• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Scale analysis of turbulent channel flow with varying pressure gradient*

    2014-06-01 12:30:00QIUXiang邱翔
    關(guān)鍵詞:劉宇

    QIU Xiang (邱翔)

    School of Science, Shanghai Institute of Technology, Shanghai 200235, China, E-mail: emqiux@gmail.com

    LUO Jian-ping (羅劍平)

    School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 200235, China

    HUANG Yong-xiang (黃永祥), LU Zhi-ming (盧志明), LIU Yu-lu (劉宇陸)

    Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    Scale analysis of turbulent channel flow with varying pressure gradient*

    QIU Xiang (邱翔)

    School of Science, Shanghai Institute of Technology, Shanghai 200235, China, E-mail: emqiux@gmail.com

    LUO Jian-ping (羅劍平)

    School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 200235, China

    HUANG Yong-xiang (黃永祥), LU Zhi-ming (盧志明), LIU Yu-lu (劉宇陸)

    Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    (Received May 6, 2013, Revised December 16, 2013)

    In this paper orthogonal wavelet transformations are applied to decompose experimental velocity signals in fully developed channel flows with varying pressure gradient into scales. We analyze the time series from turbulent data, to obtain the statistical characteristics, correlations between the adjacent scales and the principal scale of coherent structures in different scales by wavelet transformations. The results show that, in the counter gradient transport (CGT) region, skewness factors and flatness factors deviate strongly from the corresponding values of Gaussian distribution on certain scales. PDFs on each scale confirm this observation. Scale-scale correlations show further that the fluctuations on some certain special scales are more intermittent than nearby. Principal scale of coherent structure is coincident with the scales on which the statistical properties depart from Gaussian distribution. These features are the same for different families of wavelets, and it also shows some different features in the region between favorable pressure gradient and adverse pressure gradient.

    turbulence, counter gradient transport (CGT), wavelet analysis, pressure gradient, channel flow

    Introduction

    Nowadays, the problem of turbulence, which cover a wide range of scales, is one of the most important issues in classical physics and has been studied in the past years by many authors[1]. About turbulent transport, we consent that stronger transport capacity is one of fundamental characteristics of turbulence compared with laminar flows[1]. In most of turbulent models, the Fourier law is underlying, therefore gradient transport assumption is applied, which assumes that momentum, scalar and energy flux are transferred with mean quantities decreasing[1,2]. However it is well known in laboratory and engineering that we may also see the examples of counter gradient transport (CGT) phenomena[3]. For instance, there is a region near the central part of the channel where the Reynolds stress and mean strain possess the same sign, which means that momentum is transported under counter gradient. Traditional cascade theory cannot present reasonable explanation on these phenomena.

    The classical theory of Kolmogorov’s postulates that turbulence is space-filling at all scales, from the largest scales with which the kinetic energy is input, to the smallest scales with which the kinetic energy is converted into the thermal energy. Since more valuable information for the individual scales should be obtained to study turbulence problem, more rigorous space-scale decompositions of the velocity data are required to proceed further.

    The mechanism of CGT remains open, but it is believed that turbulent counter gradient transport is an essential cause why turbulence (the strong dissipative complex system) last for so long time period. Results obtained so far only show that coherent structures may be one of the important causes of the CGT[3]. Therefore more details about interactions between differentscales of eddies at different temporal and spatial positions should be investigated.

    In the last 20 years, the wavelet transform has been used to analyze the multi-scale properties in finance[4], biological issues[5]and fluid mechanics[6]. Also because of the similarity between wavelets and eddies, wavelet analysis has been widely applied in turbulence experimental data processing, computation and turbulent models[7-9]. Jiang et al.[2]found that at some scales momentum is inversely transported, although total momentum is gradient-transported. However a lot of questions remain to answer. For example, what is the difference of turbulent scale properties in favorable pressure gradient region and adverse pressure gradient when counter gradient transport phenomena occur?

    In the present work, we concentrate ourselves in the experimental data analysis using orthogonal wavelet transformations in turbulent channel flow with a wing on the bottom, following our previous work[2]. Compared to continuous wavelets, orthogonal wavelets are mutually orthogonal to each other and can maintain the original information. Therefore orthogonal wavelets are more reliable to consider the statistical characteristics of turbulent flows[9,10]. We started by performing a non-extensive statistical analysis at several scales from which time series, and we also got structural properties on different scales. Finally, the comparison of turbulent characteristics in favorable pressure gradient region and adverse pressure gradient region is carried out. The contents are arranged as below.

    Fig.1 Schematic of asymmetric plane channel flow with a wing. The test section is 0.53 m× 0.22 m×0.055 m for length, width and height respectively

    1. Experiments

    The experiments were carried out in the water tunnel of the experimental center of Shanghai Jiao Tong University[2]. The test section is 0.53 m× 0.22 m×0.055 m for length, width and height respectively. Two glasses, which are 0.02 m apart, are added between the top wall and bottom wall to construct the new channel flow, as shown in Fig.1. A symmetric wing, which is 0.4m distance from the inlet, is set on the bottom to generate a flow with varying pressure gradient. The wing is 0.07 m in length and 0.009 m in thickness on the center. The mean velocity at the inlet is 2.0 m/s. The measuring instrument is a TSI9100-9 laser Doppler velocimetry (LDV) of TSI. Data collection and analysis are completed by the accompany software flow information display (FIND).

    Fig.2 CGT region and the measurement points

    2. Methodlogy

    The waveletφi,j(x) is created by translation and dilation of generating wavelet functionφ(x), and they are localized both in space and scale. The mother wavelet has a zero mean and thus extracts variations of a signal. The scaling function, the integral of which from -∞ to ∞ is unity, is an averaging function, shown as follows

    where ,i jrepresent the scale and position of wavelets, respectively. It is very similar to the scaling function

    Fig.3 Wavelets (solid lines) and scaling functions (dotted lines) with =N13, ==jJ9, and =k256. Their power spectra in the wavenumber domain are shown in the right column

    So, any square integrable function ()u xcan be reconstructed as

    3. Results and discussions

    3.1Flatness factor, skewness factor and probability density function (PDF)

    The experimental data are analyzed with four families of wavelets: Haar, Db20, Meyer and Harmonic wavelets. The mean velocity is subtracted from the original signals, and the signals are divided into 1 200 segments of 4 096 points (=M1 200, =N12). The wavelet transformations are applied to each segment.

    By using the orthogonal wavelet analysis, we could investigate the turbulent statistical quantities in each scale. Flatness factors, skewness factors and PDFs are important statistical quantities in turbulent fluctuations. These quantities defined in each scales are as follows

    The flatness factor represents the peakedness or flatness of the probability distribution. For Gaussian distribution, the flatness factor in each scale is equal to 3 while the skewness factor is zero. But for turbulence, its PDF deviates from Gaussian distribution. A higher value means that the tail of the distribution is more pronounced than that of a Gaussian one. Thus the flatness factor grows as the distribution becomes more intermittent. The results of Jiang et al.[2]showed that the intermittency in the CGT region is stronger than that nearby. The magnitude of spatial fluctuations of the wavelet transforms is studied in each scale using the flatness factors, skewness factors and PDFs.

    Fig.4 Flatness factors for each scale

    Fig.5 Skewness factors for each scale

    Figure 4 illustrates the scale dependence of the flatness factors in the CGT region (location B in favorable pressure gradient region and locationDin reverse pressure gradient region) of streamwise velocity by using the Db20 wavelet. It should be noted that the other three wavelets usually give similar results, and will not be shown here. In large scales, the flatness factor is close to the Gaussian value of 3. As the scaledecreases, the flatness factor begins to increase. It should be mentioned that the present results are quite different from those of Lord et al.[9]and Li et al.[12]. The flatness factor begins to increase locally and reach the maximum at scale 10. From scale 11, it decreases again. This observations show that the intermittency between scales 8 and 10 is increased.

    Figure 5 shows the skewness factor of velocity fluctuations in the CGT region (location B in favorable pressure gradient region and locationDin reverse pressure gradient region) in each scale. It is clearly seen that the values of skewness factors in each scale are vibrating around zero. It should be emphasized that the skewness factors in scale 11 deviates from zero more than any other scales. This result can be compared to the results of Jiang et al.[2]who found the special scale of 10 in fully developed asymmetric channel flow over ribs. And also we have detected that the values of skewness factors at locations B and D have different signs in almost all scales, and this result has not been reported in previous related articles and should be tested numerically and experimentally in future.

    Fig.6 PDFs for each scale (1-6)

    The results of PDFs (see Figs.6 and 7) at location B (results of location D, which is not shown here, are approximate with B) for each scale also indicate that the intermittency increases with the scale. Furthermore, the PDFs approach Gaussian distribution with the increase of scale. But scales 9, 10, 11 and 12 need to be paid more attention, and scales 9 and 12 are closer to Gaussian distribution than scales 10 and 11. From the results for the skewness and flatness factors, it could be found that the intermittency of small scalesare generally stronger than large scales, but intermediate scales more intermittent than nearby. In fact, the results indicate that smaller scales are more intermittent than larger scales, which is consistent that of boundary flow[13], and channel flow[12].

    Fig.7 PDFs for each scale (7-12)

    3.2Adjacent scales correlations

    The orthogonal wavelets offer a unique opportunity to investigate a correlation in space between variations of different scales. Here we only consider the correlation between adjacent scales, such as correlation between scale 1j- andj. The correlation coefficients between the adjacent scales are defined as[2]

    Fig.8 Ccorrelations between adjacent scales

    As was pointed out by Jiang et al.[2], the correlation between 2j- andjis similar. Figure 8 showsthe results of scale-scale relations at two different points, B and D, employing Meyer’s and Harmonic bases because the other wavelets, Haar and Db20, will give the spurious correlations.

    It is evident that the correlation is the function of scales. It is observed that with the increase of scales, the correlation decreases and correlations between larger scales are very weak for all the points considered here. Similar results are observed in isotropic flow. But at point B in the CGT region, it should be noted that there exists a pulse in scale 10 in the correlations between the adjacent scales. This phenomenon is absent at another point D and points mentioned above.

    3.3Principal scale of coherent structures

    There are many different methods to study principal scale of coherent structures, including the maximal energy method[14], energy method[15], and de-noising method presented by Guo et al.[6]. The energy methods stated above adopt continuous wavelet while de-noising method adopts discrete wavelets. In fact, the de-noising method is the extension of maximal energy method from continuous wavelet transform (CWT) to discrete wavelet transform (DWT). In this section, we extend the maximal energy method from CWT to DWT. In fact, the differences between CWT to DWT are scales and interpretation, i.e., CWT is theoretically defined in each scale and positions while DWT is in dyadic scales and positions.

    It is well known that the larger wavelet coefficients in wavelet analysis indicate more intense coherent structures[12]. The following equation is adopted to estimate contributions of coherent structures in each scale to turbulent kinetic energy

    whereωm[j] is the wavelet coefficients on scalem, andjis time factor, andpmis the ratio of contribution by coherent structures with scaled=2m+1to turbulent kinetic energy.

    Fig.9 The principle scale of coherent structures

    In fact, the number of wavelet coefficients in different scales means that the number of eddies depends on the scales. So we could determine the principal scale of coherent structures by considering the average energy in each scale. More specifically, it is determined by the following relationship

    Here the maximal value ofmp*corresponds to the principal scale of coherent structures. It could be easily observed that this method is in essence the maximal energy method. The number of wavelet coefficients in each scale could be considered as constant.

    By using the method presented above, we find that the ratio is constant in all scales for white noise. Figure 9 shows the principal scale of coherent structures at different points. Here only the results for Db20 are given. It is observed that the principal scales are scale 11 at point B, 10 at point C and 11 at point D, respectively. It should be noted that principal scale is 11 at B and D in the CGT region, partly coincident to the results of the flatness factors and skewness factors.

    4. Conclusions

    It is well known that randomness, multiple scales and coherent structures are the most essential features of turbulence. The wavelet analysis is a suitable tool to investigate turbulence. In this paper the orthogonal wavelets are applied to study the scale properties in turbulent counter gradient transport region in fully developed asymmetric channel flows with a wing on the bottom. We study for each scale the flatness factors, skewness factors, probability density functions, and scale-scale correlations. Then we calculate the principal scale of coherent structures.

    The results show that in the CGT region, the skewness factors and flatness factors deviate strongly from the corresponding values of Gaussian distribution in some certain scales. The PDFs in each scale confirm this observation. The scale-scale correlations show further that fluctuation in some special scales is more intermittent than nearby. The principal scale of coherent structure is coincident with the scales on which the statistical properties depart from Gaussian distribution. Most of these features are the same for different families of wavelets, and it also shows some different features in the region between favorable pressure gradient and adverse pressure gradient.

    [1] STEPHEN B. P. Turbulent flows[M]. Cambirdge, UK: Cambridge University Press, 2000.

    [2] JIANG Jian-bo, QIU Xiang and LU Zhi-ming et al. Othogonal wavelet analysis of counter gradient transport phenomena in turbulent asymmetric channel flow[J]. Acta Mechanica Sinica, 2005, 21(2): 133-141.

    [3] JIANG Jian-bo, LIU Yu-lu and LU Zhi-ming. Experimental and theoretical studies on negative transport phenomena in turbulent flows[J]. Advances in Mechanics, 2000, 30(2): 1-8(in Chinese).

    [4] GALLEGATI M. Wavelet analysis of stock returns and aggregate economic activity[J]. Computational Statistics and Data Analysis, 2008, 52(6): 3061-3074.

    [5] JAN Y. K., BRIENZA D. M. and GEYER M. J. Analysis of week-to-week variability in skin blood flow measurements using wavelet transforms[J]. Clinical Physiology and Functional Imaging, 2005, 25(5): 253-262.

    [6] GUO Xin-lei, YANG Kai-lin and GUO Yong-xin. Hydraulic pressure signal denoising using threshold selflearning wavelet algorithm[J]. Journal of Hydrodynamics, 2008, 20(4): 433-439.

    [7] JACOBITZ F., LIECHTENSTEIN L. and SCHNEIDER K. et al. On the structure and dynamics of sheared and rotating turbulence: Direct numerical simulation and wavelet-based coherent vortex extraction[J]. Physics of Fluids, 2008, 20(4): 045103.

    [8] SCHNEIDER K., VASILYEV O. V. Wavelet methods in computational fluid dynamics[J]. Annual Review of Fluid Mechanics, 2010, 42: 473-503.

    [9] LORD J. W., RAST M. P. and MCKINLAY C. et al. Wavelet decomposition of forced turbulence: Applicability of the iterative Donoho-Johnstone threshold[J]. Physics of Fluids, 2012, 24(2): 025102.

    [10] SCHNEIDER K., FARGE M. and PELLEGRINO G. et al. Coherent vortex simulation of three-dimensional turbulent mixing layers using orthogonal wavelets[J]. Journal of Fluid Mechanics, 2005, 534: 39-64.

    [11] QIU Xiang, JIANG Jian-bo and LIU Yu-lu. Effects of pressure-gradient on turbulent counter-gradient transport[J]. Acta Mechanica Sinica, 2004, 36(2): 163-170(in Chinese).

    [12] LI Li, XU Chun-xiao and ZHANG Zhao-shun. Study of burst phenomena in wall turbulence by wavelet analysis[J]. Acta Mechanica Sinica, 2001, 33(2): 153-162(in Chinese).

    [13] CHEN Jiong, HU Fei. Coherent structures detected in atmospheric boundary-layer turbulence using wavelet transforms at Huaihe River Basin, China[J]. Boundary-Layer Meteorology, 2003, 107(2): 429-444.

    [14] OKAMOTO N., YOSHIMATSU K. and SCHNEIDER K. et al. Coherent vortices in high resolution direct numerical simulation of homogeneous isotropic turbulence: A wavelet viewpoint[J]. Physics of Fluids, 2007, 19(11): 115109.

    [15] FARGE M., PELLEGRINO G. and SCHNEIDER K. Coherent vortex extraction in 3D turbulent flows using orthogonal wavelets[J]. Physical Review Letters, 2001, 87(5): 054501.

    10.1016/S1001-6058(14)60015-9

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 11102114, 11172179) and the Innovation Program of Shanghai Municipal Education Commission (Grant No. 13YZ124).

    Biography: QIU Xiang (1978-), Male, Ph. D.,

    Associate Professor

    LUO Jian-ping,

    E-mail: jp_luo@163.com

    猜你喜歡
    劉宇
    最有耐心的兔子
    媽媽的最愛(ài)
    下大雪了
    快樂(lè)的事
    不怕打針
    我長(zhǎng)大了
    發(fā)現(xiàn)了一個(gè)秘密
    給媽媽送花
    我沒(méi)有不聽(tīng)話
    變幻莫測(cè)的守恒問(wèn)題
    国产精品98久久久久久宅男小说| 午夜激情福利司机影院| 成人国产一区最新在线观看| 国产精品久久久久久久电影| 国产精品国产高清国产av| 国产精品99久久久久久久久| 18+在线观看网站| 精品一区二区三区av网在线观看| 69人妻影院| 亚洲美女视频黄频| 神马国产精品三级电影在线观看| 久久香蕉精品热| 国语自产精品视频在线第100页| 久久人人精品亚洲av| 色哟哟·www| 好男人在线观看高清免费视频| 精品久久久久久久久久久久久| 久久久久国产精品人妻aⅴ院| 国产真实伦视频高清在线观看 | 欧美性猛交黑人性爽| 成年人黄色毛片网站| 午夜福利成人在线免费观看| 亚洲va日本ⅴa欧美va伊人久久| 99国产极品粉嫩在线观看| 亚洲内射少妇av| 青草久久国产| 看免费av毛片| 在线观看av片永久免费下载| 久久久久久国产a免费观看| 男人的好看免费观看在线视频| 成人亚洲精品av一区二区| 内射极品少妇av片p| 午夜免费成人在线视频| 一级毛片久久久久久久久女| 亚洲成a人片在线一区二区| 真人做人爱边吃奶动态| 精品人妻1区二区| 琪琪午夜伦伦电影理论片6080| 精品欧美国产一区二区三| 国产在视频线在精品| 一个人看的www免费观看视频| 五月伊人婷婷丁香| 久久亚洲真实| 国产综合懂色| 身体一侧抽搐| 国产国拍精品亚洲av在线观看| 男人的好看免费观看在线视频| 国产aⅴ精品一区二区三区波| 变态另类成人亚洲欧美熟女| 免费av毛片视频| 毛片一级片免费看久久久久 | 欧美黑人巨大hd| 九色成人免费人妻av| 欧美又色又爽又黄视频| 永久网站在线| 好看av亚洲va欧美ⅴa在| 中文字幕久久专区| 精品日产1卡2卡| 熟女人妻精品中文字幕| 狂野欧美白嫩少妇大欣赏| 中文字幕精品亚洲无线码一区| 欧美成人免费av一区二区三区| 国产高清三级在线| 亚洲av美国av| 亚洲乱码一区二区免费版| 在线观看66精品国产| 欧美日韩瑟瑟在线播放| 在线十欧美十亚洲十日本专区| 日韩大尺度精品在线看网址| 高清在线国产一区| 亚洲成a人片在线一区二区| 国产一区二区三区在线臀色熟女| 高潮久久久久久久久久久不卡| 中文字幕人成人乱码亚洲影| 亚洲最大成人中文| 中出人妻视频一区二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 成人特级黄色片久久久久久久| 免费av毛片视频| 18禁裸乳无遮挡免费网站照片| 国产又黄又爽又无遮挡在线| 成人毛片a级毛片在线播放| 国产黄a三级三级三级人| 久9热在线精品视频| 啦啦啦观看免费观看视频高清| 日韩欧美 国产精品| 有码 亚洲区| 一进一出抽搐动态| 99国产精品一区二区三区| 国产真实伦视频高清在线观看 | 中出人妻视频一区二区| 在线天堂最新版资源| 亚洲精品色激情综合| 毛片女人毛片| 18+在线观看网站| 午夜福利18| 性色av乱码一区二区三区2| 99久国产av精品| 国产精品国产高清国产av| www.色视频.com| 亚洲五月婷婷丁香| 少妇的逼水好多| 村上凉子中文字幕在线| 99riav亚洲国产免费| 国产色爽女视频免费观看| 国产极品精品免费视频能看的| 一二三四社区在线视频社区8| 国产美女午夜福利| 成人高潮视频无遮挡免费网站| 国产一区二区在线观看日韩| 中国美女看黄片| 久久国产精品人妻蜜桃| 亚洲精品在线观看二区| 久久亚洲真实| 久久久久久久亚洲中文字幕 | 两人在一起打扑克的视频| 午夜精品一区二区三区免费看| 国产探花在线观看一区二区| 九色成人免费人妻av| 五月玫瑰六月丁香| 九色成人免费人妻av| 99在线人妻在线中文字幕| 精品一区二区免费观看| 欧美精品国产亚洲| a级毛片a级免费在线| 色哟哟·www| 欧美性猛交黑人性爽| 日韩欧美三级三区| 亚洲 国产 在线| 网址你懂的国产日韩在线| 搞女人的毛片| 天天一区二区日本电影三级| 亚洲成av人片在线播放无| 国产探花在线观看一区二区| 观看免费一级毛片| 国产精品久久电影中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 女人被狂操c到高潮| 首页视频小说图片口味搜索| 中文在线观看免费www的网站| 校园春色视频在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 免费一级毛片在线播放高清视频| 日本黄大片高清| 久久99热这里只有精品18| 91在线精品国自产拍蜜月| 亚洲一区高清亚洲精品| 啦啦啦观看免费观看视频高清| 亚洲中文日韩欧美视频| 日本黄大片高清| 精品国产三级普通话版| 精品午夜福利在线看| 免费大片18禁| 一本久久中文字幕| 欧美色视频一区免费| 欧美xxxx性猛交bbbb| 最近在线观看免费完整版| 男女之事视频高清在线观看| or卡值多少钱| 亚洲狠狠婷婷综合久久图片| 久久亚洲真实| 亚洲成av人片免费观看| 国产中年淑女户外野战色| 国产成人av教育| 99riav亚洲国产免费| 美女cb高潮喷水在线观看| 国产中年淑女户外野战色| 99久国产av精品| 亚洲第一电影网av| 乱人视频在线观看| 欧美黄色片欧美黄色片| a级毛片免费高清观看在线播放| 一区二区三区四区激情视频 | 99国产精品一区二区蜜桃av| 嫁个100分男人电影在线观看| 午夜老司机福利剧场| 桃红色精品国产亚洲av| 美女cb高潮喷水在线观看| 在线观看午夜福利视频| 日本免费a在线| 午夜福利免费观看在线| 男女视频在线观看网站免费| 久9热在线精品视频| 校园春色视频在线观看| 国产伦精品一区二区三区四那| av福利片在线观看| 亚洲美女黄片视频| 宅男免费午夜| 国产一区二区三区在线臀色熟女| 在线观看午夜福利视频| 精品日产1卡2卡| 日韩欧美在线乱码| 每晚都被弄得嗷嗷叫到高潮| 国产高清激情床上av| 俄罗斯特黄特色一大片| 亚洲最大成人手机在线| 九色国产91popny在线| 亚洲第一区二区三区不卡| 亚洲,欧美精品.| 男插女下体视频免费在线播放| 久久久精品大字幕| 亚洲成人免费电影在线观看| 无遮挡黄片免费观看| 亚洲熟妇中文字幕五十中出| 欧美日韩中文字幕国产精品一区二区三区| 嫩草影院入口| 精品人妻熟女av久视频| 亚洲第一欧美日韩一区二区三区| 又爽又黄a免费视频| 啦啦啦观看免费观看视频高清| 日本熟妇午夜| 12—13女人毛片做爰片一| 日韩中字成人| 亚洲精品在线观看二区| 在线a可以看的网站| 好男人电影高清在线观看| 99久久久亚洲精品蜜臀av| 国产成+人综合+亚洲专区| 狂野欧美白嫩少妇大欣赏| 中国美女看黄片| 无人区码免费观看不卡| 成人av在线播放网站| 久久久久精品国产欧美久久久| 国产精品国产高清国产av| 亚洲国产精品sss在线观看| 亚洲性夜色夜夜综合| 欧美色欧美亚洲另类二区| 国产在线男女| 好男人电影高清在线观看| 久久久久久国产a免费观看| 国产真实乱freesex| 国产精品永久免费网站| 国产黄片美女视频| avwww免费| 亚洲七黄色美女视频| 国产成人欧美在线观看| 看黄色毛片网站| 1000部很黄的大片| 高清日韩中文字幕在线| 日韩欧美精品免费久久 | 久久久久久久久大av| x7x7x7水蜜桃| 麻豆久久精品国产亚洲av| 亚洲av第一区精品v没综合| 夜夜躁狠狠躁天天躁| 18禁黄网站禁片免费观看直播| 简卡轻食公司| 国产午夜福利久久久久久| 欧美成人性av电影在线观看| 日韩大尺度精品在线看网址| 美女黄网站色视频| 国产久久久一区二区三区| 91字幕亚洲| 嫩草影院入口| 少妇高潮的动态图| 一级毛片久久久久久久久女| 国产在线精品亚洲第一网站| www.色视频.com| 欧美3d第一页| 精品人妻1区二区| 男人和女人高潮做爰伦理| 国产精品一区二区三区四区免费观看 | 乱码一卡2卡4卡精品| 国产真实伦视频高清在线观看 | 99久久精品一区二区三区| 婷婷六月久久综合丁香| 欧美极品一区二区三区四区| 美女大奶头视频| 简卡轻食公司| 我的老师免费观看完整版| 欧美在线一区亚洲| 亚洲最大成人中文| 日本免费a在线| 亚洲av中文字字幕乱码综合| 国产成人福利小说| 亚洲av成人精品一区久久| av欧美777| 亚洲人成伊人成综合网2020| 国产精品综合久久久久久久免费| 美女cb高潮喷水在线观看| 欧美不卡视频在线免费观看| 男女之事视频高清在线观看| 国产亚洲精品av在线| 天堂动漫精品| 精品一区二区三区av网在线观看| 丰满人妻一区二区三区视频av| 国产精品伦人一区二区| 99国产极品粉嫩在线观看| 麻豆国产av国片精品| 亚洲经典国产精华液单 | 欧美区成人在线视频| 岛国在线免费视频观看| 国产 一区 欧美 日韩| 99久久九九国产精品国产免费| 亚洲在线观看片| 精品一区二区三区人妻视频| 少妇被粗大猛烈的视频| 国产一区二区三区在线臀色熟女| 精品无人区乱码1区二区| 国产亚洲精品久久久久久毛片| 日本免费a在线| 小蜜桃在线观看免费完整版高清| 久久精品综合一区二区三区| 天堂av国产一区二区熟女人妻| 88av欧美| 观看免费一级毛片| 在线免费观看的www视频| 校园春色视频在线观看| 午夜福利欧美成人| 国产亚洲欧美98| 亚洲 国产 在线| 精品欧美国产一区二区三| 在线观看免费视频日本深夜| 久久午夜福利片| 日韩国内少妇激情av| 亚洲性夜色夜夜综合| 看片在线看免费视频| 日韩欧美三级三区| 精品久久久久久久久久免费视频| 91麻豆精品激情在线观看国产| 老司机福利观看| 国产三级在线视频| 欧美3d第一页| 搡老岳熟女国产| 桃色一区二区三区在线观看| 色在线成人网| 美女高潮的动态| 久久精品人妻少妇| 亚洲人与动物交配视频| 亚洲专区中文字幕在线| 国产成人av教育| 欧美一区二区精品小视频在线| 亚洲五月婷婷丁香| 国产午夜福利久久久久久| 99riav亚洲国产免费| 亚洲专区国产一区二区| 免费搜索国产男女视频| 伦理电影大哥的女人| 观看美女的网站| 免费一级毛片在线播放高清视频| a级毛片免费高清观看在线播放| 99精品在免费线老司机午夜| 国产av不卡久久| 午夜精品一区二区三区免费看| 日韩欧美三级三区| 国产色婷婷99| 亚洲国产欧美人成| 国产精品人妻久久久久久| 国产一区二区在线av高清观看| 亚洲三级黄色毛片| 国产一区二区激情短视频| 成人欧美大片| 久久久久久国产a免费观看| 亚洲三级黄色毛片| 国产一区二区亚洲精品在线观看| 看黄色毛片网站| 欧美性猛交黑人性爽| 精品久久久久久久人妻蜜臀av| 国产成人福利小说| 亚洲中文日韩欧美视频| av在线天堂中文字幕| 亚洲国产日韩欧美精品在线观看| 综合色av麻豆| 9191精品国产免费久久| 99国产综合亚洲精品| 亚洲成av人片在线播放无| 一个人免费在线观看的高清视频| 免费av观看视频| 国产一区二区三区在线臀色熟女| 久久久久久久久久成人| 久久久久久久精品吃奶| 一级黄色大片毛片| 亚洲av免费高清在线观看| 国产一级毛片七仙女欲春2| 十八禁人妻一区二区| 全区人妻精品视频| 亚洲欧美清纯卡通| 永久网站在线| 日韩 亚洲 欧美在线| 久久热精品热| 一级黄片播放器| 亚洲精品亚洲一区二区| 性欧美人与动物交配| 日本与韩国留学比较| 国产视频内射| 精品久久久久久久久亚洲 | 亚洲欧美日韩高清在线视频| 国产欧美日韩精品亚洲av| 啦啦啦观看免费观看视频高清| 长腿黑丝高跟| 亚洲av中文字字幕乱码综合| 国内毛片毛片毛片毛片毛片| 日韩精品中文字幕看吧| 亚洲五月天丁香| 婷婷精品国产亚洲av| 一区二区三区免费毛片| 国内精品美女久久久久久| 男人和女人高潮做爰伦理| 99久久久亚洲精品蜜臀av| 国产精品美女特级片免费视频播放器| 午夜福利高清视频| 97超级碰碰碰精品色视频在线观看| 国产精品影院久久| 国产精品亚洲av一区麻豆| 18禁黄网站禁片免费观看直播| 欧美日韩亚洲国产一区二区在线观看| 久久久久久久久大av| 男女那种视频在线观看| 国产一区二区亚洲精品在线观看| 欧美日韩国产亚洲二区| 夜夜爽天天搞| 国产午夜福利久久久久久| 一级作爱视频免费观看| 亚洲精品一区av在线观看| 男人狂女人下面高潮的视频| 午夜a级毛片| 久久伊人香网站| 色综合亚洲欧美另类图片| 天堂影院成人在线观看| 亚洲内射少妇av| 欧美高清成人免费视频www| 国产精品精品国产色婷婷| a级一级毛片免费在线观看| 黄色视频,在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av第一区精品v没综合| 黄色一级大片看看| 亚洲av日韩精品久久久久久密| 欧美高清成人免费视频www| 一个人免费在线观看电影| 欧美精品啪啪一区二区三区| 最近最新免费中文字幕在线| 精品一区二区三区人妻视频| aaaaa片日本免费| 亚洲精品成人久久久久久| 亚洲avbb在线观看| 欧美黑人欧美精品刺激| 午夜日韩欧美国产| 日本a在线网址| 变态另类成人亚洲欧美熟女| 国产淫片久久久久久久久 | 午夜福利视频1000在线观看| 好男人电影高清在线观看| 欧美黄色淫秽网站| 久久精品夜夜夜夜夜久久蜜豆| 别揉我奶头 嗯啊视频| 美女高潮喷水抽搐中文字幕| 人人妻人人看人人澡| 天美传媒精品一区二区| 99视频精品全部免费 在线| 午夜精品在线福利| 此物有八面人人有两片| 99久国产av精品| 色综合亚洲欧美另类图片| 亚洲在线自拍视频| 色哟哟·www| 国产伦一二天堂av在线观看| 免费大片18禁| 欧美日韩综合久久久久久 | 亚洲第一欧美日韩一区二区三区| 他把我摸到了高潮在线观看| 免费在线观看日本一区| 乱人视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 禁无遮挡网站| 久久欧美精品欧美久久欧美| 亚洲avbb在线观看| 国产欧美日韩精品亚洲av| 欧美日本视频| 91久久精品国产一区二区成人| 久久精品91蜜桃| 精品人妻熟女av久视频| 五月伊人婷婷丁香| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 乱人视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av成人不卡在线观看播放网| 日韩高清综合在线| 99国产精品一区二区三区| 国产真实伦视频高清在线观看 | 国产单亲对白刺激| 男人舔奶头视频| 可以在线观看的亚洲视频| 国内精品美女久久久久久| 一本一本综合久久| 精品一区二区三区视频在线观看免费| 最近最新免费中文字幕在线| 亚洲av五月六月丁香网| 69av精品久久久久久| 黄色一级大片看看| 女人十人毛片免费观看3o分钟| 国产精品乱码一区二三区的特点| 男女之事视频高清在线观看| 丁香六月欧美| 欧美绝顶高潮抽搐喷水| 成人午夜高清在线视频| 久久国产精品影院| 非洲黑人性xxxx精品又粗又长| 日本五十路高清| 亚洲美女搞黄在线观看 | 人妻制服诱惑在线中文字幕| 十八禁人妻一区二区| 日韩精品青青久久久久久| 亚洲av电影不卡..在线观看| 日韩欧美三级三区| 中文资源天堂在线| 色播亚洲综合网| 国产免费一级a男人的天堂| 久久久国产成人精品二区| 国产精品一及| 韩国av一区二区三区四区| 午夜福利在线观看吧| 久久精品人妻少妇| 久久精品国产亚洲av天美| 国产一区二区激情短视频| 久久久久国产精品人妻aⅴ院| 亚洲av免费高清在线观看| 久久人人精品亚洲av| 亚洲天堂国产精品一区在线| 国产精品自产拍在线观看55亚洲| 又紧又爽又黄一区二区| 老司机午夜十八禁免费视频| 国产欧美日韩一区二区三| 看黄色毛片网站| 天天躁日日操中文字幕| 久久久久久九九精品二区国产| 特大巨黑吊av在线直播| 哪里可以看免费的av片| 欧美日韩瑟瑟在线播放| 日韩亚洲欧美综合| 亚洲成人中文字幕在线播放| 欧美一级a爱片免费观看看| 一个人免费在线观看电影| 精品一区二区三区视频在线观看免费| 女人被狂操c到高潮| 亚洲av美国av| 少妇的逼水好多| 最近最新免费中文字幕在线| 波多野结衣高清无吗| 亚洲第一电影网av| 国产精品自产拍在线观看55亚洲| 亚洲人成网站在线播放欧美日韩| 麻豆av噜噜一区二区三区| 久久精品国产清高在天天线| 好看av亚洲va欧美ⅴa在| 男插女下体视频免费在线播放| 村上凉子中文字幕在线| 亚洲人成网站高清观看| 日韩欧美免费精品| 亚洲中文字幕一区二区三区有码在线看| 久久精品国产99精品国产亚洲性色| 欧美黑人欧美精品刺激| 欧美精品啪啪一区二区三区| 99精品久久久久人妻精品| 97人妻精品一区二区三区麻豆| 国产色婷婷99| 91久久精品国产一区二区成人| 日本免费一区二区三区高清不卡| 国产久久久一区二区三区| 淫秽高清视频在线观看| 三级男女做爰猛烈吃奶摸视频| 最近最新免费中文字幕在线| 午夜两性在线视频| 一区二区三区高清视频在线| 午夜福利在线观看吧| 成人高潮视频无遮挡免费网站| 亚洲国产精品成人综合色| 亚洲经典国产精华液单 | 国产在视频线在精品| 久久精品国产清高在天天线| 别揉我奶头 嗯啊视频| 他把我摸到了高潮在线观看| 男女那种视频在线观看| 九色成人免费人妻av| 免费观看精品视频网站| 久久久久久国产a免费观看| 色综合婷婷激情| 天美传媒精品一区二区| av福利片在线观看| 亚洲最大成人手机在线| 国产高潮美女av| 免费在线观看亚洲国产| 国产野战对白在线观看| 精品午夜福利视频在线观看一区| 无遮挡黄片免费观看| 欧美成人免费av一区二区三区| 热99在线观看视频| 日本一本二区三区精品| 天堂动漫精品| 日日夜夜操网爽| 国内毛片毛片毛片毛片毛片| 国产精品国产高清国产av| 欧美黑人巨大hd| 在线观看免费视频日本深夜| 熟女人妻精品中文字幕| 少妇人妻一区二区三区视频| 午夜福利成人在线免费观看| 国产伦精品一区二区三区视频9| 观看免费一级毛片| 美女高潮喷水抽搐中文字幕| 欧美潮喷喷水| 亚洲狠狠婷婷综合久久图片| 精品福利观看| 性插视频无遮挡在线免费观看| 亚洲电影在线观看av| 在现免费观看毛片| 国内少妇人妻偷人精品xxx网站| 老司机午夜十八禁免费视频| 在线观看一区二区三区| 最近最新中文字幕大全电影3| 亚洲熟妇熟女久久| 波多野结衣巨乳人妻| 少妇裸体淫交视频免费看高清| h日本视频在线播放| 最近在线观看免费完整版|