• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Scale analysis of turbulent channel flow with varying pressure gradient*

    2014-06-01 12:30:00QIUXiang邱翔
    關(guān)鍵詞:劉宇

    QIU Xiang (邱翔)

    School of Science, Shanghai Institute of Technology, Shanghai 200235, China, E-mail: emqiux@gmail.com

    LUO Jian-ping (羅劍平)

    School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 200235, China

    HUANG Yong-xiang (黃永祥), LU Zhi-ming (盧志明), LIU Yu-lu (劉宇陸)

    Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    Scale analysis of turbulent channel flow with varying pressure gradient*

    QIU Xiang (邱翔)

    School of Science, Shanghai Institute of Technology, Shanghai 200235, China, E-mail: emqiux@gmail.com

    LUO Jian-ping (羅劍平)

    School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 200235, China

    HUANG Yong-xiang (黃永祥), LU Zhi-ming (盧志明), LIU Yu-lu (劉宇陸)

    Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    (Received May 6, 2013, Revised December 16, 2013)

    In this paper orthogonal wavelet transformations are applied to decompose experimental velocity signals in fully developed channel flows with varying pressure gradient into scales. We analyze the time series from turbulent data, to obtain the statistical characteristics, correlations between the adjacent scales and the principal scale of coherent structures in different scales by wavelet transformations. The results show that, in the counter gradient transport (CGT) region, skewness factors and flatness factors deviate strongly from the corresponding values of Gaussian distribution on certain scales. PDFs on each scale confirm this observation. Scale-scale correlations show further that the fluctuations on some certain special scales are more intermittent than nearby. Principal scale of coherent structure is coincident with the scales on which the statistical properties depart from Gaussian distribution. These features are the same for different families of wavelets, and it also shows some different features in the region between favorable pressure gradient and adverse pressure gradient.

    turbulence, counter gradient transport (CGT), wavelet analysis, pressure gradient, channel flow

    Introduction

    Nowadays, the problem of turbulence, which cover a wide range of scales, is one of the most important issues in classical physics and has been studied in the past years by many authors[1]. About turbulent transport, we consent that stronger transport capacity is one of fundamental characteristics of turbulence compared with laminar flows[1]. In most of turbulent models, the Fourier law is underlying, therefore gradient transport assumption is applied, which assumes that momentum, scalar and energy flux are transferred with mean quantities decreasing[1,2]. However it is well known in laboratory and engineering that we may also see the examples of counter gradient transport (CGT) phenomena[3]. For instance, there is a region near the central part of the channel where the Reynolds stress and mean strain possess the same sign, which means that momentum is transported under counter gradient. Traditional cascade theory cannot present reasonable explanation on these phenomena.

    The classical theory of Kolmogorov’s postulates that turbulence is space-filling at all scales, from the largest scales with which the kinetic energy is input, to the smallest scales with which the kinetic energy is converted into the thermal energy. Since more valuable information for the individual scales should be obtained to study turbulence problem, more rigorous space-scale decompositions of the velocity data are required to proceed further.

    The mechanism of CGT remains open, but it is believed that turbulent counter gradient transport is an essential cause why turbulence (the strong dissipative complex system) last for so long time period. Results obtained so far only show that coherent structures may be one of the important causes of the CGT[3]. Therefore more details about interactions between differentscales of eddies at different temporal and spatial positions should be investigated.

    In the last 20 years, the wavelet transform has been used to analyze the multi-scale properties in finance[4], biological issues[5]and fluid mechanics[6]. Also because of the similarity between wavelets and eddies, wavelet analysis has been widely applied in turbulence experimental data processing, computation and turbulent models[7-9]. Jiang et al.[2]found that at some scales momentum is inversely transported, although total momentum is gradient-transported. However a lot of questions remain to answer. For example, what is the difference of turbulent scale properties in favorable pressure gradient region and adverse pressure gradient when counter gradient transport phenomena occur?

    In the present work, we concentrate ourselves in the experimental data analysis using orthogonal wavelet transformations in turbulent channel flow with a wing on the bottom, following our previous work[2]. Compared to continuous wavelets, orthogonal wavelets are mutually orthogonal to each other and can maintain the original information. Therefore orthogonal wavelets are more reliable to consider the statistical characteristics of turbulent flows[9,10]. We started by performing a non-extensive statistical analysis at several scales from which time series, and we also got structural properties on different scales. Finally, the comparison of turbulent characteristics in favorable pressure gradient region and adverse pressure gradient region is carried out. The contents are arranged as below.

    Fig.1 Schematic of asymmetric plane channel flow with a wing. The test section is 0.53 m× 0.22 m×0.055 m for length, width and height respectively

    1. Experiments

    The experiments were carried out in the water tunnel of the experimental center of Shanghai Jiao Tong University[2]. The test section is 0.53 m× 0.22 m×0.055 m for length, width and height respectively. Two glasses, which are 0.02 m apart, are added between the top wall and bottom wall to construct the new channel flow, as shown in Fig.1. A symmetric wing, which is 0.4m distance from the inlet, is set on the bottom to generate a flow with varying pressure gradient. The wing is 0.07 m in length and 0.009 m in thickness on the center. The mean velocity at the inlet is 2.0 m/s. The measuring instrument is a TSI9100-9 laser Doppler velocimetry (LDV) of TSI. Data collection and analysis are completed by the accompany software flow information display (FIND).

    Fig.2 CGT region and the measurement points

    2. Methodlogy

    The waveletφi,j(x) is created by translation and dilation of generating wavelet functionφ(x), and they are localized both in space and scale. The mother wavelet has a zero mean and thus extracts variations of a signal. The scaling function, the integral of which from -∞ to ∞ is unity, is an averaging function, shown as follows

    where ,i jrepresent the scale and position of wavelets, respectively. It is very similar to the scaling function

    Fig.3 Wavelets (solid lines) and scaling functions (dotted lines) with =N13, ==jJ9, and =k256. Their power spectra in the wavenumber domain are shown in the right column

    So, any square integrable function ()u xcan be reconstructed as

    3. Results and discussions

    3.1Flatness factor, skewness factor and probability density function (PDF)

    The experimental data are analyzed with four families of wavelets: Haar, Db20, Meyer and Harmonic wavelets. The mean velocity is subtracted from the original signals, and the signals are divided into 1 200 segments of 4 096 points (=M1 200, =N12). The wavelet transformations are applied to each segment.

    By using the orthogonal wavelet analysis, we could investigate the turbulent statistical quantities in each scale. Flatness factors, skewness factors and PDFs are important statistical quantities in turbulent fluctuations. These quantities defined in each scales are as follows

    The flatness factor represents the peakedness or flatness of the probability distribution. For Gaussian distribution, the flatness factor in each scale is equal to 3 while the skewness factor is zero. But for turbulence, its PDF deviates from Gaussian distribution. A higher value means that the tail of the distribution is more pronounced than that of a Gaussian one. Thus the flatness factor grows as the distribution becomes more intermittent. The results of Jiang et al.[2]showed that the intermittency in the CGT region is stronger than that nearby. The magnitude of spatial fluctuations of the wavelet transforms is studied in each scale using the flatness factors, skewness factors and PDFs.

    Fig.4 Flatness factors for each scale

    Fig.5 Skewness factors for each scale

    Figure 4 illustrates the scale dependence of the flatness factors in the CGT region (location B in favorable pressure gradient region and locationDin reverse pressure gradient region) of streamwise velocity by using the Db20 wavelet. It should be noted that the other three wavelets usually give similar results, and will not be shown here. In large scales, the flatness factor is close to the Gaussian value of 3. As the scaledecreases, the flatness factor begins to increase. It should be mentioned that the present results are quite different from those of Lord et al.[9]and Li et al.[12]. The flatness factor begins to increase locally and reach the maximum at scale 10. From scale 11, it decreases again. This observations show that the intermittency between scales 8 and 10 is increased.

    Figure 5 shows the skewness factor of velocity fluctuations in the CGT region (location B in favorable pressure gradient region and locationDin reverse pressure gradient region) in each scale. It is clearly seen that the values of skewness factors in each scale are vibrating around zero. It should be emphasized that the skewness factors in scale 11 deviates from zero more than any other scales. This result can be compared to the results of Jiang et al.[2]who found the special scale of 10 in fully developed asymmetric channel flow over ribs. And also we have detected that the values of skewness factors at locations B and D have different signs in almost all scales, and this result has not been reported in previous related articles and should be tested numerically and experimentally in future.

    Fig.6 PDFs for each scale (1-6)

    The results of PDFs (see Figs.6 and 7) at location B (results of location D, which is not shown here, are approximate with B) for each scale also indicate that the intermittency increases with the scale. Furthermore, the PDFs approach Gaussian distribution with the increase of scale. But scales 9, 10, 11 and 12 need to be paid more attention, and scales 9 and 12 are closer to Gaussian distribution than scales 10 and 11. From the results for the skewness and flatness factors, it could be found that the intermittency of small scalesare generally stronger than large scales, but intermediate scales more intermittent than nearby. In fact, the results indicate that smaller scales are more intermittent than larger scales, which is consistent that of boundary flow[13], and channel flow[12].

    Fig.7 PDFs for each scale (7-12)

    3.2Adjacent scales correlations

    The orthogonal wavelets offer a unique opportunity to investigate a correlation in space between variations of different scales. Here we only consider the correlation between adjacent scales, such as correlation between scale 1j- andj. The correlation coefficients between the adjacent scales are defined as[2]

    Fig.8 Ccorrelations between adjacent scales

    As was pointed out by Jiang et al.[2], the correlation between 2j- andjis similar. Figure 8 showsthe results of scale-scale relations at two different points, B and D, employing Meyer’s and Harmonic bases because the other wavelets, Haar and Db20, will give the spurious correlations.

    It is evident that the correlation is the function of scales. It is observed that with the increase of scales, the correlation decreases and correlations between larger scales are very weak for all the points considered here. Similar results are observed in isotropic flow. But at point B in the CGT region, it should be noted that there exists a pulse in scale 10 in the correlations between the adjacent scales. This phenomenon is absent at another point D and points mentioned above.

    3.3Principal scale of coherent structures

    There are many different methods to study principal scale of coherent structures, including the maximal energy method[14], energy method[15], and de-noising method presented by Guo et al.[6]. The energy methods stated above adopt continuous wavelet while de-noising method adopts discrete wavelets. In fact, the de-noising method is the extension of maximal energy method from continuous wavelet transform (CWT) to discrete wavelet transform (DWT). In this section, we extend the maximal energy method from CWT to DWT. In fact, the differences between CWT to DWT are scales and interpretation, i.e., CWT is theoretically defined in each scale and positions while DWT is in dyadic scales and positions.

    It is well known that the larger wavelet coefficients in wavelet analysis indicate more intense coherent structures[12]. The following equation is adopted to estimate contributions of coherent structures in each scale to turbulent kinetic energy

    whereωm[j] is the wavelet coefficients on scalem, andjis time factor, andpmis the ratio of contribution by coherent structures with scaled=2m+1to turbulent kinetic energy.

    Fig.9 The principle scale of coherent structures

    In fact, the number of wavelet coefficients in different scales means that the number of eddies depends on the scales. So we could determine the principal scale of coherent structures by considering the average energy in each scale. More specifically, it is determined by the following relationship

    Here the maximal value ofmp*corresponds to the principal scale of coherent structures. It could be easily observed that this method is in essence the maximal energy method. The number of wavelet coefficients in each scale could be considered as constant.

    By using the method presented above, we find that the ratio is constant in all scales for white noise. Figure 9 shows the principal scale of coherent structures at different points. Here only the results for Db20 are given. It is observed that the principal scales are scale 11 at point B, 10 at point C and 11 at point D, respectively. It should be noted that principal scale is 11 at B and D in the CGT region, partly coincident to the results of the flatness factors and skewness factors.

    4. Conclusions

    It is well known that randomness, multiple scales and coherent structures are the most essential features of turbulence. The wavelet analysis is a suitable tool to investigate turbulence. In this paper the orthogonal wavelets are applied to study the scale properties in turbulent counter gradient transport region in fully developed asymmetric channel flows with a wing on the bottom. We study for each scale the flatness factors, skewness factors, probability density functions, and scale-scale correlations. Then we calculate the principal scale of coherent structures.

    The results show that in the CGT region, the skewness factors and flatness factors deviate strongly from the corresponding values of Gaussian distribution in some certain scales. The PDFs in each scale confirm this observation. The scale-scale correlations show further that fluctuation in some special scales is more intermittent than nearby. The principal scale of coherent structure is coincident with the scales on which the statistical properties depart from Gaussian distribution. Most of these features are the same for different families of wavelets, and it also shows some different features in the region between favorable pressure gradient and adverse pressure gradient.

    [1] STEPHEN B. P. Turbulent flows[M]. Cambirdge, UK: Cambridge University Press, 2000.

    [2] JIANG Jian-bo, QIU Xiang and LU Zhi-ming et al. Othogonal wavelet analysis of counter gradient transport phenomena in turbulent asymmetric channel flow[J]. Acta Mechanica Sinica, 2005, 21(2): 133-141.

    [3] JIANG Jian-bo, LIU Yu-lu and LU Zhi-ming. Experimental and theoretical studies on negative transport phenomena in turbulent flows[J]. Advances in Mechanics, 2000, 30(2): 1-8(in Chinese).

    [4] GALLEGATI M. Wavelet analysis of stock returns and aggregate economic activity[J]. Computational Statistics and Data Analysis, 2008, 52(6): 3061-3074.

    [5] JAN Y. K., BRIENZA D. M. and GEYER M. J. Analysis of week-to-week variability in skin blood flow measurements using wavelet transforms[J]. Clinical Physiology and Functional Imaging, 2005, 25(5): 253-262.

    [6] GUO Xin-lei, YANG Kai-lin and GUO Yong-xin. Hydraulic pressure signal denoising using threshold selflearning wavelet algorithm[J]. Journal of Hydrodynamics, 2008, 20(4): 433-439.

    [7] JACOBITZ F., LIECHTENSTEIN L. and SCHNEIDER K. et al. On the structure and dynamics of sheared and rotating turbulence: Direct numerical simulation and wavelet-based coherent vortex extraction[J]. Physics of Fluids, 2008, 20(4): 045103.

    [8] SCHNEIDER K., VASILYEV O. V. Wavelet methods in computational fluid dynamics[J]. Annual Review of Fluid Mechanics, 2010, 42: 473-503.

    [9] LORD J. W., RAST M. P. and MCKINLAY C. et al. Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold[J]. Physics of Fluids, 2012, 24(2): 025102.

    [10] SCHNEIDER K., FARGE M. and PELLEGRINO G. et al. Coherent vortex simulation of three-dimensional turbulent mixing layers using orthogonal wavelets[J]. Journal of Fluid Mechanics, 2005, 534: 39-64.

    [11] QIU Xiang, JIANG Jian-bo and LIU Yu-lu. Effects of pressure-gradient on turbulent counter-gradient transport[J]. Acta Mechanica Sinica, 2004, 36(2): 163-170(in Chinese).

    [12] LI Li, XU Chun-xiao and ZHANG Zhao-shun. Study of burst phenomena in wall turbulence by wavelet analysis[J]. Acta Mechanica Sinica, 2001, 33(2): 153-162(in Chinese).

    [13] CHEN Jiong, HU Fei. Coherent structures detected in atmospheric boundary-layer turbulence using wavelet transforms at Huaihe River Basin, China[J]. Boundary-Layer Meteorology, 2003, 107(2): 429-444.

    [14] OKAMOTO N., YOSHIMATSU K. and SCHNEIDER K. et al. Coherent vortices in high resolution direct numerical simulation of homogeneous isotropic turbulence: A wavelet viewpoint[J]. Physics of Fluids, 2007, 19(11): 115109.

    [15] FARGE M., PELLEGRINO G. and SCHNEIDER K. Coherent vortex extraction in 3D turbulent flows using orthogonal wavelets[J]. Physical Review Letters, 2001, 87(5): 054501.

    10.1016/S1001-6058(14)60015-9

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 11102114, 11172179) and the Innovation Program of Shanghai Municipal Education Commission (Grant No. 13YZ124).

    Biography: QIU Xiang (1978-), Male, Ph. D.,

    Associate Professor

    LUO Jian-ping,

    E-mail: jp_luo@163.com

    猜你喜歡
    劉宇
    最有耐心的兔子
    媽媽的最愛(ài)
    下大雪了
    快樂(lè)的事
    不怕打針
    我長(zhǎng)大了
    發(fā)現(xiàn)了一個(gè)秘密
    給媽媽送花
    我沒(méi)有不聽(tīng)話
    變幻莫測(cè)的守恒問(wèn)題
    亚洲av国产av综合av卡| 2022亚洲国产成人精品| 色综合色国产| 在线亚洲精品国产二区图片欧美 | 看非洲黑人一级黄片| 91午夜精品亚洲一区二区三区| 亚洲av中文字字幕乱码综合| 在线观看人妻少妇| 丰满少妇做爰视频| 18禁在线播放成人免费| 男女下面进入的视频免费午夜| 久久久久久久久久久免费av| 欧美97在线视频| 热re99久久精品国产66热6| 日韩强制内射视频| 日本-黄色视频高清免费观看| 波多野结衣巨乳人妻| videos熟女内射| 99久久精品国产国产毛片| 夫妻午夜视频| 国产精品无大码| 色综合色国产| 久久精品国产亚洲av涩爱| 男女下面进入的视频免费午夜| 免费观看在线日韩| 人人妻人人看人人澡| 久热久热在线精品观看| 久久久久网色| 在线免费十八禁| 一区二区三区乱码不卡18| 亚洲国产欧美人成| 亚洲国产av新网站| 神马国产精品三级电影在线观看| 人人妻人人看人人澡| 中文字幕亚洲精品专区| 亚洲国产精品成人久久小说| 久久6这里有精品| 亚洲欧美精品专区久久| 国产有黄有色有爽视频| 久久久精品免费免费高清| 国产在线一区二区三区精| 国产精品国产三级国产专区5o| 2021少妇久久久久久久久久久| av在线天堂中文字幕| 3wmmmm亚洲av在线观看| 天堂中文最新版在线下载 | 三级国产精品片| 大香蕉97超碰在线| 国产男人的电影天堂91| 少妇人妻一区二区三区视频| 国产有黄有色有爽视频| 欧美老熟妇乱子伦牲交| 国产在线一区二区三区精| 好男人在线观看高清免费视频| 欧美性感艳星| 国产黄a三级三级三级人| 97超视频在线观看视频| 精品国产三级普通话版| 深夜a级毛片| av国产免费在线观看| 成人毛片60女人毛片免费| www.av在线官网国产| 久久精品熟女亚洲av麻豆精品| 欧美日韩亚洲高清精品| 69人妻影院| av一本久久久久| 日日撸夜夜添| 高清日韩中文字幕在线| 国产成人精品久久久久久| 精品少妇黑人巨大在线播放| av黄色大香蕉| 国产精品久久久久久久久免| 黄色视频在线播放观看不卡| 一本久久精品| 卡戴珊不雅视频在线播放| 综合色丁香网| 激情 狠狠 欧美| 国产乱人视频| 国产女主播在线喷水免费视频网站| 欧美日韩综合久久久久久| 看免费成人av毛片| 黄色日韩在线| 国产男女超爽视频在线观看| 国产一区二区三区综合在线观看 | 精品人妻偷拍中文字幕| 国产av码专区亚洲av| 亚洲欧美精品自产自拍| 亚洲欧美一区二区三区黑人 | av线在线观看网站| 国产精品一区www在线观看| 一级毛片我不卡| 日本av手机在线免费观看| 中文精品一卡2卡3卡4更新| 男女下面进入的视频免费午夜| 欧美日韩视频精品一区| 欧美三级亚洲精品| 精品久久久久久久久亚洲| 插逼视频在线观看| 国产毛片a区久久久久| 人妻 亚洲 视频| 日韩电影二区| 青春草视频在线免费观看| 国产 一区 欧美 日韩| 亚洲精品中文字幕在线视频 | 亚洲人成网站高清观看| 久久久久久久久久久丰满| 免费看av在线观看网站| 女人被狂操c到高潮| 建设人人有责人人尽责人人享有的 | 久久精品久久久久久久性| 少妇熟女欧美另类| 亚洲成人一二三区av| 久久精品国产a三级三级三级| 午夜精品一区二区三区免费看| tube8黄色片| 久热这里只有精品99| 精品久久久久久久人妻蜜臀av| 成年女人在线观看亚洲视频 | 国产一区二区三区av在线| 成人毛片a级毛片在线播放| 午夜福利网站1000一区二区三区| 国产成人精品久久久久久| 黄色配什么色好看| 亚洲最大成人中文| 伦精品一区二区三区| 男人添女人高潮全过程视频| 一级爰片在线观看| 在线观看一区二区三区激情| 国产免费又黄又爽又色| 精品一区二区三卡| 91狼人影院| 成人美女网站在线观看视频| 免费黄频网站在线观看国产| 狠狠精品人妻久久久久久综合| 麻豆成人午夜福利视频| 天堂俺去俺来也www色官网| a级毛色黄片| 最近最新中文字幕大全电影3| 久热这里只有精品99| 中文字幕久久专区| 真实男女啪啪啪动态图| 亚洲不卡免费看| 亚洲久久久久久中文字幕| 久久人人爽人人片av| 午夜爱爱视频在线播放| 中文乱码字字幕精品一区二区三区| 欧美成人a在线观看| 91在线精品国自产拍蜜月| 亚洲av电影在线观看一区二区三区 | 狂野欧美激情性xxxx在线观看| 一个人观看的视频www高清免费观看| 久久久久九九精品影院| 下体分泌物呈黄色| 国产精品国产三级国产专区5o| 高清毛片免费看| 真实男女啪啪啪动态图| 日韩欧美一区视频在线观看 | 少妇丰满av| 99久久中文字幕三级久久日本| 美女主播在线视频| 久久久久久久久大av| 国产黄a三级三级三级人| av在线播放精品| 午夜福利视频1000在线观看| 一二三四中文在线观看免费高清| 久久精品久久精品一区二区三区| 成人漫画全彩无遮挡| 嫩草影院入口| 久久久久网色| 国产在线一区二区三区精| 亚洲精品456在线播放app| 热re99久久精品国产66热6| 性色av一级| 国产69精品久久久久777片| a级毛色黄片| 免费看日本二区| 亚洲国产成人一精品久久久| 晚上一个人看的免费电影| 蜜桃久久精品国产亚洲av| 别揉我奶头 嗯啊视频| 直男gayav资源| 伊人久久国产一区二区| 国产伦精品一区二区三区四那| 网址你懂的国产日韩在线| 亚洲精品日韩在线中文字幕| 亚洲综合色惰| 2018国产大陆天天弄谢| 色播亚洲综合网| 免费黄色在线免费观看| 国产久久久一区二区三区| 亚洲,欧美,日韩| 夜夜爽夜夜爽视频| 观看免费一级毛片| 伦精品一区二区三区| 成年版毛片免费区| 国产精品无大码| 亚洲国产精品专区欧美| 国产亚洲91精品色在线| 成人特级av手机在线观看| 禁无遮挡网站| 亚洲精品成人av观看孕妇| 亚洲精品成人av观看孕妇| 成人亚洲精品av一区二区| 免费黄频网站在线观看国产| 久久鲁丝午夜福利片| 夜夜看夜夜爽夜夜摸| 寂寞人妻少妇视频99o| 亚洲激情五月婷婷啪啪| av免费观看日本| 亚洲av.av天堂| 亚洲内射少妇av| 亚洲精品久久午夜乱码| 精品久久久精品久久久| 国产人妻一区二区三区在| 久久久久性生活片| 日本三级黄在线观看| 久久亚洲国产成人精品v| 国产熟女欧美一区二区| 国产精品无大码| 亚州av有码| 午夜亚洲福利在线播放| 国产淫片久久久久久久久| 亚洲久久久久久中文字幕| 欧美老熟妇乱子伦牲交| 国产熟女欧美一区二区| 亚洲伊人久久精品综合| 超碰av人人做人人爽久久| 91在线精品国自产拍蜜月| 亚洲欧美日韩另类电影网站 | 黄片wwwwww| 最近最新中文字幕免费大全7| 亚洲欧美日韩卡通动漫| 青青草视频在线视频观看| 王馨瑶露胸无遮挡在线观看| 男人爽女人下面视频在线观看| 国产黄色视频一区二区在线观看| 干丝袜人妻中文字幕| 亚洲av在线观看美女高潮| 18+在线观看网站| 亚洲经典国产精华液单| 欧美精品人与动牲交sv欧美| 看非洲黑人一级黄片| 97在线视频观看| 亚洲婷婷狠狠爱综合网| 久久久久国产精品人妻一区二区| 嘟嘟电影网在线观看| 日韩视频在线欧美| 国产白丝娇喘喷水9色精品| 国产乱人视频| 国产成人免费观看mmmm| 亚洲国产精品成人综合色| 男男h啪啪无遮挡| 插阴视频在线观看视频| 亚洲国产色片| 欧美成人精品欧美一级黄| 老女人水多毛片| 中国美白少妇内射xxxbb| 寂寞人妻少妇视频99o| 少妇人妻一区二区三区视频| 免费不卡的大黄色大毛片视频在线观看| 激情 狠狠 欧美| 18禁裸乳无遮挡免费网站照片| 韩国av在线不卡| 免费黄频网站在线观看国产| av在线亚洲专区| 国产有黄有色有爽视频| 日韩中字成人| 啦啦啦在线观看免费高清www| 嫩草影院入口| 亚洲精品中文字幕在线视频 | 一个人看的www免费观看视频| 久久99精品国语久久久| 亚洲国产欧美在线一区| 国产成人a∨麻豆精品| 国产精品一二三区在线看| 日韩一区二区视频免费看| 欧美精品一区二区大全| 精品久久国产蜜桃| 精品人妻熟女av久视频| 国产免费又黄又爽又色| 网址你懂的国产日韩在线| 久久国产乱子免费精品| 噜噜噜噜噜久久久久久91| 最后的刺客免费高清国语| 丝瓜视频免费看黄片| 久久久久久久久久成人| 亚洲欧美一区二区三区黑人 | 久久99蜜桃精品久久| 国产成年人精品一区二区| 91久久精品国产一区二区成人| 最近的中文字幕免费完整| 久久久久久久久久久丰满| 欧美潮喷喷水| 亚洲电影在线观看av| 99热国产这里只有精品6| 少妇的逼好多水| 国产人妻一区二区三区在| 国产探花在线观看一区二区| 最近最新中文字幕免费大全7| 91午夜精品亚洲一区二区三区| 91aial.com中文字幕在线观看| 国产男人的电影天堂91| videossex国产| 中文字幕免费在线视频6| 一个人看的www免费观看视频| 亚洲成人精品中文字幕电影| 久久久国产一区二区| 国产免费视频播放在线视频| 免费在线观看成人毛片| 日韩视频在线欧美| 在线看a的网站| 国产精品秋霞免费鲁丝片| 亚洲色图综合在线观看| 99热这里只有是精品在线观看| 免费少妇av软件| 欧美xxⅹ黑人| 夫妻午夜视频| 18禁裸乳无遮挡免费网站照片| 国产精品久久久久久精品古装| 成人午夜精彩视频在线观看| 精品国产露脸久久av麻豆| 国内揄拍国产精品人妻在线| 国产高清国产精品国产三级 | 国产亚洲最大av| 国内精品宾馆在线| 熟妇人妻不卡中文字幕| 亚洲无线观看免费| 边亲边吃奶的免费视频| 久久精品久久久久久噜噜老黄| 色视频在线一区二区三区| 在线免费观看不下载黄p国产| 人妻 亚洲 视频| 国产乱人视频| 日韩强制内射视频| 亚洲欧美一区二区三区国产| 午夜精品一区二区三区免费看| 免费观看av网站的网址| 精品国产三级普通话版| 欧美日韩国产mv在线观看视频 | 久久久久久久大尺度免费视频| 中文资源天堂在线| 久久精品久久久久久噜噜老黄| av在线播放精品| 日本黄色片子视频| 欧美激情国产日韩精品一区| 欧美亚洲 丝袜 人妻 在线| 亚洲av电影在线观看一区二区三区 | 国产欧美日韩精品一区二区| av免费观看日本| 国产老妇伦熟女老妇高清| 日韩在线高清观看一区二区三区| 亚洲精品视频女| 欧美少妇被猛烈插入视频| 在线 av 中文字幕| 国产精品麻豆人妻色哟哟久久| 老司机影院毛片| 久久99热这里只有精品18| 亚洲高清免费不卡视频| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩综合久久久久久| 精品久久久久久电影网| 美女内射精品一级片tv| 日本三级黄在线观看| 成人亚洲精品一区在线观看 | www.av在线官网国产| 亚洲欧美精品自产自拍| 亚洲av福利一区| 少妇 在线观看| 国产成人一区二区在线| 亚洲美女视频黄频| 午夜老司机福利剧场| 欧美97在线视频| 日韩av在线免费看完整版不卡| 一边亲一边摸免费视频| 国产中年淑女户外野战色| 一个人看视频在线观看www免费| 亚洲精品日韩av片在线观看| 毛片一级片免费看久久久久| 欧美成人午夜免费资源| 成年版毛片免费区| 国产精品国产三级国产av玫瑰| 国产亚洲av嫩草精品影院| 最近最新中文字幕大全电影3| 国产免费一级a男人的天堂| 欧美国产精品一级二级三级 | 波野结衣二区三区在线| 亚洲伊人久久精品综合| 亚洲精品国产av成人精品| 99热这里只有是精品50| 全区人妻精品视频| 亚洲av成人精品一二三区| 91精品伊人久久大香线蕉| 99久久精品一区二区三区| 2022亚洲国产成人精品| 卡戴珊不雅视频在线播放| 91精品一卡2卡3卡4卡| 看非洲黑人一级黄片| 91精品伊人久久大香线蕉| videos熟女内射| 午夜福利在线观看免费完整高清在| 亚州av有码| 国产 精品1| 中文资源天堂在线| 深夜a级毛片| 亚洲欧美日韩卡通动漫| 国产日韩欧美亚洲二区| av在线蜜桃| 嫩草影院精品99| 亚洲成人一二三区av| 三级经典国产精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 老司机影院成人| 精品一区二区三卡| 国产精品福利在线免费观看| 国产高清有码在线观看视频| videos熟女内射| 日本-黄色视频高清免费观看| 一级片'在线观看视频| 麻豆精品久久久久久蜜桃| 成人高潮视频无遮挡免费网站| 成人国产av品久久久| 国产成人福利小说| 日韩 亚洲 欧美在线| 特级一级黄色大片| 国产精品久久久久久精品电影| 禁无遮挡网站| 日韩视频在线欧美| 日产精品乱码卡一卡2卡三| 一二三四中文在线观看免费高清| av在线老鸭窝| 黄片无遮挡物在线观看| 午夜福利视频精品| 日韩在线高清观看一区二区三区| 国产 一区精品| 毛片女人毛片| kizo精华| 成人国产麻豆网| 国产精品一区www在线观看| 国产探花在线观看一区二区| 亚洲av中文av极速乱| 午夜福利视频精品| 亚洲精品一区蜜桃| 熟女电影av网| 精品久久国产蜜桃| 极品教师在线视频| 99视频精品全部免费 在线| 久久久久久久午夜电影| 国产欧美日韩一区二区三区在线 | 日韩国内少妇激情av| 我的女老师完整版在线观看| 久久精品国产亚洲网站| 黄色日韩在线| 成人特级av手机在线观看| 亚洲天堂国产精品一区在线| 亚洲熟女精品中文字幕| 欧美极品一区二区三区四区| 日韩三级伦理在线观看| 啦啦啦啦在线视频资源| 亚洲成色77777| 一级毛片电影观看| 久久精品国产亚洲av天美| 久久久午夜欧美精品| 亚洲综合精品二区| 欧美+日韩+精品| 亚洲美女视频黄频| 99热6这里只有精品| 97超碰精品成人国产| 国产精品秋霞免费鲁丝片| 麻豆精品久久久久久蜜桃| 欧美最新免费一区二区三区| 九色成人免费人妻av| 嘟嘟电影网在线观看| 麻豆久久精品国产亚洲av| 久久99热这里只频精品6学生| 精品久久久噜噜| av国产免费在线观看| 久久久久精品性色| 成年版毛片免费区| 久久久精品94久久精品| 成年av动漫网址| 国产午夜精品久久久久久一区二区三区| 丰满少妇做爰视频| 不卡视频在线观看欧美| av又黄又爽大尺度在线免费看| 免费看av在线观看网站| 欧美xxⅹ黑人| 国产精品久久久久久av不卡| 欧美日本视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 91精品国产九色| 欧美亚洲 丝袜 人妻 在线| 一本一本综合久久| 夫妻性生交免费视频一级片| 亚洲,一卡二卡三卡| 国产伦理片在线播放av一区| 五月玫瑰六月丁香| 中文字幕人妻熟人妻熟丝袜美| 日本与韩国留学比较| 久久人人爽人人片av| av网站免费在线观看视频| 亚洲四区av| .国产精品久久| 青青草视频在线视频观看| 小蜜桃在线观看免费完整版高清| 高清日韩中文字幕在线| 三级国产精品片| 天天躁夜夜躁狠狠久久av| 午夜福利视频1000在线观看| 久久女婷五月综合色啪小说 | 秋霞在线观看毛片| 大话2 男鬼变身卡| 免费观看的影片在线观看| 熟女电影av网| 亚洲综合精品二区| 欧美激情久久久久久爽电影| 亚洲av一区综合| 中文资源天堂在线| 有码 亚洲区| 国产色婷婷99| 丰满人妻一区二区三区视频av| 午夜精品国产一区二区电影 | 有码 亚洲区| 久久久a久久爽久久v久久| 视频区图区小说| 亚洲人成网站在线播| 国产真实伦视频高清在线观看| 水蜜桃什么品种好| 免费观看av网站的网址| 97热精品久久久久久| 女人久久www免费人成看片| 一级毛片久久久久久久久女| 小蜜桃在线观看免费完整版高清| 亚洲内射少妇av| 欧美一级a爱片免费观看看| 黑人高潮一二区| 精品一区二区三卡| 亚洲自偷自拍三级| 国产日韩欧美在线精品| 久久99热这里只有精品18| 成人亚洲精品av一区二区| 国产精品偷伦视频观看了| 国产精品99久久99久久久不卡 | 亚洲最大成人手机在线| 欧美最新免费一区二区三区| 嫩草影院新地址| 中国美白少妇内射xxxbb| 日本免费在线观看一区| 亚洲欧美日韩卡通动漫| 特级一级黄色大片| 舔av片在线| 午夜免费男女啪啪视频观看| 午夜激情久久久久久久| 久久久久久久亚洲中文字幕| 七月丁香在线播放| 丝瓜视频免费看黄片| av免费观看日本| 成人二区视频| 国产精品成人在线| 三级国产精品片| 亚洲一区二区三区欧美精品 | 亚洲成人av在线免费| 91久久精品国产一区二区成人| 黄色一级大片看看| 91在线精品国自产拍蜜月| 国产精品99久久久久久久久| 噜噜噜噜噜久久久久久91| 成人午夜精彩视频在线观看| 少妇的逼好多水| 大又大粗又爽又黄少妇毛片口| 亚洲av.av天堂| 在线亚洲精品国产二区图片欧美 | 国产 一区精品| 国产精品伦人一区二区| 国产一区二区三区av在线| 免费看av在线观看网站| 亚洲精品,欧美精品| 亚洲精品第二区| 亚洲精品视频女| 99热6这里只有精品| 午夜日本视频在线| 97精品久久久久久久久久精品| 我的老师免费观看完整版| 国产精品嫩草影院av在线观看| 亚洲欧美精品自产自拍| 老司机影院成人| 国产免费一级a男人的天堂| 好男人在线观看高清免费视频| 精品熟女少妇av免费看| 成年人午夜在线观看视频| 寂寞人妻少妇视频99o| 麻豆成人午夜福利视频| 男女啪啪激烈高潮av片| 国产精品国产三级国产专区5o| 中文欧美无线码| 中文字幕制服av| 99久久精品热视频| videos熟女内射| 亚洲自偷自拍三级| 亚洲在线观看片| 精品午夜福利在线看| 国产探花在线观看一区二区| 国产成人福利小说| 午夜视频国产福利| 国产高清国产精品国产三级 | 日韩视频在线欧美| 国产黄a三级三级三级人| 午夜视频国产福利| 一级二级三级毛片免费看| 伊人久久精品亚洲午夜| 久久精品久久精品一区二区三区| 内射极品少妇av片p| 亚洲色图综合在线观看| 黄色日韩在线| 2021少妇久久久久久久久久久| 亚洲精品aⅴ在线观看|