• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influences of soil hydraulic and mechanical parameters on land subsidence and ground fissures caused by groundwater exploitation*

    2014-06-01 12:29:59CHENXingxian陳興賢

    CHEN Xing-xian (陳興賢)

    School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China

    Bureau of Geology Mineral Resources Prospecting of Jiangsu Province, Nanjing 210018, China, E-mail: js_cxx@sina.com

    LUO Zu-jiang (駱祖江), ZHOU Shi-ling (周世玲)

    School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China

    Influences of soil hydraulic and mechanical parameters on land subsidence and ground fissures caused by groundwater exploitation*

    CHEN Xing-xian (陳興賢)

    School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China

    Bureau of Geology Mineral Resources Prospecting of Jiangsu Province, Nanjing 210018, China, E-mail: js_cxx@sina.com

    LUO Zu-jiang (駱祖江), ZHOU Shi-ling (周世玲)

    School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China

    (Received January 27, 2013, Revised August 15, 2013)

    In order to study the influences of hydraulic and mechanical parameters on land subsidence and ground fissure caused by groundwater exploitation, based on the Biot’s consolidation theory and combined with the nonlinear rheological theory of soil, the constitutive relation in Biot’s consolidation theory is extended to include the viscoelastic plasticity, and the dynamic relationship among the porosity, the hydraulic conductivity, the parameters of soil deformation and effective stress is also considered, a threedimensional full coupling mathematical model is established and applied to the study of land subsidence and ground fissures of Cangzhou in Hebei Province, through the analysis of parameter sensitivity, the influences of soil hydraulic and mechanical parameters on land subsidence and ground fissure are revealed. It is shown that the elastic modulusE, the Poisson ratioν, the specific yieldμand the soil cohesionchave a great influence on the land subsidence and the ground fissures. In addition, the vertical hydraulic conductivityzkand the horizontal hydraulic conductivityskalso have a great influence on the land subsidence and the ground fissures.

    Biot’s consolidation, viscoelastic plasticity, groundwater, land subsidence, ground fissure

    Introduction

    Serious geological disasters related with the land subsidence and the ground fissure were caused by excessive exploitation of the groundwater in China’s north China plain and the Yangtze River delta since the 1980s. The land subsidence and the ground fissure caused by the groundwater excessive exploitation was shown to be a complex process in which the seepage interacts with the stress field[1]. The process is closely related to the soil hydraulic and mechanical parameters. Therefore, the influences of the soil hydraulic and mechanical parameters on the land subsidence caused by the groundwater excessive exploitation are the key to simulate and predict the land subsidence accurately. In China, the history of the model research of the land subsidence caused by the groundwater exploitation may date back more than 10 years, with Shanghai and Tianjin as representative research centers. However, in these models the groundwater flow model is almost a quasi three-dimensional model, with only the flow equation in the aquifer and without one in aquitard to simulate the water level change. It would be difficult to determine the land subsidence caused by the aquitard water release[2,3]. The land subsidence models are usually vertical one-dimensional linear elastic models, based on the Terzaghi theory, and they can not be used to simulate and forecast the soil horizontal deformation, and the occurrence of the ground fissure[4,5]. The dynamic relationship among the soil deformation parameters, the permeability and the stress fields is not well established[6-8], neither the full coupling between the seepage and the land subsidence. Thus it is difficult to accurately determine theinfluences of the soil hydraulic and mechanical parameters on the land subsidence by using these models. The objective of this paper is based on the Biot’s consolidation theory combined with the nonlinear rheological theory of soil, to extend the constitutive relation in Biot’s consolidation theory to include the viscoelastic plasticity, with consideration of the dynamic relationship among the porosity, the hydraulic conductivity, the parameters of soil deformation and effective stress, and to establish a three-dimensional full coupling mathematical model and to apply it to the study of land subsidence and ground fissures of Cangzhou in Hebei Province. On the basis of the model calibration and the analysis of parameter sensitivity, the influences of the soil hydraulic and mechanical parameters on the vertical displacement (land subsidence) and the horizontal displacement (ground fissures) are studied. It is shown that the elastic modulusE, the Poisson ratioν, the specific yieldμand the soil cohesionchave a great influence on the land subsidence and the ground fissures. In addition, the vertical hydraulic conductivityzkand the horizontal hydraulic conductivityskalso have a great influence on the land subsidence and the ground fissures.

    1. Biot’s consolidation theory

    For a saturated soil, assuming that the soil skeleton deformation is linear elastic and small, the seepage satisfies the Darcy’s law, the water is incompressible or with a micro compression, the three dimensional Biot’s consolidation equation can be expressed as follows[9]:

    2. Constitutive model of soils

    3. Visco-elastic-plastic finite element equation of Biot’s consolidation

    The Galerkin weighted residual method is used to discretize the equations. With the nonlinear characteristics of soils, the incrementtΔ is used, and Eqs.(1) and (2) are discretized into an incremental form as[11]

    This is the three-dimensional finite element equation of Biot’s consolidation, and can be solved under appropriate conditions[12].

    4. Dynamic model of parameters

    (1) Nonlinearity of porosity and hydraulic conductivity

    Actually, the fluid-solid coupling is related with various porosity effects on permeability of soils, and the pore pressure dissipation leads to the deformation of the soil skeleton, as evidenced as the soil consolidation deformation in a macroscopic view[13]. Through the assumed conditions of Biot’s consolidation, the dynamical expression of the porositynand the hydraulic conductivitykcan be obtained according to the definition of the porosity and the Kozeny-Carman equation[14]

    (2) Nonlinearity of soil parameters

    Using the Duncan-nonlinear model to extend the constitutive relations of the soil to nonlinear ones, where the elastic constantsEandνin the matrix [D] in constitutive relations {Δσ}=[D]{Δε} are no longer regarded as constant, but they vary with the stress state. The tangent modulus and the Poisson’s ratio are expressed as follows:

    wherefRis the failure ratio,cis the viscous force,φis the internal friction angle,1σis the first principal stress,3σis the third principal stress, lgαandβare the intercepts of the plotted curves of the results of the conventional triaxial compression test,apis the atmospheric pressure, =F0.33, =D4 are the experimental parameters of soil,nis the slope of the results of the conventional triaxial compression test.

    5. Conditions for a unique solution

    5.1Initial conditions

    The initial conditions include the initial ground stress condition, the initial displacement condition and the initial pore pressure condition.

    (1) The initial ground stress condition: an estimation of the initial stress based on the gravity of the soil is

    wherexσis the initial horizontal stress,zσis the initial vertical stress,zis the depth of the calculating point,0Kis the static lateral pressure coefficient,

    5.2Boundary conditions

    There are four kinds of boundary conditions: the pore water condition, the impulse boundary condition, the free surface boundary condition and the displacement boundary condition.

    (1) The pore water conditions1Γ

    wheresuis the known pressure of the pore water on the boundary1Γ.

    (2) The impulse boundary conditions2Γ

    whereqLis the known discharge per unit area on the boundaryΓ2

    (3) The free surface boundary conditionsΓ3

    whereμis the specific yield,θis the angle between the normal vector of the outer boundary and the perpendicular direction,qis the discharge per unit area on the boundary3ΓandZis the elevation of the free surface.

    Fig.1 Program structure

    (4) The displacement boundary condition4Γ

    The whole calculation is carried out by a computer program in FORTRAN language, and a finite element numerical simulation software is developed based on the visco-elastic-plastic Biot’s consolidation theory for the groundwater withdrawal and the land subsidence. The program structure is shown in Fig.1.

    6. Sensitivity analysis of model parameters

    6.1Generalization and discretization of the geological model

    Cangzhou in Hebei province is taken as an example. The quaternary loose sediment of Cangzhou is taken as the calculation region, which covers an area of 1.4056×1010m2, with the maximum vertical depth of 350 m. The outside of the area is treated as impulse boundaries. The top of the model system is a recharge boundary to receive precipitation and agricultural irrigation infiltration, and as also a drainage boundary to evaporate the groundwater. The bottom of the model system is an impervious boundary. The discretizations are achieved by use of 8-node hexahedron element, with the subdivisions on the plane of 8 948 rectangular grids. The loose sediments are divided into four layers vertically, as the first phreatic aquifer formation, the second confined aquifer, the third confined aquifer formation and the fourth confined aquifer formation. The subdivisions of the study area are shown in Fig.2.

    Fig.2 Vertically mesh of the study area

    6.2Calibration and validation

    The data from 52 observation wells and 300 land subsidence leveling data are chosen for the model calibration and validation. The observation data of the water level and the leveling data of subsidence are collected from December 31st, 2005 to December 31st, 2005. A month is taken as a stress period of exploitation and there are 12 stress periods in total. Meanwhile, there are 10 account steps in each stress period.

    The initial pore water pressures of each aquifer are obtained from the conversion of the measured initial water level. The initial displacements of each aquifer and boundary are 0.

    Due to the deep buried depth and weak evaporation intensity of the groundwater, the rainfall infiltration and the evaporation of the groundwater are considered as one parameter, named the comprehensive infiltration coefficient.

    Fig.3 Comprehensive infiltration coefficient zoning map

    Table 1 Comprehensive infiltration coefficient values

    The comprehensive infiltration coefficient is calculated for 15 zonings after model calibration and validation. The zoning map and the coefficient value of each zoning are shown in Fig.3 and Table 1.

    The relevant hydraulic and mechanical parameters are calculated for 69 zonings. The zoning map of the second confined aquifer formation is shown in Fig.4 and the parameter values for each zoning are shown in Table 2. The fitting curves of the water level are shown in Fig.5 and Fig.6, and the land subsidence contour fitting is shown in Fig.7.

    Fig.4 Hydrological parameter zoning map for layer 2

    6.3Parameter sensitivity analysis

    It is important to accurately determine the model’s parameters, but in practice, the parameters always change greatly on account of the sampling and the sample preparation, the test instrument, the test method and process, the proficiency of the experimenters, data analysis, and so on. It is important to study the influences of parameters on the calculation results, as by the parameter sensitivity analysis[15].

    If a tiny change ofixleads to a great change ofX, we will say thatXis sensitive toixandixis a hypersensitivity parameter. On the other hand, if a great change ofixleads to a tiny change ofX, we will say thatXis insensitive toixandixis a hyposensitivity parameter.

    Table 2 The parameter values for each zoning of layer 2

    Fig.5 Comparison of simulated results with observation data of groundwater level for well Cangguan12-1, layer 2

    Fig.6 Comparison of simulated results with observation data of Groundwater level for well Huang40-22, layer 2

    Fig.7 Comparison of simulated results with observation data of land subsidence of 2006

    According to the traditional parameter sensitivity analysis, the parameter sensitivity in this case is the partial derivative of the displacement to the parameter. The displacement is sensitive to the parameter if the parameter sensitivity is great. Then the parameter has a greater influence on the land subsidence and the ground fissures. Because the soil hydraulic and mechanical parameters in the coupling model of the groundwater exploitation, the land subsidence and the ground fissures have different dimensions, the sensitivities of different parameters also have different dimensions and they are incomparable. Thus, one can not use the traditional sensitivity to characterize the sensitivity of the parameters. On the basis of the finite difference method, the parameter relative sensitivity is defined and used to characterize the sensitivity of the displacement to parameters. The formula is as follows

    The sensitivity analysis includes 8 parameters: the elastic modulus of the soilE, the Poisson ratioν, the horizontal hydraulic conductivitysk, the vertical hydraulic conductivityzk, the soil cohesionc, the friction angleφ, the specific weight of the soilλand the specific yieldμ. The physical quantities we use to measure the sensitivity include the horizontal displacement and the vertical displacement, as the ground fissures and the land subsidence. The maximal horizontal and vertical displacements of the second confined aquifer are taken as an example. The calculated results are shown in Table 4.

    The following conclusion can be made from the results: the elastic modulusE, the Poisson ratioν, the vertical hydraulic conductivityzk, the specific yieldμand the soil cohesionchave great impacts on the vertical displacement, and they are very high sensitive parameters. The horizontal hydraulic conductivitysk, the specific weight of soilλand the friction angleφare high sensitive parameters, their influences on the vertical displacement are relatively weak.

    The elastic modulus of the soilE, the Poisson ratioν, the horizontal hydraulic conductivitysk, the specific yieldμand the soil cohesioncare very high sensitive parameters. They have great influences on the horizontal displacement. The influence of the vertical hydrauliczkon the horizontal displacement is relatively weak. The impacts of the friction angleφand the specific weight of the soilλare the lowest, they are sensitive parameters.

    6.3.3 Result analysis

    (1) The impact of the elastic modulusE: the elastic modulusEis a physical quantity, used to describe the soil’s capability of resisting the deformation. We can conclude from the results that the horizontal displacement is decreased and the vertical displacement is increased when the elastic modulusEis increased. This shows that the land subsidence caused by pumping is smaller in a hard soil than in a soft soil, relatively speaking. Meanwhile, the influences on the displacements are greater when the elastic modulusEis larger. On the other hand, when the elastic modulusEis smaller, the influences are weaker.

    (2) The impact of the Poisson’s ratioν: the Poisson’s ratio is a constant used to reflect the lateral deformation of the soil. It is defined as the ratio of the absolute values of the transverse normal strain and the axial normal strain when the soil is under one-way tensile or compressive loading. The calculated results show that the horizontal displacement is increased and the vertical displacement isdecreased when the

    Poisson rationνis increased. The amplitude reduction in the vertical displacement is greater than the increased amplitude of the horizontal displacement. This highlights the effects of the horizontal deformation. That is, the effects of the Poisson ratioνon the soil horizontal deformation are very significant. Meanwhile, when the Poisson ratioνis larger, its impacts on the displacement are greater. On the other hand, when the Poisson ratioνis smaller, the impacts are weaker.

    Table 4 The results of parameter sensitivity analysis

    (3) The impact of the horizontal hydraulic conductivityks: the horizontal hydraulic conductivity is a reflection of the soil permeability in the horizontal direction. It is a main parameter which determines the horizontal seepage and the pore water pressure dissipation. According to the calculated results, the horizontal and vertical displacements are decreased when the horizontal hydraulic conductivityksis increased. This shows that the increase of the horizontal hydraulic conductivityksspeeds up the dissipate rate of the pore water pressure and accelerates the soil consolidation. Meanwhile, the impacts of the horizontal hydraulic conductivitykson the soil displacement are more significant when the horizontal hydraulic conductivity is large. Otherwise, the influences are weak.

    (4) The impact of the vertical hydraulic conductivitykz: the vertical hydraulic conductivity is a reflection of the soil permeability in the vertical direction and the closeness of the hydraulic connection of adjacent aquifers. The calculated results show that when the vertical hydraulic conductivitykzis increased, the horizontal and vertical displacements are decreased. This is mainly due to the fact that the increase of the vertical hydraulic conductivitykzstrengthens the hydraulic connection between aquifers, accelerates the water exchange between the various aquifers, slows down the pore water dissipation speed, and the speed of the soil deformation. Meanwhile, the influences of the vertical hydraulic conductivitykzon the displacement are greater when the parameter value is larger. On the other hand, the influences of the vertical hydraulic conductivitykzon the displacement are weaker when the parameter value is smaller.

    (5) The impact of the specific yieldμ: the specific yield is a parameter that measures the drainage capacity of gravity and is close to the exchanged water of the free surface. According to the calculated results, the horizontal displacement is decreased and the vertical displacement is increased when the specific yield is increased. This mainly due to the fact that the increase of the specific yieldμstrengthens the capacity of releasing water, speeds up the pore water dissipation speed, and accelerates the vertical deformation of the soil. Meanwhile, when the value of the specific yieldμis larger, the impacts on the displacement are greater. On the other hand, when the value of the specific yieldμis smaller, the impacts on the displacement are weaker.

    (6) The impact of the soil cohesionc: the soil cohesion is the mutual attraction between soil particles, and is an index that reflects the soil shear strength. The calculated results show that when the soil cohesioncis increased, the horizontal and vertical displacements are increased, because when the pore water stress dissipates, the increased soil cohesionccan accelerate the soil consolidation and deformation. Moreover, when the value of the soil cohesioncis larger, the influences on the displacement are greater. Otherwise, the influences on the displacement are weaker.

    (7) The impact of the friction angleφ: the friction angle is a representation of the soil internal friction, includes the surface frictional forces between soil particles and the bit forces caused by the chain effects of the soil particles. Just like the soil cohesionc, the friction angleφis an important parameter that reflects the soil shear strength. According to the calculated results, when the friction angle is enlarged, the horizontal displacement is decreased and the vertical displacement is increased. Because the enlargement of the friction angle enhances the soil shear strength and reduces the horizontal displacement. Meanwhile, when the friction angle is larger, the impacts on the displacement are greater, otherwise, the impacts are weaker.

    (8) The impact of the specific weight of the soilλ: the gravity of unit volume soil is called the specific weight of the soilλ. The calculated results show that when the specific weight of the soilλis increased, the horizontal displacement is increased, and the vertical displacement is decreased. The confining pressure is increased with the increase of the soil gravity and the horizontal displacement is exacerbated significantly. A part of the effective stress is transformed into the confining pressure, and the vertical displacement is relatively decreased. Meanwhile, the impacts on the displacement are increased with the increase of the specific weight of the soilλ.

    7. Conclusions

    (1) Based on Biot’s consolidation theory and combined with the nonlinear rheological theory of soil, the constitutive relation in Biot’s consolidation theory is extended to include the viscoelastic plasticity, and the dynamic relationship among the porosity, the hydraulic conductivity, the parameters of the soil deformation and the effective stress is also considered, a three-dimensional fully coupled mathematical modelis established. This model considers a perfect coupling among the groundwater exploitation, the land subsidence and the ground fissure caused by the exploitation.

    (2) The elastic modulusE, the Poisson ratioν, the specific yieldμand the soil cohesionchave great influences on the vertical displacement (land subsidence) and the horizontal displacement (ground fissures). In addition, the vertical hydraulic conductivitykzand the horizontal hydraulic conductivityksalso have great influences on the vertical displacement (land subsidence) and the horizontal displacement (ground fissures). The impacts of the horizontal hydraulic conductivityks, the specific weight of the soilλand the friction angleφon the vertical displacement (land subsidence) and the vertical conductivitykzon the horizontal displacement (ground fissures) come second. The influences of the friction angleφand the specific weight of the soilλon the horizontal displacement (ground fissure) are the smallest relatively.

    (3) The soil hydraulic and mechanical parameters change symmetrically around the reference value, but the influences caused by the parameter changes on the vertical displacement (land subsidence) and the horizontal displacement (ground fissures) are asymmetrical. Compared with the reference value, when the parameter values are large, the influences on the land subsidence and the ground fissures are greater than when the parameter values are small.

    [1] CHEN Chong-xi, PEI Shun-ping. A study on water exploitation and land subsidence[J]. Engineering Geology and Hydrogeology, 2001, (2): 5-8(in Chinese).

    [2] YANG G. Advances and challenge in research on land subsidence in China[C]. Proceeding of the Seventh International Symposium on Land Subsidence. Shanghai, China, 2005.

    [3] LUO Zu-jiang, ZHANG Ying-ying and WU Yong-xia. Finite element numerical simulation of three-dimensional seepage control for deep foundation pit dewatering[J]. Journal of Hydrodynamics, 2008, 20(5): 596-602.

    [4] ZHANG Xian-min, TONG Deng-ke and XUE Li-li. Numerical simulation of gas-water leakage flow in a two layered coal bed system[J]. Journal of Hydrodynamics, 2009, 21(5): 692-698.

    [5] ZHANG Yan-jun, ZHANG Yan-ji. The numerical analysis of elastic visco-plastic biot’s consolidation to marine soft soil[J]. Journal of Jilin University (Earth Science Edition), 2003, 33(1): 71-75(in Chinese).

    [6] PHIEN-WEJ N., GIAO P. H. and NUTALAYA P. Land subsidence in Bangkok, Thailand[J]. Engineering Geology, 2006, 82(4): 187-201.

    [7] LI Pei-chao, KONG Xiang-yan and Lu De-tang. Mathematical modeling of flow in saturated porous media on account of fluid-structure coupling effect[J]. Journal of Hydrodynamics, Ser. A, 2003, 18(4): 419-426(in Chinese).

    [8] ABIDIN H. Z., ANDREAS H. and GUMILAR I. et al. Land subsidence of Jakarta (Indonesia) and its relation with urban development[J]. Natural Hazards, 2011, 59(3): 1753-1771.

    [9] LUO Zu-jiang, LI Hui-zhong and FU Yan-ling. Threedimensional numerical simulation of groundwater dewatering and land- subsidence control in quaternary loose sediments[M]. Beijing, China: Science Press, 2009(in Chinese).

    [10] CHEN Xiao-ping, BAI Shi-wei. The numerical aanalysis of visco-elastic-plastic biot’s consolidation for soft clay foundation[J]. Chinese Jounal of Geotechnical Engineering, 2001, 23(4): 481-484(in Chinese).

    [11] LIU C.-W., LIN W.-S. and SHANG C. et al. The effect of clay dehydration on land subsidence in the Yun-Lin Coastal Area, Taiwan[J]. Environmental Geology, 2001, 40(4-5): 518-527.

    [12] SMIITH I. M. Programming the finite element method[M]. New York, USA: John Wiley and Sons, 2007.

    [13] ZHANG Yun, XUE Yu-qun and Wu Ji-chun et al. Land subsidence and earth fissures due to groundwater with drawal in the Southern Yangtze Delta, China[J]. Environmental Geology, 2008, 55(4): 751-762.

    [14] LUO Zu-jiang, WANG Yan. 3-D variable parameter numerical model for evaluation of the planned exploitable groundwater resource in regional unconsolidated sediments[J]. Journal of Hydrodynamics, 2012, 24(6): 959-968.

    [15] YOU Guang-ming. Numerical platform of elasto-plastic finite element method and its application to geological engineering[D]. Doctoral Thesis, Shanghai, China: Tongji University, 2007(in Chinese).

    10.1016/S1001-6058(14)60018-4

    * Project supported by the Jiangsu Special Fund (Grant No. dk2012ky01), the Hebei Grand Special Fund (Grant No. CZCG2012055).

    Biography: CHEN Xing-xian (1963-), Male, Ph. D.,

    Senior Engineer

    亚洲国产精品999在线| 午夜亚洲福利在线播放| 亚洲五月天丁香| 男女之事视频高清在线观看| 99国产综合亚洲精品| 国产亚洲欧美在线一区二区| 成人特级av手机在线观看| 亚洲国产欧洲综合997久久,| 宅男免费午夜| 亚洲精品色激情综合| 美女午夜性视频免费| 色吧在线观看| 色综合站精品国产| 国产午夜精品久久久久久| 免费电影在线观看免费观看| 麻豆国产97在线/欧美| 中文字幕熟女人妻在线| 亚洲黑人精品在线| 国产精品日韩av在线免费观看| 国产一区二区三区在线臀色熟女| 亚洲七黄色美女视频| 男人的好看免费观看在线视频| 麻豆成人午夜福利视频| 久久久久性生活片| 国产久久久一区二区三区| 美女高潮的动态| 亚洲av电影不卡..在线观看| 国产高清三级在线| 亚洲 欧美一区二区三区| 国产精品电影一区二区三区| 精品国产乱子伦一区二区三区| 亚洲国产欧美网| 免费一级毛片在线播放高清视频| 久久久久免费精品人妻一区二区| 老司机在亚洲福利影院| 麻豆成人av在线观看| 午夜福利在线观看免费完整高清在 | 精品熟女少妇八av免费久了| aaaaa片日本免费| 久久草成人影院| 丰满人妻熟妇乱又伦精品不卡| 午夜日韩欧美国产| 国产精品亚洲一级av第二区| 深夜精品福利| 操出白浆在线播放| 亚洲av成人一区二区三| av中文乱码字幕在线| 国产三级黄色录像| 99精品久久久久人妻精品| 亚洲欧美日韩高清在线视频| 午夜福利在线观看免费完整高清在 | 一二三四在线观看免费中文在| 99re在线观看精品视频| 欧美成人性av电影在线观看| 色尼玛亚洲综合影院| 国产精品一区二区精品视频观看| 国产精品一及| 午夜福利在线观看吧| 国产激情久久老熟女| 手机成人av网站| 国产主播在线观看一区二区| 青草久久国产| 一本精品99久久精品77| 亚洲成人免费电影在线观看| 亚洲,欧美精品.| 午夜福利视频1000在线观看| 日日摸夜夜添夜夜添小说| 黄色 视频免费看| 波多野结衣高清作品| 1024手机看黄色片| 亚洲中文日韩欧美视频| 亚洲自拍偷在线| 香蕉丝袜av| 91麻豆av在线| 熟女电影av网| 国产精品日韩av在线免费观看| 国产成人一区二区三区免费视频网站| 亚洲va日本ⅴa欧美va伊人久久| 最好的美女福利视频网| 日本a在线网址| 亚洲欧美精品综合久久99| 婷婷亚洲欧美| www.999成人在线观看| 欧美乱妇无乱码| 最新美女视频免费是黄的| 麻豆成人av在线观看| 日本免费一区二区三区高清不卡| 欧美性猛交黑人性爽| 亚洲国产欧美一区二区综合| 精品日产1卡2卡| 又黄又爽又免费观看的视频| 中文字幕人妻丝袜一区二区| 国产成人aa在线观看| 国产1区2区3区精品| 亚洲 国产 在线| 成在线人永久免费视频| 国产精品久久电影中文字幕| 12—13女人毛片做爰片一| 亚洲av日韩精品久久久久久密| x7x7x7水蜜桃| 欧美不卡视频在线免费观看| 黄片小视频在线播放| av女优亚洲男人天堂 | 国产伦人伦偷精品视频| 亚洲国产精品久久男人天堂| 99视频精品全部免费 在线 | 国产毛片a区久久久久| 国产不卡一卡二| 中亚洲国语对白在线视频| 午夜久久久久精精品| 999久久久精品免费观看国产| 九色成人免费人妻av| 黄色片一级片一级黄色片| 日日夜夜操网爽| 一区二区三区高清视频在线| 欧美日韩乱码在线| 午夜福利成人在线免费观看| 国产午夜福利久久久久久| 长腿黑丝高跟| 成年免费大片在线观看| 白带黄色成豆腐渣| 亚洲av成人av| 亚洲一区高清亚洲精品| 国产视频一区二区在线看| 岛国视频午夜一区免费看| 俺也久久电影网| 亚洲在线自拍视频| 日韩精品青青久久久久久| 日韩欧美免费精品| 99热这里只有精品一区 | 免费观看人在逋| 欧美极品一区二区三区四区| 一级黄色大片毛片| 亚洲熟妇熟女久久| 国产v大片淫在线免费观看| 一个人看的www免费观看视频| 亚洲激情在线av| 禁无遮挡网站| 91九色精品人成在线观看| 国产不卡一卡二| 日韩高清综合在线| 9191精品国产免费久久| 国产精品久久久久久精品电影| 性色avwww在线观看| 精品国内亚洲2022精品成人| 国产真人三级小视频在线观看| 国产精品久久视频播放| 丁香六月欧美| 国产一区二区在线观看日韩 | 国产真实乱freesex| 中文资源天堂在线| 1024香蕉在线观看| 久久这里只有精品19| 中文资源天堂在线| 亚洲激情在线av| 女警被强在线播放| 国产精品98久久久久久宅男小说| 亚洲av电影在线进入| 老司机午夜福利在线观看视频| 亚洲专区国产一区二区| 国产一区二区三区在线臀色熟女| 欧美大码av| 欧美+亚洲+日韩+国产| 日日干狠狠操夜夜爽| 99久久成人亚洲精品观看| av在线蜜桃| 91av网站免费观看| 午夜久久久久精精品| 日韩免费av在线播放| 制服丝袜大香蕉在线| 午夜成年电影在线免费观看| 久久精品人妻少妇| 搡老妇女老女人老熟妇| 日韩大尺度精品在线看网址| 精品国产三级普通话版| 女警被强在线播放| 三级男女做爰猛烈吃奶摸视频| 国产精品九九99| av片东京热男人的天堂| 成人特级黄色片久久久久久久| 国产精品爽爽va在线观看网站| 精品久久蜜臀av无| 色哟哟哟哟哟哟| 午夜福利免费观看在线| 国产又黄又爽又无遮挡在线| 午夜影院日韩av| 国产成人影院久久av| 99国产精品99久久久久| 九九久久精品国产亚洲av麻豆 | 变态另类成人亚洲欧美熟女| 嫩草影院精品99| 99久久成人亚洲精品观看| 伊人久久大香线蕉亚洲五| 一夜夜www| 亚洲在线观看片| 欧美av亚洲av综合av国产av| 女警被强在线播放| 亚洲熟女毛片儿| 成在线人永久免费视频| 夜夜躁狠狠躁天天躁| 在线视频色国产色| 亚洲国产色片| 国产精品亚洲一级av第二区| 男女之事视频高清在线观看| 久久久久久久久中文| 国产精品久久久久久精品电影| 非洲黑人性xxxx精品又粗又长| 亚洲av五月六月丁香网| 最近视频中文字幕2019在线8| 精品久久蜜臀av无| 一级黄色大片毛片| 日韩欧美免费精品| 国产激情偷乱视频一区二区| 久久久成人免费电影| 黄色片一级片一级黄色片| 一个人看的www免费观看视频| 久久久久久久午夜电影| 国产 一区 欧美 日韩| 又粗又爽又猛毛片免费看| 免费人成视频x8x8入口观看| 看片在线看免费视频| 国产又色又爽无遮挡免费看| e午夜精品久久久久久久| 麻豆成人av在线观看| av在线天堂中文字幕| 久久国产精品人妻蜜桃| 亚洲成人中文字幕在线播放| 99热6这里只有精品| 老司机在亚洲福利影院| 制服丝袜大香蕉在线| 精品国产乱子伦一区二区三区| 美女午夜性视频免费| 熟女人妻精品中文字幕| 一区二区三区激情视频| 欧美zozozo另类| 免费一级毛片在线播放高清视频| 亚洲精品色激情综合| 91麻豆av在线| 久久欧美精品欧美久久欧美| 99精品久久久久人妻精品| 国产黄片美女视频| 精品免费久久久久久久清纯| 欧美日本视频| 波多野结衣高清作品| 一卡2卡三卡四卡精品乱码亚洲| 久久久久国产精品人妻aⅴ院| 色噜噜av男人的天堂激情| 成人性生交大片免费视频hd| 国产伦在线观看视频一区| 天天躁狠狠躁夜夜躁狠狠躁| 午夜激情欧美在线| 悠悠久久av| 男女视频在线观看网站免费| 在线十欧美十亚洲十日本专区| 国产欧美日韩精品亚洲av| 老司机福利观看| 国产精品久久久久久亚洲av鲁大| 亚洲国产色片| 午夜福利在线观看免费完整高清在 | 丁香欧美五月| 一进一出抽搐动态| 午夜福利在线观看免费完整高清在 | 少妇丰满av| 三级毛片av免费| 久久精品91蜜桃| 欧美zozozo另类| 亚洲av片天天在线观看| 国产三级黄色录像| 免费在线观看日本一区| 中文字幕人妻丝袜一区二区| 观看免费一级毛片| 午夜免费观看网址| 国产精品永久免费网站| 在线观看一区二区三区| 精品午夜福利视频在线观看一区| 女人高潮潮喷娇喘18禁视频| 中文字幕精品亚洲无线码一区| 亚洲电影在线观看av| 国产精品久久久久久人妻精品电影| 亚洲中文日韩欧美视频| 久久久久久国产a免费观看| 国产综合懂色| 香蕉av资源在线| 少妇的丰满在线观看| 男人舔奶头视频| 好男人在线观看高清免费视频| 亚洲欧美精品综合一区二区三区| 岛国在线免费视频观看| 亚洲一区二区三区不卡视频| 99国产综合亚洲精品| 99久久精品一区二区三区| 免费电影在线观看免费观看| 国产av一区在线观看免费| 村上凉子中文字幕在线| 免费在线观看亚洲国产| 欧美又色又爽又黄视频| 美女 人体艺术 gogo| 黄色 视频免费看| 高清毛片免费观看视频网站| 国产精品99久久99久久久不卡| 制服丝袜大香蕉在线| 成人精品一区二区免费| 欧美一区二区国产精品久久精品| 国产伦精品一区二区三区四那| 欧美黄色片欧美黄色片| 久久人妻av系列| 一a级毛片在线观看| 首页视频小说图片口味搜索| 久久国产乱子伦精品免费另类| 国产成人一区二区三区免费视频网站| 伊人久久大香线蕉亚洲五| 后天国语完整版免费观看| 全区人妻精品视频| 母亲3免费完整高清在线观看| 天天一区二区日本电影三级| 久久中文字幕一级| 91九色精品人成在线观看| 欧美一区二区国产精品久久精品| 麻豆一二三区av精品| 岛国视频午夜一区免费看| 99久久成人亚洲精品观看| 午夜a级毛片| 亚洲欧美精品综合久久99| 久久人人精品亚洲av| x7x7x7水蜜桃| 男女午夜视频在线观看| 国产美女午夜福利| ponron亚洲| 午夜精品在线福利| 国产午夜福利久久久久久| 久久久久国内视频| 全区人妻精品视频| 欧美成狂野欧美在线观看| 亚洲人成网站在线播放欧美日韩| 欧美成人一区二区免费高清观看 | 一级作爱视频免费观看| 每晚都被弄得嗷嗷叫到高潮| 99精品久久久久人妻精品| 身体一侧抽搐| 在线观看日韩欧美| 又粗又爽又猛毛片免费看| 国产真实乱freesex| 三级国产精品欧美在线观看 | 神马国产精品三级电影在线观看| aaaaa片日本免费| 男人舔奶头视频| 国产成人av教育| 日韩免费av在线播放| 久久久国产成人免费| 身体一侧抽搐| 亚洲人成电影免费在线| 又粗又爽又猛毛片免费看| 18禁黄网站禁片午夜丰满| 国内少妇人妻偷人精品xxx网站 | 国产高清激情床上av| 成熟少妇高潮喷水视频| 男女做爰动态图高潮gif福利片| 亚洲男人的天堂狠狠| 日韩 欧美 亚洲 中文字幕| 欧美一级毛片孕妇| 一a级毛片在线观看| 欧美日韩亚洲国产一区二区在线观看| 中文字幕人成人乱码亚洲影| 亚洲国产中文字幕在线视频| 婷婷六月久久综合丁香| 观看免费一级毛片| 久久精品影院6| 99热精品在线国产| 久久久久久大精品| 黑人操中国人逼视频| or卡值多少钱| 韩国av一区二区三区四区| 极品教师在线免费播放| 亚洲最大成人中文| 亚洲五月天丁香| 在线观看66精品国产| 国产精品久久视频播放| 动漫黄色视频在线观看| 亚洲国产色片| 午夜福利在线在线| 久久草成人影院| 美女午夜性视频免费| 成人亚洲精品av一区二区| 18禁黄网站禁片免费观看直播| 首页视频小说图片口味搜索| avwww免费| 国产精品永久免费网站| 88av欧美| 国产成人系列免费观看| 午夜福利成人在线免费观看| 国产精品久久久久久精品电影| 日韩欧美国产在线观看| 一二三四社区在线视频社区8| 成人一区二区视频在线观看| 久久久国产精品麻豆| 欧美高清成人免费视频www| 听说在线观看完整版免费高清| 香蕉久久夜色| 国产精品久久久久久人妻精品电影| 精品福利观看| 男插女下体视频免费在线播放| 国产精品久久久久久久电影 | 免费观看精品视频网站| 欧美性猛交黑人性爽| netflix在线观看网站| 欧美性猛交╳xxx乱大交人| 好看av亚洲va欧美ⅴa在| 日韩欧美免费精品| 国语自产精品视频在线第100页| 男女视频在线观看网站免费| 熟女电影av网| 久99久视频精品免费| 神马国产精品三级电影在线观看| 国产v大片淫在线免费观看| 国产不卡一卡二| 国产av一区在线观看免费| 97超视频在线观看视频| 亚洲国产精品久久男人天堂| 村上凉子中文字幕在线| 一本久久中文字幕| 国产精品99久久久久久久久| 国产高清视频在线观看网站| 欧美极品一区二区三区四区| 伊人久久大香线蕉亚洲五| 久久性视频一级片| 老司机在亚洲福利影院| 听说在线观看完整版免费高清| 丰满人妻熟妇乱又伦精品不卡| 日本与韩国留学比较| 男人和女人高潮做爰伦理| 三级男女做爰猛烈吃奶摸视频| a级毛片a级免费在线| 最近最新中文字幕大全电影3| 91av网一区二区| 亚洲人成伊人成综合网2020| 国产乱人伦免费视频| 亚洲九九香蕉| 国产激情偷乱视频一区二区| 久久天堂一区二区三区四区| 婷婷丁香在线五月| 亚洲真实伦在线观看| 禁无遮挡网站| 日韩国内少妇激情av| 女生性感内裤真人,穿戴方法视频| www国产在线视频色| 国产三级中文精品| 亚洲av熟女| 午夜日韩欧美国产| 长腿黑丝高跟| 黑人欧美特级aaaaaa片| 久久久成人免费电影| 精品99又大又爽又粗少妇毛片 | 国产欧美日韩精品亚洲av| 两个人看的免费小视频| 巨乳人妻的诱惑在线观看| 狂野欧美激情性xxxx| 日本免费一区二区三区高清不卡| 岛国在线免费视频观看| 日韩高清综合在线| 99久久综合精品五月天人人| 亚洲国产看品久久| 国产v大片淫在线免费观看| 日韩精品青青久久久久久| 啪啪无遮挡十八禁网站| 久久精品亚洲精品国产色婷小说| 叶爱在线成人免费视频播放| 欧美高清成人免费视频www| 国产精品自产拍在线观看55亚洲| 免费一级毛片在线播放高清视频| 男女床上黄色一级片免费看| 精品一区二区三区四区五区乱码| 婷婷精品国产亚洲av在线| 亚洲欧美激情综合另类| 女人高潮潮喷娇喘18禁视频| 色综合欧美亚洲国产小说| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av电影不卡..在线观看| avwww免费| svipshipincom国产片| 99国产极品粉嫩在线观看| 这个男人来自地球电影免费观看| netflix在线观看网站| 亚洲精品美女久久av网站| 国产精品一区二区免费欧美| 国产一区二区在线观看日韩 | 国产伦精品一区二区三区视频9 | 国产精品 国内视频| 亚洲午夜理论影院| 国产av不卡久久| 丰满人妻熟妇乱又伦精品不卡| 女人高潮潮喷娇喘18禁视频| xxxwww97欧美| 亚洲专区中文字幕在线| 午夜激情福利司机影院| 国产亚洲精品久久久久久毛片| 亚洲黑人精品在线| 天天一区二区日本电影三级| 18禁美女被吸乳视频| 在线十欧美十亚洲十日本专区| 久久香蕉国产精品| 亚洲第一电影网av| 国产精品av视频在线免费观看| 国产亚洲欧美98| 午夜福利在线在线| 免费在线观看成人毛片| 久久久久亚洲av毛片大全| 无人区码免费观看不卡| ponron亚洲| 国产麻豆成人av免费视频| 日本成人三级电影网站| 中亚洲国语对白在线视频| 色综合婷婷激情| 国产一区二区三区在线臀色熟女| 少妇的逼水好多| or卡值多少钱| 国产伦在线观看视频一区| 69av精品久久久久久| 亚洲专区国产一区二区| av女优亚洲男人天堂 | 女人被狂操c到高潮| 亚洲片人在线观看| 国产成人欧美在线观看| 人妻夜夜爽99麻豆av| 亚洲欧美一区二区三区黑人| 亚洲av中文字字幕乱码综合| 日韩欧美三级三区| 亚洲在线自拍视频| 深夜精品福利| 国产 一区 欧美 日韩| 88av欧美| 欧洲精品卡2卡3卡4卡5卡区| 美女午夜性视频免费| 性欧美人与动物交配| 黄色 视频免费看| 久9热在线精品视频| 欧美日韩瑟瑟在线播放| 日韩三级视频一区二区三区| 国内久久婷婷六月综合欲色啪| 人人妻人人澡欧美一区二区| 在线免费观看不下载黄p国产 | 精品久久久久久,| 久久九九热精品免费| 两个人的视频大全免费| 亚洲人与动物交配视频| av福利片在线观看| 最近最新免费中文字幕在线| 国产亚洲av高清不卡| 在线观看美女被高潮喷水网站 | 最近最新中文字幕大全电影3| 他把我摸到了高潮在线观看| 色综合欧美亚洲国产小说| 一a级毛片在线观看| x7x7x7水蜜桃| 欧美av亚洲av综合av国产av| 三级毛片av免费| 午夜影院日韩av| 欧美色欧美亚洲另类二区| 12—13女人毛片做爰片一| 欧美乱妇无乱码| 午夜福利在线在线| 99精品久久久久人妻精品| 日韩欧美 国产精品| 熟女人妻精品中文字幕| 婷婷精品国产亚洲av在线| 国产成人一区二区三区免费视频网站| 日韩免费av在线播放| 男人的好看免费观看在线视频| 欧美日韩黄片免| 欧美色欧美亚洲另类二区| 国产精品香港三级国产av潘金莲| 老司机福利观看| 欧美在线黄色| 91麻豆av在线| 久久国产乱子伦精品免费另类| 在线免费观看不下载黄p国产 | 国产私拍福利视频在线观看| 日日摸夜夜添夜夜添小说| 亚洲性夜色夜夜综合| 网址你懂的国产日韩在线| 高清毛片免费观看视频网站| 变态另类成人亚洲欧美熟女| 久久午夜亚洲精品久久| 日韩精品青青久久久久久| 欧美3d第一页| 日韩欧美精品v在线| 欧美成人免费av一区二区三区| 黄色女人牲交| 99热这里只有是精品50| 视频区欧美日本亚洲| 亚洲自偷自拍图片 自拍| 男女视频在线观看网站免费| 在线a可以看的网站| 亚洲国产精品成人综合色| 特级一级黄色大片| 日本 欧美在线| 国产亚洲精品久久久久久毛片| 老鸭窝网址在线观看| 色老头精品视频在线观看| 国产精华一区二区三区| 亚洲 国产 在线| 婷婷丁香在线五月| 亚洲,欧美精品.| 中文字幕av在线有码专区| 日日干狠狠操夜夜爽| 成人特级黄色片久久久久久久| 女警被强在线播放| www日本黄色视频网| 两个人看的免费小视频| 一个人免费在线观看的高清视频| 99国产精品一区二区三区| 国产成人影院久久av| 久久精品人妻少妇| 老司机福利观看| 日本精品一区二区三区蜜桃| 成人欧美大片|