海蘭
摘要:高中數(shù)學(xué)在新高考模式下,既給學(xué)生提出了許多新的要求,也對(duì)教師提出了極大的挑戰(zhàn)。探索新型高中教學(xué)模式中有效的教學(xué)方法,幫助教師提高教學(xué)效率,幫助學(xué)生提高學(xué)習(xí)成績(jī),實(shí)現(xiàn)高考加分目標(biāo)。
關(guān)鍵詞:新高考模式;數(shù)學(xué);有效教學(xué)
引言:以數(shù)學(xué)為研究工具的學(xué)科,一直備受教育界關(guān)注。對(duì)于高中數(shù)學(xué)受到高考的影響,許多教師的教學(xué)方法很難改變。舉例來(lái)說(shuō),題海戰(zhàn)術(shù)的練習(xí)法,不僅課堂效率低下,而且會(huì)大大削弱學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情。所以要求教師不斷研究應(yīng)對(duì)高考模式的學(xué)習(xí)方法,以此來(lái)幫助學(xué)生學(xué)習(xí)。
一、新型高考模式下的教學(xué)現(xiàn)狀
數(shù)學(xué)是一門(mén)更抽象的學(xué)科,專(zhuān)注于邏輯,一些高深的知識(shí)很難運(yùn)用到生活中。中學(xué)階段的數(shù)學(xué)學(xué)習(xí)與其他學(xué)科完全隔離。由于很難運(yùn)用,比較抽象,所以讓很多學(xué)生覺(jué)得高中數(shù)學(xué)學(xué)習(xí)十分困難,很多在中學(xué)學(xué)習(xí)很好的學(xué)生感到沮喪,從此這些孩子漸漸厭倦了數(shù)學(xué)學(xué)習(xí)。長(zhǎng)此以往,學(xué)生必然會(huì)對(duì)自己的學(xué)科抱有成見(jiàn),甚至出現(xiàn)偏科的跡象,逐漸喜歡在其他學(xué)科上多下功夫,從而忽略了數(shù)學(xué)學(xué)習(xí)。許多孩子心想我不想學(xué)習(xí)數(shù)學(xué),我也用其他科目的分?jǐn)?shù)來(lái)彌補(bǔ)自己的不足。新型高考模式的出現(xiàn),給數(shù)學(xué)帶來(lái)了一系列積極的影響,改變了學(xué)生對(duì)數(shù)學(xué)等一些枯燥無(wú)味的學(xué)科認(rèn)識(shí),主動(dòng)生成推進(jìn)數(shù)學(xué)教學(xué)。
二、新高考模式下的有效教學(xué)
(一)加強(qiáng)基礎(chǔ)知識(shí),為學(xué)生奠定堅(jiān)實(shí)基礎(chǔ)
不管什么學(xué)科,基礎(chǔ)知識(shí)總是檢驗(yàn)學(xué)生能力的關(guān)鍵。其中,多重選擇題80%以上,70%以上的填空題和前一半的大題都是在考慮學(xué)生基本知識(shí)的基礎(chǔ)上進(jìn)行的。此外,基本知識(shí)不難。如集合知識(shí)點(diǎn)、機(jī)率知識(shí)點(diǎn)、三角函數(shù)圖象分布、等比數(shù)列操作等均屬于單一的概念,與其它知識(shí)點(diǎn)無(wú)特定關(guān)系,實(shí)現(xiàn)綜合學(xué)習(xí)其實(shí)并不困難。只有掌握了這部分知識(shí),并善于運(yùn)用這些知識(shí),才能在數(shù)學(xué)高考中取得優(yōu)異的成績(jī)。
教材中的某些基礎(chǔ)知識(shí),常表現(xiàn)在概念、定理、定律以及某些公式上。這個(gè)內(nèi)容需要反復(fù)記憶,一些同學(xué)為了節(jié)省高考復(fù)評(píng)的時(shí)間往往會(huì)忽略這種知識(shí)。或全然不顧它需要老師的指導(dǎo)。教學(xué)中,也可采用交互式的方式,讓學(xué)生參與其中。教學(xué)過(guò)程中教師與學(xué)生充分互動(dòng),加深記憶,從而意識(shí)到基礎(chǔ)知識(shí)的重要性。與此同時(shí),還可以采用現(xiàn)代化的教學(xué)方法。老師利用因特網(wǎng)提供在線(xiàn)教學(xué)指導(dǎo),這種方法并不局限于地域。除時(shí)間外,網(wǎng)上交流還能提高學(xué)生對(duì)教育的興趣,這在師生中十分流行。
從總體上講,教師在教學(xué)中應(yīng)重視基礎(chǔ)知識(shí)的重要性,也應(yīng)重視學(xué)生的課后整合。
(二)注重學(xué)生邏輯思維的培養(yǎng)
它具有嚴(yán)密性、邏輯性、結(jié)構(gòu)性、靈活性的特點(diǎn)。所以,教師在教學(xué)過(guò)程中要注意學(xué)生的科學(xué)思維。要注意培養(yǎng)學(xué)生的數(shù)學(xué)思維能力和綜合應(yīng)用能力,加強(qiáng)數(shù)學(xué)知識(shí)的理解。日常生活中若沒(méi)有培養(yǎng)好的思維習(xí)慣。考得好可不容易啊。不僅僅是簡(jiǎn)單地影響了解決問(wèn)題的時(shí)間,在思想上的混亂會(huì)降低解決問(wèn)題的效率,影響隨后的其它問(wèn)題。日常生活中若沒(méi)有培養(yǎng)好的思維習(xí)慣,將會(huì)對(duì)數(shù)學(xué)學(xué)習(xí)產(chǎn)生很大的影響。
比如,在數(shù)學(xué)試題中,三維幾何問(wèn)題往往比較復(fù)雜。第一個(gè)問(wèn)題需要證明圖形關(guān)系。若需證明兩個(gè)平面的平行關(guān)系,或證明兩條線(xiàn)在不同平面上的水平關(guān)系。這類(lèi)三維圖像難以被描繪出來(lái),因而難以用傳統(tǒng)的方法去表達(dá)??墒恰R粋€(gè)學(xué)生有數(shù)學(xué)思維能力,在頭腦中正交坐標(biāo)系可以簡(jiǎn)單構(gòu)造,因此使問(wèn)題由復(fù)雜變簡(jiǎn)單,做到用簡(jiǎn)單的方法解決復(fù)雜的問(wèn)題。一些優(yōu)秀的學(xué)生能夠在頭腦中畫(huà)出圖表的形狀,并首先了解每個(gè)單元的位置關(guān)系。接下來(lái)的問(wèn)題將變得更加得心應(yīng)手了。所以,思想混亂會(huì)降低解決問(wèn)題的效率,并影響其它后續(xù)問(wèn)題。
接著,老師在教學(xué)中把數(shù)學(xué)邏輯滲透進(jìn)學(xué)生的思維是非常必要的。將課本與試題相結(jié)合,既有新意又十分高效,把抽象法和教學(xué)實(shí)習(xí)結(jié)合起來(lái),逐步實(shí)現(xiàn)學(xué)生數(shù)學(xué)思維的發(fā)展。當(dāng)然,培養(yǎng)數(shù)學(xué)思維是不可能一蹴而就的,需要慢慢積累。這種數(shù)學(xué)思維方式根深蒂固地存在于學(xué)生心中,對(duì)提高高考數(shù)學(xué)成績(jī)大有幫助。
(三)運(yùn)用解題技巧幫助學(xué)生提高效率
在許多情況下,科學(xué)的概念可以通過(guò)各種方式加以證明。類(lèi)似地,解決問(wèn)題的方式也很多。數(shù)學(xué)教師為了培養(yǎng)學(xué)生的發(fā)散思維能力,試圖通過(guò)一道題來(lái)解決多個(gè)問(wèn)題而應(yīng)該做的事情。為了培養(yǎng)學(xué)生的探究能力,制定了以下的一些策略來(lái)幫助提高。
第一,課堂上要面對(duì)一些定理、公式、法則。老師要反復(fù)強(qiáng)調(diào)教材中的方法往往是最直接、最有效的。實(shí)踐中,教師可單獨(dú)說(shuō)明幾種驗(yàn)證方法,學(xué)生可自行決定哪種方法最直接、最有效。類(lèi)似地,反過(guò)來(lái)說(shuō),特定的方法可以實(shí)現(xiàn)。能加深學(xué)生對(duì)公式的理解、數(shù)理邏輯的合理性論證。
第二,在學(xué)生通過(guò)教材掌握一定的技能之后,教師要指導(dǎo)學(xué)生將技能運(yùn)用于實(shí)際的練習(xí)中。課本中的法則或公式通常用最簡(jiǎn)單的方法告訴學(xué)生最基本的真相。比如這道數(shù)學(xué)題很難,但是學(xué)生們都學(xué)會(huì)了簡(jiǎn)單的法則,將它應(yīng)用于實(shí)際,是從一個(gè)復(fù)雜的問(wèn)題變成簡(jiǎn)單問(wèn)題的過(guò)程,由若干知識(shí)點(diǎn)組合而成。在這個(gè)時(shí)候,老師需要提出最簡(jiǎn)單的解決學(xué)生問(wèn)題的方法。比如,如何把多邊形和圓圈組合在一起,以找到特定的角度,教師可以從兩個(gè)方向進(jìn)行教學(xué)。一種方法是畫(huà)輔助線(xiàn)直接計(jì)算角度,另一種方法計(jì)算相應(yīng)角度,最終發(fā)現(xiàn)你想要的角度和其它角度是一樣的直角。如果是這樣的話(huà),教師應(yīng)該先解釋較難的方法,然后再解釋簡(jiǎn)單的方法。通過(guò)這種方式,學(xué)生們能夠清楚地感覺(jué)到自己所學(xué)到的知識(shí)。
在面對(duì)復(fù)雜問(wèn)題時(shí),教師可采用分割局部的狀態(tài)。自然,教師也能對(duì)學(xué)生的各種問(wèn)題給予適當(dāng)?shù)闹笇?dǎo)和評(píng)價(jià)。這一部分是關(guān)于全等三角判斷。在傳統(tǒng)教學(xué)中,直接給學(xué)生四個(gè)結(jié)論,確定全等三角形。這種方法可以幫助學(xué)生提出問(wèn)題,但限制了他們的思維。是從學(xué)生所學(xué)的全等三角形的性質(zhì)出發(fā),使兩個(gè)三角形完全等式需要三條邊和三個(gè)角相等嗎?接著激發(fā)學(xué)生的猜測(cè)。將這幾個(gè)條件每減少一項(xiàng)怎么樣?最少需要一些條件?要求哪些條件?讓學(xué)生有機(jī)會(huì)去探索,從而使課堂上變得更加活躍。通過(guò)問(wèn)問(wèn)題,讓學(xué)生得出結(jié)論。在此之后,通過(guò)師生之間、生生之間的交流討論獲得新知識(shí)。
(四)給自己探索的機(jī)會(huì)
課本上有的知識(shí),是我們的前人早就證明了這一點(diǎn),但這對(duì)我們學(xué)生來(lái)說(shuō)是一門(mén)新知識(shí)。因而,探究指導(dǎo)可以體驗(yàn)知識(shí)的形成與發(fā)展,在已有的認(rèn)識(shí)的基礎(chǔ)上,更好地理解新知識(shí),實(shí)現(xiàn)知識(shí)的“再創(chuàng)造”,并建構(gòu)獨(dú)特的知識(shí)體系。舉例來(lái)說(shuō),在學(xué)習(xí)“全等三角關(guān)系”之前,學(xué)生學(xué)習(xí)了利用“軸對(duì)稱(chēng)知識(shí)”來(lái)學(xué)習(xí)等腰三角形的相關(guān)特性。學(xué)習(xí)等腰三角形的方法可以從學(xué)習(xí)新的內(nèi)容中學(xué)習(xí),可以問(wèn):不等邊(角)的另一面角(邊)的大小關(guān)系是什么?從大方面看,學(xué)生不僅理解了這部分的知識(shí),對(duì)軸對(duì)稱(chēng)特性的掌握,而且培養(yǎng)了學(xué)生思維模式,全面體驗(yàn)數(shù)學(xué)變革思維。
(五)增進(jìn)與現(xiàn)實(shí)生活的聯(lián)系
教育學(xué)的抽象概念和原理是建立在現(xiàn)實(shí)生活基礎(chǔ)上的。唯有教育教學(xué)與學(xué)生生活經(jīng)驗(yàn)緊密相連,才能升華為思想與智慧。舉例來(lái)說(shuō),在學(xué)習(xí)“平行線(xiàn)”部分時(shí),先讓學(xué)生舉出生活“平行”的例子。在鐵路或斑馬線(xiàn)上,提出以下問(wèn)題,如果鐵軌線(xiàn)不平行也行嗎?使學(xué)生能夠從感知的角度去理解平行。第二,引導(dǎo)學(xué)生探究平行線(xiàn)的概念,通過(guò)實(shí)例概括什么是平行線(xiàn)?并結(jié)合同學(xué)們的不同觀(guān)點(diǎn)進(jìn)行相應(yīng)的示范,最終得出“平行線(xiàn)”的概念。
結(jié)語(yǔ):
在新高考的要求下,高中數(shù)學(xué)教學(xué)對(duì)高中數(shù)學(xué)教師提出了更高的要求,要求教師拋棄過(guò)去傳統(tǒng)的教學(xué)觀(guān)念,不僅要注重學(xué)生基礎(chǔ)知識(shí)的培養(yǎng),更要在教學(xué)中培養(yǎng)學(xué)生的數(shù)學(xué)思維以及數(shù)學(xué)素養(yǎng),將數(shù)學(xué)教學(xué)與生活實(shí)際相聯(lián)系,為學(xué)生的發(fā)展開(kāi)辟更多的道路。
參考文獻(xiàn):
[1]沈威,涂榮豹教學(xué)探究教學(xué)中教師話(huà)語(yǔ)的基本特征與設(shè)計(jì)m.課程與教學(xué),2010.4
[2]中華人民洪和國(guó)教育部.義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2011年版)【M】.北京:北京師范大學(xué)出版社,2011