• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An active tunable Fano switch in a plasmafilled superlattice array

    2021-07-07 02:40:38TaoFU傅濤TianboYANG楊天波YinbingAN安銀冰QiLI李琦andZilanDENG鄧子嵐
    Plasma Science and Technology 2021年7期
    關(guān)鍵詞:天波李琦

    Tao FU(傅濤),Tianbo YANG(楊天波),Yinbing AN(安銀冰),Qi LI(李琦),?and Zilan DENG(鄧子嵐)

    1 Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology,Guilin 541004,People’s Republic of China

    2 Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications,Institute of Photonics Technology,Jinan University,Guangzhou 510632,People’s Republic of China

    Abstract We propose a Fano switch arising from the superlattice array of a plasma-filled quartz tube,which can be tuned and reconfigured by the plasma density in the tube.The generation of the switch depends on a Fano band that is induced by the interference between the Mie resonance in an isolated cylinder and Bragg scattering in a periodic array.The underlying dispersion characteristics reveal that a localized tunable flat band corresponding to the Mie resonance plays an important role in the appearance of the Fano resonance.This active tunable switch can be potentially applied to microwave communications as a single-pole multi-throw switch and to monitor environmental variables that impact the plasma density.

    Keywords:gaseous plasma,Fano resonance,reconfigurable,tunable,switch

    1.Introduction

    Plasma,a free electron gas in the bulk domain,generated by discharging a gaseous mixture of argon and mercury[1],is in stark contrast with the surface plasmon that only exists on the interfaces between metallic and dielectric materials[2].The dielectric constant of plasma is actively tunable by varying the plasma density[3,4],which directly determines the plasma frequency[5].This means that plasma-filled tunable devices can be designed without a dependency on changes in geometric parameters.Active and reconfigurable plasma-filled devices have been realized by controlling the physical characteristics of the external magnetic field[6],voltage[7],current[8],gas pressure and other parameters[9].Consequently,plasma photonic crystals(PPCs)have attracted increased research interest in the case of one-,two-and threedimensional systems[3,10–13].Thus far,the PPCs have been used to achieve tunable photonic bandgaps(PBGs)[3,14,15]and introduce peaks in the bandgap[16,17].Recently,Gaoet aldemonstrated a structural tunable PPC in a dielectric barrier discharge by self-organization of the plasma filaments.The plasma structure can be tuned from a square lattice to a triangular lattice by changing the applied voltage[7].Moreover,turning PBGs of one-dimensional photonic crystals on and off by introducing a plasma element has been studied[18].The novel symplectic finite-difference time-domain(SFDTD)has been proposed,which solves the problem of moving PPCs by rewriting the discrete scheme of Maxwell’s equation into a discrete scheme with a velocity variable added[19].For higher permittivity in plasma,the band spectrum is more complicated.Only a part of the frequency bands are periodic bands,while the others are Fano bands with ultrasharp and almost dispersionless features[20].

    Fano resonances[21]with asymmetric line characteristics arise generally from the interaction of bright and dark modes in different shapes.This allows their potential application in switching and sensing[22–24].From plasmonic metamaterial to topological system,the Fano resonances in dielectric objects were observed as the interferences between Mie and incident electromagnetic waves[25–28].In recent years,Mie resonances have also generated Fano bands with Bragg scattering in a dielectric periodic array[20],while the Fano bands in gaseous plasma systems have not yet been reported.Most of the tunable switches depend on variation of the geometric parameters or complicated fabrication to achieve the tunability[29–33],which only achieve passive tunability with less flexibility.Therefore,an active tunable Fano resonance would provide a brilliant future for tunable Fano device applications.

    In this study,the active tunable Fano switch was achieved by the interference between a narrowband Mie resonance and a broadband Bragg resonance in a gaseous plasma-filled superlattice array.The generation of Fano resonance was controlled by the weakening of Bragg scattering from the simple lattice owing to the lack of some plasma cylinders or reduced plasma density.By contrast,the disappearance of Fano resonance can be achieved by reinforcing Bragg scattering with the reverse approach.The tunability of the Fano switch frequency can be realized by changing the plasma density through the external voltage.The frequencies of the Mie resonance were obtained analytically based on the determination of the Mie scattering coefficient of an isolated plasma cylinder.The transmittances and radar cross-section(RCS)of the individual cylinder confirm the analytical results.Moreover,the photonic band structures and boundary conditions are introduced to explain the mechanism of the Fano resonance generated in the superlattice.Accordingly,the origins of the effect of the plasma density,radius of the plasma cylinder,thickness of the quartz tube,and period of the unit cell were evaluated.

    2.Physical model and mechanism of the switch

    The top panel of the figure 1(a)represents a schematic of the gaseous plasma discharge and no discharge when the switch is on(the center circle is blue)and off(the center circle is white),respectively.The density of plasma can be controlled by continually adjusting the voltage or current of the discharge because the plasma is generated by the discharge of a mixture of argon and mercury.The greater of voltage or current,the greater the plasma density in the same container.In the bottom panel of figure 1(a),the on and off states of the switch S1 determine whether the gaseous plasma array is simple periodic or superlattice.The commercial software COMSOL Multiphysics 5.3(based on the finite element method)was adopted in this study.The wave vector of the incident wave was along the –y,the periodic boundary condition was along thexdirection and the vector of magnetic field was out-of-plane.The minor mesh length was 0.00375 mm and the frequency step was 0.001 GHz.The default parameters values werer1=1 mm,r2=0.66 mm,p=18 mm,εq=3.8,andne=2×1012cm?3.The red and blue dashed line areas represent the superlattice cells withp=4dandp=2d,respectively.The plasma densities are the same(ne)whenp=4d.The plasma densities of the center cylinder remain unchanged and the others(ne')are tuned by the slide rheostats whenp=2d.Figure 1(b)depicts the Fano resonance frequencies as a function ofp.The Fano resonance disappears when the superlattice array(p>3d)degenerates to a simple lattice[34](p=3d).The Fano resonance frequency shifts toward higher frequencies aspincreases from 10 mm to 11.7 mm(p<3d)indicating that the Fano resonance induced by the Mie resonance is influenced by the strong field coupling between adjacent units.In contrast,the Fano resonance frequency remains almost unchanged whenp>3din figure 1(b).This is because the near-field coupling in the superlattice dominates the Bragg scattering and the weak field coupling between adjacent lattices hardly influences the Fano resonance.

    The states of the Fano switch are shown in figure 1(c).The Fano resonance appears at approximately 7.1 GHz when the switch S1 is off.Thus,the active switch can be achieved by setting the switch S1 to the on and off states.The field componentExplots of the on and off states are shown in insets of figure 1(c).These plots demonstrate that the Fano resonance is formed by destructive interference between two dark modes,which requires yield opposite phases and equal electromagnetic waves amplitudes.The electric fields are localized in the bulk-plasma rather than localized around the interface between bulk-plasma and quartz wall,which is explained in the following section.These results show that the Fano resonance can be generated by transforming the simple lattice to a superlattice.Herein,we reveal the mechanism responsible for the Fano resonances with boundary conditions.According to the boundary conditions of the superlattice,the superlattice supports the out-of-phase dark mode in figure 1(c),and there is no phase difference on the two sides of the unit boundaries.When the superlattice degenerates to the simple lattice withp=3d,it is impossible to pick an arbitrary lattice with three cylinders in the simple lattice to fulfill the same phase difference on the opposite boundaries in figure 1(c).Thus,destructive interference will not occur,and the Fano resonance disappears in the simple lattice.Figure 1(d)demonstrates the transmittance curve of the superlattice array(p=2d)which varies as a function of the plasma densityne'.It is clear that the Fano resonance frequency shifts toward higher frequencies with the increase ofne'.The Fano line shapes become wider as the plasma density is far away from 2×1012cm?3.The phenomenon of Fano resonance disappears whenne'=2×1012cm?3.This result is the same as that of the blue curve in figure 1(c)owing to the superlattice transforming to a simple lattice.The electric field distributions of the insets in figure 1(d)prove that the Fano resonance is generated from the interference between two dark modes.The decrease and increase of plasma density will destroy the Bragg scattering in a simple lattice.As a result,the extra resonances and Fano resonance are introduced simultaneously.It is worth mentioning that this Fano resonance can be actively adjusted with a slight density shift ofne'.

    Figure 1.(a)Schematic of the plasma-filled cylinder array with two cases.(b)Transmission spectra of the superlattice array(red‘Unit cell’)varying with the period p from 10.0 mm to 18.0 mm in step of 0.1 mm.(c)The on–off states of active switching.(d)Transmission spectra of the superlattice array(blue ‘Unit cell’)varying with different ne'.

    3.Interference in a superlattice

    The normal incident transverse electric(TE)plane wave propagated through the trimeric medium with a plasma densityne=2×1012cm?3,periodp=18.0 mm,and a gapd=3.9 mm.Clearly,no Fano resonances have arisen at 7.1 GHz(top part of figure 2(a)).However,in the bottom part of figure 2(a),a Fano resonance is clearly present around the frequency of 7.1 GHz in terms of the asymmetric line shape and the out-of-phase(-+-)dark modes(inset in figure 2(a)).The significant Fano resonance is presented as the coupling between the broadband Bragg scattering and the narrowband Mie resonance.In addition,the resonances of the Mie and Bragg are evidenced at approximately 6.3 GHz with a slight frequency difference that results in the double resonant peak at approximately 6.3 GHz in figure 2(b).The field patterns in figure 2(b)are different from the patterns localized in the center of the plasma cylinders in figure 2(a).Whenω<ωpe(the incident wave frequency always fulfils this condition in this study),the plasma has a negative permittivity as a free electron gas.Moreover,the waves are usually forbidden to propagate owing to the cutoff phenomenon when its frequency is below the plasma frequency.

    Figure 2.(a)The transmittance curves of Mie scattering,Bragg scattering and Fano resonance.The periods are p=18.0 mm,p=d, and p=3d with d=3.9 mm,respectively.The transmittance and the resonant field pattern for the shaded area are shown in detail in(b).

    Furthermore,we mainly focused on the surface plasma waves in this study which resemble the localized surface plasmon polaritons of metal,which decrease the operating frequency of surface plasmon polaritons(SPPs)from the optical to microwave region and localize the EM field around a plasma cylinder[11,12,35].The appearance of the Fano resonance provides a passband in the cutoff area.This results in the localization of the electric field in the bulk-plasma rather than at locations around the interface between the bulkplasma and quartz wall.We can observe the excitation of the dipole–quadrupole and dipole-mediated quadrupole–octupole interferences[36],as demonstrated in the bottom part of the inset in figure 2(b).

    In the case of TE waves,the magnetic fieldHzfulfilled the wave equation in the polar coordinate system and the entire space can be classified in three different regions as previously described in reference[37,38],as shown in figure 3(a).Thus,the magnetic field can be described as,

    Figure 3.(a)The cross-section of an isolated gaseous plasma-filled cylinder.(b)Analytical solution of Mie scattering at different n values as defined in equation(6).(c)Comparison of resonance frequency with transmittance(top),radar cross section(RCS)(center),and Qsca(bottom)of the single plasma cylinder.

    with

    and

    In this case,k0,kq,andkpdenote the wave vector in the free space,quartz wall and plasma,respectively.The frequencydependent permittivity of plasma is given by the Drude modelwhereis the plasma frequency.

    To compare the Mie resonance frequency with the Fano resonance frequency,we calculated the scattering efficiencies[38]that are defined as

    Figure 3(b)shows the Mie scattering coefficient with the variousnfor the above equations.The symmetric Lorentz line shape of the resonance peaks obviously manifests the Mie resonant states stimulated at 6.3 GHz and 7.0 GHz.To confirm the analytical results of the Mie resonance,we analyzed the transmittance and the RCS of an isolated plasma-filled cylinder with the same plasma density,as shown in figure 3(c).It is very important to choose the length of the period of the structure to eliminate Bragg scattering between adjacent cells.This must fulfill the condition that there are no significant influences on the Fano line shapes as the period varies.The unchanged line shapes mean that there is no interference between the two adjacent units whenp>3d(from figure 1(b))with three cylinders in a cell.Furthermore,an isolated plasma-filled cylinder in the unit cell with periodp=18.0 mm(p?3d)must satisfy the condition that achieves the elimination of the Bragg scattering even with the periodic boundary condition along thexaxis.A significant transmission dip illustrates the plane wave that stimulates a resonant mode that corresponds to the lower Mie resonance mode,which means that the Mie resonance in the lower-order mode contributes to the formation of the Fano resonance.The enlarged and the normal RCS lines in the middle of figure 3(c)show that the peak frequencies of RCS are identical withQsca.These numerical results are in good agreement with the analytical solution of the Mie resonance.The inset in figure 3(c)illustrates that the Mie resonance results in the localization of the electric field of the Fano resonance at the center of the plasma cylinder rather than around the plasma cylinder,as shown in figures 2(a)and(b).

    4.Band diagrams of the simple lattices and the superlattices

    To explain the cause of the generated Fano resonance in the superlattice array,photonic band structures were studied based on COMSOL Multiphysics 5.3.Figure 4(a)shows the photonic band structure(left-half panel)and the transmittance curve(right-half panel)for a unit cell with one plasma cylinder and periodp=3d(this parameter is the same as that of the top panel of figure 3(c)).The field patterns at the red dots prove that the nearby flat band corresponds to the lowerorder Mie resonance.The transmittance yields a typical Lorentz line shape,which indicates that a pure Mie resonant mode is stimulated at a frequency of 6.96 GHz.An asymmetric Fano line is generated only during transmittance by a trimeric superlattice with periodp>3d(d=3.9 mm),as shown in figure 4(b).As the existence of a flat band is believed to be a consequence of destructive interference,opposite phases and equal amplitudes of the EM waves are required[39].Thus,the phases of the Fano resonant field patterns of the three plasma-filled cylinders in figures 4(b)and 1(b)are in antiphase(-+-)and almost have equal amplitudes.Moreover,a broadband mode is one of the two requirements for the presentation of Fano resonances,as illustrated in figure 4(c)with periodp=3d(d=3.9 mm).The flat band and the Fano line shape for the lower-order Mie resonance in figures 4(a)and(b)disappear because superlattice structures degenerate to a simple periodic array.

    As described in the Drude model,the dielectric function of the plasma can be varied only by changing the plasma density and incident wave frequency.Therefore,figure 4(d)demonstrates the active tunable photonic flat band,Mie resonance,and Fano resonance,following changes of the plasma density only.It is evident that the resonance frequencies of the three curves shift toward higher frequencies with increasing plasma density.Given that the eigenfrequencies of an isolated plasma cylinder are changed by transforming the plasma density,the Mie resonance frequencies are changed synchronously.Finally,the Fano resonance frequencies are varied in the same way.These results strongly support the fact that the Fano resonances were derived from the coupling between the Mie and Bragg scattering as well as the active tunability achieved by varying the material characteristics(plasma density or dielectric constant)rather than the geometric parameters.The tunable range of Fano resonance by varying plasma density is larger than changing geometric parameters.Figure 4(e)shows the frequency variations of the Mie resonance,Fano resonance and RCS with the increase ofr1in two cases.(a)Fixing the radius of the plasma cylinder,r2unchanged,and(b)fixing the thickness of the quartz tube,r1?r2=0.34 mm unchanged.In both cases,the resonance frequencies of the Fano resonance and RCS are consistent with each other.The existence of the differences between the Mie and the Fano resonances of the two cases arises from the shifts of the scattering boundary conditions.The Mie scattering of an isolated plasma cylinder was calculated in an infinite space without any external disturbance.However,the scattering of a cylinder was influenced by the other two cylinders in the superlattice cell.In case(a),the resonance frequencies decrease owing to the weakening near-field coupling between plasma cylinders asr1increases.The frequency differences between the Fano and Mie resonances are small and stable.This results from the unchanged radius of the plasma cylinders(dominated the near-field coupling),and the thickness of the quartz tube has minor influences on near-field coupling action.In case(b),the resonance frequencies of Mie,Fano and RCS(superlattice)resonances are increased on account of the stronger near-field coupling between plasma cylinders asr2increases.Meanwhile,the frequency differences between the Fano resonance and Mie resonances in case(b)are larger than those in case(a),which is because the coupling is more affected by the increase in the radius of the plasma cylinders than by the increase in the thickness of the quartz tubes.The range of the tunable Fano frequency in case(a)is broader than that in case(b).

    Figure 4.Photonic band structure and transmittance curves for(a)an isolated cylinder with period p,(b)a superlattice array with period p,and(c)a simple period array(d=3.9 mm).(d)The active tunability of Qsca of an isolated plasma cylinder,flat band frequencies of superlattice and the Fano resonance frequency of superlattice by changing plasma density.(e)Mie resonance(MR)frequencies of an isolated plasma cylinder,Fano resonance(FR)frequencies,and RCS of superlattice array as the function of r1 with r1?r2=0.34 mm and r2=0.66 mm.

    5.Conclusion

    We presented herein an active tunable Fano switch which originated from the interference between the narrowband Mie and broadband Bragg resonances in a gaseous plasma-filled superlattice array.The Mie scattering coefficient of an isolated gaseous plasma-filled cylinder was analyzed to explain the Mie resonance contribution to the generation of the Fano resonance.The photonic band structures demonstrate that the Mie and the Fano resonances corresponded to a photonic flat band.Fano resonance disappeared when the superlattice array degenerated to a simple periodic array because destructive interference cannot occur in a simple periodic array without inducing phase differences.The tunability can be achieved by actively varying the plasma density rather than varying the passive geometric parameters.The frequency differences between the Fano and Mie resonances were attributed to the variation of the scattering boundary condition owing to the changes of the radius of the plasma and the thickness of the quartz tube.The tunability of the Fano switch makes it potentially applicable to microwave communications as a single-pole multi-throw switch and to monitor environmental variables that impact the plasma density.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China(Nos.11965009,61761010,61765004,61764001 and 62075084)and Natural Science Foundation of Guangxi(Nos.2018JJA170010 and 2018GXNSFAA281193),and by the Guangdong Basic and Applied Basic Research Foundation(No.2020A1515010615).

    ORCID iDs

    猜你喜歡
    天波李琦
    A secure image protection algorithm by steganography and encryption using the 2D-TSCC*
    論非物質(zhì)文化遺產(chǎn)“活化”傳承
    高頻電磁波的天波傳播
    潘石屹刷新朋友圈
    博客天下(2016年14期)2016-09-15 13:46:42
    分布式高頻超視距雷達探測與組網(wǎng)技術(shù)研究
    科技資訊(2016年9期)2016-05-14 00:55:35
    國外天波超視距雷達布局及啟示
    李琦作品
    李琦作品
    Tracking the Moisture Sources of an Extreme Precipitation Event in Shandong,China in July 2007:A Computational Analysis
    天波信息利潤率逐年下降 近四成凈利潤來自政府補助
    投資者報(2014年31期)2014-08-26 20:55:55
    亚洲国产最新在线播放| 男人爽女人下面视频在线观看| 精品午夜福利在线看| 国产精品秋霞免费鲁丝片| 日韩av在线免费看完整版不卡| 久久精品国产自在天天线| 亚洲av福利一区| 国产一区亚洲一区在线观看| 99热网站在线观看| 成人国语在线视频| √禁漫天堂资源中文www| 久久人人爽av亚洲精品天堂| 久久青草综合色| 黄色视频在线播放观看不卡| 亚洲av不卡在线观看| 一级爰片在线观看| 欧美人与善性xxx| 成人亚洲精品一区在线观看| a级片在线免费高清观看视频| 国产成人一区二区在线| 99视频精品全部免费 在线| 人成视频在线观看免费观看| 亚洲美女黄色视频免费看| 免费高清在线观看视频在线观看| 亚洲色图 男人天堂 中文字幕 | 精品人妻在线不人妻| 女人久久www免费人成看片| 成人亚洲精品一区在线观看| 日本免费在线观看一区| 一级,二级,三级黄色视频| 亚洲精品自拍成人| 国产午夜精品久久久久久一区二区三区| 国产精品偷伦视频观看了| 国产一区二区在线观看av| av福利片在线| 久久99精品国语久久久| 日本黄色日本黄色录像| 日韩在线高清观看一区二区三区| 亚洲国产精品国产精品| av不卡在线播放| 一级毛片我不卡| 春色校园在线视频观看| 插阴视频在线观看视频| 久久精品国产亚洲网站| 亚洲av在线观看美女高潮| 欧美变态另类bdsm刘玥| 波野结衣二区三区在线| 亚洲人成77777在线视频| 我的老师免费观看完整版| 亚洲一区二区三区欧美精品| 欧美bdsm另类| www.色视频.com| 2018国产大陆天天弄谢| 国产日韩一区二区三区精品不卡 | 一本久久精品| 下体分泌物呈黄色| 成年av动漫网址| 免费看不卡的av| 国产有黄有色有爽视频| 大香蕉久久成人网| 如日韩欧美国产精品一区二区三区 | 街头女战士在线观看网站| 中国三级夫妇交换| 日日爽夜夜爽网站| 国产亚洲一区二区精品| 午夜免费观看性视频| 久久精品人人爽人人爽视色| 成年美女黄网站色视频大全免费 | 中国国产av一级| 国产精品女同一区二区软件| 狂野欧美激情性bbbbbb| 欧美老熟妇乱子伦牲交| 久久精品久久久久久噜噜老黄| 黄色毛片三级朝国网站| 日日啪夜夜爽| 永久免费av网站大全| 大片电影免费在线观看免费| 最近2019中文字幕mv第一页| 成年人免费黄色播放视频| 少妇被粗大猛烈的视频| 最近手机中文字幕大全| 国产不卡av网站在线观看| 亚洲一区二区三区欧美精品| 日日爽夜夜爽网站| 国产日韩欧美亚洲二区| 国产精品久久久久久久电影| 777米奇影视久久| av女优亚洲男人天堂| av视频免费观看在线观看| 免费高清在线观看视频在线观看| 美女福利国产在线| 男人添女人高潮全过程视频| 街头女战士在线观看网站| 最近中文字幕高清免费大全6| 蜜桃久久精品国产亚洲av| 黑丝袜美女国产一区| 亚洲av男天堂| 亚洲av免费高清在线观看| 成人综合一区亚洲| 欧美日韩视频精品一区| 精品久久久精品久久久| 国产免费又黄又爽又色| 久久精品人人爽人人爽视色| 最新的欧美精品一区二区| 免费不卡的大黄色大毛片视频在线观看| 18禁在线播放成人免费| 三级国产精品片| 少妇被粗大的猛进出69影院 | 五月伊人婷婷丁香| 成人无遮挡网站| 精品亚洲成a人片在线观看| www.av在线官网国产| 亚洲激情五月婷婷啪啪| 国产 一区精品| 久久久久久伊人网av| 国产日韩一区二区三区精品不卡 | 亚洲国产精品国产精品| av在线app专区| 国产成人午夜福利电影在线观看| 在线天堂最新版资源| 国产一区二区三区av在线| 18禁裸乳无遮挡动漫免费视频| 视频中文字幕在线观看| 色婷婷久久久亚洲欧美| 内地一区二区视频在线| 91精品一卡2卡3卡4卡| 成年美女黄网站色视频大全免费 | 18禁动态无遮挡网站| 80岁老熟妇乱子伦牲交| 色94色欧美一区二区| 国产乱人偷精品视频| 国产69精品久久久久777片| 欧美亚洲日本最大视频资源| 国产精品不卡视频一区二区| 国产成人精品久久久久久| 亚洲欧洲国产日韩| 欧美性感艳星| 亚洲五月色婷婷综合| av在线老鸭窝| 亚洲无线观看免费| 男女免费视频国产| 亚洲av.av天堂| 天堂8中文在线网| 亚洲精品日本国产第一区| 九九爱精品视频在线观看| 中国美白少妇内射xxxbb| 两个人的视频大全免费| 久久久久久久久大av| 在线观看国产h片| 午夜福利影视在线免费观看| 免费黄网站久久成人精品| av专区在线播放| 熟女电影av网| 国产精品秋霞免费鲁丝片| 色视频在线一区二区三区| 国产黄色视频一区二区在线观看| av线在线观看网站| 国产午夜精品一二区理论片| 国产av码专区亚洲av| 日本午夜av视频| 成人漫画全彩无遮挡| 人妻少妇偷人精品九色| 成人综合一区亚洲| 亚洲精品乱码久久久久久按摩| 日韩成人av中文字幕在线观看| 亚洲精品一区蜜桃| 国产永久视频网站| av在线播放精品| 日本91视频免费播放| 亚洲国产精品一区二区三区在线| 天堂8中文在线网| 久久精品国产a三级三级三级| 亚洲欧美精品自产自拍| 免费观看无遮挡的男女| 午夜免费男女啪啪视频观看| 成人国产av品久久久| 国产深夜福利视频在线观看| 天美传媒精品一区二区| 香蕉精品网在线| 欧美日韩综合久久久久久| 久久久久视频综合| 一边摸一边做爽爽视频免费| 亚洲av二区三区四区| 亚洲国产欧美在线一区| 国产亚洲一区二区精品| 夜夜看夜夜爽夜夜摸| 免费av中文字幕在线| 如何舔出高潮| 插逼视频在线观看| 日本av手机在线免费观看| 涩涩av久久男人的天堂| 亚洲精品久久久久久婷婷小说| 国产精品久久久久久av不卡| 蜜桃在线观看..| 成人国产麻豆网| 简卡轻食公司| 插逼视频在线观看| 中文字幕最新亚洲高清| av线在线观看网站| 国产 一区精品| 久久国内精品自在自线图片| 国产欧美亚洲国产| 国产高清国产精品国产三级| 久久久久久久久久久丰满| 一级,二级,三级黄色视频| 亚洲高清免费不卡视频| 不卡视频在线观看欧美| 黑人猛操日本美女一级片| 国产欧美日韩一区二区三区在线 | 久久精品国产亚洲网站| 国产免费福利视频在线观看| 热re99久久国产66热| 99久久精品一区二区三区| 久久精品久久久久久噜噜老黄| 丝袜脚勾引网站| 成人免费观看视频高清| 久久久久人妻精品一区果冻| 黄色欧美视频在线观看| 日韩制服骚丝袜av| 国产一级毛片在线| 亚洲精品久久久久久婷婷小说| 国模一区二区三区四区视频| 国产一区二区三区综合在线观看 | 最后的刺客免费高清国语| 亚洲精品一二三| 少妇人妻久久综合中文| 啦啦啦啦在线视频资源| 交换朋友夫妻互换小说| 少妇猛男粗大的猛烈进出视频| 久久这里有精品视频免费| 欧美bdsm另类| a级毛色黄片| 国产有黄有色有爽视频| 精品少妇久久久久久888优播| 日韩视频在线欧美| 中国三级夫妇交换| 亚洲不卡免费看| 18在线观看网站| 夜夜骑夜夜射夜夜干| 免费看光身美女| 高清av免费在线| 狠狠精品人妻久久久久久综合| 伊人亚洲综合成人网| 王馨瑶露胸无遮挡在线观看| 中国美白少妇内射xxxbb| 一级毛片 在线播放| 亚洲av综合色区一区| 国产成人精品无人区| 毛片一级片免费看久久久久| 人人妻人人爽人人添夜夜欢视频| 欧美另类一区| 免费黄频网站在线观看国产| 草草在线视频免费看| 一边摸一边做爽爽视频免费| 精品一区二区三卡| 十分钟在线观看高清视频www| 99热全是精品| 亚洲在久久综合| 久久精品国产自在天天线| 日日摸夜夜添夜夜爱| 精品亚洲成a人片在线观看| 男女免费视频国产| 久久ye,这里只有精品| 久久久精品区二区三区| 91精品三级在线观看| 欧美日韩视频精品一区| 少妇猛男粗大的猛烈进出视频| 久久久久久久久久久丰满| 免费高清在线观看日韩| 97超视频在线观看视频| a 毛片基地| 亚洲三级黄色毛片| 天天操日日干夜夜撸| 一级片'在线观看视频| 曰老女人黄片| 亚洲性久久影院| 免费观看a级毛片全部| 人妻人人澡人人爽人人| 亚洲三级黄色毛片| av网站免费在线观看视频| a级毛片免费高清观看在线播放| 日本黄色片子视频| 欧美日本中文国产一区发布| 日韩制服骚丝袜av| 婷婷色综合www| 日韩电影二区| 亚洲精品久久久久久婷婷小说| 久久久久久久精品精品| 99久久人妻综合| 国产熟女欧美一区二区| 日韩av免费高清视频| 一边摸一边做爽爽视频免费| 欧美日本中文国产一区发布| 日本vs欧美在线观看视频| 美女国产高潮福利片在线看| 国产成人精品在线电影| 91精品国产国语对白视频| kizo精华| 午夜久久久在线观看| 十八禁高潮呻吟视频| 欧美精品一区二区免费开放| 久久99热6这里只有精品| 永久免费av网站大全| 丰满少妇做爰视频| 亚洲av二区三区四区| 最近中文字幕高清免费大全6| 亚洲精品一二三| 精品久久国产蜜桃| 日韩电影二区| 有码 亚洲区| 亚洲第一av免费看| 久久久久视频综合| 国产精品麻豆人妻色哟哟久久| 亚洲国产av新网站| 亚洲av在线观看美女高潮| 欧美日韩成人在线一区二区| a级毛色黄片| 国产成人精品福利久久| 一本色道久久久久久精品综合| 久久久久精品性色| 亚洲人成网站在线观看播放| 国产精品偷伦视频观看了| 国产成人a∨麻豆精品| 又黄又爽又刺激的免费视频.| 亚洲精品aⅴ在线观看| 日韩成人av中文字幕在线观看| 亚洲国产精品国产精品| 国产黄频视频在线观看| 久久久久网色| 国产高清不卡午夜福利| 国产黄片视频在线免费观看| 大又大粗又爽又黄少妇毛片口| 国产熟女午夜一区二区三区 | 国产av码专区亚洲av| 亚洲av.av天堂| 桃花免费在线播放| 午夜激情福利司机影院| 黄色一级大片看看| 国产一区亚洲一区在线观看| 免费黄色在线免费观看| 免费看不卡的av| 最新的欧美精品一区二区| 亚洲av男天堂| 国产精品一区www在线观看| 欧美老熟妇乱子伦牲交| 天天操日日干夜夜撸| 五月玫瑰六月丁香| 51国产日韩欧美| 黄色配什么色好看| 日日撸夜夜添| 一本一本综合久久| 久久狼人影院| 在线观看免费日韩欧美大片 | 精品人妻一区二区三区麻豆| 满18在线观看网站| 国产视频首页在线观看| 丝袜在线中文字幕| 成人亚洲欧美一区二区av| 一边亲一边摸免费视频| 亚洲五月色婷婷综合| 国产成人精品在线电影| 亚洲av电影在线观看一区二区三区| 91成人精品电影| 亚洲精品日韩av片在线观看| 久久精品夜色国产| 国产免费一级a男人的天堂| 久久 成人 亚洲| 日韩欧美一区视频在线观看| av福利片在线| 亚洲五月色婷婷综合| 天堂中文最新版在线下载| 久久 成人 亚洲| 一区二区日韩欧美中文字幕 | 一级毛片黄色毛片免费观看视频| 国产成人免费观看mmmm| 国产亚洲一区二区精品| 夜夜看夜夜爽夜夜摸| 男男h啪啪无遮挡| 欧美+日韩+精品| 制服人妻中文乱码| 国产成人午夜福利电影在线观看| 日韩三级伦理在线观看| 欧美 日韩 精品 国产| 蜜臀久久99精品久久宅男| 亚洲精品日本国产第一区| 成人免费观看视频高清| 亚洲国产精品一区三区| 欧美97在线视频| 街头女战士在线观看网站| 免费观看的影片在线观看| 亚洲欧美色中文字幕在线| 欧美人与性动交α欧美精品济南到 | 少妇 在线观看| 久久鲁丝午夜福利片| 午夜福利网站1000一区二区三区| 日韩中文字幕视频在线看片| 国产一级毛片在线| 伦精品一区二区三区| 26uuu在线亚洲综合色| 少妇 在线观看| 国产欧美亚洲国产| 亚洲欧洲精品一区二区精品久久久 | 99热国产这里只有精品6| 下体分泌物呈黄色| 亚洲在久久综合| 一级a做视频免费观看| 日日啪夜夜爽| av免费观看日本| 国产老妇伦熟女老妇高清| 黄色一级大片看看| 天堂8中文在线网| 国产色爽女视频免费观看| 亚洲精品日韩av片在线观看| 免费日韩欧美在线观看| 黄色一级大片看看| 中国三级夫妇交换| 丝袜在线中文字幕| 欧美亚洲 丝袜 人妻 在线| 国语对白做爰xxxⅹ性视频网站| 精品少妇黑人巨大在线播放| 少妇的逼好多水| videos熟女内射| 亚洲精品,欧美精品| 熟女人妻精品中文字幕| 亚洲欧美一区二区三区黑人 | www.av在线官网国产| 国产极品粉嫩免费观看在线 | 97超碰精品成人国产| 国产精品人妻久久久影院| 老熟女久久久| 欧美bdsm另类| 纯流量卡能插随身wifi吗| 高清黄色对白视频在线免费看| av国产久精品久网站免费入址| 久久精品国产亚洲av涩爱| 在线观看三级黄色| 久久久a久久爽久久v久久| 国产精品秋霞免费鲁丝片| 中文字幕制服av| 亚洲精品日韩av片在线观看| 国产精品嫩草影院av在线观看| 亚洲中文av在线| 亚洲精品国产色婷婷电影| 一个人免费看片子| 国产午夜精品久久久久久一区二区三区| 在现免费观看毛片| 亚洲成色77777| 99九九线精品视频在线观看视频| 日本欧美视频一区| 日本午夜av视频| 熟女人妻精品中文字幕| 亚洲av二区三区四区| 综合色丁香网| 另类亚洲欧美激情| 中文精品一卡2卡3卡4更新| 国产深夜福利视频在线观看| 街头女战士在线观看网站| 高清欧美精品videossex| 大香蕉久久网| 欧美精品国产亚洲| 狠狠精品人妻久久久久久综合| 亚洲av中文av极速乱| 久久免费观看电影| 人成视频在线观看免费观看| 最新中文字幕久久久久| 男人爽女人下面视频在线观看| 国产欧美亚洲国产| 亚洲欧洲日产国产| 国产一区有黄有色的免费视频| 日韩伦理黄色片| 欧美丝袜亚洲另类| 男的添女的下面高潮视频| 亚洲成人手机| 91精品三级在线观看| a级毛片免费高清观看在线播放| 国产在线一区二区三区精| 汤姆久久久久久久影院中文字幕| 国产片特级美女逼逼视频| 老司机影院毛片| 亚洲内射少妇av| 亚洲国产成人一精品久久久| 免费高清在线观看视频在线观看| 狂野欧美激情性bbbbbb| 欧美三级亚洲精品| 黄色怎么调成土黄色| 亚洲第一av免费看| 日本av免费视频播放| 老司机影院成人| 大陆偷拍与自拍| 亚洲,一卡二卡三卡| 新久久久久国产一级毛片| 国产精品无大码| 婷婷色综合www| 成人免费观看视频高清| 中文字幕av电影在线播放| 99国产精品免费福利视频| 黄片播放在线免费| 看免费成人av毛片| 好男人视频免费观看在线| 波野结衣二区三区在线| videossex国产| 成人亚洲精品一区在线观看| 午夜91福利影院| 日本免费在线观看一区| 人妻人人澡人人爽人人| 欧美激情 高清一区二区三区| 久久午夜综合久久蜜桃| 一个人看视频在线观看www免费| 18禁在线播放成人免费| 在线播放无遮挡| 一级毛片电影观看| 少妇被粗大的猛进出69影院 | 哪个播放器可以免费观看大片| 建设人人有责人人尽责人人享有的| 国产黄色免费在线视频| 免费黄色在线免费观看| 中文天堂在线官网| 一本一本综合久久| 九九在线视频观看精品| 亚洲婷婷狠狠爱综合网| 99国产综合亚洲精品| 美女cb高潮喷水在线观看| 人成视频在线观看免费观看| 一级黄片播放器| 国产精品成人在线| 美女视频免费永久观看网站| 免费播放大片免费观看视频在线观看| av黄色大香蕉| 成人国语在线视频| 在线观看人妻少妇| 啦啦啦在线观看免费高清www| 少妇被粗大的猛进出69影院 | 国产午夜精品久久久久久一区二区三区| 亚洲精品456在线播放app| 国产欧美日韩综合在线一区二区| 精品亚洲成a人片在线观看| xxx大片免费视频| 国产淫语在线视频| 中文字幕最新亚洲高清| 日韩欧美一区视频在线观看| 青春草亚洲视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 欧美精品一区二区大全| 在线观看人妻少妇| 18禁裸乳无遮挡动漫免费视频| 国产欧美日韩一区二区三区在线 | 欧美丝袜亚洲另类| 91aial.com中文字幕在线观看| 亚洲av综合色区一区| 菩萨蛮人人尽说江南好唐韦庄| tube8黄色片| 一级毛片电影观看| 人妻制服诱惑在线中文字幕| 黄色毛片三级朝国网站| 国产白丝娇喘喷水9色精品| 国模一区二区三区四区视频| 黑丝袜美女国产一区| 亚洲av免费高清在线观看| 纵有疾风起免费观看全集完整版| 麻豆精品久久久久久蜜桃| 成人黄色视频免费在线看| 99热全是精品| 国产 一区精品| 啦啦啦啦在线视频资源| 久久精品久久久久久噜噜老黄| 国产亚洲一区二区精品| 亚洲精品乱码久久久久久按摩| 麻豆乱淫一区二区| 欧美亚洲 丝袜 人妻 在线| 另类精品久久| 国产国语露脸激情在线看| 黑人巨大精品欧美一区二区蜜桃 | 男女国产视频网站| 欧美激情 高清一区二区三区| 人人妻人人添人人爽欧美一区卜| 久久久久国产网址| 精品国产国语对白av| 午夜福利在线观看免费完整高清在| 精品人妻熟女av久视频| 黄片无遮挡物在线观看| 国产乱人偷精品视频| 色哟哟·www| 人人妻人人爽人人添夜夜欢视频| 久久精品久久精品一区二区三区| 免费av不卡在线播放| 一本大道久久a久久精品| 国产女主播在线喷水免费视频网站| 欧美xxxx性猛交bbbb| 午夜av观看不卡| 高清毛片免费看| 九色成人免费人妻av| 国产成人一区二区在线| 热re99久久国产66热| 天堂中文最新版在线下载| 国产黄色视频一区二区在线观看| 亚洲色图 男人天堂 中文字幕 | 下体分泌物呈黄色| 亚洲精品日韩av片在线观看| 黑人巨大精品欧美一区二区蜜桃 | 国精品久久久久久国模美| 国产男女超爽视频在线观看| 最后的刺客免费高清国语| 婷婷色麻豆天堂久久| 香蕉精品网在线| 亚洲一级一片aⅴ在线观看| 成人午夜精彩视频在线观看| 99九九线精品视频在线观看视频| 国产在线视频一区二区| 一二三四中文在线观看免费高清| 99视频精品全部免费 在线| 欧美 亚洲 国产 日韩一| 亚洲av二区三区四区| 国产免费视频播放在线视频| 男女免费视频国产| 飞空精品影院首页|