• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An active tunable Fano switch in a plasmafilled superlattice array

    2021-07-07 02:40:38TaoFU傅濤TianboYANG楊天波YinbingAN安銀冰QiLI李琦andZilanDENG鄧子嵐
    Plasma Science and Technology 2021年7期
    關(guān)鍵詞:天波李琦

    Tao FU(傅濤),Tianbo YANG(楊天波),Yinbing AN(安銀冰),Qi LI(李琦),?and Zilan DENG(鄧子嵐)

    1 Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology,Guilin 541004,People’s Republic of China

    2 Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications,Institute of Photonics Technology,Jinan University,Guangzhou 510632,People’s Republic of China

    Abstract We propose a Fano switch arising from the superlattice array of a plasma-filled quartz tube,which can be tuned and reconfigured by the plasma density in the tube.The generation of the switch depends on a Fano band that is induced by the interference between the Mie resonance in an isolated cylinder and Bragg scattering in a periodic array.The underlying dispersion characteristics reveal that a localized tunable flat band corresponding to the Mie resonance plays an important role in the appearance of the Fano resonance.This active tunable switch can be potentially applied to microwave communications as a single-pole multi-throw switch and to monitor environmental variables that impact the plasma density.

    Keywords:gaseous plasma,Fano resonance,reconfigurable,tunable,switch

    1.Introduction

    Plasma,a free electron gas in the bulk domain,generated by discharging a gaseous mixture of argon and mercury[1],is in stark contrast with the surface plasmon that only exists on the interfaces between metallic and dielectric materials[2].The dielectric constant of plasma is actively tunable by varying the plasma density[3,4],which directly determines the plasma frequency[5].This means that plasma-filled tunable devices can be designed without a dependency on changes in geometric parameters.Active and reconfigurable plasma-filled devices have been realized by controlling the physical characteristics of the external magnetic field[6],voltage[7],current[8],gas pressure and other parameters[9].Consequently,plasma photonic crystals(PPCs)have attracted increased research interest in the case of one-,two-and threedimensional systems[3,10–13].Thus far,the PPCs have been used to achieve tunable photonic bandgaps(PBGs)[3,14,15]and introduce peaks in the bandgap[16,17].Recently,Gaoet aldemonstrated a structural tunable PPC in a dielectric barrier discharge by self-organization of the plasma filaments.The plasma structure can be tuned from a square lattice to a triangular lattice by changing the applied voltage[7].Moreover,turning PBGs of one-dimensional photonic crystals on and off by introducing a plasma element has been studied[18].The novel symplectic finite-difference time-domain(SFDTD)has been proposed,which solves the problem of moving PPCs by rewriting the discrete scheme of Maxwell’s equation into a discrete scheme with a velocity variable added[19].For higher permittivity in plasma,the band spectrum is more complicated.Only a part of the frequency bands are periodic bands,while the others are Fano bands with ultrasharp and almost dispersionless features[20].

    Fano resonances[21]with asymmetric line characteristics arise generally from the interaction of bright and dark modes in different shapes.This allows their potential application in switching and sensing[22–24].From plasmonic metamaterial to topological system,the Fano resonances in dielectric objects were observed as the interferences between Mie and incident electromagnetic waves[25–28].In recent years,Mie resonances have also generated Fano bands with Bragg scattering in a dielectric periodic array[20],while the Fano bands in gaseous plasma systems have not yet been reported.Most of the tunable switches depend on variation of the geometric parameters or complicated fabrication to achieve the tunability[29–33],which only achieve passive tunability with less flexibility.Therefore,an active tunable Fano resonance would provide a brilliant future for tunable Fano device applications.

    In this study,the active tunable Fano switch was achieved by the interference between a narrowband Mie resonance and a broadband Bragg resonance in a gaseous plasma-filled superlattice array.The generation of Fano resonance was controlled by the weakening of Bragg scattering from the simple lattice owing to the lack of some plasma cylinders or reduced plasma density.By contrast,the disappearance of Fano resonance can be achieved by reinforcing Bragg scattering with the reverse approach.The tunability of the Fano switch frequency can be realized by changing the plasma density through the external voltage.The frequencies of the Mie resonance were obtained analytically based on the determination of the Mie scattering coefficient of an isolated plasma cylinder.The transmittances and radar cross-section(RCS)of the individual cylinder confirm the analytical results.Moreover,the photonic band structures and boundary conditions are introduced to explain the mechanism of the Fano resonance generated in the superlattice.Accordingly,the origins of the effect of the plasma density,radius of the plasma cylinder,thickness of the quartz tube,and period of the unit cell were evaluated.

    2.Physical model and mechanism of the switch

    The top panel of the figure 1(a)represents a schematic of the gaseous plasma discharge and no discharge when the switch is on(the center circle is blue)and off(the center circle is white),respectively.The density of plasma can be controlled by continually adjusting the voltage or current of the discharge because the plasma is generated by the discharge of a mixture of argon and mercury.The greater of voltage or current,the greater the plasma density in the same container.In the bottom panel of figure 1(a),the on and off states of the switch S1 determine whether the gaseous plasma array is simple periodic or superlattice.The commercial software COMSOL Multiphysics 5.3(based on the finite element method)was adopted in this study.The wave vector of the incident wave was along the –y,the periodic boundary condition was along thexdirection and the vector of magnetic field was out-of-plane.The minor mesh length was 0.00375 mm and the frequency step was 0.001 GHz.The default parameters values werer1=1 mm,r2=0.66 mm,p=18 mm,εq=3.8,andne=2×1012cm?3.The red and blue dashed line areas represent the superlattice cells withp=4dandp=2d,respectively.The plasma densities are the same(ne)whenp=4d.The plasma densities of the center cylinder remain unchanged and the others(ne')are tuned by the slide rheostats whenp=2d.Figure 1(b)depicts the Fano resonance frequencies as a function ofp.The Fano resonance disappears when the superlattice array(p>3d)degenerates to a simple lattice[34](p=3d).The Fano resonance frequency shifts toward higher frequencies aspincreases from 10 mm to 11.7 mm(p<3d)indicating that the Fano resonance induced by the Mie resonance is influenced by the strong field coupling between adjacent units.In contrast,the Fano resonance frequency remains almost unchanged whenp>3din figure 1(b).This is because the near-field coupling in the superlattice dominates the Bragg scattering and the weak field coupling between adjacent lattices hardly influences the Fano resonance.

    The states of the Fano switch are shown in figure 1(c).The Fano resonance appears at approximately 7.1 GHz when the switch S1 is off.Thus,the active switch can be achieved by setting the switch S1 to the on and off states.The field componentExplots of the on and off states are shown in insets of figure 1(c).These plots demonstrate that the Fano resonance is formed by destructive interference between two dark modes,which requires yield opposite phases and equal electromagnetic waves amplitudes.The electric fields are localized in the bulk-plasma rather than localized around the interface between bulk-plasma and quartz wall,which is explained in the following section.These results show that the Fano resonance can be generated by transforming the simple lattice to a superlattice.Herein,we reveal the mechanism responsible for the Fano resonances with boundary conditions.According to the boundary conditions of the superlattice,the superlattice supports the out-of-phase dark mode in figure 1(c),and there is no phase difference on the two sides of the unit boundaries.When the superlattice degenerates to the simple lattice withp=3d,it is impossible to pick an arbitrary lattice with three cylinders in the simple lattice to fulfill the same phase difference on the opposite boundaries in figure 1(c).Thus,destructive interference will not occur,and the Fano resonance disappears in the simple lattice.Figure 1(d)demonstrates the transmittance curve of the superlattice array(p=2d)which varies as a function of the plasma densityne'.It is clear that the Fano resonance frequency shifts toward higher frequencies with the increase ofne'.The Fano line shapes become wider as the plasma density is far away from 2×1012cm?3.The phenomenon of Fano resonance disappears whenne'=2×1012cm?3.This result is the same as that of the blue curve in figure 1(c)owing to the superlattice transforming to a simple lattice.The electric field distributions of the insets in figure 1(d)prove that the Fano resonance is generated from the interference between two dark modes.The decrease and increase of plasma density will destroy the Bragg scattering in a simple lattice.As a result,the extra resonances and Fano resonance are introduced simultaneously.It is worth mentioning that this Fano resonance can be actively adjusted with a slight density shift ofne'.

    Figure 1.(a)Schematic of the plasma-filled cylinder array with two cases.(b)Transmission spectra of the superlattice array(red‘Unit cell’)varying with the period p from 10.0 mm to 18.0 mm in step of 0.1 mm.(c)The on–off states of active switching.(d)Transmission spectra of the superlattice array(blue ‘Unit cell’)varying with different ne'.

    3.Interference in a superlattice

    The normal incident transverse electric(TE)plane wave propagated through the trimeric medium with a plasma densityne=2×1012cm?3,periodp=18.0 mm,and a gapd=3.9 mm.Clearly,no Fano resonances have arisen at 7.1 GHz(top part of figure 2(a)).However,in the bottom part of figure 2(a),a Fano resonance is clearly present around the frequency of 7.1 GHz in terms of the asymmetric line shape and the out-of-phase(-+-)dark modes(inset in figure 2(a)).The significant Fano resonance is presented as the coupling between the broadband Bragg scattering and the narrowband Mie resonance.In addition,the resonances of the Mie and Bragg are evidenced at approximately 6.3 GHz with a slight frequency difference that results in the double resonant peak at approximately 6.3 GHz in figure 2(b).The field patterns in figure 2(b)are different from the patterns localized in the center of the plasma cylinders in figure 2(a).Whenω<ωpe(the incident wave frequency always fulfils this condition in this study),the plasma has a negative permittivity as a free electron gas.Moreover,the waves are usually forbidden to propagate owing to the cutoff phenomenon when its frequency is below the plasma frequency.

    Figure 2.(a)The transmittance curves of Mie scattering,Bragg scattering and Fano resonance.The periods are p=18.0 mm,p=d, and p=3d with d=3.9 mm,respectively.The transmittance and the resonant field pattern for the shaded area are shown in detail in(b).

    Furthermore,we mainly focused on the surface plasma waves in this study which resemble the localized surface plasmon polaritons of metal,which decrease the operating frequency of surface plasmon polaritons(SPPs)from the optical to microwave region and localize the EM field around a plasma cylinder[11,12,35].The appearance of the Fano resonance provides a passband in the cutoff area.This results in the localization of the electric field in the bulk-plasma rather than at locations around the interface between the bulkplasma and quartz wall.We can observe the excitation of the dipole–quadrupole and dipole-mediated quadrupole–octupole interferences[36],as demonstrated in the bottom part of the inset in figure 2(b).

    In the case of TE waves,the magnetic fieldHzfulfilled the wave equation in the polar coordinate system and the entire space can be classified in three different regions as previously described in reference[37,38],as shown in figure 3(a).Thus,the magnetic field can be described as,

    Figure 3.(a)The cross-section of an isolated gaseous plasma-filled cylinder.(b)Analytical solution of Mie scattering at different n values as defined in equation(6).(c)Comparison of resonance frequency with transmittance(top),radar cross section(RCS)(center),and Qsca(bottom)of the single plasma cylinder.

    with

    and

    In this case,k0,kq,andkpdenote the wave vector in the free space,quartz wall and plasma,respectively.The frequencydependent permittivity of plasma is given by the Drude modelwhereis the plasma frequency.

    To compare the Mie resonance frequency with the Fano resonance frequency,we calculated the scattering efficiencies[38]that are defined as

    Figure 3(b)shows the Mie scattering coefficient with the variousnfor the above equations.The symmetric Lorentz line shape of the resonance peaks obviously manifests the Mie resonant states stimulated at 6.3 GHz and 7.0 GHz.To confirm the analytical results of the Mie resonance,we analyzed the transmittance and the RCS of an isolated plasma-filled cylinder with the same plasma density,as shown in figure 3(c).It is very important to choose the length of the period of the structure to eliminate Bragg scattering between adjacent cells.This must fulfill the condition that there are no significant influences on the Fano line shapes as the period varies.The unchanged line shapes mean that there is no interference between the two adjacent units whenp>3d(from figure 1(b))with three cylinders in a cell.Furthermore,an isolated plasma-filled cylinder in the unit cell with periodp=18.0 mm(p?3d)must satisfy the condition that achieves the elimination of the Bragg scattering even with the periodic boundary condition along thexaxis.A significant transmission dip illustrates the plane wave that stimulates a resonant mode that corresponds to the lower Mie resonance mode,which means that the Mie resonance in the lower-order mode contributes to the formation of the Fano resonance.The enlarged and the normal RCS lines in the middle of figure 3(c)show that the peak frequencies of RCS are identical withQsca.These numerical results are in good agreement with the analytical solution of the Mie resonance.The inset in figure 3(c)illustrates that the Mie resonance results in the localization of the electric field of the Fano resonance at the center of the plasma cylinder rather than around the plasma cylinder,as shown in figures 2(a)and(b).

    4.Band diagrams of the simple lattices and the superlattices

    To explain the cause of the generated Fano resonance in the superlattice array,photonic band structures were studied based on COMSOL Multiphysics 5.3.Figure 4(a)shows the photonic band structure(left-half panel)and the transmittance curve(right-half panel)for a unit cell with one plasma cylinder and periodp=3d(this parameter is the same as that of the top panel of figure 3(c)).The field patterns at the red dots prove that the nearby flat band corresponds to the lowerorder Mie resonance.The transmittance yields a typical Lorentz line shape,which indicates that a pure Mie resonant mode is stimulated at a frequency of 6.96 GHz.An asymmetric Fano line is generated only during transmittance by a trimeric superlattice with periodp>3d(d=3.9 mm),as shown in figure 4(b).As the existence of a flat band is believed to be a consequence of destructive interference,opposite phases and equal amplitudes of the EM waves are required[39].Thus,the phases of the Fano resonant field patterns of the three plasma-filled cylinders in figures 4(b)and 1(b)are in antiphase(-+-)and almost have equal amplitudes.Moreover,a broadband mode is one of the two requirements for the presentation of Fano resonances,as illustrated in figure 4(c)with periodp=3d(d=3.9 mm).The flat band and the Fano line shape for the lower-order Mie resonance in figures 4(a)and(b)disappear because superlattice structures degenerate to a simple periodic array.

    As described in the Drude model,the dielectric function of the plasma can be varied only by changing the plasma density and incident wave frequency.Therefore,figure 4(d)demonstrates the active tunable photonic flat band,Mie resonance,and Fano resonance,following changes of the plasma density only.It is evident that the resonance frequencies of the three curves shift toward higher frequencies with increasing plasma density.Given that the eigenfrequencies of an isolated plasma cylinder are changed by transforming the plasma density,the Mie resonance frequencies are changed synchronously.Finally,the Fano resonance frequencies are varied in the same way.These results strongly support the fact that the Fano resonances were derived from the coupling between the Mie and Bragg scattering as well as the active tunability achieved by varying the material characteristics(plasma density or dielectric constant)rather than the geometric parameters.The tunable range of Fano resonance by varying plasma density is larger than changing geometric parameters.Figure 4(e)shows the frequency variations of the Mie resonance,Fano resonance and RCS with the increase ofr1in two cases.(a)Fixing the radius of the plasma cylinder,r2unchanged,and(b)fixing the thickness of the quartz tube,r1?r2=0.34 mm unchanged.In both cases,the resonance frequencies of the Fano resonance and RCS are consistent with each other.The existence of the differences between the Mie and the Fano resonances of the two cases arises from the shifts of the scattering boundary conditions.The Mie scattering of an isolated plasma cylinder was calculated in an infinite space without any external disturbance.However,the scattering of a cylinder was influenced by the other two cylinders in the superlattice cell.In case(a),the resonance frequencies decrease owing to the weakening near-field coupling between plasma cylinders asr1increases.The frequency differences between the Fano and Mie resonances are small and stable.This results from the unchanged radius of the plasma cylinders(dominated the near-field coupling),and the thickness of the quartz tube has minor influences on near-field coupling action.In case(b),the resonance frequencies of Mie,Fano and RCS(superlattice)resonances are increased on account of the stronger near-field coupling between plasma cylinders asr2increases.Meanwhile,the frequency differences between the Fano resonance and Mie resonances in case(b)are larger than those in case(a),which is because the coupling is more affected by the increase in the radius of the plasma cylinders than by the increase in the thickness of the quartz tubes.The range of the tunable Fano frequency in case(a)is broader than that in case(b).

    Figure 4.Photonic band structure and transmittance curves for(a)an isolated cylinder with period p,(b)a superlattice array with period p,and(c)a simple period array(d=3.9 mm).(d)The active tunability of Qsca of an isolated plasma cylinder,flat band frequencies of superlattice and the Fano resonance frequency of superlattice by changing plasma density.(e)Mie resonance(MR)frequencies of an isolated plasma cylinder,Fano resonance(FR)frequencies,and RCS of superlattice array as the function of r1 with r1?r2=0.34 mm and r2=0.66 mm.

    5.Conclusion

    We presented herein an active tunable Fano switch which originated from the interference between the narrowband Mie and broadband Bragg resonances in a gaseous plasma-filled superlattice array.The Mie scattering coefficient of an isolated gaseous plasma-filled cylinder was analyzed to explain the Mie resonance contribution to the generation of the Fano resonance.The photonic band structures demonstrate that the Mie and the Fano resonances corresponded to a photonic flat band.Fano resonance disappeared when the superlattice array degenerated to a simple periodic array because destructive interference cannot occur in a simple periodic array without inducing phase differences.The tunability can be achieved by actively varying the plasma density rather than varying the passive geometric parameters.The frequency differences between the Fano and Mie resonances were attributed to the variation of the scattering boundary condition owing to the changes of the radius of the plasma and the thickness of the quartz tube.The tunability of the Fano switch makes it potentially applicable to microwave communications as a single-pole multi-throw switch and to monitor environmental variables that impact the plasma density.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China(Nos.11965009,61761010,61765004,61764001 and 62075084)and Natural Science Foundation of Guangxi(Nos.2018JJA170010 and 2018GXNSFAA281193),and by the Guangdong Basic and Applied Basic Research Foundation(No.2020A1515010615).

    ORCID iDs

    猜你喜歡
    天波李琦
    A secure image protection algorithm by steganography and encryption using the 2D-TSCC*
    論非物質(zhì)文化遺產(chǎn)“活化”傳承
    高頻電磁波的天波傳播
    潘石屹刷新朋友圈
    博客天下(2016年14期)2016-09-15 13:46:42
    分布式高頻超視距雷達探測與組網(wǎng)技術(shù)研究
    科技資訊(2016年9期)2016-05-14 00:55:35
    國外天波超視距雷達布局及啟示
    李琦作品
    李琦作品
    Tracking the Moisture Sources of an Extreme Precipitation Event in Shandong,China in July 2007:A Computational Analysis
    天波信息利潤率逐年下降 近四成凈利潤來自政府補助
    投資者報(2014年31期)2014-08-26 20:55:55
    国产精品免费视频内射| 中文字幕人妻熟女乱码| 老鸭窝网址在线观看| 成人手机av| 免费不卡黄色视频| 可以在线观看毛片的网站| 夜夜看夜夜爽夜夜摸| 在线观看一区二区三区| 大型av网站在线播放| av片东京热男人的天堂| 国产亚洲精品av在线| 妹子高潮喷水视频| 久久精品影院6| 亚洲人成电影观看| 精品久久久久久久久久免费视频| 动漫黄色视频在线观看| 91大片在线观看| 国产乱人伦免费视频| 亚洲国产精品999在线| 日韩视频一区二区在线观看| 很黄的视频免费| 一级毛片精品| 老熟妇乱子伦视频在线观看| 一本综合久久免费| 久久精品国产亚洲av高清一级| 亚洲av成人av| 欧美激情极品国产一区二区三区| 亚洲av电影在线进入| 亚洲久久久国产精品| av有码第一页| 久久久国产精品麻豆| 精品免费久久久久久久清纯| 色精品久久人妻99蜜桃| 黄片大片在线免费观看| 国产私拍福利视频在线观看| 美女高潮喷水抽搐中文字幕| 久久精品人人爽人人爽视色| 亚洲av熟女| a在线观看视频网站| 99在线视频只有这里精品首页| 99久久国产精品久久久| 久久草成人影院| 丰满人妻熟妇乱又伦精品不卡| 50天的宝宝边吃奶边哭怎么回事| 欧美乱码精品一区二区三区| 中文字幕精品免费在线观看视频| 又紧又爽又黄一区二区| 日韩精品青青久久久久久| 在线永久观看黄色视频| 88av欧美| 日日干狠狠操夜夜爽| 禁无遮挡网站| 成人三级做爰电影| 亚洲在线自拍视频| 黄色毛片三级朝国网站| 手机成人av网站| 亚洲一区二区三区色噜噜| 男女午夜视频在线观看| 午夜福利一区二区在线看| 久久久久久久午夜电影| 国产精品 国内视频| 欧美乱妇无乱码| 精品无人区乱码1区二区| 校园春色视频在线观看| 欧美一级a爱片免费观看看 | 午夜福利免费观看在线| 久久久国产精品麻豆| 精品免费久久久久久久清纯| 一区二区三区精品91| 极品人妻少妇av视频| 午夜福利成人在线免费观看| 欧美久久黑人一区二区| 韩国av一区二区三区四区| 久久国产精品影院| 纯流量卡能插随身wifi吗| 亚洲成人精品中文字幕电影| 18禁国产床啪视频网站| 国产精品爽爽va在线观看网站 | 91老司机精品| 日日夜夜操网爽| 欧美精品啪啪一区二区三区| 一级黄色大片毛片| 免费看a级黄色片| 国产精品久久久人人做人人爽| 亚洲熟妇中文字幕五十中出| 精品久久久久久久毛片微露脸| 久久亚洲真实| 久久久国产成人免费| 法律面前人人平等表现在哪些方面| 久久久久精品国产欧美久久久| 国产成人免费无遮挡视频| 老熟妇乱子伦视频在线观看| www.自偷自拍.com| 一区福利在线观看| 日韩三级视频一区二区三区| 欧美日韩亚洲综合一区二区三区_| 免费看十八禁软件| 国产亚洲欧美98| 9色porny在线观看| 欧美绝顶高潮抽搐喷水| 欧美激情久久久久久爽电影 | 电影成人av| 欧美日韩福利视频一区二区| 久久久久久亚洲精品国产蜜桃av| 高清在线国产一区| 国产伦一二天堂av在线观看| 欧美日韩黄片免| 美女大奶头视频| 日本精品一区二区三区蜜桃| av视频在线观看入口| 黄色片一级片一级黄色片| 日本三级黄在线观看| 黑人操中国人逼视频| 亚洲欧美日韩另类电影网站| 国产三级在线视频| 日韩大码丰满熟妇| 高清毛片免费观看视频网站| 色综合欧美亚洲国产小说| 日日夜夜操网爽| 美女国产高潮福利片在线看| ponron亚洲| 日韩精品免费视频一区二区三区| 亚洲成av片中文字幕在线观看| 久久久精品欧美日韩精品| 久久天躁狠狠躁夜夜2o2o| 99久久精品国产亚洲精品| 国产av一区在线观看免费| 亚洲av成人一区二区三| 一边摸一边做爽爽视频免费| 亚洲中文字幕一区二区三区有码在线看 | 国产成人免费无遮挡视频| 在线十欧美十亚洲十日本专区| 国产精品99久久99久久久不卡| 黑人巨大精品欧美一区二区蜜桃| 他把我摸到了高潮在线观看| 午夜福利免费观看在线| 99在线视频只有这里精品首页| 久久伊人香网站| 色老头精品视频在线观看| 国产三级在线视频| 欧美激情高清一区二区三区| 很黄的视频免费| 精品国产乱子伦一区二区三区| 亚洲欧美精品综合一区二区三区| 色av中文字幕| 岛国视频午夜一区免费看| 母亲3免费完整高清在线观看| 久久久国产成人精品二区| 91在线观看av| 亚洲 国产 在线| www.999成人在线观看| 亚洲国产精品成人综合色| 嫁个100分男人电影在线观看| 性欧美人与动物交配| 亚洲在线自拍视频| 97人妻天天添夜夜摸| 亚洲国产精品999在线| 免费高清在线观看日韩| 后天国语完整版免费观看| 最新美女视频免费是黄的| 99国产精品一区二区三区| 婷婷精品国产亚洲av在线| 99国产精品免费福利视频| 视频在线观看一区二区三区| 首页视频小说图片口味搜索| 久久伊人香网站| 老司机在亚洲福利影院| 亚洲国产精品999在线| 黄频高清免费视频| 首页视频小说图片口味搜索| 女人爽到高潮嗷嗷叫在线视频| 色老头精品视频在线观看| 国产三级在线视频| 啦啦啦 在线观看视频| 国产色视频综合| 丰满人妻熟妇乱又伦精品不卡| 亚洲一区中文字幕在线| 国产亚洲精品第一综合不卡| videosex国产| 好男人在线观看高清免费视频 | 欧美久久黑人一区二区| 国产精品亚洲一级av第二区| 国产亚洲精品第一综合不卡| 日韩三级视频一区二区三区| 如日韩欧美国产精品一区二区三区| 久久午夜综合久久蜜桃| 少妇熟女aⅴ在线视频| 12—13女人毛片做爰片一| 麻豆成人av在线观看| 波多野结衣av一区二区av| 国产三级在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 青草久久国产| 国内久久婷婷六月综合欲色啪| 欧美乱色亚洲激情| 亚洲一区二区三区色噜噜| 在线永久观看黄色视频| 高清黄色对白视频在线免费看| 非洲黑人性xxxx精品又粗又长| 国产精品一区二区免费欧美| 国产精品99久久99久久久不卡| 一级a爱片免费观看的视频| 免费观看人在逋| 性少妇av在线| 精品卡一卡二卡四卡免费| 18禁观看日本| 在线天堂中文资源库| 国产成人影院久久av| 国产精品久久电影中文字幕| 精品国内亚洲2022精品成人| 亚洲精品在线美女| 国产精品一区二区三区四区久久 | 亚洲熟妇熟女久久| 给我免费播放毛片高清在线观看| 少妇的丰满在线观看| 亚洲国产精品合色在线| 每晚都被弄得嗷嗷叫到高潮| 亚洲男人天堂网一区| 午夜福利视频1000在线观看 | 亚洲视频免费观看视频| 国产成人精品无人区| 女人被狂操c到高潮| 国产亚洲精品一区二区www| 人人妻,人人澡人人爽秒播| 亚洲精品国产精品久久久不卡| 大香蕉久久成人网| 久久人妻av系列| 一区二区三区激情视频| 日韩欧美三级三区| a在线观看视频网站| 色综合欧美亚洲国产小说| 午夜福利影视在线免费观看| 三级毛片av免费| 一级毛片精品| 日韩免费av在线播放| 人人妻人人爽人人添夜夜欢视频| 午夜精品在线福利| xxx96com| 久久国产精品影院| 欧美午夜高清在线| 麻豆av在线久日| 久久伊人香网站| 欧美成人午夜精品| 亚洲第一av免费看| 香蕉丝袜av| 成熟少妇高潮喷水视频| 久久久久国产精品人妻aⅴ院| avwww免费| 久久精品成人免费网站| 欧美大码av| 国产一区二区三区视频了| 欧美日本中文国产一区发布| 亚洲一卡2卡3卡4卡5卡精品中文| 国产99久久九九免费精品| 国产精品综合久久久久久久免费 | 操美女的视频在线观看| 搡老熟女国产l中国老女人| 亚洲国产精品sss在线观看| 人人妻人人爽人人添夜夜欢视频| 久久精品人人爽人人爽视色| 国产伦人伦偷精品视频| 成年女人毛片免费观看观看9| 中文字幕精品免费在线观看视频| 丝袜在线中文字幕| 免费少妇av软件| 男女做爰动态图高潮gif福利片 | 一夜夜www| 亚洲狠狠婷婷综合久久图片| 亚洲九九香蕉| 大型av网站在线播放| 精品熟女少妇八av免费久了| 中文字幕高清在线视频| 国产av在哪里看| 黑丝袜美女国产一区| 国产97色在线日韩免费| 搞女人的毛片| 国产又色又爽无遮挡免费看| 在线观看午夜福利视频| 中文字幕最新亚洲高清| 丝袜在线中文字幕| 日韩视频一区二区在线观看| 十分钟在线观看高清视频www| 欧美性长视频在线观看| 欧美在线黄色| 啪啪无遮挡十八禁网站| 伦理电影免费视频| 日本黄色视频三级网站网址| 国产一区二区在线av高清观看| av片东京热男人的天堂| 黄色成人免费大全| 黄片小视频在线播放| 国产国语露脸激情在线看| 我的亚洲天堂| 老熟妇仑乱视频hdxx| 国产av精品麻豆| √禁漫天堂资源中文www| 在线观看免费视频日本深夜| 国产av一区二区精品久久| 又大又爽又粗| 国产激情欧美一区二区| 午夜影院日韩av| 精品免费久久久久久久清纯| 成人三级做爰电影| 亚洲色图av天堂| 亚洲熟妇熟女久久| 99久久精品国产亚洲精品| 亚洲欧美日韩另类电影网站| 欧美日本中文国产一区发布| 日韩一卡2卡3卡4卡2021年| 久久精品亚洲熟妇少妇任你| 中文字幕人成人乱码亚洲影| 久久精品成人免费网站| 国内精品久久久久精免费| 欧美+亚洲+日韩+国产| 亚洲七黄色美女视频| 日本在线视频免费播放| 国产一级毛片七仙女欲春2 | 午夜福利免费观看在线| 99久久国产精品久久久| 国产成+人综合+亚洲专区| 久久婷婷人人爽人人干人人爱 | 国产精品亚洲一级av第二区| www.999成人在线观看| e午夜精品久久久久久久| 午夜激情av网站| 国产一区二区三区综合在线观看| 国内精品久久久久久久电影| 亚洲午夜精品一区,二区,三区| 他把我摸到了高潮在线观看| 欧美人与性动交α欧美精品济南到| 午夜日韩欧美国产| 国产av在哪里看| av网站免费在线观看视频| 黄片播放在线免费| 婷婷精品国产亚洲av在线| 最近最新中文字幕大全免费视频| 久久久久久久久免费视频了| 国产午夜福利久久久久久| 国产精品精品国产色婷婷| 午夜成年电影在线免费观看| 动漫黄色视频在线观看| 91成年电影在线观看| 精品久久久久久成人av| 日本黄色视频三级网站网址| 久久久国产精品麻豆| 精品欧美一区二区三区在线| 亚洲欧美日韩另类电影网站| 亚洲精品美女久久av网站| 桃色一区二区三区在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美在线一区亚洲| 成人18禁在线播放| 天天躁夜夜躁狠狠躁躁| 久久久精品欧美日韩精品| 国产精品 欧美亚洲| 色哟哟哟哟哟哟| 久久中文字幕人妻熟女| 熟女少妇亚洲综合色aaa.| 激情在线观看视频在线高清| 午夜免费观看网址| 中文字幕人妻熟女乱码| 欧美乱码精品一区二区三区| 国产在线观看jvid| 99riav亚洲国产免费| 97超级碰碰碰精品色视频在线观看| 日韩国内少妇激情av| 免费av毛片视频| 欧美色欧美亚洲另类二区 | а√天堂www在线а√下载| 亚洲第一电影网av| 久久精品91蜜桃| 色综合站精品国产| 欧美日韩亚洲国产一区二区在线观看| 久久久久久免费高清国产稀缺| 90打野战视频偷拍视频| 亚洲av电影不卡..在线观看| 午夜两性在线视频| 亚洲精品粉嫩美女一区| 色综合欧美亚洲国产小说| 妹子高潮喷水视频| 亚洲九九香蕉| 91大片在线观看| 亚洲美女黄片视频| 中亚洲国语对白在线视频| 我的亚洲天堂| 久久久国产欧美日韩av| 亚洲人成电影观看| 欧美乱码精品一区二区三区| 久久精品国产清高在天天线| 久久久精品国产亚洲av高清涩受| 9热在线视频观看99| 国产精品九九99| 免费久久久久久久精品成人欧美视频| 亚洲中文字幕一区二区三区有码在线看 | avwww免费| 99在线视频只有这里精品首页| 欧美乱色亚洲激情| 18禁国产床啪视频网站| 精品一区二区三区四区五区乱码| 国产乱人伦免费视频| 国产三级黄色录像| 国产精品永久免费网站| 大型黄色视频在线免费观看| 亚洲七黄色美女视频| 精品第一国产精品| 自线自在国产av| 亚洲国产精品成人综合色| 午夜免费鲁丝| 亚洲国产精品999在线| 久久香蕉激情| 欧美激情久久久久久爽电影 | 久久影院123| 日韩欧美国产一区二区入口| av超薄肉色丝袜交足视频| 丝袜美足系列| 精品人妻在线不人妻| 日韩有码中文字幕| 亚洲av五月六月丁香网| 88av欧美| 久久久久久亚洲精品国产蜜桃av| 精品一区二区三区视频在线观看免费| 精品免费久久久久久久清纯| 国产高清videossex| 伊人久久大香线蕉亚洲五| 国产精品久久视频播放| 看黄色毛片网站| 男人舔女人下体高潮全视频| tocl精华| 女性被躁到高潮视频| 国产欧美日韩精品亚洲av| 亚洲男人的天堂狠狠| 久久欧美精品欧美久久欧美| 香蕉国产在线看| 国产精品99久久99久久久不卡| 欧美黑人精品巨大| 在线天堂中文资源库| 欧洲精品卡2卡3卡4卡5卡区| 国产精品综合久久久久久久免费 | 国产欧美日韩一区二区精品| 亚洲va日本ⅴa欧美va伊人久久| 免费高清在线观看日韩| 国产99久久九九免费精品| 国产精品久久久人人做人人爽| 国产区一区二久久| 韩国精品一区二区三区| 在线观看午夜福利视频| 又黄又粗又硬又大视频| 免费高清视频大片| 丝袜美腿诱惑在线| 在线观看免费日韩欧美大片| 一区福利在线观看| 少妇裸体淫交视频免费看高清 | 九色亚洲精品在线播放| 久久中文字幕人妻熟女| 免费在线观看日本一区| 少妇被粗大的猛进出69影院| 亚洲成a人片在线一区二区| 亚洲精品中文字幕在线视频| 麻豆av在线久日| 老司机深夜福利视频在线观看| 美女高潮到喷水免费观看| 国产精品 欧美亚洲| 亚洲欧美日韩无卡精品| 99精品久久久久人妻精品| 一边摸一边做爽爽视频免费| 免费女性裸体啪啪无遮挡网站| 丁香六月欧美| 国产主播在线观看一区二区| 欧美成人一区二区免费高清观看 | 无限看片的www在线观看| 久久久久亚洲av毛片大全| 91国产中文字幕| 国产伦一二天堂av在线观看| 美女午夜性视频免费| 黄色片一级片一级黄色片| 妹子高潮喷水视频| av超薄肉色丝袜交足视频| 又黄又粗又硬又大视频| 国产午夜精品久久久久久| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产毛片av蜜桃av| 精品国产一区二区久久| 精品国产超薄肉色丝袜足j| 欧美在线一区亚洲| 国产成+人综合+亚洲专区| 国产一区二区在线av高清观看| 国产片内射在线| 国产真人三级小视频在线观看| 国产精品秋霞免费鲁丝片| 在线观看www视频免费| 日本 欧美在线| 亚洲va日本ⅴa欧美va伊人久久| 日韩三级视频一区二区三区| 国产精品永久免费网站| 大型黄色视频在线免费观看| 波多野结衣一区麻豆| 国产亚洲av高清不卡| 免费搜索国产男女视频| 好看av亚洲va欧美ⅴa在| 国产亚洲欧美在线一区二区| 国产高清videossex| 一级a爱片免费观看的视频| 国产国语露脸激情在线看| 丝袜在线中文字幕| 香蕉国产在线看| 侵犯人妻中文字幕一二三四区| 免费观看人在逋| 亚洲中文日韩欧美视频| 亚洲久久久国产精品| 正在播放国产对白刺激| 在线观看免费视频网站a站| 免费在线观看亚洲国产| 老司机靠b影院| 成人手机av| 女同久久另类99精品国产91| 一级片免费观看大全| 中文字幕精品免费在线观看视频| 亚洲精品粉嫩美女一区| 亚洲在线自拍视频| 1024香蕉在线观看| 中文字幕最新亚洲高清| 在线观看一区二区三区| 女人被狂操c到高潮| 久久久久亚洲av毛片大全| 很黄的视频免费| 此物有八面人人有两片| 久久九九热精品免费| 黄网站色视频无遮挡免费观看| 日韩高清综合在线| 久热爱精品视频在线9| 免费人成视频x8x8入口观看| 中文字幕精品免费在线观看视频| 国产精品av久久久久免费| 女人爽到高潮嗷嗷叫在线视频| 90打野战视频偷拍视频| 麻豆一二三区av精品| 琪琪午夜伦伦电影理论片6080| 一级毛片精品| 亚洲熟妇熟女久久| 丁香六月欧美| 国产精品日韩av在线免费观看 | 在线免费观看的www视频| 丰满人妻熟妇乱又伦精品不卡| 久热这里只有精品99| 色尼玛亚洲综合影院| 午夜a级毛片| 精品久久蜜臀av无| 天天躁狠狠躁夜夜躁狠狠躁| 97超级碰碰碰精品色视频在线观看| 亚洲av成人不卡在线观看播放网| 久久香蕉激情| 12—13女人毛片做爰片一| 后天国语完整版免费观看| 久久婷婷成人综合色麻豆| 中文字幕人妻熟女乱码| 女人被躁到高潮嗷嗷叫费观| 高清毛片免费观看视频网站| 亚洲五月色婷婷综合| 久久久久国内视频| 国产精品1区2区在线观看.| 大型av网站在线播放| 成人国产综合亚洲| 一个人观看的视频www高清免费观看 | 两个人视频免费观看高清| 亚洲专区字幕在线| 黄色视频,在线免费观看| 国产熟女xx| 少妇裸体淫交视频免费看高清 | 搡老岳熟女国产| 亚洲成国产人片在线观看| 久久国产乱子伦精品免费另类| 国产成人一区二区三区免费视频网站| 自线自在国产av| 很黄的视频免费| 国产野战对白在线观看| 99久久精品国产亚洲精品| 亚洲精品一区av在线观看| 久久这里只有精品19| 女人高潮潮喷娇喘18禁视频| 精品国产一区二区久久| 乱人伦中国视频| 狂野欧美激情性xxxx| 久久亚洲精品不卡| 美女扒开内裤让男人捅视频| 一区二区日韩欧美中文字幕| 91大片在线观看| 一二三四社区在线视频社区8| 国产成人免费无遮挡视频| 国产一区二区三区在线臀色熟女| 亚洲av片天天在线观看| 精品免费久久久久久久清纯| 国产精品国产高清国产av| av网站免费在线观看视频| 国产精品99久久99久久久不卡| 黄片大片在线免费观看| 国产亚洲精品久久久久久毛片| 国产成人影院久久av| 一进一出抽搐gif免费好疼| 久久久精品国产亚洲av高清涩受| 波多野结衣av一区二区av| 大码成人一级视频| 婷婷六月久久综合丁香| 91老司机精品| 国产午夜精品久久久久久| 亚洲一区二区三区不卡视频| 精品免费久久久久久久清纯| 9热在线视频观看99| 国产色视频综合| 亚洲 国产 在线| 国产精品亚洲av一区麻豆| 久久狼人影院| av天堂久久9| 久久久久久大精品| 久久精品亚洲精品国产色婷小说| 日本a在线网址|