• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake?

    2021-09-28 02:18:44ZhaohuiCheng程朝暉BinLei雷彬XigangLuo羅習(xí)剛JianjunYing應(yīng)劍俊ZhenyuWang王震宇TaoWu吳濤andXianhuiChen陳仙輝
    Chinese Physics B 2021年9期
    關(guān)鍵詞:吳濤朝暉

    Zhaohui Cheng(程朝暉),Bin Lei(雷彬),Xigang Luo(羅習(xí)剛),2,Jianjun Ying(應(yīng)劍俊),3,Zhenyu Wang(王震宇),3,Tao Wu(吳濤),2,3,5,?,and Xianhui Chen(陳仙輝),2,3,4,5

    1CAS Key Laboratory of Strongly-coupled Quantum Matter Physics,Department of Physics,University of Science and Technology of China,Hefei 230026,China

    2Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei 230026,China

    3CAS Center for Excellence in Superconducting Electronics(CENSE),Shanghai 200050,China

    4CAS Center for Excellence in Quantum Information and Quantum Physics,Hefei 230026,China

    5Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    Keywords:iron-based superconductors,superconductivity,electronic nematicity,strain effect

    Electronic nematic phase,in which the rotational symmetry is broken,exhibits a twist with superconductivity in the electronic phase diagram of iron-based superconductors(IBSCs).[1]Many experiments have already shown conclusive evidences for the electronic nematicity in IBSCs,including anisotropic transport,angle resolved photoemission spectroscopy(ARPES),scanning tunneling microscopy(STM),neutron scattering and so on.[2]So far,although the existence of electronic nematicity in IBSCs is well-established,[3–5]the underlying mechanism and its exact role on the superconducting pairing are still mystery and under hot debate.[1,6,7]Most of the existing experimental results support a direct competition between nematic order and superconductivity in the electronic phase diagram.[8,9]Since the nematic order is tightly twisted with a stripe-type antiferromagnetic order in the iron-pnictide family,[10–12]the competition between the nematic order and the superconductivity is widely believed to stem from the competition between antiferromagnetic order and superconductivity.[8,9]In this case,the nematic order is even considered to be driven by stripe-type spin fluctuations.[1,5,13–16]However,in iron-selenides family such as FeSe1?xSxsystems,there is no direct evidence for the competition between nematic order and superconductivity.[17,18]Interestingly,the stripe-type antiferromagnetic order is also decoupled with nematic order in the electronic phase diagram,which leads to an alternative scenario for electronic nematicity due to orbital order,[19,20]e.g.,the ferro-orbital order.Moreover,orbital fluctuations are also considered to mediate an s++superconducting pairing.[21]So far,the origin of the electronic nematicity and its role on superconductivity are still highly controversial in iron-selenides family.[1,6,7,21,22]

    As a conjugate field for electronic nematicity,strain can be used to manipulate the electronic nematicity,[3–5,24,25]which is helpful to elucidate the relationship between electronic nematicity and superconductivity.[26,27]Recently,a dominant B1g-type strain effect on superconductivity has been revealed in the underdoped Ba(Fe1?xCox)2As2.[24,25]With further electron doping,an A1g-type instead of B1g-type strain effect appears and becomes dominant in the overdoped Ba(Fe1?xCox)2As2.[28,29]These results strongly support a significant role of electronic nematicity on superconductivity.Then,a natural question is whether a similar B1g-type strain effect could be also observed in iron-selenides family or not,which would be helpful to further understand the role of electronic nematicity on the superconducting pairing in IBSCs.

    Previous study on FeSe thin films,utilizing pulsed laser deposition on different substrates,already indicates that the superconducting transition temperature(Tc)in FeSe thin films is highly tunable from 0 K to 12 K by changing the lattice parameters.[30]However,the previous study of the strain effect on Tcin bulk FeSe is not very successful due to the possible damage of FeSe single crystals by large uniaxial strain.[2]Only a small range of uniaxial strain could be applied to FeSe single crystal through a“horseshoe device”or pasting on a piezo-ceramic stack to achieve the measurements of nematic susceptibility.[31,32]In this work,in order to increase the tuning range of uniaxial strain in the bulk FeSe,we adopt a mechanical cleavage method to first cleave FeSe single crystal into thin flakes with the thickness of~25 nm,and then transfer these FeSe thin flakes on a flexible substrate.The uniaxial strain is applied to these thin flakes by bending the flexible substrate.The similar method has been successfully used for the strain tuning of MoS2and black phosphorus thin flakes.[33,34]By utilizing this method for applying uniaxial strain,Tcand Tsof FeSe thin flakes can be largely varied exceeding all previous studies on the strain effect in bulk FeSe.The maximum Tcof FeSe can be increased by 30%through applying a compressive strain up to 12 K,while the nematic transition temperature shows an anti-correlation with Tc.Detailed measuring procedures and data analysis are presented in the following part.We note that,during preparing this manuscript,a couple of similar researches on the strain-tuning effects of bulk FeSe have been published.[35–37]The strain-tuning methods in these researches are different from ours,while the main results are consistent with our experiments.

    In order to achieve continuous change of the uniaxial strain,we use flexible polyethylene terephthalate(PET)films as the substrate to stick FeSe thin flakes and then bend the substrate to produce strain.Bending the flexible substrate downward/upward could induce a tensile/compressive strain on the FeSe thin flakes(Fig.1(b)).The nominal magnitude of the strain is defined asε=ΔL/L0,whereΔL=L?L0,and L0and L are the sample length without and with strain,respectively(see supplementary materials for the details of calculation).

    Fig.1.Crystal structure,device configuration and strain-dependent Raman spectra of FeSe.(a)The crystal structure of the pristine FeSe.(b)Schematic structure of a FeSe thin flake on the flexible polyethylene terephthalate(PET)substrate.Variable compressive/tensile strains are induced on FeSe thin flakes by bending the substrate downward/upward.(c)An optical image of a FeSe thin flake supported on flexible PET substrate.(d),(e)AFM image of the dashed square in(c).The thickness of FeSe thin flake is about 25 nm along the red dashed line.(f)In-situ Raman spectroscopy of the FeSe thin flakes under different tensile and compressive strains with the strain along(110).The peaks of A1g and B1g modes move to the lower wave number with increasing the tensile strain and shift to the higher wave number with increasing the compressive strain.(g)The peak positions of A1g and B1g modes as a function of the strain.The frequencies of the A1g and B1g modes monotonously decrease with increasing the strain from negative to positive.

    As shown in Fig.1(a),due to the van der Waals interaction between different FeSe layers,the FeSe thin flakes can be easily obtained by the mechanical exfoliation with scotch tape method.FeSe thin flakes are first mechanically exfoliated from bulk crystals onto polydimethylsiloxane(PDMS)substrates,and then transferred to PET substrates by the so-called dry-transfer method.[38](see supplementary materials for the details of devices fabrication).Figure 1(b)is the schematic structure of the final strain device.In practical,proper thin flakes with good flatness and regular shape are chosen by using an optical microscopy.Then,the thickness is characterized by an atomic force microscopy(AFM).The typical thickness of the FeSe thin flakes used for the transport measurement is about 25 nm as evidenced by the AFM image as shown in Figs.1(d)and 1(e).Finally,four electrodes(Cr/Au with thicknesses of 5 and 50 nm,respectively)for transport measurements are coated on the surface of the FeSe thin flakes by using mask technique.The coated four electrodes also serve as the clamping points to prevent the sample from slippage during the bending of the substrate.Figure 1(c)displays an optical image of the actual device.It should be noted that the inplane crystal orientation of FeSe single crystal is determined by Laue diffraction measurement.The applied strain by bending the PET substrate is always along the[110]or[100]direction.The direction of the current can be changed by varying the direction of the electrodes.

    The strain induced by bending the PET substrate can be estimated by a continuum-mechanics model for an elastic beam(see supplementary material S2),in which the radius of curvature(R)from the bending of the PET substrate is assumed to be much larger than the thickness(h)of the PET substrate.Then,the magnitude of the applied strain can be calculated byε=h/2R[39](see details in Fig.S1 of the supplementary materials).A positive/negativeεdenotes a tensile/compressive strain,respectively.In this work,the thickness of the PET substrate is about 100μm,and we could extract the value of R from the profile of the bended PET substrate.In order to continuously change the strain in the FeSe thin flakes,the prepared device is fixed in the middle of two parallel plates and the distance between these two plates is continuously changed to bend the PET substrate.If no slippage happens between the FeSe thin flake and PET substrate,then the strainεin the FeSe thin flake can be directly calculated by the above formula.Here,the sample should be mounted in the middle position of the substrate.

    Fig.2.The longitudinal resistance and the temperature derivatives of the resistance at differentεalong(110).(a),(d),(g)and(j)Temperature dependence of resistance for FeSe thin flakes under different strains and different current directions.The inset is a schematic of the strain and the direction of the measured current.(b),(e),(h)and(k)The resistance at low temperatures corresponding to(a),(d),(g)and(j).(c),(f),(i)and(l)Temperature dependence of the temperature derivative of resistance for the samples corresponding to(a),(d),(g)and(j).

    Usually,x-ray diffraction(XRD)experiment is needed to verify the change of lattice parameters due to uniaxial strain.However,due to limited sample’s volume,it is very difficult to perform an in-situ XRD measurement on the FeSe thin flakes as that in large single crystal.[40]Instead,we have performed in-situ Raman measurements,which is sensitive to uniaxial strains on the FeSe thin-flake samples.As shown in Fig.1(f),we successfully obtain in-situ Raman spectra for the FeSe thin flakes under various strains along[110]direction.The A1gand B1gmodes come from the vibrations of Se atoms along the c axis and the vibrations of Fe atoms along the c axis,respectively.[41–43]By increasing the strain from tensile to compressive strain,both A1gand B1gmodes continuously shift to a higher wavenumber.The systematic evolution of A1gand B1gmodes with the uniaxial strain is shown in Fig.1(g).Qualitatively,although the absolute magnitude of the uniaxial strain on the FeSe thin flakes can not be determined precisely,the in-situ Raman result indicates that the uniaxial strain by bending the PET substrate is effectively transferred to the FeSe thin flakes.Similar in-situ Raman results are also obtained in the FeSe thin flakes under various strains along[100]direction(see supplementary materials Fig.S3).Therefore,we assume that the calculated value of strain by the above mentioned method well represents the actual strain in the FeSe thin flakes.Next,we would investigate the strain effects on both superconducting and nematic transitions in the FeSe thin flakes by electronic transport measurements.

    As shown in Fig.2,the temperature dependence of resistance for the FeSe thin flakes are systematically measured under different strains along the[110](Fe–Se–Fe)direction.In order to measure both tensile/compressive strain effects with the electric current parallel or perpendicular to the bending direction,we have prepared four similar strain devices to measure the temperature-dependent resistance.Figures 2(a)and 2(d)show the temperature dependences of resistances under tensile strain,with the electric current parallel and perpendicular to the direction of the uniaxial strain,respectively.The overall temperature dependence of resistance is very similar to the previous report on the bulk FeSe,[18]excepting a higher superconducting temperature and a lower nematic transition temperature.Such difference in superconducting and nematic temperatures between bulk FeSe and FeSe thin flake has already been reported in previous study.[44]Moreover,with increasing the tensile strain,the temperature-dependent resistances show a clear difference below the nematic transition temperature with current parallel and perpendicular to[110]direction,which suggests that the FeSe thin flake on the PET substrate is detwinned with the applied tensile substrate.The superconducting temperature(defined as the middle point of the resistive transition Tmidc)drops from the initial 9 K to 7.8 K with a tensile strain up to 0.47%in the device,when the electric current flows perpendicular to the direction of uniaxial strain.In the device with the electric current parallel to the direction of uniaxial strain,Tmidc drops from the initial 9.6 K to 6.9 K with a tensile strain up to 0.61%.In spite of slightly difference between different devices,it is clear that the superconducting temperature is almost linearly suppressed by increasing the tensile strain along the[110]direction.On the other hand,the nematic transition temperature(Ts)is determined from the derivative of the temperature-dependent resistance.As shown in Figs.2(c)and 2(f),there is a clear sharp jump due to the nematic transition in the differential curves.Tsis determined by the minimum of the jump.In the device with current parallel to the direction of uniaxial strain,Tsgradually increases from initial 71.2 K to 91.2 K with a tensile strain up to 0.61%.In the device with current perpendicular to the direction of uniaxial strain,Tsgradually increases from initial 70.4 K to 83 K with a tensile strain up to 0.47%.Therefore,in contrast to the superconducting temperature,the nematic transition temperature is clearly increased as the tensile strain increases.

    Fig.3.(a)Tc and Ts as a function of the strainεwhen the strain is applied along the[110]direction.With increasing the tensile strain,Tc gradually decreases and Ts gradually increases.With increasing the compressive strain,Tc gradually increases and Ts gradually decreases.There is a negative correlation between Tc and Ts.(b)and(c)Schematics of different strain types.εA1g is symmetry-preserving strain andεB1g is the strain component which breaks the four-fold rotational symmetry.

    In general,a uniaxial stress applied along one in-plane direction(a or b axis)will induce strains along all three principal axes.[28]Then we haveεjj=?vijεii,where vijis the intrinsic Poisson ratio for materials.This gives

    whereεA1g1andεA1g2are the non-symmetry-breaking strain such as volume expansion and change of tetragonality;and εB1gis the strain component which breaks the four-fold rotational symmetry.Based on symmetry considerations,Tcshould depend quadratically onεB2gbut linearly onεA1g.Accordingly,we have[28]

    whereαandβare the dimensionless coefficients of the dependence of TconεA1gandεB1g,respectively.In the previous study on the underdoped Ba(Fe1?xCox)2As2,the straindependent Tcis found to be dominant by aεB1gcomponent and shows a quadratical dependence.In that case,the coefficient of the quadratic termαis believed to be related to the longrange antiferromagnetic order existing in Ba(Fe1?xCox)2As2andεB1gwould enhance spin fluctuations while suppress nematic fluctuations.[45]With increasing the amount of Co doping to the overdoped region,the antiferromagnetic order in Ba(Fe1?xCox)2As2is gradually suppressed and thenεA1gbecomes dominant on the strain dependence of Tc.Following this explanation on strain-dependent Tc,the absence of longrange antiferromagnetic order in bulk FeSe would lead to a negligible value ofαand then only a linear term would be left.This is definitely confirmed by the observation in the present study.Therefore,our results indirectly support a role of stripe-type spin fluctuations on superconductivity.In addition,as reported in previous literatures,Tcis found to be very sensitive to the change of the c-axis lattice constant in FeSe thin films,[27]which might be responsible for the observed predominant A1g-type strain effect.In fact,the A1gtype strain effect could be also compared with the pressure effect in FeSe,in which the superconducting transition temperature would be enhanced by low pressure below 1 GPa while the nematic transition temperature is suppressed.However,with further increasing pressure,a long-range antiferromagnetic order would appear and then Tcwould be slightly suppressed by the development of antiferromagnetic order.[46]Here,whether a long-range antiferromagnetic order would appear or not with further increasing strain is still elusive.It may deserve further study to clarify the underlying physics for the A1g-type strain effect.On the other hand,a similar B1g-type strain effect on the nematic transition temperature was also revealed in the underdoped Ba(Fe1?xCox)2As2.[28]However,our results clearly demonstrate that such a B1g-type strain effect on Tsis absent in FeSe.If assuming a key role of spin degree of freedom on the electronic nematicity in iron-pnictides,the absence of B1g-type strain effect on Tssuggests that the orbital degree of freedom might play a key role instead of the spin degree of freedom to drive the electronic nematicity.Since the orbital order is sensitive to the change of lattice parameter,[47–49]the dominant A1g-type strain effect on Tscould be also related to the change of lattice parameter induce by uniaxial strain as that for Tc.Therefore,combining the strain effect in both FeSe and Ba(Fe1?xCox)2As,the stripe-type spin fluctuations,which would lead to a B1g-type strain effect on both Tcand Ts,play a more important role than orbital fluctuations on the superconductivity in IBSCs.In fact,this is also supported by a slight change of Tcacross the nematic quantum critical point in FeSe1?xSxsystem.[25]Recently,several experiments on the strain-tuning effects of bulk FeSe have been conducted by different groups.[35–37]Owing to different measuring methods and sample dimensions,there is a few slight differences in the detailed behavior of Ts(ε)and Tc(ε)among different experiments.[35–37]Nevertheless,consistent conclusions are obtained,which suggest intrinsic strain-tuning effects revealed in this study.

    In summary,by utilizing PET substrate,we successfully obtain a wide-range strain tuning for FeSe thin flake with both tensile and compressive strain up to about 0.7%.Our results reveal a predominant A1g-type strain effect on Tc,which is different from that of B1g-type in underdoped Ba(Fe1?xCox)2As2.Meanwhile,Tsexhibits a monotonic anticorrelation with Tcand the maximum Tcreaches to 12 K when Tsis strongly suppressed under the maximum compressive strain.Finally,in comparison with the results in the underdoped Ba(Fe1?xCox)2As2,the absence of B1g-type strain effect in FeSe further supports a role of stripe-type spin fluctuations on superconductivity.Our findings provide new insights for clarifying the underlying mechanism of nematic order and its twist with superconductivity in iron-based superconductors.

    猜你喜歡
    吳濤朝暉
    紅燈亮了
    好詩(shī)與好人
    芙蓉國(guó)里盡朝暉
    Recent advances in quasi-2D superconductors via organic molecule intercalation
    CENTRAL LIMIT THEOREM AND CONVERGENCE RATES FOR A SUPERCRITICAL BRANCHING PROCESS WITH IMMIGRATION IN A RANDOM ENVIRONMENT*
    觀巖畫(huà)
    三只蚊子
    Module 10 Units 3-4單元點(diǎn)撥
    Module 10 Units 1—2 單元點(diǎn)撥
    唆拜(外一首)
    文藝論壇(2015年23期)2015-03-04 07:57:15
    少妇的丰满在线观看| 国产精品1区2区在线观看.| 最近最新中文字幕大全免费视频| 欧美精品亚洲一区二区| 国产单亲对白刺激| 亚洲免费av在线视频| 亚洲男人天堂网一区| 欧美黑人欧美精品刺激| 亚洲中文av在线| 久久久久久大精品| 欧美日韩乱码在线| 女生性感内裤真人,穿戴方法视频| 免费在线观看视频国产中文字幕亚洲| 母亲3免费完整高清在线观看| 亚洲专区中文字幕在线| 人妻丰满熟妇av一区二区三区| 欧美日韩乱码在线| 九色亚洲精品在线播放| 国产精品av久久久久免费| 黄色怎么调成土黄色| 波多野结衣av一区二区av| 高清毛片免费观看视频网站 | 久久人妻熟女aⅴ| 欧美大码av| 亚洲成人久久性| 一区二区三区精品91| 国产精品国产av在线观看| 成人亚洲精品av一区二区 | 国产激情久久老熟女| 免费看十八禁软件| 国产免费现黄频在线看| 欧美一区二区精品小视频在线| 精品国产乱子伦一区二区三区| 性少妇av在线| 国产一区二区三区在线臀色熟女 | 中文字幕人妻丝袜制服| 亚洲片人在线观看| 亚洲成人免费电影在线观看| 久久人人爽av亚洲精品天堂| 日本wwww免费看| 免费高清视频大片| 别揉我奶头~嗯~啊~动态视频| 国产精品一区二区精品视频观看| 精品久久久久久久久久免费视频 | 99久久精品国产亚洲精品| 成人亚洲精品一区在线观看| 999久久久国产精品视频| 激情在线观看视频在线高清| 黑人猛操日本美女一级片| 狠狠狠狠99中文字幕| 国产主播在线观看一区二区| 国产亚洲精品久久久久久毛片| 国产成人啪精品午夜网站| 在线观看日韩欧美| 天堂√8在线中文| 国产xxxxx性猛交| 伊人久久大香线蕉亚洲五| 一二三四在线观看免费中文在| 黄色怎么调成土黄色| 亚洲avbb在线观看| 很黄的视频免费| 国产黄色免费在线视频| 成人免费观看视频高清| 韩国精品一区二区三区| 欧美性长视频在线观看| 天堂影院成人在线观看| 18美女黄网站色大片免费观看| 亚洲av电影在线进入| av视频免费观看在线观看| 午夜免费成人在线视频| 国产精品亚洲一级av第二区| 我的亚洲天堂| 女人精品久久久久毛片| 久久人妻熟女aⅴ| 久久精品国产亚洲av高清一级| 午夜免费成人在线视频| 777久久人妻少妇嫩草av网站| 欧美日韩亚洲国产一区二区在线观看| 大香蕉久久成人网| 淫秽高清视频在线观看| 80岁老熟妇乱子伦牲交| 成人av一区二区三区在线看| av电影中文网址| √禁漫天堂资源中文www| 成人手机av| 天天添夜夜摸| 午夜a级毛片| 丰满的人妻完整版| 老司机靠b影院| 欧美人与性动交α欧美软件| 最近最新中文字幕大全电影3 | 90打野战视频偷拍视频| 久久久久久大精品| 亚洲国产精品合色在线| 亚洲五月婷婷丁香| 国产在线观看jvid| 麻豆久久精品国产亚洲av | 美女大奶头视频| 中文亚洲av片在线观看爽| 日韩免费高清中文字幕av| 十八禁人妻一区二区| 91av网站免费观看| 亚洲av美国av| 久久精品国产清高在天天线| 一级a爱片免费观看的视频| 女人被躁到高潮嗷嗷叫费观| 国产精品1区2区在线观看.| 热re99久久国产66热| 校园春色视频在线观看| 精品久久久久久电影网| 欧美精品一区二区免费开放| 丝袜美腿诱惑在线| 亚洲熟妇中文字幕五十中出 | 夜夜爽天天搞| 女同久久另类99精品国产91| x7x7x7水蜜桃| 亚洲一区二区三区欧美精品| 欧美av亚洲av综合av国产av| 欧美国产精品va在线观看不卡| 啦啦啦在线免费观看视频4| xxx96com| www.精华液| 成年女人毛片免费观看观看9| 热99re8久久精品国产| 嫁个100分男人电影在线观看| 人成视频在线观看免费观看| 成人亚洲精品一区在线观看| 精品乱码久久久久久99久播| 在线观看一区二区三区| 精品人妻1区二区| 天堂俺去俺来也www色官网| 亚洲国产精品合色在线| 亚洲色图综合在线观看| 精品第一国产精品| 久久伊人香网站| 99久久综合精品五月天人人| 免费在线观看亚洲国产| 欧美日韩福利视频一区二区| 成人黄色视频免费在线看| 在线观看午夜福利视频| 男女下面插进去视频免费观看| 久久久精品欧美日韩精品| 天堂动漫精品| 嫩草影院精品99| av在线天堂中文字幕 | 午夜福利在线观看吧| 久久久久久久精品吃奶| av网站免费在线观看视频| 国产精品久久久久久人妻精品电影| 天堂中文最新版在线下载| av在线天堂中文字幕 | 日本wwww免费看| e午夜精品久久久久久久| 成人18禁在线播放| 午夜日韩欧美国产| 亚洲av成人一区二区三| 9191精品国产免费久久| 精品久久久精品久久久| 搡老熟女国产l中国老女人| 热re99久久国产66热| 搡老熟女国产l中国老女人| 久久精品亚洲熟妇少妇任你| 欧美激情久久久久久爽电影 | 国产激情欧美一区二区| 日日爽夜夜爽网站| 啦啦啦在线免费观看视频4| 看片在线看免费视频| 可以在线观看毛片的网站| 热re99久久国产66热| 黑人操中国人逼视频| 老司机深夜福利视频在线观看| 又黄又爽又免费观看的视频| 9热在线视频观看99| 亚洲成人免费电影在线观看| 亚洲午夜精品一区,二区,三区| 久久国产亚洲av麻豆专区| 97超级碰碰碰精品色视频在线观看| av福利片在线| 国产精品美女特级片免费视频播放器 | 校园春色视频在线观看| 国产欧美日韩综合在线一区二区| 久久中文字幕人妻熟女| av有码第一页| 在线观看免费视频网站a站| 成人特级黄色片久久久久久久| www.精华液| 十八禁人妻一区二区| 啪啪无遮挡十八禁网站| 久久久久久久久久久久大奶| 一级,二级,三级黄色视频| 国产伦人伦偷精品视频| 免费观看人在逋| 中文字幕人妻丝袜制服| 天堂中文最新版在线下载| 精品福利永久在线观看| 99国产精品一区二区蜜桃av| 欧美在线一区亚洲| 久久99一区二区三区| 大香蕉久久成人网| 欧美精品一区二区免费开放| 99riav亚洲国产免费| 一边摸一边抽搐一进一小说| 嫁个100分男人电影在线观看| 母亲3免费完整高清在线观看| 亚洲aⅴ乱码一区二区在线播放 | 新久久久久国产一级毛片| 男人舔女人的私密视频| ponron亚洲| www.自偷自拍.com| 亚洲伊人色综图| 亚洲成人精品中文字幕电影 | 十八禁网站免费在线| 19禁男女啪啪无遮挡网站| 国产亚洲欧美在线一区二区| 亚洲人成77777在线视频| 国产亚洲精品久久久久5区| 日日干狠狠操夜夜爽| 久久中文字幕人妻熟女| 日日干狠狠操夜夜爽| 久久亚洲真实| 性色av乱码一区二区三区2| 最近最新免费中文字幕在线| 法律面前人人平等表现在哪些方面| 亚洲成国产人片在线观看| 色婷婷av一区二区三区视频| 十分钟在线观看高清视频www| 欧美一级毛片孕妇| av网站在线播放免费| 久久影院123| 在线国产一区二区在线| av电影中文网址| 久久国产精品影院| 97碰自拍视频| 无遮挡黄片免费观看| 他把我摸到了高潮在线观看| 国产精品免费一区二区三区在线| 国产精品九九99| 在线看a的网站| 黄片大片在线免费观看| 在线观看日韩欧美| 日韩一卡2卡3卡4卡2021年| 亚洲欧美精品综合久久99| 亚洲在线自拍视频| 亚洲av五月六月丁香网| 成人av一区二区三区在线看| 97碰自拍视频| 国产av一区二区精品久久| 亚洲熟妇熟女久久| 交换朋友夫妻互换小说| 后天国语完整版免费观看| 午夜老司机福利片| 欧美中文综合在线视频| 国产在线精品亚洲第一网站| 国产1区2区3区精品| 国产精品久久久久成人av| 亚洲五月色婷婷综合| 超碰97精品在线观看| 午夜影院日韩av| 亚洲男人天堂网一区| 日韩欧美免费精品| 丰满人妻熟妇乱又伦精品不卡| 精品久久久久久久久久免费视频 | 成年版毛片免费区| 黄色 视频免费看| 午夜福利欧美成人| 99精品欧美一区二区三区四区| 国产亚洲精品久久久久5区| 国产精华一区二区三区| 成人国语在线视频| 黑人欧美特级aaaaaa片| 久久人人爽av亚洲精品天堂| 在线av久久热| 精品一区二区三区av网在线观看| av电影中文网址| 国产无遮挡羞羞视频在线观看| 午夜影院日韩av| 亚洲熟妇中文字幕五十中出 | 亚洲成av片中文字幕在线观看| 一二三四社区在线视频社区8| 国产成人精品久久二区二区91| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美成人免费av一区二区三区| 国产精品电影一区二区三区| 侵犯人妻中文字幕一二三四区| 97碰自拍视频| 亚洲第一青青草原| 国产亚洲精品久久久久5区| 成年人黄色毛片网站| 自拍欧美九色日韩亚洲蝌蚪91| 男男h啪啪无遮挡| 国产99白浆流出| 涩涩av久久男人的天堂| 99re在线观看精品视频| 久久香蕉国产精品| 视频在线观看一区二区三区| 精品久久久久久电影网| 久久久久精品国产欧美久久久| av电影中文网址| 欧美+亚洲+日韩+国产| 亚洲成av片中文字幕在线观看| 交换朋友夫妻互换小说| e午夜精品久久久久久久| 日日夜夜操网爽| 一边摸一边做爽爽视频免费| 亚洲国产毛片av蜜桃av| 免费av毛片视频| 黄频高清免费视频| 很黄的视频免费| 免费观看精品视频网站| 亚洲精品成人av观看孕妇| 久久狼人影院| 国产精品av久久久久免费| 成人黄色视频免费在线看| 正在播放国产对白刺激| 搡老熟女国产l中国老女人| 亚洲 欧美 日韩 在线 免费| 国产一区在线观看成人免费| 19禁男女啪啪无遮挡网站| av网站免费在线观看视频| 在线av久久热| 国产成人免费无遮挡视频| 在线观看免费视频日本深夜| 日韩精品免费视频一区二区三区| 亚洲狠狠婷婷综合久久图片| 日韩有码中文字幕| 国产精品一区二区免费欧美| 亚洲av五月六月丁香网| 精品一区二区三卡| 99国产综合亚洲精品| 欧美日韩福利视频一区二区| 成人影院久久| 亚洲专区国产一区二区| av在线播放免费不卡| 一个人免费在线观看的高清视频| 欧美色视频一区免费| 精品久久久久久久久久免费视频 | 18禁观看日本| 老汉色av国产亚洲站长工具| 这个男人来自地球电影免费观看| 91麻豆av在线| 中文字幕精品免费在线观看视频| 99久久人妻综合| 午夜福利在线免费观看网站| bbb黄色大片| 精品一区二区三区av网在线观看| 黑人巨大精品欧美一区二区mp4| 国产不卡一卡二| 午夜福利在线免费观看网站| 亚洲黑人精品在线| 亚洲国产欧美一区二区综合| 亚洲欧美激情综合另类| 免费av中文字幕在线| 午夜成年电影在线免费观看| 夫妻午夜视频| www.www免费av| 亚洲视频免费观看视频| 9热在线视频观看99| 亚洲成人久久性| 1024香蕉在线观看| 男女下面插进去视频免费观看| 亚洲成国产人片在线观看| 黑人操中国人逼视频| 妹子高潮喷水视频| 一进一出好大好爽视频| 满18在线观看网站| av片东京热男人的天堂| 中文字幕av电影在线播放| 黄网站色视频无遮挡免费观看| 国产高清激情床上av| 精品福利永久在线观看| 精品午夜福利视频在线观看一区| 久久国产亚洲av麻豆专区| 大型黄色视频在线免费观看| 国产一区二区在线av高清观看| 久9热在线精品视频| 久久人人爽av亚洲精品天堂| 亚洲 欧美 日韩 在线 免费| 男人舔女人下体高潮全视频| 啪啪无遮挡十八禁网站| 午夜久久久在线观看| 欧美国产精品va在线观看不卡| 亚洲伊人色综图| 国产精品自产拍在线观看55亚洲| 操美女的视频在线观看| 日韩免费高清中文字幕av| 黄色成人免费大全| 国产精品香港三级国产av潘金莲| 狠狠狠狠99中文字幕| 欧美中文日本在线观看视频| 看免费av毛片| 99久久久亚洲精品蜜臀av| 久久精品影院6| 人人妻,人人澡人人爽秒播| 免费在线观看完整版高清| 免费搜索国产男女视频| 亚洲精品国产一区二区精华液| 老熟妇乱子伦视频在线观看| 丰满的人妻完整版| 亚洲一区二区三区欧美精品| 多毛熟女@视频| 日本黄色视频三级网站网址| 亚洲av美国av| 99在线视频只有这里精品首页| 国产精品电影一区二区三区| 一进一出抽搐gif免费好疼 | √禁漫天堂资源中文www| 亚洲av五月六月丁香网| 1024香蕉在线观看| 欧美日韩一级在线毛片| 久久国产亚洲av麻豆专区| 涩涩av久久男人的天堂| 久久久久久久精品吃奶| av天堂久久9| 999精品在线视频| 色综合站精品国产| www国产在线视频色| 亚洲午夜精品一区,二区,三区| 国产91精品成人一区二区三区| 一级作爱视频免费观看| 欧美乱码精品一区二区三区| 一a级毛片在线观看| 18美女黄网站色大片免费观看| 搡老乐熟女国产| 老汉色∧v一级毛片| 亚洲av电影在线进入| 成人三级做爰电影| 一区二区三区激情视频| 亚洲精品粉嫩美女一区| 免费不卡黄色视频| www日本在线高清视频| 国产91精品成人一区二区三区| 99香蕉大伊视频| 中文字幕精品免费在线观看视频| 黄色女人牲交| 两性夫妻黄色片| av国产精品久久久久影院| 村上凉子中文字幕在线| 久久精品成人免费网站| 精品久久久久久久久久免费视频 | 搡老岳熟女国产| 一边摸一边抽搐一进一小说| 级片在线观看| 三上悠亚av全集在线观看| 国内毛片毛片毛片毛片毛片| 欧美另类亚洲清纯唯美| 亚洲中文字幕日韩| 国产三级黄色录像| 狂野欧美激情性xxxx| 久久香蕉精品热| 精品欧美一区二区三区在线| 后天国语完整版免费观看| 久久精品国产综合久久久| 国产主播在线观看一区二区| 满18在线观看网站| 精品第一国产精品| 大型黄色视频在线免费观看| 狠狠狠狠99中文字幕| 伦理电影免费视频| 悠悠久久av| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品国产一区二区精华液| 国产亚洲精品久久久久久毛片| 亚洲精品美女久久久久99蜜臀| 亚洲第一欧美日韩一区二区三区| 亚洲成人久久性| 日韩大码丰满熟妇| 欧美 亚洲 国产 日韩一| 一二三四社区在线视频社区8| 亚洲一区高清亚洲精品| 在线观看免费视频日本深夜| 国产免费现黄频在线看| 免费久久久久久久精品成人欧美视频| 欧美日韩黄片免| 99精国产麻豆久久婷婷| 级片在线观看| av中文乱码字幕在线| 18美女黄网站色大片免费观看| 日日夜夜操网爽| av欧美777| 国产国语露脸激情在线看| 97人妻天天添夜夜摸| 色综合站精品国产| 夫妻午夜视频| 黑人巨大精品欧美一区二区蜜桃| 老鸭窝网址在线观看| 国产精品电影一区二区三区| 国产精品香港三级国产av潘金莲| 欧美色视频一区免费| 免费在线观看视频国产中文字幕亚洲| 亚洲成人国产一区在线观看| 日本vs欧美在线观看视频| 女同久久另类99精品国产91| 露出奶头的视频| 国产aⅴ精品一区二区三区波| 涩涩av久久男人的天堂| 嫁个100分男人电影在线观看| 好看av亚洲va欧美ⅴa在| av视频免费观看在线观看| 极品人妻少妇av视频| 在线观看www视频免费| а√天堂www在线а√下载| av国产精品久久久久影院| 男女下面进入的视频免费午夜 | 高清av免费在线| 国产视频一区二区在线看| 丝袜美腿诱惑在线| 黄色a级毛片大全视频| 精品一区二区三卡| bbb黄色大片| 女同久久另类99精品国产91| 免费观看人在逋| 麻豆一二三区av精品| av欧美777| 99久久精品国产亚洲精品| 丰满饥渴人妻一区二区三| 黄色视频,在线免费观看| xxxhd国产人妻xxx| 在线观看一区二区三区| 性少妇av在线| 欧美一区二区精品小视频在线| 这个男人来自地球电影免费观看| 高清欧美精品videossex| 老司机福利观看| 亚洲国产欧美日韩在线播放| 一级片免费观看大全| 国产成+人综合+亚洲专区| 国产一区二区在线av高清观看| 天堂影院成人在线观看| 丁香欧美五月| 视频区图区小说| 亚洲欧美激情在线| 夜夜爽天天搞| 久久精品国产综合久久久| 亚洲熟妇熟女久久| 久久久久久久久免费视频了| 亚洲国产看品久久| 性少妇av在线| 天天躁夜夜躁狠狠躁躁| 中文欧美无线码| 国产亚洲av高清不卡| 日日干狠狠操夜夜爽| 9191精品国产免费久久| 亚洲第一青青草原| 久久伊人香网站| 日本欧美视频一区| 性少妇av在线| 嫩草影视91久久| 精品熟女少妇八av免费久了| 中文亚洲av片在线观看爽| 国产精品久久久久久人妻精品电影| 国产精品久久久久成人av| 亚洲性夜色夜夜综合| 91精品国产国语对白视频| 亚洲精品美女久久久久99蜜臀| 国产精品一区二区在线不卡| 国产高清激情床上av| 自拍欧美九色日韩亚洲蝌蚪91| 国产野战对白在线观看| 很黄的视频免费| 纯流量卡能插随身wifi吗| 成人黄色视频免费在线看| 国产精品亚洲一级av第二区| 夜夜爽天天搞| 色老头精品视频在线观看| 黄频高清免费视频| 美国免费a级毛片| 久久中文字幕人妻熟女| 香蕉久久夜色| 99精国产麻豆久久婷婷| 99国产精品99久久久久| 亚洲精品美女久久久久99蜜臀| 国产日韩一区二区三区精品不卡| 精品一品国产午夜福利视频| 精品欧美一区二区三区在线| 欧美av亚洲av综合av国产av| 很黄的视频免费| 伊人久久大香线蕉亚洲五| 国产欧美日韩综合在线一区二区| 超碰97精品在线观看| 黄片大片在线免费观看| 午夜两性在线视频| 又大又爽又粗| 国产视频一区二区在线看| a级毛片在线看网站| 又黄又爽又免费观看的视频| 日本a在线网址| 亚洲自偷自拍图片 自拍| 精品国产乱码久久久久久男人| 精品国产国语对白av| 亚洲中文av在线| 国产1区2区3区精品| 成年人免费黄色播放视频| 50天的宝宝边吃奶边哭怎么回事| 99热只有精品国产| 成人18禁高潮啪啪吃奶动态图| 欧美午夜高清在线| av天堂久久9| 精品乱码久久久久久99久播| 国产高清videossex| 国产欧美日韩一区二区三| 久久热在线av| 亚洲av美国av| 精品一区二区三区av网在线观看| 国产精品二区激情视频| 黑人欧美特级aaaaaa片| 国产成年人精品一区二区 | 久久国产精品男人的天堂亚洲| 精品欧美一区二区三区在线| 国产一区在线观看成人免费| 熟女少妇亚洲综合色aaa.| av欧美777| svipshipincom国产片| 另类亚洲欧美激情| 久久人妻av系列| 岛国视频午夜一区免费看|