• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Feasibility of applying the lower cut-off frequency for the density radial coverage extension in EAST reflectometry measurement

    2022-06-01 07:55:50JiaHUANG黃佳XiangHAN韓翔KaixuanYE葉凱萱TaoZHANG張濤FeiWEN文斐MingfuWU吳茗甫KangningGENG耿康寧GongshunLI李恭順FubinZHONG鐘富彬YukaiLIU劉煜鍇HaomingXIANG向皓明ShuqiYANG楊書琪ShoubiaoZHANG張壽彪XiangGAO高翔GeZHUANG莊革andtheEASTTeam
    Plasma Science and Technology 2022年5期
    關鍵詞:劉煜

    Jia HUANG (黃佳), Xiang HAN (韓翔), Kaixuan YE (葉凱萱),Tao ZHANG (張濤), Fei WEN (文斐), Mingfu WU (吳茗甫)Kangning GENG(耿康寧),Gongshun LI(李恭順),Fubin ZHONG(鐘富彬),Yukai LIU (劉煜鍇), Haoming XIANG (向皓明), Shuqi YANG (楊書琪),Shoubiao ZHANG (張壽彪), Xiang GAO (高翔), Ge ZHUANG (莊革) and the EAST Team

    1 University of Science and Technology of China, Hefei 230026, People's Republic of China

    2 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China

    3 Advanced Energy Research Center,Shenzhen University,Shenzhen 518060,People's Republic of China

    4 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China

    Abstract The extraordinary mode (X-mode) lower cut-off frequency is proposed for use in the reflectometry diagnostic on ITER for the electron density profile measurement,which is a trade-off between extreme plasma parameters and the accessible probing frequency.In contemporary experiments,the lower cutoff frequency can be identified at the probing frequency below the electron cyclotron frequency(fce)under certain plasma conditions.We provide here,for the first time,the experimental validation of the use of the lower cut-off frequency for the density profiles via the reflectometry measurement on EAST.The corresponding group delay of the lower cut-off frequency evolves continuously with the upper one, revealing a reasonable radial coverage extension of reflectometry measurement toward the plasma core.It is concluded that the lower cut-off frequency can be used as a supplement to the upper one in the density profile inversion process,which is of particular interest in the high magnetic field and/or density discharge to extend the radial coverage of reflectometry measurement.

    Keywords: X-mode reflectometry, density profile, EAST, lower cut-off frequency

    1.Introduction

    The high-confinement mode (H-mode) is scheduled to be the base operational scenario in ITER, where the core density is close to or even beyond the Greenwald density nGwto maximize the fusion power[1,2].The measurement of the density profile in the high-density operation is important for a better understanding of density control, transport and plasma fueling.In contemporary experiments, microwave reflectometry has been applied in many fusion devices, such as DIII-D [3, 4], JET [5],Tore Supra [6, 7], the ASDEX Upgrade [8] and LHD [9].The high spatial and temporal measurement of the electron density profile and its associated fluctuation is preferable for plasma physical studies in the fields of, e.g.transport behavior [10],H-mode physics [11] and magneto-hydro-dynamic (MHD)instabilities [12].

    Based on the direction of the electric field vector()of the probing wave to the magnetic field (), the reflectometry measurement is categorized to be the extraordinary mode(X-mode,⊥and ordinary mode(O-mode,and the X-mode polarization is preferable for three reasons.Firstly, the radial resolution of X-mode measurement is higher than that of the O-mode because of its higher detection frequency and shorter wavelength.Secondly, the X-mode measurement is more suitable for probing the boundary region, particularly near the so-called zero-density (ne0) layer.Lastly, the X-mode measurement can be adapted to the weak density gradient region to reveal a finite cut-off layer, whereas the O-mode cut-off layer becomes dispersed.There are studies that focus on reflectometry with a lower cut-off frequency [13-16].In experimental measurements on the ASDEX Upgrade [17], DIIID [18] and NSTX [19], previous attempts were made using both O-mode and X-mode upper cut-off frequencies in the process of density profile inversion, yielding an important potential to expand the measurable density radial range of reflectometry.

    X-mode multi-band reflectometry for plasma density profile measurement has been in operation on EAST since 2015 [20-22].This system involves a probing frequency range of 33 to 110 GHz,and its antenna array is installed on the equatorial plane of the low-field side.The voltagecontrolled oscillator is utilized as the source of the probing frequency,whose output waveform and sweeping speed are remotely controlled by a customized field-programmable gate array processor circus, enabling sub-millisecond density profile measurement.The upper cut-off frequency is used; however, in high-density discharges, e.g.H-mode and fueling experiments, the required probing frequency at the upper cut-off layer will exceed the accessibility of the EAST reflectometry.The accessible cut-off layer of the upper cut-off frequency tends to be restricted in the edge region.Nevertheless, when the density and/or magnetic field is satisfied, the lower cut-off reflection layer will be identified in the probing frequency range below the electron cyclotron frequency fce.This enables us to use both the upper and lower cut-off frequencies,and hence expands the density profile measurement.

    This paper presents the experimental measurement on the density profile using both the upper and lower cut-off frequencies of X-mode on EAST.The results prove the capability of the X-mode lower cut-off frequency for the radial extension of reflectometry measurement, which is particularly favored in high-density operations, such as H-mode and pellet injection, and can be used for the reflectometry measurement on ITER.In section 2, a brief introduction to the reflectometry architecture and the density profile inversion method is given.The experimental results are presented in section 3, and the work is summarized in section 4.

    2.Reflectometry architecture and the density profile inversion process

    For an electromagnetic wave propagating in X-mode polarization,the refraction index associated with both the magnetic field and local density is given by

    where r is the radial location along the sight line of the beam,

    and B(r)is the local magnetic field.For given neand B values,the incident beam is reflected at the corresponding cut-off layer, where the Nx=0.The two solutions can be deduced,namely the upper fLand lower fRcut-off frequencies,respectively,

    In the EAST experiments, the upper cut-off frequency is regularly used during the density profile inversion process because the lower one is rarely observed by reflectometry in EAST’s typical operational regimes.In high magnetic field and/or density discharges, the lower cut-off frequency is detected in the delay-time spectrum.The appearance of the lower cut-off frequency can be estimated using equation (4).

    Figure 1 shows the density coverage ability for the lower and upper cut-off, respectively, under different magnetic fields.The so-called zero electron density ne0occurs when the probing frequency equals fce, as indicated by the black slash.The probing frequency is below fceon the left side,where the microwave is reflected at the lower cut-off layer.In contrast,on the right side, when f >fce, the microwave is reflected at the upper cut-off layer.It is clear that with the increasing magnetic field and plasma density,the range of the upper cutoff frequency becomes narrower.Furthermore, the influence of the second harmonic of the electron cyclotron frequency(f2ce)needs to be taken into account when fRand/or fLexceed the f2ceat the plasma boundary (ne=0).As shown by the white slashed line in figure 1, at the relatively low magnetic field (Bt<1.8 T), the location of f2cemoves toward the low probing frequency,which will significantly limit the coverage of the probing frequency in the X-mode upper cut-off reflectometry as the probing beam could be absorbed at fprob=f2ce.With the increase in the magnetic field, the range of detection frequency affected by f2cegradually decreases.Typically, the pedestal density covers a range up to 3.5×1019m-3[23] and the density coverage is up to~7.0×1019m-3at fprob=fR=110 GHz.In the experimental measurement,the raw signal in the probing frequency beyond 95 GHz becomes rather weak and is close to the noise level due to the influence of f2ce.Thus, the typical accessible density by the upper cut-off frequency is around 5×1019m-3.However, when the plasma parameters meet the requirements, the lower cut-off frequency can be observed in the probing frequency range of 33-50 GHz, which can be identified at fprob<fce.With the supplementary lower cut-off frequency, the X-mode reflectometry on EAST can potentially extend its radial coverage of high-density operations,e.g.the high-density H-mode or fueling experiments [24].

    Figure 1.The measurable density range by the corresponding lower and upper cut-off frequencies under different magnetic fields.The frequency bands of EAST reflectometry are indicated by the vertical dashed line.The contour lines indicate the equal ne level that can be measured by the reflectometry on EAST.

    The group delay time (τg) is calculated using τg=fbeat/(dfprob/dt), where fbeatis the beat frequency and dfprob/dt is the sweeping rate of the probing wave frequency.The phase delay associated with the detected frequency, as derived from the group delay spectrum, is used for the determination of microwave reflectometry electron density profiles[15,25].Figure 2 compares the time-delay spectra of the X-mode reflectometry measurements at different magnetic fields and plasma densities.The probing starts of the upper cut-off frequency are indicated by the vertical line.As shown in figures 2(a)and(c),the higher magnetic field(Bt=2.3 T)requires higher probing frequency at zero density, which is consistent with the results in figure 1.Furthermore,the lower cut-off frequency is visible in the Q-band (33-50 GHz)spectrum in figures 2(a), (b) and (d) in high plasma electron density cases.With the increase in the magnetic field and/or the plasma density,the lower cut-off reflection region extends gradually.

    Figure 2.Time-delay spectra obtained from the X-mode reflectometry measurements on EAST with different magnetic fields and plasma densities.The frequency windows with reflection at the lower cut-off(left)and the upper cut-off(right)are marked,respectively.The empty region at fprob ~80 GHz is caused by the overlapped wave-mixing process in the optical combiner [26].

    3.Experimental measurements of density profile

    Figure 3 shows the delay-time spectra of the reflectometry signals at 5.62 s in a typical L-mode EAST discharge (#90330, BT=2.47 T) and at 4.9622 s in a typical H-mode EAST discharge (#88004,BT=2.32 T).The line-integrated density is measured by the 11-channel POlarimeter-INTerferometer (POINT) [27]; the values at the center chord are ne,line≈4.23×1019m-3and 4.64×1019m-3, respectively.As shown in figure 3, the lower cut-off reflection emerges at the incident frequency below 50 GHz, and the appearance is attributed to the high plasma density, regardless of the L-mode or H-mode regime.The transition between the lower and upper cut-off frequencies occurs at 53 GHz and 51 GHz.Note that τg≈13-14 ns at the probing frequency ranging from 41 GHz to 53 GHz in the discharge #90330 is caused by the back wall reflection.The corresponding τgof both upper and lower cut-off frequencies can be distinguished in the frequency range beyond and below the fce, respectively,which is indicated by the vertical dashed line in figure 3.

    Figure 3.Delay-time spectra of reflectometry measurement in L-mode of discharge #90330 (above) and H-mode of discharge #88004(below).The transitions between the upper and lower cut-off frequencies are at 53 GHz and 51 GHz, respectively, during L- and H-mode,where the zero-density layer locates.

    Figure 4 shows the group delays measured by the lower cut-off frequency (red dotted lines) and the equivalent group delay via the upper one (black solid lines).By assuming the density profile of the upper cut-off frequency, its equivalent group delay of the lower cut-off frequency can be simultaneously deduced (the black solid lines in figure 4).This equivalent τg,loweris then compared with the experimental measurement(the red line in figure 4).The confidence interval of the group delay is estimated to be the 1/e bandwidth of τgin figure 3.It would make sense if the τg,lowerwas overlapped or continued with the equivalent τg,upperthat is calculated using the upper cut-off frequency.Thus, the group delays of the upper and lower cut-off frequencies can be combined to reveal the overall density profile.In the reflection signal of the upper cut-off frequency,only a fraction of signals is reasonable in the probing frequency below 95 GHz, which restricts the measurable density profile in the plasma edge region.It is clearly seen that in both L-mode (figure 4 left) and H-mode (figure 4 right),a continuous τgis obtained in the overlapped frequency range of 35-48 GHz,yielding validation of the density profile inversion using the overall τg.It is also worth noting that the frequency coverage of the lower cut-off is much higher than the equivalent group delay that is obtained from the upper cutoff, which indicates that the density coverage can be further extended by supplementing the upper cut-off frequency with the lower cut-off frequency.

    The overall neprofiles in the H- and L-modes obtained by the X-mode lower (red solid and dotted line) and upper(black and blue dots) cut-off frequencies are compared and depicted in figure 5.The error bars are calculated from the delay-time spectra in figure 3 and are mainly contributed by the bandwidth of the delay-time spectra.The method used for error calculation of the density profiles is taken from[20].The consistent evolution of two density profiles with the line-integrated densities yields a reliable validation of the lower cut-off reflection in the measurement of density profiles.In the weak signal level of τg,upperin the highdensity region, e.g.in the plasma core region, the profile resolution can be significantly improved by utilizing the τg,lowerindirectly.Density profiles during L-mode measured by reflectometry are further compared with the inversed profile of POINT.As shown by the green line in figure 5,the inversed density profile in the L-mode is overlapped for a benchmark.The agreement of the neprofiles from POINT and the reflectometry measurements, especially at the core region, implies that the lower cut-off frequency is capable of supplementing the density profile measurement via reflectometry.

    Figure 4.Group delays measured by the lower cut-off frequency (red dotted lines) and the equivalent group delay via the upper cut-off frequency (black solid lines) in L- (left) and H-mode (right), respectively.

    Figure 5.Density profiles obtained by the upper (black and blue triangles) and lower (red lines) cut-off frequencies in H-mode and L-mode.The green line is the ne profile of the POINT measurement.

    4.Summary

    To summarize our work, the density profile inversion process,using both the lower and upper cut-off frequencies, enables radial coverage expansion of reflectometry measurement with the emergence of the lower cut-off frequency.On the EAST tokamak, the lower and upper cut-off reflections have been simultaneously obtained in the X-mode polarized multi-band reflectometry diagnostic in high-density experiments, e.g.the H-mode and/or fueling discharges.The feasibility of the density profile measurements shown in this paper indicates that the application of the lower cut-off frequency is successfully accessible for the density profile inversion process and the radial coverage expansion.This experimental validation of density profile inversion by the lower cut-off frequency is of great importance for the measurement accessibility when developing the high-field side reflectometry system in ITER.Although the fprob,lowerrange is limited by the system bandwidth, the use of both lower and upper cut-off frequencies in the density profile inversion process can significantly extend the radial coverage of the reflectometry measurement, which provides a reference for the ITER reflectometry system in the radial coverage of the density profile in the high-density discharge.

    Acknowledgments

    The authors wish to acknowledge Dr.S.X.Wang for helping to analyze the POINT data.This work has been supported by the National Key R&D Program of China(Nos.2017YFE0301205 and 2019YFE03040002), National Natural Science Foundation of China (Nos.11875289,11975271, 11805136, 12075284, and 12175277) and China Postdoctoral Science Foundation (No.2021M703256).

    ORCID iDs

    猜你喜歡
    劉煜
    讀迷作品
    Game Theory in Climate Change Economics
    留學(2022年14期)2022-09-27 09:21:12
    The Foundations of Physics
    留學(2022年14期)2022-09-27 09:21:04
    遼東學院藝術與設計學院劉煜哲抗聯(lián)題材美術作品《濛江雪》(節(jié)選)
    Experimental study of core and edge fluctuations by reflectometry on EAST tokamak
    過度關愛會讓孩子無所適從
    生命不息,傳承不止
    A Guardian Angel in My Mind
    劉煜:“90后”閨門旦的水墨青春
    金色年華(2017年7期)2017-06-21 09:27:53
    Changes in Stratospheric ClO and HCl Concentrations Under Different Greenhouse Gas Emission Scenarios
    亚洲全国av大片| 国产欧美日韩综合在线一区二区| 久久午夜综合久久蜜桃| 男人爽女人下面视频在线观看| 成人av一区二区三区在线看 | 亚洲国产av影院在线观看| 久久久久国产一级毛片高清牌| 久久 成人 亚洲| 国产无遮挡羞羞视频在线观看| 午夜福利乱码中文字幕| 午夜福利在线观看吧| 欧美一级毛片孕妇| 亚洲国产精品成人久久小说| 久久亚洲精品不卡| 最近最新中文字幕大全免费视频| 老司机午夜福利在线观看视频 | 精品福利观看| 巨乳人妻的诱惑在线观看| 成在线人永久免费视频| 国产一区二区在线观看av| 窝窝影院91人妻| 婷婷色av中文字幕| a级片在线免费高清观看视频| 最近最新免费中文字幕在线| 欧美精品av麻豆av| 久久久久久免费高清国产稀缺| 国产淫语在线视频| 亚洲精品自拍成人| 久久综合国产亚洲精品| 国产成人欧美| www.av在线官网国产| 香蕉国产在线看| 91大片在线观看| 一级黄色大片毛片| 人人妻人人爽人人添夜夜欢视频| 美女主播在线视频| 王馨瑶露胸无遮挡在线观看| 97在线人人人人妻| 亚洲国产精品一区二区三区在线| 欧美少妇被猛烈插入视频| 美女国产高潮福利片在线看| h视频一区二区三区| 在线看a的网站| 亚洲成国产人片在线观看| 在线观看舔阴道视频| 韩国精品一区二区三区| 亚洲性夜色夜夜综合| 精品久久久久久电影网| 欧美精品啪啪一区二区三区 | 欧美日韩视频精品一区| 免费一级毛片在线播放高清视频 | 国产一区二区三区在线臀色熟女 | 亚洲精品久久成人aⅴ小说| 在线看a的网站| 久久久国产一区二区| 女性被躁到高潮视频| 亚洲欧美色中文字幕在线| 日韩欧美免费精品| 日本猛色少妇xxxxx猛交久久| 国产老妇伦熟女老妇高清| 日本欧美视频一区| 亚洲精品自拍成人| 亚洲色图综合在线观看| videos熟女内射| 最近中文字幕2019免费版| 日本vs欧美在线观看视频| 亚洲欧美一区二区三区久久| 欧美黑人精品巨大| 香蕉国产在线看| 亚洲精品久久午夜乱码| 亚洲精品一区蜜桃| 在线看a的网站| 亚洲国产中文字幕在线视频| 亚洲精品在线美女| 精品人妻熟女毛片av久久网站| 亚洲熟女精品中文字幕| 欧美日韩国产mv在线观看视频| 男人舔女人的私密视频| 精品久久久久久久毛片微露脸 | 国产高清视频在线播放一区 | 久久久久网色| 日本精品一区二区三区蜜桃| 波多野结衣一区麻豆| 久久久久久久精品精品| 午夜免费成人在线视频| 满18在线观看网站| 久久久久久久久免费视频了| 嫩草影视91久久| 亚洲av电影在线进入| 色婷婷av一区二区三区视频| 精品久久久精品久久久| 国产主播在线观看一区二区| 一区在线观看完整版| 久久青草综合色| 午夜视频精品福利| 性色av乱码一区二区三区2| 亚洲综合色网址| 欧美日韩精品网址| 精品人妻熟女毛片av久久网站| 18禁黄网站禁片午夜丰满| 王馨瑶露胸无遮挡在线观看| 国产又爽黄色视频| 汤姆久久久久久久影院中文字幕| 真人做人爱边吃奶动态| 亚洲国产看品久久| 欧美成狂野欧美在线观看| 色视频在线一区二区三区| 在线亚洲精品国产二区图片欧美| 亚洲精品中文字幕一二三四区 | 黑人巨大精品欧美一区二区mp4| 欧美老熟妇乱子伦牲交| 亚洲伊人久久精品综合| 欧美 亚洲 国产 日韩一| 一区福利在线观看| 成人黄色视频免费在线看| 国产成人精品久久二区二区免费| 日韩电影二区| 欧美日韩视频精品一区| 精品国产国语对白av| 大陆偷拍与自拍| 国产97色在线日韩免费| 亚洲午夜精品一区,二区,三区| 国产av一区二区精品久久| 麻豆av在线久日| 久久综合国产亚洲精品| 少妇精品久久久久久久| 国产精品久久久久久人妻精品电影 | 亚洲欧洲日产国产| 午夜视频精品福利| 欧美精品人与动牲交sv欧美| 91精品伊人久久大香线蕉| 国产亚洲精品第一综合不卡| 最新的欧美精品一区二区| 国产成人av激情在线播放| 亚洲专区中文字幕在线| 男女下面插进去视频免费观看| 国产高清videossex| 亚洲成人免费电影在线观看| 少妇裸体淫交视频免费看高清 | 国产精品香港三级国产av潘金莲| 久久香蕉激情| 精品福利观看| 久久女婷五月综合色啪小说| 亚洲精品国产色婷婷电影| 老司机靠b影院| 亚洲性夜色夜夜综合| 欧美日韩亚洲国产一区二区在线观看 | 国产熟女午夜一区二区三区| 日韩免费高清中文字幕av| 精品一品国产午夜福利视频| 精品熟女少妇八av免费久了| 美女国产高潮福利片在线看| 在线天堂中文资源库| 日本vs欧美在线观看视频| 老熟妇乱子伦视频在线观看 | 777米奇影视久久| 精品少妇一区二区三区视频日本电影| 精品国产一区二区三区久久久樱花| 人妻久久中文字幕网| 美女主播在线视频| 9热在线视频观看99| 人妻一区二区av| 国产麻豆69| 一边摸一边抽搐一进一出视频| 欧美激情 高清一区二区三区| 亚洲人成电影免费在线| 老熟妇乱子伦视频在线观看 | 伦理电影免费视频| 涩涩av久久男人的天堂| 国产色视频综合| 9191精品国产免费久久| 国产91精品成人一区二区三区 | 精品卡一卡二卡四卡免费| 国产真人三级小视频在线观看| 桃红色精品国产亚洲av| 欧美 亚洲 国产 日韩一| 黄片小视频在线播放| 视频区图区小说| 岛国在线观看网站| 亚洲精品国产精品久久久不卡| 在线av久久热| 97人妻天天添夜夜摸| 国产在线观看jvid| 捣出白浆h1v1| 两性夫妻黄色片| 国产人伦9x9x在线观看| 一边摸一边抽搐一进一出视频| 成年动漫av网址| 亚洲精品久久久久久婷婷小说| 中国国产av一级| 欧美精品啪啪一区二区三区 | 国产精品九九99| a在线观看视频网站| 国产男人的电影天堂91| 欧美人与性动交α欧美软件| 日本五十路高清| 国产精品.久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久久精品精品| 老熟妇乱子伦视频在线观看 | 亚洲一码二码三码区别大吗| 丝袜人妻中文字幕| 国产亚洲午夜精品一区二区久久| 黄色毛片三级朝国网站| 在线观看人妻少妇| 最近中文字幕2019免费版| 国产97色在线日韩免费| 午夜91福利影院| 涩涩av久久男人的天堂| 欧美激情极品国产一区二区三区| 大香蕉久久成人网| 黑人欧美特级aaaaaa片| 777久久人妻少妇嫩草av网站| 飞空精品影院首页| 久久国产精品大桥未久av| av片东京热男人的天堂| 大片免费播放器 马上看| 亚洲欧美日韩另类电影网站| 99re6热这里在线精品视频| 国产精品偷伦视频观看了| 制服人妻中文乱码| 国产视频一区二区在线看| 日韩三级视频一区二区三区| 操出白浆在线播放| √禁漫天堂资源中文www| 久久青草综合色| 99久久人妻综合| 在线天堂中文资源库| 三级毛片av免费| 91精品伊人久久大香线蕉| 成人av一区二区三区在线看 | √禁漫天堂资源中文www| 精品国产超薄肉色丝袜足j| 久久久久精品人妻al黑| 免费在线观看黄色视频的| 真人做人爱边吃奶动态| 极品少妇高潮喷水抽搐| 国产成人精品久久二区二区91| 欧美日韩福利视频一区二区| 精品久久久精品久久久| 国产成人系列免费观看| 美女脱内裤让男人舔精品视频| 国产成人一区二区三区免费视频网站| 黑人欧美特级aaaaaa片| 久久久精品区二区三区| 欧美乱码精品一区二区三区| 免费在线观看影片大全网站| 精品少妇黑人巨大在线播放| 久久性视频一级片| 精品少妇久久久久久888优播| 不卡一级毛片| 大香蕉久久网| 日本vs欧美在线观看视频| 亚洲专区字幕在线| 欧美av亚洲av综合av国产av| 人成视频在线观看免费观看| www.熟女人妻精品国产| 大陆偷拍与自拍| 一级片免费观看大全| 国产极品粉嫩免费观看在线| 在线精品无人区一区二区三| 一本一本久久a久久精品综合妖精| 视频在线观看一区二区三区| 久久影院123| 老汉色∧v一级毛片| 午夜福利在线免费观看网站| 色综合欧美亚洲国产小说| 亚洲一区中文字幕在线| 国产精品影院久久| 国产三级黄色录像| 精品熟女少妇八av免费久了| 精品欧美一区二区三区在线| 老司机影院成人| 中文字幕制服av| 精品人妻熟女毛片av久久网站| 91国产中文字幕| 法律面前人人平等表现在哪些方面 | 大片免费播放器 马上看| 老司机深夜福利视频在线观看 | 热99re8久久精品国产| 国产av国产精品国产| 一本久久精品| 国产日韩欧美亚洲二区| 男女下面插进去视频免费观看| 午夜精品久久久久久毛片777| 99热网站在线观看| 欧美日韩亚洲国产一区二区在线观看 | 老司机靠b影院| 在线永久观看黄色视频| 男女下面插进去视频免费观看| 久久久久久亚洲精品国产蜜桃av| 99久久综合免费| av免费在线观看网站| 国产一区有黄有色的免费视频| 国产亚洲精品久久久久5区| 国产熟女午夜一区二区三区| 日韩中文字幕视频在线看片| 午夜日韩欧美国产| 日韩制服丝袜自拍偷拍| 99国产极品粉嫩在线观看| 在线永久观看黄色视频| 欧美成狂野欧美在线观看| 婷婷丁香在线五月| 久久久久久久精品精品| 亚洲专区国产一区二区| 最近中文字幕2019免费版| 欧美精品av麻豆av| 日本91视频免费播放| 日韩,欧美,国产一区二区三区| 亚洲欧美精品自产自拍| 免费在线观看黄色视频的| 伦理电影免费视频| 亚洲精品av麻豆狂野| 亚洲国产精品成人久久小说| 国产成人欧美| 视频区欧美日本亚洲| 在线观看免费午夜福利视频| av电影中文网址| 动漫黄色视频在线观看| 视频区欧美日本亚洲| 久久免费观看电影| 久久性视频一级片| 国产97色在线日韩免费| 欧美大码av| 大片免费播放器 马上看| 婷婷色av中文字幕| tube8黄色片| 在线看a的网站| 国产一区二区在线观看av| 男女国产视频网站| 精品高清国产在线一区| 丰满饥渴人妻一区二区三| 美女高潮喷水抽搐中文字幕| 高清黄色对白视频在线免费看| xxxhd国产人妻xxx| 天天影视国产精品| 亚洲熟女精品中文字幕| 老司机影院成人| 国产欧美亚洲国产| 777米奇影视久久| 女人被躁到高潮嗷嗷叫费观| 亚洲av欧美aⅴ国产| 又黄又粗又硬又大视频| 午夜福利一区二区在线看| 在线观看免费午夜福利视频| 老司机在亚洲福利影院| 日本欧美视频一区| 精品国产一区二区三区久久久樱花| 操出白浆在线播放| 免费在线观看日本一区| 日韩中文字幕欧美一区二区| 考比视频在线观看| 精品福利永久在线观看| 中文字幕色久视频| 精品少妇内射三级| 欧美精品高潮呻吟av久久| 狠狠狠狠99中文字幕| 国产一区二区 视频在线| 国产一级毛片在线| 久久国产精品大桥未久av| 制服人妻中文乱码| 日韩 欧美 亚洲 中文字幕| 中文字幕色久视频| avwww免费| av网站在线播放免费| 男人添女人高潮全过程视频| 欧美少妇被猛烈插入视频| 久久精品aⅴ一区二区三区四区| 午夜久久久在线观看| 99久久人妻综合| 黄片大片在线免费观看| 老鸭窝网址在线观看| 一本色道久久久久久精品综合| 国产日韩欧美视频二区| 日韩视频一区二区在线观看| 国产高清国产精品国产三级| 女人被躁到高潮嗷嗷叫费观| 国产福利在线免费观看视频| 欧美日韩国产mv在线观看视频| 国产精品二区激情视频| 亚洲伊人久久精品综合| 午夜两性在线视频| 色94色欧美一区二区| 久久久国产一区二区| 亚洲全国av大片| 男女下面插进去视频免费观看| 免费一级毛片在线播放高清视频 | 热99国产精品久久久久久7| 亚洲国产日韩一区二区| 国产亚洲午夜精品一区二区久久| 日韩制服丝袜自拍偷拍| 国产黄频视频在线观看| 岛国在线观看网站| 欧美激情极品国产一区二区三区| 久久久久精品国产欧美久久久 | 亚洲七黄色美女视频| 91精品国产国语对白视频| 久久天堂一区二区三区四区| 欧美久久黑人一区二区| 岛国毛片在线播放| 王馨瑶露胸无遮挡在线观看| 亚洲七黄色美女视频| 9热在线视频观看99| 伊人亚洲综合成人网| 久久久久国产精品人妻一区二区| 制服诱惑二区| 乱人伦中国视频| 国产区一区二久久| 一区福利在线观看| 黑人欧美特级aaaaaa片| 成人免费观看视频高清| 美国免费a级毛片| 欧美xxⅹ黑人| 国产精品免费视频内射| 后天国语完整版免费观看| 欧美日韩亚洲高清精品| 免费不卡黄色视频| 免费少妇av软件| 美女扒开内裤让男人捅视频| 免费在线观看完整版高清| av国产精品久久久久影院| 亚洲av日韩精品久久久久久密| 丝袜美足系列| 欧美xxⅹ黑人| 秋霞在线观看毛片| 欧美日韩福利视频一区二区| 无遮挡黄片免费观看| 中文精品一卡2卡3卡4更新| 日韩精品免费视频一区二区三区| 91大片在线观看| 国产一区二区三区综合在线观看| 久久精品国产综合久久久| 亚洲精品中文字幕一二三四区 | 1024香蕉在线观看| 啦啦啦视频在线资源免费观看| 免费高清在线观看日韩| 亚洲一区中文字幕在线| 国产精品偷伦视频观看了| 久久久久久久国产电影| 18禁裸乳无遮挡动漫免费视频| 美女午夜性视频免费| 国产精品欧美亚洲77777| 人人妻人人爽人人添夜夜欢视频| 男男h啪啪无遮挡| 欧美激情高清一区二区三区| 777久久人妻少妇嫩草av网站| 欧美亚洲 丝袜 人妻 在线| 每晚都被弄得嗷嗷叫到高潮| e午夜精品久久久久久久| 搡老岳熟女国产| 在线亚洲精品国产二区图片欧美| 热99re8久久精品国产| tube8黄色片| 欧美少妇被猛烈插入视频| 99国产精品免费福利视频| 99久久综合免费| 亚洲七黄色美女视频| 秋霞在线观看毛片| 黄色片一级片一级黄色片| 国产日韩欧美在线精品| 伦理电影免费视频| 性高湖久久久久久久久免费观看| www日本在线高清视频| a在线观看视频网站| 三上悠亚av全集在线观看| 女人精品久久久久毛片| 他把我摸到了高潮在线观看 | 亚洲 国产 在线| 亚洲第一欧美日韩一区二区三区 | 亚洲av日韩精品久久久久久密| 老司机深夜福利视频在线观看 | 日韩制服丝袜自拍偷拍| 高清av免费在线| 人人妻人人爽人人添夜夜欢视频| 欧美日韩国产mv在线观看视频| 69av精品久久久久久 | 捣出白浆h1v1| 国产精品久久久久成人av| 亚洲激情五月婷婷啪啪| 成人av一区二区三区在线看 | a级片在线免费高清观看视频| 日日爽夜夜爽网站| 狠狠狠狠99中文字幕| 丰满饥渴人妻一区二区三| 国产麻豆69| avwww免费| 午夜免费鲁丝| 日韩欧美免费精品| 黄网站色视频无遮挡免费观看| 一区二区av电影网| 久热这里只有精品99| 亚洲 欧美一区二区三区| 国内毛片毛片毛片毛片毛片| 国产日韩欧美视频二区| 老司机午夜十八禁免费视频| 国产精品久久久人人做人人爽| 日日爽夜夜爽网站| 男女下面插进去视频免费观看| 不卡一级毛片| 成年女人毛片免费观看观看9 | 亚洲精品在线美女| 最新在线观看一区二区三区| 亚洲成人国产一区在线观看| 亚洲欧美一区二区三区久久| 丝袜人妻中文字幕| 日本五十路高清| 丰满人妻熟妇乱又伦精品不卡| av有码第一页| 午夜激情av网站| 麻豆国产av国片精品| 国产亚洲精品第一综合不卡| 青春草亚洲视频在线观看| 免费高清在线观看日韩| 亚洲精品成人av观看孕妇| bbb黄色大片| 久久狼人影院| 老熟妇仑乱视频hdxx| 首页视频小说图片口味搜索| 亚洲av美国av| 国产精品久久久久成人av| 国产黄频视频在线观看| 一个人免费看片子| 国产成人av激情在线播放| 中文字幕人妻丝袜制服| 国产精品一二三区在线看| 国产一区二区在线观看av| 国产免费av片在线观看野外av| 免费一级毛片在线播放高清视频 | 18禁裸乳无遮挡动漫免费视频| 久久中文看片网| 美国免费a级毛片| 一区二区三区精品91| 国产日韩欧美亚洲二区| 久久热在线av| 天堂中文最新版在线下载| 不卡一级毛片| 老司机福利观看| 国产一区二区三区综合在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 国产精品1区2区在线观看. | 香蕉丝袜av| 激情视频va一区二区三区| 久久久久久亚洲精品国产蜜桃av| 一本一本久久a久久精品综合妖精| 日韩免费高清中文字幕av| 成人手机av| 亚洲第一av免费看| 亚洲精品av麻豆狂野| 黄频高清免费视频| 亚洲精品中文字幕在线视频| av网站在线播放免费| 国产三级黄色录像| 久久久久国产精品人妻一区二区| 免费不卡黄色视频| 一本一本久久a久久精品综合妖精| 国产精品久久久久成人av| 亚洲熟女精品中文字幕| 日韩 欧美 亚洲 中文字幕| 丁香六月欧美| 亚洲激情五月婷婷啪啪| 新久久久久国产一级毛片| 黄片播放在线免费| 高清黄色对白视频在线免费看| 纯流量卡能插随身wifi吗| 国产成人啪精品午夜网站| 五月开心婷婷网| 亚洲精品第二区| 最新在线观看一区二区三区| 十八禁网站网址无遮挡| 欧美日韩精品网址| 日韩一卡2卡3卡4卡2021年| 久久av网站| 女性被躁到高潮视频| 国产国语露脸激情在线看| 国产欧美日韩一区二区三 | 国产一区二区激情短视频 | 午夜老司机福利片| a级片在线免费高清观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 高清黄色对白视频在线免费看| www日本在线高清视频| 天天操日日干夜夜撸| 麻豆乱淫一区二区| 日本一区二区免费在线视频| 男女午夜视频在线观看| 午夜激情久久久久久久| 亚洲成人国产一区在线观看| 国精品久久久久久国模美| 国产有黄有色有爽视频| 777久久人妻少妇嫩草av网站| 久久性视频一级片| 91字幕亚洲| 首页视频小说图片口味搜索| 久久久精品免费免费高清| 淫妇啪啪啪对白视频 | 老司机午夜十八禁免费视频| 青春草视频在线免费观看| 久久人人爽av亚洲精品天堂| 国产免费现黄频在线看| 老司机影院成人| 久久九九热精品免费| 亚洲伊人色综图| 亚洲avbb在线观看| 午夜福利,免费看| 91精品伊人久久大香线蕉| 亚洲av日韩在线播放| 黄网站色视频无遮挡免费观看| 女警被强在线播放| 在线永久观看黄色视频| 欧美 亚洲 国产 日韩一| 国产成人av教育| 深夜精品福利| 九色亚洲精品在线播放| 爱豆传媒免费全集在线观看| 女人久久www免费人成看片|