    [12] ZHENG Yuan, JU Xiao-ming and CHENG Yun-shan. Water turbine[M]. Beijing, China: China Water Power Press, 2007, 97(in Chinese).

    [13] LOCKWOOD E. H. A book of curves[M]. London, UK: Cambridge University Press, 1961, 108.

    [14] LIN Jin-song, JU Jiang and ZHU Liang et al. Application of numerical simulation of water transient process in hydropower station[J]. Journal of Hydraulic Engineering, 2010, 29(1): 31-37(in Chinese).

    [15] CHEN Jiang-lin, LV Hong-xing and SHI Xi et al. Analysis of water hammer process of tee pipe considering local head loss by using characteristic line method[J]. Water Saving Irrigation, 2011, (10): 17-20(in Chinese).

    [16] WANG Chao, YANG Jian-dong. Solution for shortpipe problem in calculation of unsteady flow with characteristics method[J]. Water Resources and Power, 2013, 31(7): 77-80(in Chinese).

    10.1016/S1001-6058(14)60016-0

    * Project supported by the National Natural Science Foundation of China (Grant No. 51179114).

    Biography: PENG Xiao-dong (1984-), Male, Ph. D. Candidate

    LIU Shan-jun,

    E-mail: drliushanjun@vip.sina.com

    猜你喜歡
    朝暉
    爬樓難、起床僵、關(guān)節(jié)痛,這究竟是什么病
    祝您健康(2024年3期)2024-03-03 13:27:39
    芙蓉國(guó)里盡朝暉
    CENTRAL LIMIT THEOREM AND CONVERGENCE RATES FOR A SUPERCRITICAL BRANCHING PROCESS WITH IMMIGRATION IN A RANDOM ENVIRONMENT*
    白玫瑰與郁金香
    三只蚊子
    自動(dòng)鉛筆
    三江源頭盡朝暉
    唆拜(外一首)
    文藝論壇(2015年23期)2015-03-04 07:57:15
    厚棉襖
    椅子樹
    欧美精品一区二区免费开放| 国产精品久久久av美女十八| 日韩欧美国产一区二区入口| 黄色 视频免费看| 丰满饥渴人妻一区二区三| 黑人巨大精品欧美一区二区mp4| 少妇 在线观看| 亚洲午夜精品一区,二区,三区| 热99国产精品久久久久久7| 黄色视频在线播放观看不卡| 亚洲精品国产av成人精品| 91国产中文字幕| 日本黄色日本黄色录像| 日本精品一区二区三区蜜桃| 午夜福利乱码中文字幕| 国产精品麻豆人妻色哟哟久久| 精品亚洲乱码少妇综合久久| 精品人妻一区二区三区麻豆| 99国产极品粉嫩在线观看| 好男人电影高清在线观看| 国产精品国产三级国产专区5o| 亚洲中文字幕日韩| 男人爽女人下面视频在线观看| 97人妻天天添夜夜摸| 建设人人有责人人尽责人人享有的| 悠悠久久av| www.自偷自拍.com| 国产成人系列免费观看| 国产亚洲av片在线观看秒播厂| 丁香六月天网| 另类亚洲欧美激情| 亚洲精品国产精品久久久不卡| 欧美黄色片欧美黄色片| 亚洲一码二码三码区别大吗| 香蕉国产在线看| 婷婷丁香在线五月| 国产人伦9x9x在线观看| 久久午夜综合久久蜜桃| 正在播放国产对白刺激| 青春草亚洲视频在线观看| 久久人人爽av亚洲精品天堂| 国产成人精品久久二区二区免费| 我要看黄色一级片免费的| 欧美精品亚洲一区二区| 午夜两性在线视频| 伊人久久大香线蕉亚洲五| av在线老鸭窝| 国产欧美日韩精品亚洲av| 免费观看人在逋| 久久精品成人免费网站| 亚洲熟女精品中文字幕| 桃红色精品国产亚洲av| 18在线观看网站| tocl精华| 午夜老司机福利片| 首页视频小说图片口味搜索| 亚洲国产欧美在线一区| 大码成人一级视频| 久久久久国产一级毛片高清牌| 欧美另类亚洲清纯唯美| 可以免费在线观看a视频的电影网站| 两人在一起打扑克的视频| 最新在线观看一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 国产欧美日韩综合在线一区二区| 亚洲欧美成人综合另类久久久| 亚洲成人手机| 久久综合国产亚洲精品| 91大片在线观看| 中文字幕最新亚洲高清| 窝窝影院91人妻| 精品久久久精品久久久| 欧美日韩国产mv在线观看视频| 国产成+人综合+亚洲专区| a 毛片基地| 又紧又爽又黄一区二区| 欧美成人午夜精品| 动漫黄色视频在线观看| 亚洲精品中文字幕在线视频| 纯流量卡能插随身wifi吗| 好男人电影高清在线观看| 男女午夜视频在线观看| 亚洲成人国产一区在线观看| 国产精品一区二区在线观看99| 最近最新中文字幕大全免费视频| cao死你这个sao货| 免费高清在线观看视频在线观看| 两性夫妻黄色片| 18禁黄网站禁片午夜丰满| 18禁黄网站禁片午夜丰满| 国产成人欧美在线观看 | 黑人巨大精品欧美一区二区蜜桃| 国产淫语在线视频| 国产在线免费精品| 色精品久久人妻99蜜桃| 欧美精品一区二区免费开放| 这个男人来自地球电影免费观看| 两性夫妻黄色片| 亚洲伊人久久精品综合| 免费久久久久久久精品成人欧美视频| 人人妻人人澡人人爽人人夜夜| 欧美乱码精品一区二区三区| 老汉色av国产亚洲站长工具| 亚洲avbb在线观看| 国产一级毛片在线| 亚洲七黄色美女视频| 国产欧美日韩一区二区三 | 黑丝袜美女国产一区| a级毛片在线看网站| 一区二区av电影网| 欧美另类一区| 午夜福利视频精品| www日本在线高清视频| 一区二区三区激情视频| 精品亚洲成国产av| 亚洲av美国av| 精品国产一区二区三区久久久樱花| 国产精品 国内视频| 亚洲欧美成人综合另类久久久| 国产男女内射视频| 午夜免费鲁丝| 久久精品亚洲熟妇少妇任你| 又黄又粗又硬又大视频| 欧美日韩黄片免| 日韩电影二区| av有码第一页| 久久精品国产亚洲av高清一级| 这个男人来自地球电影免费观看| 亚洲人成电影免费在线| 一级毛片电影观看| 在线观看舔阴道视频| 欧美日韩亚洲高清精品| 国产精品久久久av美女十八| 精品少妇黑人巨大在线播放| 国产三级黄色录像| 久久精品国产亚洲av高清一级| 免费高清在线观看视频在线观看| 最新在线观看一区二区三区| 黄色a级毛片大全视频| netflix在线观看网站| 国产精品免费视频内射| 欧美亚洲日本最大视频资源| 国产一区有黄有色的免费视频| 欧美黑人欧美精品刺激| 亚洲av日韩在线播放| 久久香蕉激情| 亚洲欧洲日产国产| netflix在线观看网站| 久久久久久久大尺度免费视频| 国产精品国产av在线观看| 免费观看人在逋| 黄色片一级片一级黄色片| 日本av手机在线免费观看| 日韩中文字幕欧美一区二区| 涩涩av久久男人的天堂| 日本精品一区二区三区蜜桃| 欧美精品人与动牲交sv欧美| 色婷婷av一区二区三区视频| 国产精品免费大片| 王馨瑶露胸无遮挡在线观看| 啦啦啦啦在线视频资源| 欧美在线黄色| 19禁男女啪啪无遮挡网站| 母亲3免费完整高清在线观看| 69精品国产乱码久久久| 人妻久久中文字幕网| 91精品伊人久久大香线蕉| 婷婷色av中文字幕| 80岁老熟妇乱子伦牲交| 久久人妻熟女aⅴ| av在线播放精品| 一本色道久久久久久精品综合| 亚洲欧美日韩高清在线视频 | 久久影院123| 日韩 亚洲 欧美在线| 丝袜喷水一区| 亚洲五月婷婷丁香| 色播在线永久视频| 蜜桃在线观看..| 18禁黄网站禁片午夜丰满| 久久精品亚洲熟妇少妇任你| 美女高潮到喷水免费观看| 热99re8久久精品国产| 老司机深夜福利视频在线观看 | 男男h啪啪无遮挡| 亚洲欧美色中文字幕在线| 中国美女看黄片| 精品第一国产精品| 动漫黄色视频在线观看| 国产一区有黄有色的免费视频| 欧美国产精品va在线观看不卡| www.自偷自拍.com| 欧美日韩亚洲综合一区二区三区_| e午夜精品久久久久久久| 精品高清国产在线一区| 自线自在国产av| 91成年电影在线观看| 成人国产av品久久久| 中文字幕色久视频| 日韩免费高清中文字幕av| 精品一品国产午夜福利视频| 肉色欧美久久久久久久蜜桃| 欧美国产精品一级二级三级| 又紧又爽又黄一区二区| 亚洲国产精品999| 成人黄色视频免费在线看| 久久99热这里只频精品6学生| 久久精品国产a三级三级三级| 色94色欧美一区二区| 黄色片一级片一级黄色片| 国产免费视频播放在线视频| 韩国精品一区二区三区| 肉色欧美久久久久久久蜜桃| 99热网站在线观看| 一本久久精品| 韩国精品一区二区三区| 性高湖久久久久久久久免费观看| 桃红色精品国产亚洲av| 熟女少妇亚洲综合色aaa.| 狂野欧美激情性bbbbbb| 久久精品熟女亚洲av麻豆精品| 国产成人精品久久二区二区91| av又黄又爽大尺度在线免费看| 欧美性长视频在线观看| 久久亚洲精品不卡| 久久精品成人免费网站| 热re99久久国产66热| 久久久精品免费免费高清| bbb黄色大片| 亚洲专区国产一区二区| 狠狠狠狠99中文字幕| 精品一区二区三区av网在线观看 | 丁香六月天网| 精品免费久久久久久久清纯 | 一级,二级,三级黄色视频| 午夜福利视频精品| 深夜精品福利| 国产精品欧美亚洲77777| 三上悠亚av全集在线观看| 国产福利在线免费观看视频| 亚洲av成人一区二区三| 在线天堂中文资源库| 欧美一级毛片孕妇| 欧美日韩亚洲高清精品| 91国产中文字幕| 我要看黄色一级片免费的| 十八禁网站网址无遮挡| 青春草亚洲视频在线观看| tube8黄色片| 香蕉国产在线看| 亚洲一区中文字幕在线| 精品国产乱码久久久久久男人| 黄色a级毛片大全视频| 久久精品熟女亚洲av麻豆精品| 一区二区av电影网| 欧美日韩亚洲高清精品| 免费高清在线观看视频在线观看| 日韩 亚洲 欧美在线| 久久国产精品大桥未久av| 久久影院123| 国产又爽黄色视频| 99久久精品国产亚洲精品| av免费在线观看网站| 一个人免费在线观看的高清视频 | 国产真人三级小视频在线观看| 一区在线观看完整版| 欧美日韩精品网址| 国内毛片毛片毛片毛片毛片| 啦啦啦中文免费视频观看日本| 久久精品国产亚洲av香蕉五月 | 如日韩欧美国产精品一区二区三区| 岛国在线观看网站| 叶爱在线成人免费视频播放| 亚洲av成人一区二区三| 女性生殖器流出的白浆| 免费在线观看日本一区| 欧美黄色片欧美黄色片| 一级片'在线观看视频| 欧美+亚洲+日韩+国产| 欧美日韩成人在线一区二区| 侵犯人妻中文字幕一二三四区| 免费观看av网站的网址| 亚洲av成人一区二区三| 捣出白浆h1v1| 天堂8中文在线网| 男人添女人高潮全过程视频| 亚洲伊人久久精品综合| 午夜视频精品福利| 国产色视频综合| 日韩 亚洲 欧美在线| 国产亚洲精品久久久久5区| 日日爽夜夜爽网站| www.999成人在线观看| 男女高潮啪啪啪动态图| avwww免费| 亚洲免费av在线视频| 亚洲精品在线美女| 桃红色精品国产亚洲av| 成年女人毛片免费观看观看9 | 大片免费播放器 马上看| 亚洲,欧美精品.| 国产成人啪精品午夜网站| 丁香六月天网| 女人精品久久久久毛片| 女人高潮潮喷娇喘18禁视频| 99热国产这里只有精品6| 国产亚洲一区二区精品| 欧美亚洲 丝袜 人妻 在线| 欧美精品啪啪一区二区三区 | 精品一区二区三区av网在线观看 | 五月开心婷婷网| 国产日韩一区二区三区精品不卡| 国产91精品成人一区二区三区 | 国产精品一区二区精品视频观看| 久久精品国产亚洲av高清一级| 黑人操中国人逼视频| 老汉色av国产亚洲站长工具| xxxhd国产人妻xxx| 在线天堂中文资源库| 国产精品一区二区免费欧美 | 色视频在线一区二区三区| 热99久久久久精品小说推荐| 2018国产大陆天天弄谢| 日韩 欧美 亚洲 中文字幕| 成人国产av品久久久| 国产av一区二区精品久久| 久久久久国产一级毛片高清牌| 亚洲 国产 在线| 成年人黄色毛片网站| 日韩一区二区三区影片| 最新的欧美精品一区二区| 欧美精品亚洲一区二区| 亚洲激情五月婷婷啪啪| 又紧又爽又黄一区二区| 超色免费av| 777久久人妻少妇嫩草av网站| 天堂中文最新版在线下载| 一区二区三区乱码不卡18| 国产在线免费精品| 男男h啪啪无遮挡| 国产精品九九99| 看免费av毛片| 少妇被粗大的猛进出69影院| 黑人猛操日本美女一级片| 精品一区二区三卡| 熟女少妇亚洲综合色aaa.| 国产一区有黄有色的免费视频| e午夜精品久久久久久久| av线在线观看网站| 精品一区二区三区四区五区乱码| 日韩制服丝袜自拍偷拍| 日本一区二区免费在线视频| 久久久久久久国产电影| bbb黄色大片| 纯流量卡能插随身wifi吗| 欧美日韩视频精品一区| 少妇粗大呻吟视频| 国产精品成人在线| 国产成人欧美| av福利片在线| 亚洲伊人色综图| av福利片在线| 婷婷色av中文字幕| 美女主播在线视频| 悠悠久久av| 91国产中文字幕| 在线观看www视频免费| 午夜福利在线观看吧| 国产精品99久久99久久久不卡| 狠狠婷婷综合久久久久久88av| 欧美乱码精品一区二区三区| 国产伦人伦偷精品视频| 热99国产精品久久久久久7| 美女脱内裤让男人舔精品视频| 亚洲av片天天在线观看| 精品国产一区二区三区久久久樱花| 国产1区2区3区精品| 啦啦啦 在线观看视频| 青青草视频在线视频观看| 久久亚洲国产成人精品v| 亚洲精品乱久久久久久| 国产成人系列免费观看| 老司机福利观看| 男女无遮挡免费网站观看| 欧美日韩亚洲国产一区二区在线观看 | 国产精品一区二区在线观看99| 丁香六月欧美| 免费高清在线观看日韩| netflix在线观看网站| 亚洲性夜色夜夜综合| 一本久久精品| 纵有疾风起免费观看全集完整版| 国产精品1区2区在线观看. | 国产一卡二卡三卡精品| 国产成人av激情在线播放| 亚洲成av片中文字幕在线观看| 国产成人av激情在线播放| 精品人妻熟女毛片av久久网站| 久久影院123| 高清视频免费观看一区二区| 国产99久久九九免费精品| 日韩三级视频一区二区三区| 国产成人a∨麻豆精品| 成人免费观看视频高清| 女人爽到高潮嗷嗷叫在线视频| 亚洲九九香蕉| 色婷婷久久久亚洲欧美| 久久天躁狠狠躁夜夜2o2o| 久久国产精品影院| 成年人黄色毛片网站| 欧美 日韩 精品 国产| 女警被强在线播放| 午夜福利视频在线观看免费| 国产激情久久老熟女| 一区二区日韩欧美中文字幕| 久久国产精品人妻蜜桃| 亚洲色图 男人天堂 中文字幕| 国产精品久久久久成人av| 国产成人精品久久二区二区91| 曰老女人黄片| 欧美激情高清一区二区三区| 免费一级毛片在线播放高清视频 | 美女主播在线视频| 精品人妻一区二区三区麻豆| 2018国产大陆天天弄谢| 欧美激情 高清一区二区三区| 青春草亚洲视频在线观看| 捣出白浆h1v1| 丰满少妇做爰视频| 欧美在线一区亚洲| 动漫黄色视频在线观看| 午夜老司机福利片| 在线观看一区二区三区激情| 伦理电影免费视频| 欧美激情极品国产一区二区三区| 天天躁日日躁夜夜躁夜夜| 亚洲欧美精品自产自拍| 亚洲精品第二区| tocl精华| 日韩欧美国产一区二区入口| 成人三级做爰电影| 久久av网站| 免费一级毛片在线播放高清视频 | 日韩有码中文字幕| 亚洲精品成人av观看孕妇| 久久免费观看电影| 欧美乱码精品一区二区三区| 国产成人精品在线电影| 99热网站在线观看| 国产免费福利视频在线观看| 人妻人人澡人人爽人人| 91精品三级在线观看| 汤姆久久久久久久影院中文字幕| 免费av中文字幕在线| 80岁老熟妇乱子伦牲交| 人妻久久中文字幕网| 精品国产超薄肉色丝袜足j| 亚洲国产欧美日韩在线播放| 青草久久国产| 久久人人爽人人片av| 欧美xxⅹ黑人| 久久久国产一区二区| 国产欧美日韩一区二区三区在线| 老司机影院毛片| 午夜福利视频精品| 亚洲中文av在线| 69av精品久久久久久 | 性色av乱码一区二区三区2| 精品少妇内射三级| 国产精品久久久av美女十八| 一级,二级,三级黄色视频| 亚洲欧美精品综合一区二区三区| 亚洲黑人精品在线| 国产在视频线精品| 久久久欧美国产精品| 777米奇影视久久| 国产又爽黄色视频| 亚洲精品乱久久久久久| 精品人妻1区二区| 日韩一卡2卡3卡4卡2021年| 亚洲av成人不卡在线观看播放网 | 国产在线一区二区三区精| 国产精品秋霞免费鲁丝片| 婷婷成人精品国产| 18在线观看网站| 曰老女人黄片| 亚洲国产精品999| 女人精品久久久久毛片| 欧美日韩av久久| 一二三四社区在线视频社区8| 国产av又大| 99热全是精品| 日本a在线网址| av不卡在线播放| 久久久水蜜桃国产精品网| 少妇的丰满在线观看| 欧美精品高潮呻吟av久久| 18禁裸乳无遮挡动漫免费视频| 热re99久久精品国产66热6| 成年人黄色毛片网站| 老汉色∧v一级毛片| 中文字幕人妻丝袜制服| 五月天丁香电影| videosex国产| 99九九在线精品视频| 老司机影院毛片| 欧美乱码精品一区二区三区| 精品国产乱码久久久久久男人| 人妻人人澡人人爽人人| 成年人免费黄色播放视频| 丰满人妻熟妇乱又伦精品不卡| 欧美黑人精品巨大| av一本久久久久| av视频免费观看在线观看| av一本久久久久| a级片在线免费高清观看视频| 一级毛片电影观看| 精品乱码久久久久久99久播| 亚洲情色 制服丝袜| 欧美变态另类bdsm刘玥| 高清在线国产一区| 久久久精品免费免费高清| av天堂久久9| 久久av网站| 国产99久久九九免费精品| 国产精品二区激情视频| 国产一区二区 视频在线| 1024香蕉在线观看| 国产一区二区 视频在线| 捣出白浆h1v1| 丝袜美足系列| 叶爱在线成人免费视频播放| 国产成人免费无遮挡视频| 欧美黄色片欧美黄色片| 欧美精品av麻豆av| av在线老鸭窝| 爱豆传媒免费全集在线观看| 女人高潮潮喷娇喘18禁视频| 国产区一区二久久| 在线观看人妻少妇| 免费久久久久久久精品成人欧美视频| 国产精品久久久av美女十八| 91麻豆av在线| 国产精品麻豆人妻色哟哟久久| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人欧美| 嫁个100分男人电影在线观看| 黑人巨大精品欧美一区二区mp4| 老鸭窝网址在线观看| netflix在线观看网站| 91成年电影在线观看| 亚洲 欧美一区二区三区| 亚洲中文av在线| 久久 成人 亚洲| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品偷伦视频观看了| 丁香六月欧美| 国产av精品麻豆| 亚洲精品国产av成人精品| 亚洲国产精品一区二区三区在线| 在线 av 中文字幕| 国产精品一区二区在线观看99| 别揉我奶头~嗯~啊~动态视频 | 伊人亚洲综合成人网| 亚洲精品在线美女| 久久精品久久久久久噜噜老黄| 日韩欧美国产一区二区入口| 日本wwww免费看| 少妇 在线观看| 欧美人与性动交α欧美精品济南到| 老熟女久久久| 高清av免费在线| 日本黄色日本黄色录像| 中文字幕精品免费在线观看视频| 亚洲精品久久久久久婷婷小说| 亚洲精品国产av蜜桃| 成年女人毛片免费观看观看9 | 丰满人妻熟妇乱又伦精品不卡| 国产一区二区三区综合在线观看| 91九色精品人成在线观看| 亚洲国产欧美一区二区综合| 999久久久精品免费观看国产| 日本wwww免费看| 日韩 欧美 亚洲 中文字幕| 精品第一国产精品| 91成年电影在线观看| 国产老妇伦熟女老妇高清| 汤姆久久久久久久影院中文字幕| 午夜精品国产一区二区电影| 99久久精品国产亚洲精品| 精品一区二区三卡| 中文字幕最新亚洲高清| 亚洲国产日韩一区二区| 王馨瑶露胸无遮挡在线观看| av超薄肉色丝袜交足视频| 999久久久精品免费观看国产| 免费不卡黄色视频| 亚洲第一av免费看| 日本vs欧美在线观看视频| 午夜影院在线不卡| www.熟女人妻精品国产| www.999成人在线观看| 最新在线观看一区二区三区| 久久精品亚洲熟妇少妇任你| 久久免费观看电影| 水蜜桃什么品种好| a在线观看视频网站| 韩国高清视频一区二区三区| 亚洲天堂av无毛| 丝瓜视频免费看黄片| 亚洲第一欧美日韩一区二区三区 | 9色porny在线观看| 国产一区二区三区在线臀色熟女 | 成年av动漫网址| 亚洲av电影在线进入|