• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental study of core and edge fluctuations by reflectometry on EAST tokamak

    2021-07-07 02:39:56ZhenZHOU周振TaoZHANG張濤MingfuWU吳茗甫KaixuanYE葉凱萱FubinZHONG鐘富彬JiaHUANG黃佳KangningGENG耿康寧YukaiLIU劉煜凱GongshunLI李恭順HaomingXIANG向皓明YuminWANG王嵎民FeiWEN文斐andSanqiuLIU劉三秋
    Plasma Science and Technology 2021年7期
    關(guān)鍵詞:劉煜康寧張濤

    Zhen ZHOU(周振),Tao ZHANG(張濤),Mingfu WU(吳茗甫),Kaixuan YE(葉凱萱),Fubin ZHONG(鐘富彬),Jia HUANG(黃佳),Kangning GENG(耿康寧),Yukai LIU(劉煜凱),Gongshun LI(李恭順),Haoming XIANG(向皓明),Yumin WANG(王嵎民),Fei WEN(文斐) and Sanqiu LIU(劉三秋)

    1 Jiangxi Province Key Laboratory of Fusion and Information Control,Institute of Fusion Energy and Plasma Application,Department of Physics,Nanchang University,Nanchang 330031,People’s Republic of China

    2 Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    3 University of Science and Technology of China,Hefei 230026,People’s Republic of China

    4 Advanced Energy Research Center,Shenzhen University,Shenzhen 518060,People’s Republic of China

    5 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,College of Optoelectronic Engineering,Shenzhen University,Shenzhen 5180602,People’s Republic of China

    Abstract An eight-channel poloidal correlation reflectometer(PCR)with O-mode polarization has been installed in the EAST tokamak to measure the fluctuations from core to edge.The PCR launches eight different frequency microwaves(20.4,24.8,33,40,42.4,48,52.6,57.2 GHz)into the plasma from the low field side and two poloidally separated antennae are used to receive the reflected waves.As a result,the diagnostic can measure fluctuations in eight(radial)×two(poloidal)spatial positions.The diagnostic has been applied to study the core and edge pedestal fluctuations during an inter-ELM phase in H-mode plasma.This inter-ELM phase can be divided into two stages.In the first stage,a low frequency(<50 kHz)broadband fluctuation dominates in the pedestal gradient region.In the second stage,this fluctuation is strongly suppressed and quasi-coherent fluctuations(QCFs)appear.The QCF’s amplitude increases with the pedestal density gradient,implying density gradient driven instabilities.But the core fluctuations inside the pedestal show no evident changes during the inter-ELM phase.

    Keywords:core fluctuation,edge fluctuation,reflectometry

    1.Introduction

    Many studies have shown that the heat transport level of electrons and ions is higher than expected based on neoclassical theory[1].The high transport level is thought to result from plasma turbulence[2],which is still an unresolved issue in fusion plasmas.So,the turbulence and its induced transport are critically important for plasmas in present and future devices,e.g.,ITER[3]and CFETR[4].Due to its high temporal and spatial resolution,reflectometry has been an important diagnostic to study turbulence and transport in experiment and is now installed on many fusion machines for fluctuation measurement[5–11].On EAST,a 20–40 GHz four-channel poloidal correlation reflectometer(PCR)with O-mode polarization has been developed to measure the fluctuation in the plasma edge[12,13].In order to enhance the capability of the diagnostics,a new four-channel PCR with O-mode polarization in the U-band(40–60 GHz)has been installed.As a result,this O-mode PCR is now composed of eight different frequencies,[20.4,24.8,33,40,42.4,48,52.6,57.2]GHz,corresponding to a cutoff density of between ~0.5×1019m-3and ~4.1×1019m-3.With this upgrade,the PCR can simultaneously measure the edge and core fluctuations in EAST plasmas.In addition,the diagnostics uses two poloidally separated antennae for the receiver and therefore each frequency has two poloidal measurements,which can be used for poloidal correlation analysis.An introduction to this diagnostic will be presented in section 2.By applying the O-mode PCR to an H-mode plasma,the evolutions of core and edge pedestal fluctuation during the inter-ELM phase have been studied in section 3.Lastly,a discussion and summary are given in section 4.

    2.O-mode poloidal correlation reflectometry

    The O-mode PCR on EAST has two sets of systems,one of which is a 20–40 GHz reflectometer[12]and the other is a newly installed U-band reflectometer.The U-band reflectometer is also four-channel,i.e.with four microwave frequencies,[42.4,48,52.6,57.2]GHz.Each reflectometer uses three antennae,as shown in figure 1.The antenna in the middle(L)is for the launcher and the other two poloidally separated(~6 cm)antennae(P1 and P2)are for receivers.The two antennae sets for the two reflectometer systems are installed inside the vacuum vessel and located in the same radial and poloidal positions(R=2.6 m,Z=-0.09 m)in the low field side but in adjacent toroidal positions.In addition,the antennae sets have a tilt angle of ~8°with respect to the horizontal line to ensure that the microwave beams are nearly perpendicular to the magnetic surfaces.For present antennae setting and EAST experimental geometry,the diagnostics can respond to fluctuations withkθ<3 cm-1in the plasma edge and withkθ<6 cm-1in the plasma center due to the larger plasma poloidal curvature[14].The distance between the two detected areas of PCR,obtained from the ray tracing code,is about from 0.8 cm to 1.3 cm for the present experiment.With this setup,the O-mode PCR now has eight frequencies,[20.4,24.8,33,40,42.4,48,52.6,57.2]GHz,which corresponds to cutoff densities from ~0.5×1019m-3to ~4.1×1019m-3.For each frequency,there are two poloidal measurements and thus poloidal correlation analysis can be applied.

    Figure 1.Location of the O-mode PCR antennae sets.The middle antenna is the launcher and the other two poloidally separated antennae are receivers.

    3.Core and edge fluctuations in H-mode plasma

    High confinement mode(H-mode)plasma is characterized by the spontaneous formation of a narrow region with stair-steplike profiles and steep gradients in the plasma edge.This region is usually called H-mode pedestal.H-mode plasma will be the basic plasma operation scenario for future fusion devices[3,4].Experimental studies have shown that the turbulence is still important for transport in the core and edge even in H-mode plasma[15–23]and deserves further study.

    Figure 2 shows a typical plasma discharge #86787(Bt=2.4 T,Ip=440 kA)for the present study,heated by a 0.8 MW lower hybrid wave(LHW)and 0.75 MW electron cyclotron resonance heating(ECRH).L-H transition takes place at aboutt=2.35 s,where density and stored energy shows an increase and the Dαsignal has an abrupt decrease.During the H-mode phase,the plasma energy and density experience large oscillations.This is because the heating power is not high and close to the L-H transition power threshold as the density increases.The ELM behaviors also change correspondingly.Beforet~3.0 s,the ELM is more likely mixed type-I and type-III.Then the plasma experiences a long period without ELMs and density increases but energy decreases.At lower plasma energy,type-III ELMs appear.Fortunately,the plasma does not go back to L-mode but keeps at a state with oscillation.It is noted that the present planned heating power on ITER is also critical with respect to the L-H transition threshold power.Therefore,it is important to study this kind of plasma in the present devices.In the next section,we will focus on the core and edge fluctuations during the long period phase without ELMs.

    Figure 3 shows the long period phase without ELMs for the plasma in figure 2.The bursts in the Dαsignal of figure 3(a)represent the ELM crashes and the pedestal density(ne,ped)in figure 3(b)shows a drop at each ELM event.After an ELM crash att=2.98 s,the fluctuation spectrogram of 42.4 GHz reflectometry in figure 3(c)shows a low frequency broadband fluctuation with a frequency of less than ~50 kHz.Aftert=3.04 s,it is found that this broadband fluctuation disappears while quasi-coherent fluctuations(QCFs)with two main bands at about ~50 kHz and ~80 kHz appear and another higher frequency band at ~100 kHz appears later.At the same time,Dαsignal amplitude decreases andne,pedgradually increases up to the next ELM crash.The QCFs are also observed in magnetic fluctuation measured by magnetic probes mounted in the vacuum vessel,as shown in figure 3(d).The toroidal mode numbers for the two bands(~50 kHz and ~80 kHz)of QCFs in magnetic fluctuation aren=-2,-4 respectively.Here,the minus value represents the QCFs rotating in a counter-Ipdirection,corresponding to an electron diamagnetic direction in the perpendicular direction.The ~100 kHz frequency band is very week at magnetic fluctuation and its toroidal mode number is difficult to determine.So it is not known whether the ~100 kHz band is the second harmonic of the ~50 kHz band presently.In addition,ann=-1 mode with frequency ~30 kHz is also observed on the magnetic fluctuation.Although this mode is very weak in the 42.4 GHz PCR signal,a finite coherence between PCR and magnetic signals in figure 3(e)for the 30 kHz mode can be observed.As shown later,the 42.4 GHz PCR is located in the pedestal region.Therefore,the 30 kHz mode is a pedestal mode.Further,the mode frequency remains almost constant while the QCFs’ frequencies show a gradual decrease after 3.12 s.This indicates that they are two different pedestal modes.The 30 kHz mode could be the magnetic coherence mode(MCM)which is with ann=-1,frequency ~30 kHz and with a strong magnetic fluctuation but very weak density and temperature fluctuations[24].Figure 4 shows the fluctuation spectrograms for all eight channels of the O-mode PCR.It is shown that only five channels with a frequency from 24.8 GHz to 48 GHz can observe the phenomena similar to those described above.Figure 5 shows the density profiles and the cutoff positions of the O-mode PCR att=3.025 s andt=3.125 s respectively.From figures 4 and 5,it is seen that the disappearance of broadband fluctuation and the appearance of QCFs occur just at the pedestal gradient region.If we have only the fourchannel 20–40 GHz reflectometry,it is impossible to determine whether these phenomena occur more inside the plasma.

    Figure 2.Time evolution of(a)heating power,(b)stored energy,(c)line average electron density,(d) H98,(e)Dα emission.Vertical dashed line indicates the L-H transition.

    Figure 3.(a)Dα signal,(b)pedestal density ne,ped,(c)fluctuation spectrogram of 42.4 GHz reflectometry,(d)magnetic fluctuation spectrogram measured by magnetic probes,(e)the coherence spectrum between the magnetic signal and 42.4 GHz reflectometry fluctuation.

    Figure 4.The fluctuation spectrograms measured by the eight-channel O-mode PCR.

    Figure 5.The electron density profile and the cutoffs for O-mode fluctuation reflectometer at t=3.025 s and t=3.125 s.The vertical dashed line represents the separatrix.

    Figure 6 shows the comparison of reflectometry fluctuation betweent=3.025 s andt=3.125 s for edge and core regions,respectively.Since the density is increased in the latter time,all the reflectometry cutoffs in fact move outwards.As shown in figure 5,the cutoffs for reflectometry channels in the pedestal gradient region,especially those with a frequency of less than 33 GHz,have little changes due to the steep density gradient.So the 33 GHz reflectometry fluctuation at the two times is chosen to compare for the fluctuation in the edge,as shown in figures 6(a)–(c).The power spectra in figure 6(a)clearly show that the low frequency broadband fluctuation with a frequency of less than 50 kHz is strongly suppressed but the QCFs are stimulated att=3.125 s.As introduced in section 2,each PCR channel has two poloidal measurements and thus poloidal correlation analysis can be applied.In this work,we mainly apply the correlation analysis in the frequency domain,from which coherence spectra and cross-phase spectra can be obtained.Figure 6(b)shows the coherence spectra from the 33 GHz channel for the two times,respectively.It is seen that the frequency domain with significant coherence att=3.025 s is at the range of the low frequency broadband fluctuation.But att=3.125 s,the frequency domain with significant coherence is mainly in the region of QCFs and extends up to 200 kHz.From the crossphase spectrum,the poloidal wavenumber(kθ)spectrum can be obtained by calculating the ratio between the cross-phase and the poloidal separation.Here,the poloidal separation is calculated by a ray-tracing code[25].Figure 6(c)shows thekθspectra for 33 GHz reflectometry fluctuation.It is seen that the low frequency broadband fluctuation att=3.025 s is withkθ=0–1 cm-1while the fluctuation with significant coherence att=3.125 s is withkθ<0.5 cm-1.For comparison of core fluctuation,the 48 GHz reflectometry att=3.025 s and the 52.6 GHz reflectometry att=3.125 s are chosen since their cutoffs are at the same radial location(R~2.2 m)at the two times,as shown in figure 5.Figures 6(d)–(f)are the poloidal correlation analysis for the core fluctuations.The power spectra in figure 6(d)indicate that the fluctuations atR~2.2 m at the two times are broadband fluctuations.The frequency range with significant coherence att=3.025 s is less than 100 kHz withkθ<3 cm-1while that att=3.125 s extends up to 150 kHz withkθ<5 cm-1.

    Figure 6.The poloidal correlation analysis for edge and core fluctuations at t=3.025 s and t=3.125 s.(a)and(d)are the power spectra,(b)and(e)the coherence spectra,(c)and(f)the poloidal wave number spectra.

    It is shown above that the pedestal is dominated by the low frequency broadband fluctuation before 3.04 s after which the pedestal is dominated by QCFs.In order to understand this phenomenon,the edge turbulence perpendicular velocities(⊥u)att=3.025 s andt=3.125 s measured by a multichannel Doppler backscattering(DBS)diagnostics[26]are compared,as shown in figure 7.The diagnostics launches microwave beams with oblique angles and receives the backscattered signals.As a result,the turbulence with specific perpendicular wave number(⊥k)can be measured.For the case shown in figure 7,the⊥kfor different channels range from 3.5 cm-1to 4.8 cm-1.As shown in the figure,the main difference between⊥uprofiles is that the velocity atR~2.29 m,just the pedestal steep gradient region,changes from ~-2.5 km s-1att=3.025 s to ~-8 km s-1att=3.125 s.Here,the negative⊥urepresents a velocity in the electron diamagnetic drift direction.Generally,this velocity comes from a combination of plasmaE×Bvelocity and turbulence phase velocity in the plasma frame,i.e.In EAST,it is usually found that theE×Bvelocity dominated in⊥uat the pedestal region and thus the estimatedEris usually similar to that estimated from radial force balance[27].Therefore,the change of⊥uin figure 7 mainly reflects theErchanges.In principle,PCR can also be used to measure the plasma turbulence velocity by applying the correlation method[8,25].For example,it is seen from figure 6(f)that for the frequency ranges with significant coherence,thekθshows a linear relation with respect to the frequency.By fitting thedata with a line,the turbulence velocity could be estimated asFor the core turbulence shown in figure 6(f),thekθspectra are nearly the same for frequencies of less than 100 kHz.This indicates that the core turbulence,including the turbulence velocity,has little change before and after 3.04 s.It also implies that theErin the core has no changes during the inter-ELM phase.But in the pedestal region,the fluctuations measured by PCR are different,i.e.low frequency broadband fluctuation before 3.04 s but QCFs after 3.04 s.So from the turbulence velocity calculated from PCR data,it will not be unambiguous how theErchanges.However,this point can be overcome by DBS measurement since it measures the fluctuation at the same⊥kbefore and after 3.04 s.For example,the⊥kof the fluctuation measured by DBS channel atR~2.29 m is about 4 cm-1and has little change before and after 3.04 s.Therefore,we use the⊥udata from DBS measurement since we focus on the pedestal region here.A further analysis of the time evolution of pedestal parameters is shown in figure 8.It can be observed that the decrease of⊥uand the suppression of low frequency broadband fluctuation,occur instantly and nearly simultaneously.At the same time,the pedestal density gradient also shows an abrupt increase.More discussions will be presented in section 4.

    Figure 7.The turbulence velocity profiles measured by DBS at t=3.025 s and t=3.125 s.

    Figure 8.Time evolution of(a)pedestal density gradient(maximum value),(b)turbulence velocities measured by DBS,(c)integrated power from 10 kHz to 50 kHz from spectrum of 40 GHz reflectometry,(d)QCF intensity for the frequency bands of 40–120 kHz from the magnetic signal.

    Another interesting phenomenon is that QCFs are stimulated after 3.04 s.Figure 8(d)shows that the amplitude of QCFs appears after a specific density gradient and then increases until saturation is reached.In figure 9,the amplitude of the QCFs is plotted against the density gradient.It is seen that the QCF amplitudes increase with the pedestal gradient.This implies that the QCFs could be destabilized by the density gradient.As shown in figure 3 and discussion therein,both MCM and QCFs are pedestal modes and can be picked up by magnetic signals.It is usually found that different modes can coexist in pedestal region and nonlinear interaction among them could be import for pedestal transport or even ELM[28,29].The bi-spectrum of the magnetic fluctuations has been analyzed as shown in figure 10 and no significant bicoherence value is observed.This implies that the nonlinear interaction between QCFs and MCM could be unavailable for the present case.

    Figure 9.The QCF amplitude is plotted against the density gradient evolution.

    Figure 10.The bi-spectrum analysis from the magnetic fluctuation.

    4.Discussion and summary

    From the O-mode PCR fluctuation measurement during an inter-ELM phase shown in figure 4,it is evident that this inter-ELM phase can be divided into two stages.The first stage is fromt=2.98 s(just after the ELM crash)tot=3.04 s,where the edge pedestal fluctuation is dominated by a low frequency broadband fluctuation with a frequency of less than 50 kHz.The second stage is fromt=3.04 s up to the next ELM crash.As shown in figure 8,the density gradient increase indicates that the pedestal particle transport is improved in the second stage and could be attributed to the suppression of the low frequency broadband fluctuation.This also implies that this fluctuation can drive outward particle flux in the first stage.This fluctuation suppression was clearly closely related to the⊥udecrease or more closely related to theErdecrease in the pedestal region while the causal relationship between them is impossible to resolve based on present analysis.

    In the second stage,a new turbulence component,i.e.QCFs,appear in the pedestal region.The recent observations on DIII-D also indicate that QCFs appear between ELMs and the onset occurs when the temperature gradient threshold is reached[19].A QCM is triggered by the density gradient during the inter-edge localized mode period in HL-2A by linear and nonlinear simulations[30].For the analysis of QCFs on EAST in the present work,only the pedestal density profile with enough time resolution is available and no pedestal temperature profile is available.So we do not know the relation between QCFs and temperature gradient.Nevertheless,the relation between the QCFs’amplitude and density gradient shown in figures 8 and 9 implies that the QCFs are destabilized by the pedestal density gradient,which is similar to the observation in HL-2A.In addition,figure 8 shows that the density gradient remains nearly constant as the QCFs arrived at the saturation value.This implies that QCFs could have an effect on driving outward particle transport.

    With the installation of a U-band reflectometer,the O-mode PCR on EAST is now composed of eight frequencies covering from 20 GHz to 60 GHz,corresponding to a cutoff density from ~0.5×1019m-3to ~4.1×1019m-3.This enables the diagnostic to simultaneously measure the fluctuation from edge to core in most of the EAST operations.In addition,each frequency has two poloidal measurements which can be used for poloidal correlation analysis.During an inter-ELM phase,the PCR measurement shows that it can be divided into two stages according to the behavior of the edge pedestal fluctuations.The pedestal in the first stage is dominated by a low-frequency broadband fluctuation while this fluctuation will be strongly suppressed and new QCFs are stimulated in the second stage.It seems that the QCFs are destabilized by the pedestal density gradient.The core fluctuation,however,shows no significant change in the two stages of the inter-ELM phase.

    Acknowledgments

    The authors are grateful to Dr C.Zhou who helped to analyze the DBS data.This work has been supported by the National Key R&D Program of China(No.2017YFE0301205),and National Natural Science Foundation of China(Nos.11875289,11675211,11805136,and 12075284).

    ORCID iDs

    猜你喜歡
    劉煜康寧張濤
    Game Theory in Climate Change Economics
    留學(xué)(2022年14期)2022-09-27 09:21:12
    The Foundations of Physics
    留學(xué)(2022年14期)2022-09-27 09:21:04
    張濤書法作品
    冰城“方艙”開建!
    人以修身為本 年年月月康寧
    劉康寧
    劉煜:“90后”閨門旦的水墨青春
    金色年華(2017年7期)2017-06-21 09:27:53
    康寧SMF-28?ULL光纖
    康寧SMF-28?ULL光纖
    Analysis of the Rupture of Sino—Soviet Alliance
    科技視界(2015年9期)2015-04-07 11:07:33
    亚洲欧洲精品一区二区精品久久久| 亚洲成人精品中文字幕电影| 欧美丝袜亚洲另类 | 丝袜美腿诱惑在线| 国产高清有码在线观看视频 | 午夜老司机福利片| 亚洲国产精品合色在线| 欧美zozozo另类| 一进一出好大好爽视频| 国产男靠女视频免费网站| 亚洲成人久久性| 韩国av一区二区三区四区| 91大片在线观看| 亚洲精品久久国产高清桃花| 99国产精品99久久久久| 欧洲精品卡2卡3卡4卡5卡区| 成年人黄色毛片网站| 一级片免费观看大全| а√天堂www在线а√下载| 亚洲男人天堂网一区| 18禁黄网站禁片免费观看直播| 国产亚洲精品一区二区www| 欧美激情极品国产一区二区三区| 日韩 欧美 亚洲 中文字幕| 18禁观看日本| 欧美三级亚洲精品| 一区二区三区国产精品乱码| 最近最新中文字幕大全免费视频| 午夜视频精品福利| av天堂在线播放| av在线播放免费不卡| 久久亚洲精品不卡| 日韩欧美一区视频在线观看| www日本黄色视频网| 精品乱码久久久久久99久播| 91麻豆精品激情在线观看国产| 国产蜜桃级精品一区二区三区| 精品国产一区二区三区四区第35| 亚洲美女黄片视频| 亚洲av成人不卡在线观看播放网| 精品久久久久久,| 久久精品夜夜夜夜夜久久蜜豆 | 真人做人爱边吃奶动态| 午夜福利欧美成人| 成人精品一区二区免费| 精品一区二区三区四区五区乱码| av片东京热男人的天堂| 久久草成人影院| 国产av又大| 国产麻豆成人av免费视频| 成人国语在线视频| 久久久久九九精品影院| 中文字幕另类日韩欧美亚洲嫩草| 久久久国产精品麻豆| 国产精品自产拍在线观看55亚洲| 精品免费久久久久久久清纯| 欧美成人一区二区免费高清观看 | 最近在线观看免费完整版| 香蕉国产在线看| 又大又爽又粗| 嫁个100分男人电影在线观看| 给我免费播放毛片高清在线观看| 国产精品久久久久久人妻精品电影| 亚洲av熟女| 一个人观看的视频www高清免费观看 | 欧美中文日本在线观看视频| 色综合站精品国产| 啦啦啦 在线观看视频| 最近最新中文字幕大全免费视频| 91国产中文字幕| 热99re8久久精品国产| 亚洲欧美激情综合另类| 成年免费大片在线观看| a在线观看视频网站| 欧美zozozo另类| 国产av不卡久久| 国产激情欧美一区二区| 九色国产91popny在线| 日本在线视频免费播放| 制服人妻中文乱码| 天堂影院成人在线观看| 在线av久久热| 国产精品久久久久久人妻精品电影| 色播亚洲综合网| 国产午夜精品久久久久久| 亚洲中文av在线| 亚洲中文av在线| 成在线人永久免费视频| 国产精品免费一区二区三区在线| 色综合亚洲欧美另类图片| 亚洲片人在线观看| 国产精品久久久人人做人人爽| 欧美三级亚洲精品| 久久这里只有精品19| 黄色片一级片一级黄色片| 精品日产1卡2卡| 国内精品久久久久精免费| 久久久久免费精品人妻一区二区 | 色尼玛亚洲综合影院| 久久中文字幕人妻熟女| 极品教师在线免费播放| 18禁裸乳无遮挡免费网站照片 | 亚洲人成网站高清观看| 成人精品一区二区免费| 亚洲一区中文字幕在线| 亚洲中文字幕一区二区三区有码在线看 | av免费在线观看网站| 久久国产精品人妻蜜桃| 午夜福利在线观看吧| 日本免费a在线| 男女之事视频高清在线观看| 欧美日韩乱码在线| 国产伦人伦偷精品视频| 日日干狠狠操夜夜爽| 亚洲七黄色美女视频| 久久亚洲真实| 国内毛片毛片毛片毛片毛片| 成在线人永久免费视频| 91av网站免费观看| 午夜福利免费观看在线| 90打野战视频偷拍视频| 亚洲中文av在线| 亚洲九九香蕉| 亚洲精品中文字幕一二三四区| 成人亚洲精品一区在线观看| 欧美性猛交黑人性爽| 国产精品爽爽va在线观看网站 | 国产精华一区二区三区| 亚洲五月婷婷丁香| 大香蕉久久成人网| 大香蕉久久成人网| 一本一本综合久久| 操出白浆在线播放| 日韩一卡2卡3卡4卡2021年| 久久精品国产99精品国产亚洲性色| 成年女人毛片免费观看观看9| 99热6这里只有精品| 免费在线观看亚洲国产| 久久久精品国产亚洲av高清涩受| av片东京热男人的天堂| 人人妻人人澡人人看| 真人一进一出gif抽搐免费| 欧美人与性动交α欧美精品济南到| 久久精品成人免费网站| 亚洲成a人片在线一区二区| x7x7x7水蜜桃| 国产色视频综合| 国产伦人伦偷精品视频| 亚洲熟女毛片儿| 手机成人av网站| 中文亚洲av片在线观看爽| 久久精品人妻少妇| 美女大奶头视频| 久久久国产精品麻豆| 听说在线观看完整版免费高清| 69av精品久久久久久| 国产精品久久久人人做人人爽| 亚洲 欧美一区二区三区| 搞女人的毛片| 老汉色∧v一级毛片| av中文乱码字幕在线| 一级a爱片免费观看的视频| 日韩欧美一区视频在线观看| 19禁男女啪啪无遮挡网站| 午夜a级毛片| 日韩三级视频一区二区三区| 久久久久久久午夜电影| 中文字幕另类日韩欧美亚洲嫩草| bbb黄色大片| 看免费av毛片| 久热爱精品视频在线9| 欧美在线黄色| 欧美性猛交╳xxx乱大交人| 真人一进一出gif抽搐免费| 香蕉av资源在线| av中文乱码字幕在线| 日日夜夜操网爽| 成人18禁高潮啪啪吃奶动态图| 欧美精品亚洲一区二区| 午夜福利18| 亚洲一码二码三码区别大吗| 国产精品亚洲av一区麻豆| 看片在线看免费视频| 日韩中文字幕欧美一区二区| 久久中文看片网| 十八禁人妻一区二区| 午夜久久久久精精品| 亚洲欧美精品综合一区二区三区| 免费人成视频x8x8入口观看| 在线观看www视频免费| 婷婷六月久久综合丁香| 18禁裸乳无遮挡免费网站照片 | 一边摸一边做爽爽视频免费| 国产精品一区二区三区四区久久 | 亚洲av中文字字幕乱码综合 | 欧美绝顶高潮抽搐喷水| 精品欧美国产一区二区三| 99热6这里只有精品| 人妻丰满熟妇av一区二区三区| 中文在线观看免费www的网站 | 精华霜和精华液先用哪个| 宅男免费午夜| 99久久无色码亚洲精品果冻| 国产人伦9x9x在线观看| 一区二区三区激情视频| 黄色视频不卡| 国产视频内射| 国产精品国产高清国产av| 国产av一区二区精品久久| 青草久久国产| 在线播放国产精品三级| 亚洲精品中文字幕在线视频| 男女之事视频高清在线观看| 久久久久久久精品吃奶| 99热6这里只有精品| 级片在线观看| 老司机在亚洲福利影院| 国产主播在线观看一区二区| а√天堂www在线а√下载| 99久久国产精品久久久| 热re99久久国产66热| 久久久久久九九精品二区国产 | 在线天堂中文资源库| 亚洲aⅴ乱码一区二区在线播放 | 非洲黑人性xxxx精品又粗又长| 国产亚洲精品综合一区在线观看 | 亚洲自拍偷在线| 91成年电影在线观看| 免费在线观看成人毛片| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美国产一区二区入口| 国产又爽黄色视频| 成人免费观看视频高清| 午夜精品久久久久久毛片777| 成人18禁在线播放| 国产亚洲精品久久久久久毛片| 国产蜜桃级精品一区二区三区| 欧美日韩亚洲综合一区二区三区_| 宅男免费午夜| 久久久久九九精品影院| 脱女人内裤的视频| 久久欧美精品欧美久久欧美| 日韩欧美免费精品| 久久久国产成人精品二区| 国产亚洲精品综合一区在线观看 | 无限看片的www在线观看| 一进一出抽搐gif免费好疼| 亚洲第一青青草原| 午夜精品久久久久久毛片777| 国产成人精品久久二区二区免费| 一区二区三区高清视频在线| 午夜影院日韩av| 亚洲中文av在线| 黄片大片在线免费观看| 欧美国产日韩亚洲一区| 搡老熟女国产l中国老女人| 亚洲精品一卡2卡三卡4卡5卡| 亚洲欧美日韩无卡精品| 精品国产乱码久久久久久男人| 午夜精品久久久久久毛片777| 天堂影院成人在线观看| 日本熟妇午夜| 97碰自拍视频| 午夜福利免费观看在线| 午夜精品久久久久久毛片777| 欧洲精品卡2卡3卡4卡5卡区| 夜夜看夜夜爽夜夜摸| 美女高潮喷水抽搐中文字幕| 大香蕉久久成人网| 精品一区二区三区av网在线观看| 熟女电影av网| 国产精品,欧美在线| 久久性视频一级片| 色av中文字幕| 色老头精品视频在线观看| 久热这里只有精品99| 少妇裸体淫交视频免费看高清 | 性色av乱码一区二区三区2| 亚洲欧美精品综合久久99| 亚洲欧美精品综合一区二区三区| 久久亚洲精品不卡| 久久久久国内视频| 精品第一国产精品| 一区二区三区激情视频| 在线免费观看的www视频| www.www免费av| 欧美久久黑人一区二区| 国产精品一区二区精品视频观看| 女人高潮潮喷娇喘18禁视频| 91成年电影在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国内久久婷婷六月综合欲色啪| 亚洲av成人一区二区三| 国产爱豆传媒在线观看 | 国产伦人伦偷精品视频| 日韩欧美在线二视频| 中文亚洲av片在线观看爽| 日韩三级视频一区二区三区| 亚洲精华国产精华精| 成熟少妇高潮喷水视频| 黄片播放在线免费| 亚洲国产日韩欧美精品在线观看 | 国产91精品成人一区二区三区| 香蕉国产在线看| 在线国产一区二区在线| 人人妻,人人澡人人爽秒播| 国产亚洲精品久久久久5区| 成人18禁在线播放| 男人舔女人的私密视频| 久久香蕉国产精品| 老司机午夜十八禁免费视频| 亚洲中文日韩欧美视频| 国产成人欧美| 国产高清激情床上av| 极品教师在线免费播放| 99久久精品国产亚洲精品| 亚洲午夜理论影院| 99国产极品粉嫩在线观看| 亚洲av日韩精品久久久久久密| tocl精华| 国产精品一区二区免费欧美| 精品不卡国产一区二区三区| 久久狼人影院| 久久精品国产亚洲av高清一级| 最新在线观看一区二区三区| 国产精品免费视频内射| 日本精品一区二区三区蜜桃| 美女 人体艺术 gogo| 老司机深夜福利视频在线观看| 精品人妻1区二区| or卡值多少钱| 怎么达到女性高潮| 又黄又爽又免费观看的视频| 免费av毛片视频| 欧美日韩一级在线毛片| 男男h啪啪无遮挡| 国产又色又爽无遮挡免费看| 国产成人影院久久av| 久久 成人 亚洲| 亚洲美女黄片视频| 国产精品久久视频播放| 精品一区二区三区av网在线观看| 老汉色∧v一级毛片| 无遮挡黄片免费观看| 国产精品自产拍在线观看55亚洲| 国产亚洲欧美98| 无限看片的www在线观看| av在线播放免费不卡| 99久久无色码亚洲精品果冻| 在线播放国产精品三级| 午夜视频精品福利| 国产成人精品无人区| 日本在线视频免费播放| 色哟哟哟哟哟哟| 欧美性猛交╳xxx乱大交人| 国产高清videossex| 999精品在线视频| 亚洲精品中文字幕一二三四区| 中文字幕久久专区| 中文字幕人成人乱码亚洲影| 日本免费a在线| 国产精品 欧美亚洲| 日韩免费av在线播放| 黑丝袜美女国产一区| 国产v大片淫在线免费观看| 亚洲精品国产一区二区精华液| 国产又爽黄色视频| 免费在线观看亚洲国产| 女性被躁到高潮视频| 成在线人永久免费视频| 日韩国内少妇激情av| 久久中文字幕人妻熟女| 久久 成人 亚洲| 女性生殖器流出的白浆| 亚洲欧美激情综合另类| 999久久久国产精品视频| 制服诱惑二区| av免费在线观看网站| 一夜夜www| 女人爽到高潮嗷嗷叫在线视频| 久久中文字幕一级| 两性午夜刺激爽爽歪歪视频在线观看 | 非洲黑人性xxxx精品又粗又长| 大型黄色视频在线免费观看| 欧美成狂野欧美在线观看| 天天一区二区日本电影三级| 日韩视频一区二区在线观看| 免费一级毛片在线播放高清视频| 久久久久久大精品| 精品久久久久久久久久免费视频| 亚洲自拍偷在线| 老司机午夜福利在线观看视频| 波多野结衣高清无吗| 丝袜人妻中文字幕| 色老头精品视频在线观看| 在线免费观看的www视频| 人妻久久中文字幕网| 嫩草影视91久久| 在线看三级毛片| 嫩草影视91久久| xxxwww97欧美| 欧美+亚洲+日韩+国产| 大香蕉久久成人网| 老汉色∧v一级毛片| 午夜福利视频1000在线观看| 国产黄片美女视频| 黄片大片在线免费观看| 亚洲 欧美 日韩 在线 免费| 麻豆国产av国片精品| 欧美成人午夜精品| 51午夜福利影视在线观看| 精品卡一卡二卡四卡免费| 在线天堂中文资源库| 中文字幕高清在线视频| 久久香蕉国产精品| 精品久久久久久久人妻蜜臀av| 天天添夜夜摸| 亚洲国产日韩欧美精品在线观看 | 人妻久久中文字幕网| 午夜福利在线在线| 国产成人av教育| 成人国产一区最新在线观看| 欧美成狂野欧美在线观看| 手机成人av网站| 欧美日韩中文字幕国产精品一区二区三区| 特大巨黑吊av在线直播 | 久久 成人 亚洲| av片东京热男人的天堂| 亚洲自偷自拍图片 自拍| 男人舔女人下体高潮全视频| 视频在线观看一区二区三区| 国产av一区在线观看免费| 亚洲精品一区av在线观看| tocl精华| 久久精品亚洲精品国产色婷小说| 国产精品一区二区三区四区久久 | 欧美丝袜亚洲另类 | 亚洲精品一卡2卡三卡4卡5卡| 午夜免费观看网址| 久久天躁狠狠躁夜夜2o2o| 人人妻人人看人人澡| 日本 av在线| 99在线视频只有这里精品首页| 丰满的人妻完整版| 又黄又粗又硬又大视频| av欧美777| 男人舔女人下体高潮全视频| 免费在线观看成人毛片| 国产亚洲精品久久久久久毛片| 大型av网站在线播放| 黄色a级毛片大全视频| 制服丝袜大香蕉在线| 999久久久精品免费观看国产| 国产精品一区二区三区四区久久 | 1024手机看黄色片| 两性午夜刺激爽爽歪歪视频在线观看 | 级片在线观看| av天堂在线播放| 午夜激情福利司机影院| 日韩国内少妇激情av| 在线永久观看黄色视频| 中出人妻视频一区二区| 欧美又色又爽又黄视频| 在线av久久热| 中文字幕人成人乱码亚洲影| 日韩欧美在线二视频| 中文字幕人妻丝袜一区二区| 精品国产乱子伦一区二区三区| 久久久久久国产a免费观看| 午夜日韩欧美国产| 叶爱在线成人免费视频播放| 一二三四在线观看免费中文在| 欧美zozozo另类| 精品国产超薄肉色丝袜足j| 桃红色精品国产亚洲av| 男人舔奶头视频| 午夜福利成人在线免费观看| 午夜a级毛片| 日韩大尺度精品在线看网址| 午夜免费观看网址| 可以在线观看毛片的网站| 欧美日韩乱码在线| 欧美日韩瑟瑟在线播放| 欧美成狂野欧美在线观看| av天堂在线播放| 国产单亲对白刺激| 欧美午夜高清在线| 一本精品99久久精品77| videosex国产| 激情在线观看视频在线高清| 亚洲aⅴ乱码一区二区在线播放 | 成人特级黄色片久久久久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 999久久久国产精品视频| 亚洲欧美精品综合久久99| 一级a爱片免费观看的视频| 国产av一区在线观看免费| av有码第一页| 无限看片的www在线观看| 日韩大码丰满熟妇| 亚洲一区中文字幕在线| a在线观看视频网站| 日韩欧美国产一区二区入口| 精品午夜福利视频在线观看一区| 男女床上黄色一级片免费看| 亚洲欧美日韩高清在线视频| 日本免费a在线| 岛国在线观看网站| 久久性视频一级片| 久久久久久人人人人人| 97超级碰碰碰精品色视频在线观看| ponron亚洲| e午夜精品久久久久久久| 免费av毛片视频| 精品国产乱子伦一区二区三区| 女性生殖器流出的白浆| 欧美精品亚洲一区二区| 18美女黄网站色大片免费观看| 好男人电影高清在线观看| 国产97色在线日韩免费| 99热只有精品国产| 国产精品亚洲美女久久久| 久久精品国产亚洲av高清一级| 国产一级毛片七仙女欲春2 | 黄色成人免费大全| 大香蕉久久成人网| 一区二区三区高清视频在线| 两性夫妻黄色片| 777久久人妻少妇嫩草av网站| 成在线人永久免费视频| 9191精品国产免费久久| 长腿黑丝高跟| 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩一区二区三| 国产又黄又爽又无遮挡在线| 亚洲精品久久成人aⅴ小说| 亚洲精品国产一区二区精华液| 国产成人系列免费观看| 午夜久久久在线观看| 国产又爽黄色视频| 国产精品一区二区免费欧美| 男女之事视频高清在线观看| 欧美精品亚洲一区二区| 很黄的视频免费| 黄色女人牲交| 黄色a级毛片大全视频| 18禁美女被吸乳视频| 女同久久另类99精品国产91| 午夜福利在线观看吧| 亚洲电影在线观看av| 久久精品91无色码中文字幕| 中文字幕最新亚洲高清| 亚洲男人天堂网一区| 色尼玛亚洲综合影院| 国产精品久久久人人做人人爽| 老司机午夜福利在线观看视频| 一边摸一边做爽爽视频免费| 99riav亚洲国产免费| 久久久久免费精品人妻一区二区 | 夜夜夜夜夜久久久久| 身体一侧抽搐| 国产色视频综合| 曰老女人黄片| 制服丝袜大香蕉在线| 好看av亚洲va欧美ⅴa在| 波多野结衣高清作品| 首页视频小说图片口味搜索| 一进一出抽搐gif免费好疼| 嫁个100分男人电影在线观看| 又紧又爽又黄一区二区| 久久性视频一级片| 国产亚洲精品久久久久久毛片| 制服诱惑二区| 国产一级毛片七仙女欲春2 | 怎么达到女性高潮| www.自偷自拍.com| 亚洲成av片中文字幕在线观看| av片东京热男人的天堂| 村上凉子中文字幕在线| 日韩欧美三级三区| 免费看十八禁软件| 久久久久免费精品人妻一区二区 | 老汉色av国产亚洲站长工具| 中文在线观看免费www的网站 | 曰老女人黄片| 亚洲av第一区精品v没综合| 中文字幕av电影在线播放| 国产精品久久久人人做人人爽| 久9热在线精品视频| 一级黄色大片毛片| 久久久久国内视频| 精品少妇一区二区三区视频日本电影| 国产精品 国内视频| 12—13女人毛片做爰片一| 99riav亚洲国产免费| 国产精品乱码一区二三区的特点| 午夜福利18| 午夜老司机福利片| 色在线成人网| 亚洲人成77777在线视频| 一本精品99久久精品77| 99re在线观看精品视频| 精品欧美国产一区二区三| 日韩中文字幕欧美一区二区| 99久久无色码亚洲精品果冻| 国产激情欧美一区二区| 午夜a级毛片| 天堂影院成人在线观看| 国产精品免费一区二区三区在线| 久久 成人 亚洲| 亚洲熟妇熟女久久| 国产熟女xx| 成人免费观看视频高清| 欧美一级a爱片免费观看看 | 欧美 亚洲 国产 日韩一|