• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A hybrid DEM/CFD approach for solid-liquid flows*

    2014-06-01 12:30:00QIULiuchao邱流潮

    QIU Liu-chao (邱流潮)

    College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China, E-mail: qiuliuchao@cau.edu.cn

    WU Chuan-yu

    Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK

    A hybrid DEM/CFD approach for solid-liquid flows*

    QIU Liu-chao (邱流潮)

    College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China, E-mail: qiuliuchao@cau.edu.cn

    WU Chuan-yu

    Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK

    (Received May 24, 2013, Revised September 1, 2013)

    A hybrid scheme coupling the discrete element method (DEM) with the computational fluid dynamics (CFD) is developed to model solid-liquid flows. Instead of solving the pressure Poisson equation, we use the compressible volume-averaged continuity and momentum equations with an isothermal stiff equation of state for the liquid phase in our CFD scheme. The motion of the solid phase is obtained by using the DEM, in which the particle-particle and particle-wall interactions are modelled by using the theoretical contact mechanics. The two phases are coupled through the Newton’s third law of motion. To verify the proposed method, the sedimentation of a single spherical particle is simulated in water, and the results are compared with experimental results reported in the literature. In addition, the drafting, kissing, and tumbling (DKT) phenomenon between two particles in a liquid is modelled and reasonable results are obtained. Finally, the numerical simulation of the density-driven segregation of a binary particulate suspension involving 10 000 particles in a closed container is conducted to show that the presented method is potentially powerful to simulate real particulate flows with large number of moving particles.

    discrete element method (DEM), computational fluid dynamics (CFD), solid-liquid flows, sedimentation, two-phase flow, numerical simulation

    Introduction

    The solid-liquid flows can be found in many processes in chemical, petroleum, agricultural, biochemical and food industries. To improve the design of the process equipment while avoiding tedious and time consuming experiments, numerical approaches were widely employed during the last decades and a number of numerical models were developed. For example, Rong and Zhan[1]used the DEM-CFD approach for modelling spouted beds, Wan and Turek[2]applied the multigrid fictitious boundary method (MFBM) to simulate solid-liquid flows, Tong et al.[3]used a DEMCFD method to simulate the powder dispersion in a cyclonic flow, Cate et al.[4]simulated a single sphere settling under gravity using the lattice-Boltzmann method (LBM), Chen et al.[5]applied a dissipative particle dynamics (DPD) for simulating a single sphere settling in a square tube, Yang et al.[6]adopted the discrete particle method for analysing the sedimentation of microparticles, Potapov et al.[7]and Qiu[8]modelled the liquid-solid flows using a coupled smoothed particle hydrodynamics (SPH) and DEM. Over the last two decades, a coupled DEM/CFD was developed and advanced for modelling the fluid-solid flows, and for efficiently analyzing the gas-solid flows[9,10]. In addition, detailed information at the micro-scale can be obtained with the DEM/CFD.

    However, most DEM/CFD methods were developed for compressible fluids (i.e., gases) based upon the ideal gas law, which cannot be used for the particle motion in liquids that are generally incompressible. The liquid flow is conventionally simulated by using the incompressible Navier-Stokes equations and the pressure is obtained by solving a Poisson equation. Solving the pressure Poisson equation is often the most costly step in these schemes, to hinder their applications in analyzing particulate systems. An alternative approach for numerical modelling of particulatesystems involving a nearly incompressible Newtonian fluid is proposed in this study, which is stimulated by the weakly compressible flow method developed by Brujan[11]as the fluid solver. Instead of solving the pressure Poisson equation, the compressible volumeaveraged continuity and momentum equations are used, but with an isothermal stiff equation of state for the fluid phase.

    This paper is organized as follows. The numerical methods are first discussed, followed by the model validation. Then the numerical simulation of the density-driven segregation of a binary particulate suspension in a closed container is presented. The conclusions and discussions are at the end.

    1. The CFD/DEM method

    In order to model incompressible fluids in the DEM/CFD, an equation of state for weakly compressible fluids is adapted in place of the ideal gas law. This is incorporated into the DEM/CFD model originally developed by Kafui et al.[9], with the original algorithms kept intact to retain its capability for gassolid flows. For completeness, the theoretical aspect of the modified DEM/CFD is presented in this section.

    1.1Governing equations for liquids

    The compressible volume-averaged Navier-Stokes equations of continuity and momentum with an additional stiff equation of state are used for modelling liquid flows. The volume-averaged compressible equations of continuity and momentum conservation for fluid motions are[9]: whereu,ρfandεare the velocity, the density and the volume fraction of the fluid, respectively,gis the gravity acceleration,τfis the fluid viscous stress, evaluated as whereδis the Kroneker delta,μbandμsare the bulk viscosity and the shear viscosity, respectively.ffpiis the fluid-particle interaction force acting on particlei,ncis the number of particles in a fluid cell of volume ΔVc,ffpiis given as wherevpiis the volume of particlei, andfdiis the drag force in the direction of the relative velocity between fluid and particle. In the above equations, the fluid volume fractionεis obtained from the relation Sincefdiis a quantity usually obtained from experimental correlations, the specific form of the drag force

    drag forcefdion particleiwhere the subscriptjfor the fluid velocity and the void fraction represents the computational fluid cell in which the particleiresides andCDi, the fluid drag coefficient for a single, unhindered particle, is evaluated by using takes account of the variation of this exponent in the intermediate flow regime as well as the near constant values in the low and high Reynolds number flow regimes. The particle Reynolds numberRepi, based on the superficial slip velocity between fluid and particle, is

    To close the system, an equation of state (EOS) relating the density to the pressure is required. For the liquid-solid flow systems to be considered in this study, a pressure-density relationship of the modified Tait equation of state[11]is incorporated, i.e.,

    1.2Governing equations for particles

    The particle motion is governed by the Newton’s second law of motion as follows:

    in whichmiandIiare the mass and the moment of inertia of the particle, respectively,viandωiare the linear and angular velocities of the particle,Tiis the torque arising from the tangential components of the contact force,fciis the particle-particle and particle-wall contact force andffpiis the fluid-particle interaction force.

    1.3Numerical strategy

    Fig.1 Schematic diagram of the sphere settling in water

    Fig.2 Evolutions of vertical position of the sphere

    The time step Δtin the discrete particle model is determined by the smallest particle diameterdmin, leading to a critical time step Δtcgiven by[9]

    whereλ=0.1631ν+0.876605,G,ρpandνare the shear modulus, the density and the Poisson’s ratio of the particle, respectively. In our simulations, the time step is specified as Δt=αΔtcand the value of the constantαis normally less than 0.5, depending on the problem considered.

    Fig.3 Snapshots of the sphere positions and the vertical velocity of the flow around the sphere at a given instant

    2. Numerical examples

    The computational domain is 0.040 m×0.040 m× 0.055 m in thex-,y- andz- directions, respectively. Gravity acts in thez- direction with the gravitational accelerationgz=–9.81 m/s2. In the simulations, walls are treated as impermeable with no slip boundaries. The computational domain is discretised with a grid of 5×5×6 fluid cells. The time step is specified as Δt=αΔtcand the value of the constantαis set to 0.5 and Δtcis calculated using Eq.(12).

    Figure 2 shows the evolutions of the vertical positionhfor the solid sphere, in which the experimental result of Li[15]is also displayed, and our numerical results are shown to be in agreement with the experimental data at an acceptable level. It is clear that once the sphere is released, it accelerates under gravity until touches the container bottom, at which the sphere boundary will contact the wall and then rebound. Thereafter, the sphere repeatedly contacts and rebounds in water until reaches a rest position due to the damping of water.

    The numerical simulation using the proposed model captures not only the dynamics of the particles but also the evolution of the surrounding flow field during the falling and rebounding process. Figure 3 shows the snapshots of the sphere position and the vertical velocity field of the flow around the sphere at different instants. The first instants of contact between the sphere and the container bottom is about =t0.1 s (see Fig.3(b)). Figure 3(c) shows an instant of the sphere rebound after the contact. The simulated results indicate that the present DEM/CFD method can capture the sedimentation process in a viscous liquid including the trajectory of a particle as it accelerates from zero velocity after release, collides with a wall, rebounds and falls again until it comes to rest.

    2.2Two equal spheres settling in a closed container

    filled with liquids

    In order to further validate the presented method, we perform a 3-D simulation of the motion of two equal spheres sedimenting in a closed container filled with a viscous liquid and reproduce the drafting, kissing and tumbling phenomenon as a very important mechanism that controls the particle microstructure in flows of a Newtonian fluid.

    The dimensions of the container are 0.080 m× 0.080 m×0.400 m in the -x, -yand -zdirections,respectively. Gravity acts in thez- direction with the gravitational accelerationgz=–9.81 m/s2. The diameter of the two spheres isd=0.015 m. The mass densities of the spheres and the liquid areρp=2 800 kg/m3andρf=1 000 kg/m3, respectively. The dynamic viscosity of the liquid is 10-3kg/ms. In the simulations, the walls are treated as impermeable with no slip boundaries. The computational domain is discretised with a grid of 7×7×35 fluid cells. The time step is specified as Δt=αΔtcand the value of the constantαis set to 0.5 and Δtcis calculated using Eq.(12).

    Att=0 s the two spheres are placed in the container above each other atzc=0.36 m andzc= 0.38 m, respectively. The upper and lower spheres have the same horizontal position withxc=yc= 0.04 m. The fluid and the spheres are initially at rest.

    Fig.4 Snapshots of the process of drafting-kissing-tumbling. Color in slice indicates the values of vertical velocity field of the flow around the spheres at a given instant

    Figure 4 displays a sequence of the numerically simulated process of drafting-kissing-tumbling. After the two spheres are released in the container at =t0 s, they fall downwards under gravity and there is a wake with low pressure at the back of a sedimenting sphere. Since the upper sphere is caught in the wake of the lower sphere, it experiences a reduced drag from the surrounding fluid and thus falls faster than the lower sphere. This is called drafting, after the well-known bicycle racing strategy based on the same principle. Figures 4(a)-4(c) show the snapshots of the drafting process. The increased speed of falling impels the upper sphere into a kissing contact with the lower sphere. Kissing particles form a long body and the vertical alignment during this stage is unstable and the sphere move quickly around each other towards a more horizontal alignment. Figures 4(c)-4(e) show the snapshots of the kissing process. At the end of the kissing stage the spheres move apart from each other, referred to as the tumbling stage. This is illustrated in Figs.4(e)-4(g).

    2.3Sedimentation of suspension composed of 10 000 particles

    Fig.5 Snapshots of sedimentation of a suspension of heavy (black) and light (gray ) particles

    Fig.6 Evolutions of mass centres (a) and velocities (b) of two particle groups

    3. Conclusion

    A hybrid DEM-CFD method for the numerical simulation of particulate flows is presented. In the proposed approach, the motions of the solid particles obtained by using the DEM while the motion of the liquid is obtained by using the weakly compressible volume-averaged Navier-Stokes equations of continuity and momentum with an additional stiff equation of state. 3-D Numerical simulations of the sedimentation of a single spherical particle and the drafting, kissing and tumbling of two particles are carried out to validate the method. The separation of a binary suspension is simulated to demonstrate that the present DEM-CFD method is capable of modelling complex flows with large number of moving particles. Thenumerical results show that the presented method provides a robust and efficient approach to simulate solid-liquid flows.

    [1] RONG Liang-wan, ZHAN Jie-min. Improved DEMCFD model and validation: A conical-base spouted bed simulation study [J]. Journal of Hydrodynamics, 2010, 22(3): 351-359.

    [2] WAN De-cheng, TUREK S. Modeling of liquid-solid flows with large number of moving particles by multigrid fictitious boundary method[J]. Journal of Hydrodynamics, Ser. B, 2006, 18(3Suppl.): 93-100.

    [3] TONG Z. B., YANG R. Y. and CHU K. W. et al. Numerical study of the effects of particle size and polydispersity on the agglomerate dispersion in a cyclonic flow [J]. Chemical Engineering Journal, 2010, 164(2): 432-441.

    [4] CATE T. A., NIEUWSTAD C. H. and DERKSEN J. J. et al. Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity[J]. Physics of Fluids, 2002, 14(11): 4012-4025.

    [5] CHEN S., PHAN-THIEN N. and KHOO B. C. et al. Flow around spheres by dissipative particle dynamics, Physics of Fluids, 2006, 18(10): 103605.

    [6] YANG C., DING Y. and YORK D. et al. Numerical simulation of sedimentation of microparticles using the discrete particle method[J]. Particuology, 2008, 6(1): 38-49.

    [7] POTAPOV A. V., HUNT M. L. and CAMPBELL C. S. Liquid-solid flows using smoothed particle hydrodynamics and the discrete element method[J]. Powder Technology, 2001, 116(2): 204-213.

    [8] QIU Liu-chao. Numerical modeling of liquid-particle flows by combining SPH and DEM[J]. Industrial Engineering Chemistry Research, 2013, 52(33): 11313-11318.

    [9] KAFUI K. D., THORNTON C. and ADAMS M. J. Discrete particle-continuum fluid modelling of gas-solid fluidised beds[J]. Chemical Engineering Science, 2002, 57(13): 2395-2410.

    [10] GUO Y., KAFUI K. D. and WU C. Y. et al. A coupled DEM/CFD analysis of the effect of air on powder flow during die filling[J]. AICHE Journal, 2009, 55(1): 49-62.

    [11] BRUJAN E. A. A first-order model for bubble dynamics in a compressible iscoelastic liquid[J]. Journal of Non-Newtonian Fluid Mechanics, 1999, 84(1): 83-103.

    [12] DI FELICE R. The voidage function for fluid-particle interaction systems[J]. International Journal on Multiphase Flow, 1994, 20(1): 153-159.

    [13] MINDLIN R. D., DERESIEWICZ H. Elastic spheres in contact under varying oblique forces[J]. Journal of Applied Mechanics, 1953, 20(3): 327-344.

    [14] TSUJI Y., KAWAGUCHI T. and TANAKA T. Discrete particle simulation of two-dimensional fluidized bed[J]. Powder Technol, 1993, 77(1): 79-87.

    [15] LI X. An Experimental and numerical study of normal particle collisions in a viscous liquid[D]. Doctoral Thesis, Pasadena, California, USA: California Institute of Technology, 2010.

    10.1016/S1001-6058(14)60003-2

    * Project supported by the National Natural Science Foundation of China (Grant No. 11172321).

    Biography: QIU Liu-chao (1971-), Male, Ph. D.,

    Associate Professor

    亚洲熟女毛片儿| 黄片小视频在线播放| 免费在线观看影片大全网站| 热re99久久国产66热| 欧美成人免费av一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 亚洲欧美精品综合久久99| 精品日产1卡2卡| 国产av一区在线观看免费| 多毛熟女@视频| 91大片在线观看| 女人爽到高潮嗷嗷叫在线视频| 一区二区三区国产精品乱码| 啦啦啦在线免费观看视频4| 亚洲一区二区三区不卡视频| 亚洲五月色婷婷综合| 久久香蕉精品热| 韩国精品一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 成人国产一区最新在线观看| 久久人人精品亚洲av| 国产精品免费一区二区三区在线| 男女做爰动态图高潮gif福利片 | a级片在线免费高清观看视频| 深夜精品福利| 亚洲,欧美精品.| 天堂√8在线中文| 中文字幕另类日韩欧美亚洲嫩草| 久久人妻福利社区极品人妻图片| 最近最新免费中文字幕在线| 久久亚洲精品不卡| 中文字幕人妻丝袜一区二区| 国产成人精品久久二区二区91| 真人一进一出gif抽搐免费| 精品久久久久久电影网| 成人黄色视频免费在线看| 无人区码免费观看不卡| 久久草成人影院| www.熟女人妻精品国产| 50天的宝宝边吃奶边哭怎么回事| 黑人操中国人逼视频| 757午夜福利合集在线观看| 亚洲精品国产区一区二| 亚洲成人精品中文字幕电影 | 一夜夜www| 一夜夜www| 男人操女人黄网站| 国产av又大| 视频区图区小说| 亚洲avbb在线观看| av网站在线播放免费| 我的亚洲天堂| 在线观看舔阴道视频| 亚洲熟女毛片儿| 日本五十路高清| 在线视频色国产色| 在线永久观看黄色视频| 成人免费观看视频高清| 人成视频在线观看免费观看| 嫁个100分男人电影在线观看| 在线观看日韩欧美| 极品人妻少妇av视频| 欧美丝袜亚洲另类 | 日本黄色视频三级网站网址| 欧美一区二区精品小视频在线| 日本五十路高清| 日韩精品免费视频一区二区三区| 在线天堂中文资源库| 男女下面插进去视频免费观看| 国产成人av教育| 伦理电影免费视频| 日日摸夜夜添夜夜添小说| 欧美人与性动交α欧美软件| 亚洲人成网站在线播放欧美日韩| 日韩欧美国产一区二区入口| 国产又色又爽无遮挡免费看| 成人亚洲精品一区在线观看| tocl精华| 久久久久久亚洲精品国产蜜桃av| 9色porny在线观看| 一本大道久久a久久精品| 日本黄色视频三级网站网址| 日韩成人在线观看一区二区三区| www.自偷自拍.com| 色在线成人网| 在线免费观看的www视频| 午夜福利在线免费观看网站| 久久精品国产亚洲av高清一级| 久久久久九九精品影院| 别揉我奶头~嗯~啊~动态视频| 久久久久国产一级毛片高清牌| 久久影院123| 99精品在免费线老司机午夜| 欧美日韩瑟瑟在线播放| 色婷婷久久久亚洲欧美| 亚洲国产欧美日韩在线播放| 久久国产精品男人的天堂亚洲| 女性生殖器流出的白浆| 亚洲av熟女| 国产麻豆69| 欧美大码av| 在线十欧美十亚洲十日本专区| 亚洲专区中文字幕在线| 日韩欧美一区视频在线观看| 人人妻人人爽人人添夜夜欢视频| 免费观看人在逋| 男人的好看免费观看在线视频 | 成人影院久久| 无限看片的www在线观看| 大型黄色视频在线免费观看| 99re在线观看精品视频| 亚洲精品粉嫩美女一区| 色精品久久人妻99蜜桃| 操美女的视频在线观看| 久久热在线av| 久热爱精品视频在线9| 波多野结衣高清无吗| 精品一品国产午夜福利视频| 亚洲av电影在线进入| 久久精品亚洲av国产电影网| 老司机午夜福利在线观看视频| 真人做人爱边吃奶动态| 老司机在亚洲福利影院| 国产无遮挡羞羞视频在线观看| 日韩精品免费视频一区二区三区| 免费高清视频大片| 亚洲av电影在线进入| 大香蕉久久成人网| 色综合欧美亚洲国产小说| 丁香六月欧美| 欧美国产精品va在线观看不卡| 国产精品99久久99久久久不卡| 亚洲全国av大片| 成人三级黄色视频| 两性夫妻黄色片| 久久久久国内视频| 99久久综合精品五月天人人| 久久 成人 亚洲| 黑人巨大精品欧美一区二区mp4| 国产深夜福利视频在线观看| 美女午夜性视频免费| 国产精品二区激情视频| 最近最新中文字幕大全免费视频| 女警被强在线播放| 91大片在线观看| 欧美不卡视频在线免费观看 | 日本精品一区二区三区蜜桃| 亚洲精品中文字幕一二三四区| 成年人黄色毛片网站| 欧美另类亚洲清纯唯美| 欧美日韩国产mv在线观看视频| 免费在线观看影片大全网站| 久久精品aⅴ一区二区三区四区| 国产亚洲欧美在线一区二区| 十八禁人妻一区二区| 成人亚洲精品av一区二区 | 视频区欧美日本亚洲| 日韩大码丰满熟妇| 成人亚洲精品av一区二区 | 女性生殖器流出的白浆| 亚洲人成网站在线播放欧美日韩| 亚洲九九香蕉| 精品国产一区二区久久| 丁香六月欧美| 国产无遮挡羞羞视频在线观看| avwww免费| 男女下面插进去视频免费观看| 亚洲成国产人片在线观看| 黄色毛片三级朝国网站| 精品电影一区二区在线| 久久久国产精品麻豆| 国产精品美女特级片免费视频播放器 | 午夜免费鲁丝| 一边摸一边做爽爽视频免费| 亚洲国产毛片av蜜桃av| 欧美日韩中文字幕国产精品一区二区三区 | 波多野结衣高清无吗| 久久久久久久午夜电影 | 国产成人欧美| 免费在线观看完整版高清| 最近最新免费中文字幕在线| 精品久久久久久成人av| 国产精品国产高清国产av| 精品国产一区二区三区四区第35| 亚洲欧美一区二区三区黑人| 国产精品亚洲av一区麻豆| 欧美日韩瑟瑟在线播放| 丁香欧美五月| 欧美激情高清一区二区三区| 国产麻豆69| av电影中文网址| 最好的美女福利视频网| 亚洲中文av在线| 男人的好看免费观看在线视频 | 水蜜桃什么品种好| 亚洲国产精品999在线| 国产亚洲欧美在线一区二区| 国产av又大| 国产在线精品亚洲第一网站| 亚洲精品成人av观看孕妇| 国产xxxxx性猛交| 满18在线观看网站| 精品久久蜜臀av无| 两性午夜刺激爽爽歪歪视频在线观看 | 97人妻天天添夜夜摸| 在线观看免费视频网站a站| 国产主播在线观看一区二区| 国产成人精品无人区| 国产色视频综合| 久久国产精品人妻蜜桃| 国产精品98久久久久久宅男小说| 成人国产一区最新在线观看| 日韩欧美一区视频在线观看| 黄频高清免费视频| 精品久久久久久电影网| 成人精品一区二区免费| 黑人巨大精品欧美一区二区mp4| 在线观看免费视频网站a站| av网站免费在线观看视频| 久久久久精品国产欧美久久久| 成年版毛片免费区| 精品国产亚洲在线| 国产精品久久久人人做人人爽| 99国产精品一区二区蜜桃av| 麻豆成人av在线观看| 亚洲自拍偷在线| 亚洲成av片中文字幕在线观看| 嫁个100分男人电影在线观看| 久久伊人香网站| 中文亚洲av片在线观看爽| 日本 av在线| 亚洲av熟女| 高清av免费在线| 中文字幕精品免费在线观看视频| 欧美日韩亚洲高清精品| 十八禁网站免费在线| 黄片大片在线免费观看| 色尼玛亚洲综合影院| 欧美 亚洲 国产 日韩一| 久久久久亚洲av毛片大全| 国产有黄有色有爽视频| 两人在一起打扑克的视频| 天堂影院成人在线观看| 一级黄色大片毛片| 长腿黑丝高跟| 香蕉国产在线看| 精品久久久久久久久久免费视频 | 国产蜜桃级精品一区二区三区| 久久久久久久精品吃奶| 久久久国产成人精品二区 | 亚洲狠狠婷婷综合久久图片| 午夜精品久久久久久毛片777| 亚洲精品国产色婷婷电影| 亚洲专区字幕在线| 午夜影院日韩av| 中文字幕另类日韩欧美亚洲嫩草| 成人黄色视频免费在线看| 亚洲精品久久午夜乱码| 男人舔女人的私密视频| 亚洲精品美女久久久久99蜜臀| 桃红色精品国产亚洲av| 正在播放国产对白刺激| 精品一区二区三区视频在线观看免费 | 美女高潮喷水抽搐中文字幕| 国产黄色免费在线视频| 亚洲精品国产一区二区精华液| 老司机深夜福利视频在线观看| 亚洲国产精品999在线| а√天堂www在线а√下载| 婷婷丁香在线五月| 老熟妇乱子伦视频在线观看| 在线观看一区二区三区| 亚洲av熟女| 法律面前人人平等表现在哪些方面| 在线十欧美十亚洲十日本专区| 亚洲熟女毛片儿| 国产精品一区二区精品视频观看| 亚洲 国产 在线| 在线免费观看的www视频| 母亲3免费完整高清在线观看| 亚洲国产中文字幕在线视频| 黑人操中国人逼视频| 韩国精品一区二区三区| 黄片小视频在线播放| 久久精品91无色码中文字幕| 国产精品一区二区在线不卡| 国产精品亚洲一级av第二区| 国产欧美日韩一区二区三| 日韩av在线大香蕉| 亚洲欧洲精品一区二区精品久久久| 日本黄色视频三级网站网址| 88av欧美| 制服诱惑二区| 国产aⅴ精品一区二区三区波| 少妇粗大呻吟视频| 日韩 欧美 亚洲 中文字幕| 高清黄色对白视频在线免费看| 在线av久久热| 国产精品乱码一区二三区的特点 | 一区二区日韩欧美中文字幕| 老鸭窝网址在线观看| 高潮久久久久久久久久久不卡| 色哟哟哟哟哟哟| 亚洲人成77777在线视频| 夜夜夜夜夜久久久久| www日本在线高清视频| 天天影视国产精品| 51午夜福利影视在线观看| 国产成人啪精品午夜网站| 一二三四在线观看免费中文在| 日韩欧美一区二区三区在线观看| 久久午夜亚洲精品久久| 亚洲在线自拍视频| 99久久人妻综合| 亚洲国产精品一区二区三区在线| 亚洲精品国产一区二区精华液| 国产伦一二天堂av在线观看| 两个人免费观看高清视频| 这个男人来自地球电影免费观看| 成人18禁高潮啪啪吃奶动态图| 日韩精品青青久久久久久| 亚洲激情在线av| 日韩人妻精品一区2区三区| 久久伊人香网站| 黄网站色视频无遮挡免费观看| 亚洲成av片中文字幕在线观看| 99在线视频只有这里精品首页| 99国产精品99久久久久| 婷婷精品国产亚洲av在线| 亚洲欧美一区二区三区黑人| 亚洲男人的天堂狠狠| 一区二区三区激情视频| 88av欧美| 成人黄色视频免费在线看| 看黄色毛片网站| 亚洲av五月六月丁香网| 免费在线观看完整版高清| 在线观看免费日韩欧美大片| 99精品在免费线老司机午夜| 亚洲伊人色综图| 天堂√8在线中文| 日日干狠狠操夜夜爽| 女人被狂操c到高潮| 侵犯人妻中文字幕一二三四区| 1024香蕉在线观看| 波多野结衣一区麻豆| 丝袜美足系列| 亚洲成人精品中文字幕电影 | 欧美成狂野欧美在线观看| 人人澡人人妻人| 女同久久另类99精品国产91| 天天影视国产精品| 久久99一区二区三区| 精品日产1卡2卡| 动漫黄色视频在线观看| 午夜福利免费观看在线| 欧美成人免费av一区二区三区| 黑人巨大精品欧美一区二区mp4| 久久久水蜜桃国产精品网| 色婷婷av一区二区三区视频| 欧美日韩精品网址| av视频免费观看在线观看| 国产欧美日韩综合在线一区二区| 日日摸夜夜添夜夜添小说| 91成人精品电影| 又大又爽又粗| 国产成人av激情在线播放| 悠悠久久av| av中文乱码字幕在线| 黑丝袜美女国产一区| 国产熟女午夜一区二区三区| 国产1区2区3区精品| 亚洲伊人色综图| 国产欧美日韩一区二区三| 国产午夜精品久久久久久| 亚洲av电影在线进入| 男女下面插进去视频免费观看| 交换朋友夫妻互换小说| 亚洲aⅴ乱码一区二区在线播放 | 国产精品99久久99久久久不卡| 国产亚洲精品久久久久久毛片| 啦啦啦免费观看视频1| 亚洲精华国产精华精| √禁漫天堂资源中文www| 黑人操中国人逼视频| 国产亚洲精品第一综合不卡| 精品免费久久久久久久清纯| 欧美黄色淫秽网站| 亚洲国产精品合色在线| 纯流量卡能插随身wifi吗| 男女下面插进去视频免费观看| 亚洲欧美精品综合久久99| 丰满饥渴人妻一区二区三| 在线天堂中文资源库| 两个人看的免费小视频| 巨乳人妻的诱惑在线观看| 十八禁人妻一区二区| 香蕉久久夜色| 丰满的人妻完整版| 国产精品美女特级片免费视频播放器 | 水蜜桃什么品种好| 国产黄a三级三级三级人| 久99久视频精品免费| 国产精品久久久久成人av| 一区二区日韩欧美中文字幕| 99在线视频只有这里精品首页| 不卡av一区二区三区| 日韩三级视频一区二区三区| 免费在线观看黄色视频的| 成年版毛片免费区| 国产一区二区在线av高清观看| 性欧美人与动物交配| 水蜜桃什么品种好| 国产精品二区激情视频| x7x7x7水蜜桃| 亚洲欧美日韩另类电影网站| 90打野战视频偷拍视频| 成熟少妇高潮喷水视频| 12—13女人毛片做爰片一| 亚洲精品中文字幕一二三四区| 人人澡人人妻人| 亚洲成人精品中文字幕电影 | 人人澡人人妻人| 精品第一国产精品| 久热爱精品视频在线9| 欧美日本中文国产一区发布| 精品久久蜜臀av无| 成人特级黄色片久久久久久久| 亚洲中文av在线| xxx96com| 国产精品久久久av美女十八| 两个人免费观看高清视频| 黄色视频不卡| 美女扒开内裤让男人捅视频| 乱人伦中国视频| 亚洲av电影在线进入| 在线观看免费午夜福利视频| 激情在线观看视频在线高清| 老汉色av国产亚洲站长工具| 多毛熟女@视频| 色在线成人网| 成人黄色视频免费在线看| 9热在线视频观看99| 91成年电影在线观看| 日韩欧美在线二视频| 亚洲第一av免费看| 一级作爱视频免费观看| 麻豆成人av在线观看| 18禁美女被吸乳视频| 91在线观看av| av欧美777| 黄色片一级片一级黄色片| 国产亚洲精品久久久久久毛片| 亚洲av日韩精品久久久久久密| 黑人猛操日本美女一级片| 亚洲精品一区av在线观看| 两性夫妻黄色片| 97人妻天天添夜夜摸| 久久人妻福利社区极品人妻图片| xxx96com| 午夜福利欧美成人| 老司机午夜十八禁免费视频| 久久精品91蜜桃| av超薄肉色丝袜交足视频| 午夜91福利影院| 亚洲av成人av| 午夜成年电影在线免费观看| 两个人看的免费小视频| 巨乳人妻的诱惑在线观看| 日本wwww免费看| 国产亚洲av高清不卡| 国产成人精品无人区| 国产亚洲精品综合一区在线观看 | 国产在线观看jvid| 国产极品粉嫩免费观看在线| 在线观看www视频免费| 18禁裸乳无遮挡免费网站照片 | 性色av乱码一区二区三区2| 亚洲在线自拍视频| 美女大奶头视频| 国产熟女午夜一区二区三区| 亚洲三区欧美一区| 大型av网站在线播放| 亚洲欧美一区二区三区久久| 成年人免费黄色播放视频| 欧美日韩亚洲国产一区二区在线观看| 国产精品久久久av美女十八| 在线观看日韩欧美| 女性被躁到高潮视频| 狠狠狠狠99中文字幕| 免费在线观看日本一区| 欧美激情极品国产一区二区三区| 精品久久久久久电影网| av免费在线观看网站| 在线观看免费视频网站a站| 99久久综合精品五月天人人| 男女午夜视频在线观看| 久久精品亚洲av国产电影网| 欧美精品亚洲一区二区| 精品国产乱码久久久久久男人| 国产1区2区3区精品| 一二三四社区在线视频社区8| 两个人看的免费小视频| 国产精品久久久人人做人人爽| 大码成人一级视频| 午夜影院日韩av| aaaaa片日本免费| 乱人伦中国视频| 国产欧美日韩综合在线一区二区| 精品国产超薄肉色丝袜足j| 在线观看午夜福利视频| 国产乱人伦免费视频| а√天堂www在线а√下载| 欧美 亚洲 国产 日韩一| 极品教师在线免费播放| 色播在线永久视频| 日韩视频一区二区在线观看| 一区二区三区国产精品乱码| 免费高清视频大片| 国产成人欧美在线观看| av中文乱码字幕在线| 亚洲免费av在线视频| 久久欧美精品欧美久久欧美| 无人区码免费观看不卡| 精品电影一区二区在线| 一进一出抽搐动态| 亚洲成人久久性| 后天国语完整版免费观看| 夜夜看夜夜爽夜夜摸 | 国产精品久久电影中文字幕| 日韩精品免费视频一区二区三区| 可以免费在线观看a视频的电影网站| 亚洲欧美日韩无卡精品| 中出人妻视频一区二区| 亚洲精品久久成人aⅴ小说| www国产在线视频色| 国产野战对白在线观看| 夜夜夜夜夜久久久久| 亚洲av成人不卡在线观看播放网| bbb黄色大片| 不卡一级毛片| 母亲3免费完整高清在线观看| 亚洲国产欧美网| 精品久久久久久久毛片微露脸| 丰满人妻熟妇乱又伦精品不卡| 在线永久观看黄色视频| 9色porny在线观看| 亚洲成人国产一区在线观看| 成人18禁高潮啪啪吃奶动态图| 久久中文看片网| 黄色a级毛片大全视频| 国产一区二区三区综合在线观看| 淫妇啪啪啪对白视频| 国产精品免费一区二区三区在线| 级片在线观看| 久久天堂一区二区三区四区| 操美女的视频在线观看| 亚洲精品一区av在线观看| bbb黄色大片| 日本黄色视频三级网站网址| tocl精华| 国产欧美日韩一区二区三区在线| 无人区码免费观看不卡| 日本五十路高清| 色综合欧美亚洲国产小说| 欧美黑人精品巨大| 老司机福利观看| 啦啦啦免费观看视频1| 午夜成年电影在线免费观看| 亚洲视频免费观看视频| 久久久国产一区二区| 日韩精品免费视频一区二区三区| 天堂影院成人在线观看| 宅男免费午夜| 真人一进一出gif抽搐免费| 身体一侧抽搐| 最近最新中文字幕大全免费视频| 欧美日韩瑟瑟在线播放| 成在线人永久免费视频| 久久久久久久久中文| 黄色视频,在线免费观看| 一本综合久久免费| 99精国产麻豆久久婷婷| 午夜91福利影院| 男女之事视频高清在线观看| 欧美人与性动交α欧美软件| 香蕉丝袜av| 亚洲欧美精品综合一区二区三区| 又大又爽又粗| 亚洲中文字幕日韩| 18美女黄网站色大片免费观看| 国产亚洲精品久久久久久毛片| 1024视频免费在线观看| 丰满饥渴人妻一区二区三| 欧美日韩视频精品一区| 欧美日韩亚洲高清精品| 久99久视频精品免费| 久久国产乱子伦精品免费另类| 两人在一起打扑克的视频| 亚洲国产毛片av蜜桃av| 性欧美人与动物交配| 亚洲自拍偷在线| 欧美日韩亚洲国产一区二区在线观看| 另类亚洲欧美激情| 在线观看免费高清a一片| 亚洲人成77777在线视频| 久久精品亚洲熟妇少妇任你| 免费搜索国产男女视频| 亚洲欧美激情在线| 三级毛片av免费| 亚洲国产毛片av蜜桃av| 高清av免费在线| 1024香蕉在线观看| 一区二区三区国产精品乱码| 久久人妻福利社区极品人妻图片|