• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake?

    2021-09-28 02:18:44ZhaohuiCheng程朝暉BinLei雷彬XigangLuo羅習(xí)剛JianjunYing應(yīng)劍俊ZhenyuWang王震宇TaoWu吳濤andXianhuiChen陳仙輝
    Chinese Physics B 2021年9期
    關(guān)鍵詞:吳濤朝暉

    Zhaohui Cheng(程朝暉),Bin Lei(雷彬),Xigang Luo(羅習(xí)剛),2,Jianjun Ying(應(yīng)劍俊),3,Zhenyu Wang(王震宇),3,Tao Wu(吳濤),2,3,5,?,and Xianhui Chen(陳仙輝),2,3,4,5

    1CAS Key Laboratory of Strongly-coupled Quantum Matter Physics,Department of Physics,University of Science and Technology of China,Hefei 230026,China

    2Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei 230026,China

    3CAS Center for Excellence in Superconducting Electronics(CENSE),Shanghai 200050,China

    4CAS Center for Excellence in Quantum Information and Quantum Physics,Hefei 230026,China

    5Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    Keywords:iron-based superconductors,superconductivity,electronic nematicity,strain effect

    Electronic nematic phase,in which the rotational symmetry is broken,exhibits a twist with superconductivity in the electronic phase diagram of iron-based superconductors(IBSCs).[1]Many experiments have already shown conclusive evidences for the electronic nematicity in IBSCs,including anisotropic transport,angle resolved photoemission spectroscopy(ARPES),scanning tunneling microscopy(STM),neutron scattering and so on.[2]So far,although the existence of electronic nematicity in IBSCs is well-established,[3–5]the underlying mechanism and its exact role on the superconducting pairing are still mystery and under hot debate.[1,6,7]Most of the existing experimental results support a direct competition between nematic order and superconductivity in the electronic phase diagram.[8,9]Since the nematic order is tightly twisted with a stripe-type antiferromagnetic order in the iron-pnictide family,[10–12]the competition between the nematic order and the superconductivity is widely believed to stem from the competition between antiferromagnetic order and superconductivity.[8,9]In this case,the nematic order is even considered to be driven by stripe-type spin fluctuations.[1,5,13–16]However,in iron-selenides family such as FeSe1?xSxsystems,there is no direct evidence for the competition between nematic order and superconductivity.[17,18]Interestingly,the stripe-type antiferromagnetic order is also decoupled with nematic order in the electronic phase diagram,which leads to an alternative scenario for electronic nematicity due to orbital order,[19,20]e.g.,the ferro-orbital order.Moreover,orbital fluctuations are also considered to mediate an s++superconducting pairing.[21]So far,the origin of the electronic nematicity and its role on superconductivity are still highly controversial in iron-selenides family.[1,6,7,21,22]

    As a conjugate field for electronic nematicity,strain can be used to manipulate the electronic nematicity,[3–5,24,25]which is helpful to elucidate the relationship between electronic nematicity and superconductivity.[26,27]Recently,a dominant B1g-type strain effect on superconductivity has been revealed in the underdoped Ba(Fe1?xCox)2As2.[24,25]With further electron doping,an A1g-type instead of B1g-type strain effect appears and becomes dominant in the overdoped Ba(Fe1?xCox)2As2.[28,29]These results strongly support a significant role of electronic nematicity on superconductivity.Then,a natural question is whether a similar B1g-type strain effect could be also observed in iron-selenides family or not,which would be helpful to further understand the role of electronic nematicity on the superconducting pairing in IBSCs.

    Previous study on FeSe thin films,utilizing pulsed laser deposition on different substrates,already indicates that the superconducting transition temperature(Tc)in FeSe thin films is highly tunable from 0 K to 12 K by changing the lattice parameters.[30]However,the previous study of the strain effect on Tcin bulk FeSe is not very successful due to the possible damage of FeSe single crystals by large uniaxial strain.[2]Only a small range of uniaxial strain could be applied to FeSe single crystal through a“horseshoe device”or pasting on a piezo-ceramic stack to achieve the measurements of nematic susceptibility.[31,32]In this work,in order to increase the tuning range of uniaxial strain in the bulk FeSe,we adopt a mechanical cleavage method to first cleave FeSe single crystal into thin flakes with the thickness of~25 nm,and then transfer these FeSe thin flakes on a flexible substrate.The uniaxial strain is applied to these thin flakes by bending the flexible substrate.The similar method has been successfully used for the strain tuning of MoS2and black phosphorus thin flakes.[33,34]By utilizing this method for applying uniaxial strain,Tcand Tsof FeSe thin flakes can be largely varied exceeding all previous studies on the strain effect in bulk FeSe.The maximum Tcof FeSe can be increased by 30%through applying a compressive strain up to 12 K,while the nematic transition temperature shows an anti-correlation with Tc.Detailed measuring procedures and data analysis are presented in the following part.We note that,during preparing this manuscript,a couple of similar researches on the strain-tuning effects of bulk FeSe have been published.[35–37]The strain-tuning methods in these researches are different from ours,while the main results are consistent with our experiments.

    In order to achieve continuous change of the uniaxial strain,we use flexible polyethylene terephthalate(PET)films as the substrate to stick FeSe thin flakes and then bend the substrate to produce strain.Bending the flexible substrate downward/upward could induce a tensile/compressive strain on the FeSe thin flakes(Fig.1(b)).The nominal magnitude of the strain is defined asε=ΔL/L0,whereΔL=L?L0,and L0and L are the sample length without and with strain,respectively(see supplementary materials for the details of calculation).

    Fig.1.Crystal structure,device configuration and strain-dependent Raman spectra of FeSe.(a)The crystal structure of the pristine FeSe.(b)Schematic structure of a FeSe thin flake on the flexible polyethylene terephthalate(PET)substrate.Variable compressive/tensile strains are induced on FeSe thin flakes by bending the substrate downward/upward.(c)An optical image of a FeSe thin flake supported on flexible PET substrate.(d),(e)AFM image of the dashed square in(c).The thickness of FeSe thin flake is about 25 nm along the red dashed line.(f)In-situ Raman spectroscopy of the FeSe thin flakes under different tensile and compressive strains with the strain along(110).The peaks of A1g and B1g modes move to the lower wave number with increasing the tensile strain and shift to the higher wave number with increasing the compressive strain.(g)The peak positions of A1g and B1g modes as a function of the strain.The frequencies of the A1g and B1g modes monotonously decrease with increasing the strain from negative to positive.

    As shown in Fig.1(a),due to the van der Waals interaction between different FeSe layers,the FeSe thin flakes can be easily obtained by the mechanical exfoliation with scotch tape method.FeSe thin flakes are first mechanically exfoliated from bulk crystals onto polydimethylsiloxane(PDMS)substrates,and then transferred to PET substrates by the so-called dry-transfer method.[38](see supplementary materials for the details of devices fabrication).Figure 1(b)is the schematic structure of the final strain device.In practical,proper thin flakes with good flatness and regular shape are chosen by using an optical microscopy.Then,the thickness is characterized by an atomic force microscopy(AFM).The typical thickness of the FeSe thin flakes used for the transport measurement is about 25 nm as evidenced by the AFM image as shown in Figs.1(d)and 1(e).Finally,four electrodes(Cr/Au with thicknesses of 5 and 50 nm,respectively)for transport measurements are coated on the surface of the FeSe thin flakes by using mask technique.The coated four electrodes also serve as the clamping points to prevent the sample from slippage during the bending of the substrate.Figure 1(c)displays an optical image of the actual device.It should be noted that the inplane crystal orientation of FeSe single crystal is determined by Laue diffraction measurement.The applied strain by bending the PET substrate is always along the[110]or[100]direction.The direction of the current can be changed by varying the direction of the electrodes.

    The strain induced by bending the PET substrate can be estimated by a continuum-mechanics model for an elastic beam(see supplementary material S2),in which the radius of curvature(R)from the bending of the PET substrate is assumed to be much larger than the thickness(h)of the PET substrate.Then,the magnitude of the applied strain can be calculated byε=h/2R[39](see details in Fig.S1 of the supplementary materials).A positive/negativeεdenotes a tensile/compressive strain,respectively.In this work,the thickness of the PET substrate is about 100μm,and we could extract the value of R from the profile of the bended PET substrate.In order to continuously change the strain in the FeSe thin flakes,the prepared device is fixed in the middle of two parallel plates and the distance between these two plates is continuously changed to bend the PET substrate.If no slippage happens between the FeSe thin flake and PET substrate,then the strainεin the FeSe thin flake can be directly calculated by the above formula.Here,the sample should be mounted in the middle position of the substrate.

    Fig.2.The longitudinal resistance and the temperature derivatives of the resistance at differentεalong(110).(a),(d),(g)and(j)Temperature dependence of resistance for FeSe thin flakes under different strains and different current directions.The inset is a schematic of the strain and the direction of the measured current.(b),(e),(h)and(k)The resistance at low temperatures corresponding to(a),(d),(g)and(j).(c),(f),(i)and(l)Temperature dependence of the temperature derivative of resistance for the samples corresponding to(a),(d),(g)and(j).

    Usually,x-ray diffraction(XRD)experiment is needed to verify the change of lattice parameters due to uniaxial strain.However,due to limited sample’s volume,it is very difficult to perform an in-situ XRD measurement on the FeSe thin flakes as that in large single crystal.[40]Instead,we have performed in-situ Raman measurements,which is sensitive to uniaxial strains on the FeSe thin-flake samples.As shown in Fig.1(f),we successfully obtain in-situ Raman spectra for the FeSe thin flakes under various strains along[110]direction.The A1gand B1gmodes come from the vibrations of Se atoms along the c axis and the vibrations of Fe atoms along the c axis,respectively.[41–43]By increasing the strain from tensile to compressive strain,both A1gand B1gmodes continuously shift to a higher wavenumber.The systematic evolution of A1gand B1gmodes with the uniaxial strain is shown in Fig.1(g).Qualitatively,although the absolute magnitude of the uniaxial strain on the FeSe thin flakes can not be determined precisely,the in-situ Raman result indicates that the uniaxial strain by bending the PET substrate is effectively transferred to the FeSe thin flakes.Similar in-situ Raman results are also obtained in the FeSe thin flakes under various strains along[100]direction(see supplementary materials Fig.S3).Therefore,we assume that the calculated value of strain by the above mentioned method well represents the actual strain in the FeSe thin flakes.Next,we would investigate the strain effects on both superconducting and nematic transitions in the FeSe thin flakes by electronic transport measurements.

    As shown in Fig.2,the temperature dependence of resistance for the FeSe thin flakes are systematically measured under different strains along the[110](Fe–Se–Fe)direction.In order to measure both tensile/compressive strain effects with the electric current parallel or perpendicular to the bending direction,we have prepared four similar strain devices to measure the temperature-dependent resistance.Figures 2(a)and 2(d)show the temperature dependences of resistances under tensile strain,with the electric current parallel and perpendicular to the direction of the uniaxial strain,respectively.The overall temperature dependence of resistance is very similar to the previous report on the bulk FeSe,[18]excepting a higher superconducting temperature and a lower nematic transition temperature.Such difference in superconducting and nematic temperatures between bulk FeSe and FeSe thin flake has already been reported in previous study.[44]Moreover,with increasing the tensile strain,the temperature-dependent resistances show a clear difference below the nematic transition temperature with current parallel and perpendicular to[110]direction,which suggests that the FeSe thin flake on the PET substrate is detwinned with the applied tensile substrate.The superconducting temperature(defined as the middle point of the resistive transition Tmidc)drops from the initial 9 K to 7.8 K with a tensile strain up to 0.47%in the device,when the electric current flows perpendicular to the direction of uniaxial strain.In the device with the electric current parallel to the direction of uniaxial strain,Tmidc drops from the initial 9.6 K to 6.9 K with a tensile strain up to 0.61%.In spite of slightly difference between different devices,it is clear that the superconducting temperature is almost linearly suppressed by increasing the tensile strain along the[110]direction.On the other hand,the nematic transition temperature(Ts)is determined from the derivative of the temperature-dependent resistance.As shown in Figs.2(c)and 2(f),there is a clear sharp jump due to the nematic transition in the differential curves.Tsis determined by the minimum of the jump.In the device with current parallel to the direction of uniaxial strain,Tsgradually increases from initial 71.2 K to 91.2 K with a tensile strain up to 0.61%.In the device with current perpendicular to the direction of uniaxial strain,Tsgradually increases from initial 70.4 K to 83 K with a tensile strain up to 0.47%.Therefore,in contrast to the superconducting temperature,the nematic transition temperature is clearly increased as the tensile strain increases.

    Fig.3.(a)Tc and Ts as a function of the strainεwhen the strain is applied along the[110]direction.With increasing the tensile strain,Tc gradually decreases and Ts gradually increases.With increasing the compressive strain,Tc gradually increases and Ts gradually decreases.There is a negative correlation between Tc and Ts.(b)and(c)Schematics of different strain types.εA1g is symmetry-preserving strain andεB1g is the strain component which breaks the four-fold rotational symmetry.

    In general,a uniaxial stress applied along one in-plane direction(a or b axis)will induce strains along all three principal axes.[28]Then we haveεjj=?vijεii,where vijis the intrinsic Poisson ratio for materials.This gives

    whereεA1g1andεA1g2are the non-symmetry-breaking strain such as volume expansion and change of tetragonality;and εB1gis the strain component which breaks the four-fold rotational symmetry.Based on symmetry considerations,Tcshould depend quadratically onεB2gbut linearly onεA1g.Accordingly,we have[28]

    whereαandβare the dimensionless coefficients of the dependence of TconεA1gandεB1g,respectively.In the previous study on the underdoped Ba(Fe1?xCox)2As2,the straindependent Tcis found to be dominant by aεB1gcomponent and shows a quadratical dependence.In that case,the coefficient of the quadratic termαis believed to be related to the longrange antiferromagnetic order existing in Ba(Fe1?xCox)2As2andεB1gwould enhance spin fluctuations while suppress nematic fluctuations.[45]With increasing the amount of Co doping to the overdoped region,the antiferromagnetic order in Ba(Fe1?xCox)2As2is gradually suppressed and thenεA1gbecomes dominant on the strain dependence of Tc.Following this explanation on strain-dependent Tc,the absence of longrange antiferromagnetic order in bulk FeSe would lead to a negligible value ofαand then only a linear term would be left.This is definitely confirmed by the observation in the present study.Therefore,our results indirectly support a role of stripe-type spin fluctuations on superconductivity.In addition,as reported in previous literatures,Tcis found to be very sensitive to the change of the c-axis lattice constant in FeSe thin films,[27]which might be responsible for the observed predominant A1g-type strain effect.In fact,the A1gtype strain effect could be also compared with the pressure effect in FeSe,in which the superconducting transition temperature would be enhanced by low pressure below 1 GPa while the nematic transition temperature is suppressed.However,with further increasing pressure,a long-range antiferromagnetic order would appear and then Tcwould be slightly suppressed by the development of antiferromagnetic order.[46]Here,whether a long-range antiferromagnetic order would appear or not with further increasing strain is still elusive.It may deserve further study to clarify the underlying physics for the A1g-type strain effect.On the other hand,a similar B1g-type strain effect on the nematic transition temperature was also revealed in the underdoped Ba(Fe1?xCox)2As2.[28]However,our results clearly demonstrate that such a B1g-type strain effect on Tsis absent in FeSe.If assuming a key role of spin degree of freedom on the electronic nematicity in iron-pnictides,the absence of B1g-type strain effect on Tssuggests that the orbital degree of freedom might play a key role instead of the spin degree of freedom to drive the electronic nematicity.Since the orbital order is sensitive to the change of lattice parameter,[47–49]the dominant A1g-type strain effect on Tscould be also related to the change of lattice parameter induce by uniaxial strain as that for Tc.Therefore,combining the strain effect in both FeSe and Ba(Fe1?xCox)2As,the stripe-type spin fluctuations,which would lead to a B1g-type strain effect on both Tcand Ts,play a more important role than orbital fluctuations on the superconductivity in IBSCs.In fact,this is also supported by a slight change of Tcacross the nematic quantum critical point in FeSe1?xSxsystem.[25]Recently,several experiments on the strain-tuning effects of bulk FeSe have been conducted by different groups.[35–37]Owing to different measuring methods and sample dimensions,there is a few slight differences in the detailed behavior of Ts(ε)and Tc(ε)among different experiments.[35–37]Nevertheless,consistent conclusions are obtained,which suggest intrinsic strain-tuning effects revealed in this study.

    In summary,by utilizing PET substrate,we successfully obtain a wide-range strain tuning for FeSe thin flake with both tensile and compressive strain up to about 0.7%.Our results reveal a predominant A1g-type strain effect on Tc,which is different from that of B1g-type in underdoped Ba(Fe1?xCox)2As2.Meanwhile,Tsexhibits a monotonic anticorrelation with Tcand the maximum Tcreaches to 12 K when Tsis strongly suppressed under the maximum compressive strain.Finally,in comparison with the results in the underdoped Ba(Fe1?xCox)2As2,the absence of B1g-type strain effect in FeSe further supports a role of stripe-type spin fluctuations on superconductivity.Our findings provide new insights for clarifying the underlying mechanism of nematic order and its twist with superconductivity in iron-based superconductors.

    猜你喜歡
    吳濤朝暉
    紅燈亮了
    好詩(shī)與好人
    芙蓉國(guó)里盡朝暉
    Recent advances in quasi-2D superconductors via organic molecule intercalation
    CENTRAL LIMIT THEOREM AND CONVERGENCE RATES FOR A SUPERCRITICAL BRANCHING PROCESS WITH IMMIGRATION IN A RANDOM ENVIRONMENT*
    觀巖畫(huà)
    三只蚊子
    Module 10 Units 3-4單元點(diǎn)撥
    Module 10 Units 1—2 單元點(diǎn)撥
    唆拜(外一首)
    文藝論壇(2015年23期)2015-03-04 07:57:15
    免费高清视频大片| 亚洲av中文av极速乱| 十八禁国产超污无遮挡网站| 国产一区亚洲一区在线观看| 国产高清不卡午夜福利| 在线播放国产精品三级| 亚洲av免费高清在线观看| 国产精品爽爽va在线观看网站| av在线观看视频网站免费| 亚洲成人av在线免费| 91狼人影院| 一级黄片播放器| 免费看美女性在线毛片视频| 中文字幕av成人在线电影| 欧美人与善性xxx| 亚洲久久久久久中文字幕| 99久国产av精品国产电影| 在线观看美女被高潮喷水网站| av天堂在线播放| 看免费成人av毛片| 午夜精品一区二区三区免费看| 成人鲁丝片一二三区免费| 久久韩国三级中文字幕| 五月伊人婷婷丁香| 成人高潮视频无遮挡免费网站| 亚洲美女搞黄在线观看 | 99热精品在线国产| 亚洲av不卡在线观看| 99在线视频只有这里精品首页| 亚洲精品国产成人久久av| 搡老岳熟女国产| 久久精品91蜜桃| 亚洲人成网站高清观看| 免费看日本二区| а√天堂www在线а√下载| 欧美bdsm另类| 午夜福利在线观看免费完整高清在 | 欧美日本视频| 免费黄网站久久成人精品| 免费人成视频x8x8入口观看| 亚洲熟妇中文字幕五十中出| 国产 一区精品| 国产女主播在线喷水免费视频网站 | 两个人视频免费观看高清| 国产成年人精品一区二区| av天堂在线播放| 国产毛片a区久久久久| 日韩一区二区视频免费看| 又爽又黄a免费视频| 国产欧美日韩一区二区精品| 免费看美女性在线毛片视频| 婷婷色综合大香蕉| 久久精品91蜜桃| 看免费成人av毛片| 亚洲成av人片在线播放无| 欧洲精品卡2卡3卡4卡5卡区| 老司机影院成人| 日本a在线网址| 国产成人91sexporn| 22中文网久久字幕| 老熟妇乱子伦视频在线观看| 天堂影院成人在线观看| 精品无人区乱码1区二区| 久久天躁狠狠躁夜夜2o2o| 69人妻影院| 色综合站精品国产| 99久久中文字幕三级久久日本| 久久欧美精品欧美久久欧美| 久久热精品热| av福利片在线观看| 真实男女啪啪啪动态图| 蜜桃久久精品国产亚洲av| 国产精品美女特级片免费视频播放器| 午夜爱爱视频在线播放| 午夜爱爱视频在线播放| 欧美色视频一区免费| 亚洲aⅴ乱码一区二区在线播放| 激情 狠狠 欧美| 波多野结衣高清作品| 国产私拍福利视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 两个人的视频大全免费| 国产极品精品免费视频能看的| 国产午夜福利久久久久久| 网址你懂的国产日韩在线| 大香蕉久久网| 国产午夜精品论理片| 亚洲丝袜综合中文字幕| 久久久久久久久久久丰满| 午夜福利成人在线免费观看| 三级毛片av免费| 桃色一区二区三区在线观看| 女人被狂操c到高潮| 少妇人妻精品综合一区二区 | 国内少妇人妻偷人精品xxx网站| 久久久久国产精品人妻aⅴ院| 亚洲欧美日韩东京热| 欧美激情久久久久久爽电影| 久久久久国产网址| 一个人看视频在线观看www免费| 国产伦在线观看视频一区| 白带黄色成豆腐渣| 国产伦精品一区二区三区四那| 老师上课跳d突然被开到最大视频| 十八禁国产超污无遮挡网站| 久久人妻av系列| 亚洲久久久久久中文字幕| 如何舔出高潮| 国产69精品久久久久777片| 99热这里只有是精品在线观看| 成人无遮挡网站| 一边摸一边抽搐一进一小说| 一边摸一边抽搐一进一小说| 18禁裸乳无遮挡免费网站照片| 久久天躁狠狠躁夜夜2o2o| 成人无遮挡网站| 精品一区二区三区视频在线| 麻豆av噜噜一区二区三区| 国产av一区在线观看免费| 国产乱人偷精品视频| 国产色爽女视频免费观看| 天堂影院成人在线观看| 人妻丰满熟妇av一区二区三区| 一级毛片aaaaaa免费看小| 免费人成在线观看视频色| 天堂影院成人在线观看| 小蜜桃在线观看免费完整版高清| 直男gayav资源| 国产 一区 欧美 日韩| 国产 一区 欧美 日韩| 高清毛片免费看| 国产久久久一区二区三区| 色尼玛亚洲综合影院| 天堂影院成人在线观看| 亚洲av中文字字幕乱码综合| a级一级毛片免费在线观看| 国产精品人妻久久久久久| 精品久久久久久久人妻蜜臀av| 免费一级毛片在线播放高清视频| 亚洲精华国产精华液的使用体验 | 国产aⅴ精品一区二区三区波| 啦啦啦观看免费观看视频高清| 美女被艹到高潮喷水动态| av在线亚洲专区| 日韩,欧美,国产一区二区三区 | 亚洲七黄色美女视频| 18禁在线播放成人免费| 哪里可以看免费的av片| 18禁在线播放成人免费| 一区二区三区四区激情视频 | 嫩草影院精品99| 日本爱情动作片www.在线观看 | 小蜜桃在线观看免费完整版高清| 成人永久免费在线观看视频| 人人妻人人澡人人爽人人夜夜 | 中文在线观看免费www的网站| 淫妇啪啪啪对白视频| a级一级毛片免费在线观看| 国产精品亚洲美女久久久| 波野结衣二区三区在线| 国产熟女欧美一区二区| 国产高清视频在线播放一区| 久久欧美精品欧美久久欧美| 精品午夜福利在线看| 成人无遮挡网站| 狂野欧美白嫩少妇大欣赏| 中文字幕精品亚洲无线码一区| 成年女人毛片免费观看观看9| 欧美国产日韩亚洲一区| 一本精品99久久精品77| 联通29元200g的流量卡| 久久久久免费精品人妻一区二区| 黄色一级大片看看| 99视频精品全部免费 在线| 成人特级黄色片久久久久久久| 国产爱豆传媒在线观看| av中文乱码字幕在线| 男女下面进入的视频免费午夜| 国产一区亚洲一区在线观看| 舔av片在线| 亚洲aⅴ乱码一区二区在线播放| 免费大片18禁| 日日摸夜夜添夜夜爱| 国模一区二区三区四区视频| 亚洲精品国产av成人精品 | 一级黄色大片毛片| 在线天堂最新版资源| 91午夜精品亚洲一区二区三区| 五月伊人婷婷丁香| 日韩精品有码人妻一区| 长腿黑丝高跟| 免费观看人在逋| 国产欧美日韩一区二区精品| 性欧美人与动物交配| 中文在线观看免费www的网站| 99精品在免费线老司机午夜| 尾随美女入室| 你懂的网址亚洲精品在线观看 | 日本一二三区视频观看| 亚洲精品久久国产高清桃花| 热99re8久久精品国产| 国产单亲对白刺激| 午夜视频国产福利| 亚洲av五月六月丁香网| 99视频精品全部免费 在线| 国产高清视频在线播放一区| 亚洲精品日韩av片在线观看| 国产成人91sexporn| 国产精品精品国产色婷婷| 我要搜黄色片| 99riav亚洲国产免费| 能在线免费观看的黄片| 午夜福利成人在线免费观看| 亚洲三级黄色毛片| 久久久久久久久久成人| 桃色一区二区三区在线观看| 男人狂女人下面高潮的视频| 国产又黄又爽又无遮挡在线| 又黄又爽又免费观看的视频| 亚洲精品在线观看二区| 亚洲精品成人久久久久久| 丰满人妻一区二区三区视频av| 淫秽高清视频在线观看| 一个人观看的视频www高清免费观看| 国产成人aa在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产色婷婷99| 大香蕉久久网| 97碰自拍视频| 免费不卡的大黄色大毛片视频在线观看 | a级一级毛片免费在线观看| 成人高潮视频无遮挡免费网站| 老熟妇仑乱视频hdxx| 菩萨蛮人人尽说江南好唐韦庄 | 中文字幕精品亚洲无线码一区| 亚洲精品456在线播放app| 青春草视频在线免费观看| 国产精品99久久久久久久久| 变态另类成人亚洲欧美熟女| 自拍偷自拍亚洲精品老妇| 深夜精品福利| 一夜夜www| 最近的中文字幕免费完整| 久久精品国产鲁丝片午夜精品| 亚洲中文日韩欧美视频| 国产精品国产高清国产av| 欧美+亚洲+日韩+国产| 五月伊人婷婷丁香| 亚州av有码| 久久午夜福利片| 别揉我奶头~嗯~啊~动态视频| 一级av片app| 欧美日本视频| 欧美日韩一区二区视频在线观看视频在线 | 99久久久亚洲精品蜜臀av| 久久久久久伊人网av| 俄罗斯特黄特色一大片| 插阴视频在线观看视频| 极品教师在线视频| 黄色欧美视频在线观看| 熟妇人妻久久中文字幕3abv| 精品一区二区三区人妻视频| 在线观看一区二区三区| 少妇裸体淫交视频免费看高清| 国产人妻一区二区三区在| 久久草成人影院| 国产精品亚洲美女久久久| 波多野结衣高清无吗| 麻豆国产97在线/欧美| 欧美在线一区亚洲| 国产亚洲欧美98| 真人做人爱边吃奶动态| .国产精品久久| 国产精品久久久久久亚洲av鲁大| 精品午夜福利在线看| av视频在线观看入口| 麻豆乱淫一区二区| 亚洲人成网站高清观看| 女同久久另类99精品国产91| 91av网一区二区| 狂野欧美激情性xxxx在线观看| 禁无遮挡网站| 久久精品国产鲁丝片午夜精品| 一个人看视频在线观看www免费| 成人av一区二区三区在线看| 日日撸夜夜添| 男女之事视频高清在线观看| 三级毛片av免费| 亚洲人成网站高清观看| 在线观看免费视频日本深夜| 少妇人妻一区二区三区视频| 国产精品国产三级国产av玫瑰| 综合色丁香网| 少妇熟女欧美另类| 精品久久久久久久久久免费视频| 在线观看66精品国产| 欧美日本亚洲视频在线播放| 国产成年人精品一区二区| 欧美xxxx黑人xx丫x性爽| 一级av片app| 亚洲中文日韩欧美视频| 亚洲中文字幕一区二区三区有码在线看| 亚洲美女视频黄频| 久久韩国三级中文字幕| 热99re8久久精品国产| 国产大屁股一区二区在线视频| 日韩,欧美,国产一区二区三区 | 1024手机看黄色片| 久久久久精品国产欧美久久久| 波野结衣二区三区在线| 午夜福利18| 日韩强制内射视频| 久久久色成人| 尤物成人国产欧美一区二区三区| 国产精品亚洲美女久久久| 一进一出抽搐gif免费好疼| 国产精品国产三级国产av玫瑰| 久久天躁狠狠躁夜夜2o2o| 别揉我奶头~嗯~啊~动态视频| 国产在视频线在精品| 97超碰精品成人国产| 国产精品一区二区性色av| 丰满的人妻完整版| 日韩成人av中文字幕在线观看 | 九九在线视频观看精品| 亚洲精品一区av在线观看| 国产精品日韩av在线免费观看| 在现免费观看毛片| 国产久久久一区二区三区| 欧美日韩国产亚洲二区| 又粗又爽又猛毛片免费看| 天堂√8在线中文| 日本爱情动作片www.在线观看 | 一区二区三区高清视频在线| 色吧在线观看| 久久天躁狠狠躁夜夜2o2o| 国产大屁股一区二区在线视频| 女同久久另类99精品国产91| 精品一区二区免费观看| 在线观看午夜福利视频| 亚洲图色成人| 熟妇人妻久久中文字幕3abv| 亚洲精品日韩在线中文字幕 | 婷婷六月久久综合丁香| 狠狠狠狠99中文字幕| 中出人妻视频一区二区| 色5月婷婷丁香| 波多野结衣高清无吗| 听说在线观看完整版免费高清| 精品99又大又爽又粗少妇毛片| 一个人看的www免费观看视频| 色噜噜av男人的天堂激情| 欧美成人a在线观看| 日韩欧美国产在线观看| 看十八女毛片水多多多| 亚洲欧美日韩无卡精品| 少妇猛男粗大的猛烈进出视频 | av免费在线看不卡| 色播亚洲综合网| 亚洲国产精品久久男人天堂| 日韩国内少妇激情av| avwww免费| 69人妻影院| 成年av动漫网址| 在线a可以看的网站| 国产 一区精品| 亚洲七黄色美女视频| 又爽又黄无遮挡网站| 又黄又爽又免费观看的视频| 久久精品国产自在天天线| 亚洲av第一区精品v没综合| 亚洲一区高清亚洲精品| 欧美激情久久久久久爽电影| 国产不卡一卡二| а√天堂www在线а√下载| 精品久久久久久成人av| 99久久九九国产精品国产免费| 久久精品国产亚洲av香蕉五月| 亚洲精品影视一区二区三区av| 别揉我奶头 嗯啊视频| av在线蜜桃| 九九热线精品视视频播放| 最新在线观看一区二区三区| 97超碰精品成人国产| 午夜福利在线在线| 免费观看人在逋| 免费看av在线观看网站| 久久久久免费精品人妻一区二区| 亚洲国产精品sss在线观看| 国产高清有码在线观看视频| 日本在线视频免费播放| 亚洲国产高清在线一区二区三| 少妇的逼好多水| 在线免费观看不下载黄p国产| 天天一区二区日本电影三级| 香蕉av资源在线| 可以在线观看的亚洲视频| 国产午夜精品论理片| 精品一区二区免费观看| 能在线免费观看的黄片| 搞女人的毛片| 久久精品国产亚洲av香蕉五月| 亚洲av免费高清在线观看| 麻豆一二三区av精品| 国产 一区精品| 一区二区三区免费毛片| 成人综合一区亚洲| 人人妻,人人澡人人爽秒播| 亚洲aⅴ乱码一区二区在线播放| 亚洲人成网站高清观看| 精品人妻偷拍中文字幕| av视频在线观看入口| 99热这里只有是精品50| 国产精品综合久久久久久久免费| а√天堂www在线а√下载| 丝袜喷水一区| 日韩欧美精品v在线| 春色校园在线视频观看| 久久久欧美国产精品| 九九久久精品国产亚洲av麻豆| 欧美色视频一区免费| 精品少妇黑人巨大在线播放 | 亚洲av不卡在线观看| 全区人妻精品视频| 黄色视频,在线免费观看| 色尼玛亚洲综合影院| 国产乱人视频| 色播亚洲综合网| 美女被艹到高潮喷水动态| 美女大奶头视频| 给我免费播放毛片高清在线观看| 91在线观看av| 亚洲综合色惰| 精品无人区乱码1区二区| 三级经典国产精品| 女生性感内裤真人,穿戴方法视频| 午夜亚洲福利在线播放| 能在线免费观看的黄片| 免费无遮挡裸体视频| 成年女人永久免费观看视频| 最近2019中文字幕mv第一页| 熟妇人妻久久中文字幕3abv| 亚洲一级一片aⅴ在线观看| 国产精品一二三区在线看| 国产熟女欧美一区二区| 欧美日韩乱码在线| 久久久久久久久中文| 国产精品人妻久久久影院| aaaaa片日本免费| 婷婷亚洲欧美| 亚洲熟妇熟女久久| 国产精品久久久久久久久免| 日本-黄色视频高清免费观看| 成年女人永久免费观看视频| a级毛色黄片| 日本黄色视频三级网站网址| 免费大片18禁| 国内精品久久久久精免费| 成人三级黄色视频| 亚洲欧美清纯卡通| 国产探花极品一区二区| 长腿黑丝高跟| 直男gayav资源| 色在线成人网| 99在线视频只有这里精品首页| 亚洲av五月六月丁香网| 国产精品日韩av在线免费观看| 99热这里只有精品一区| 波多野结衣高清无吗| 久久久久九九精品影院| 国产伦在线观看视频一区| 久久精品国产清高在天天线| 国产视频内射| 不卡一级毛片| 亚洲av熟女| 亚洲人成网站在线观看播放| 99久久中文字幕三级久久日本| 欧美丝袜亚洲另类| 欧美日韩一区二区视频在线观看视频在线 | 久久久久久久久久黄片| 一级av片app| 国产精品久久久久久亚洲av鲁大| 欧美xxxx黑人xx丫x性爽| 亚洲成av人片在线播放无| 国产精品一区二区三区四区久久| 成人鲁丝片一二三区免费| 99久久久亚洲精品蜜臀av| 性插视频无遮挡在线免费观看| av专区在线播放| 一区福利在线观看| 夜夜夜夜夜久久久久| 我的老师免费观看完整版| 丝袜美腿在线中文| 国产伦精品一区二区三区四那| 久久精品国产亚洲av香蕉五月| 秋霞在线观看毛片| 全区人妻精品视频| 国产成人a∨麻豆精品| 久久久欧美国产精品| 亚洲国产欧洲综合997久久,| 国产精品永久免费网站| 国产一区二区三区av在线 | 亚洲av免费高清在线观看| 色综合色国产| 欧美性猛交╳xxx乱大交人| 国产在线精品亚洲第一网站| 18禁黄网站禁片免费观看直播| 欧美xxxx性猛交bbbb| 你懂的网址亚洲精品在线观看 | 人妻制服诱惑在线中文字幕| 天堂√8在线中文| 又爽又黄a免费视频| 五月伊人婷婷丁香| 非洲黑人性xxxx精品又粗又长| 人妻夜夜爽99麻豆av| 午夜老司机福利剧场| 成人高潮视频无遮挡免费网站| 国产精品爽爽va在线观看网站| 欧美最黄视频在线播放免费| 久久这里只有精品中国| 女的被弄到高潮叫床怎么办| 神马国产精品三级电影在线观看| 禁无遮挡网站| av天堂中文字幕网| 免费人成视频x8x8入口观看| 国产精品亚洲美女久久久| 有码 亚洲区| 精品一区二区三区av网在线观看| 日韩精品有码人妻一区| 国产精品一二三区在线看| 日韩精品青青久久久久久| 久久久色成人| 99视频精品全部免费 在线| 少妇猛男粗大的猛烈进出视频 | 久久午夜福利片| 看免费成人av毛片| 免费看美女性在线毛片视频| 亚洲人成网站在线观看播放| 色哟哟·www| 午夜精品一区二区三区免费看| 一进一出好大好爽视频| 亚洲久久久久久中文字幕| 最好的美女福利视频网| 精品无人区乱码1区二区| 三级国产精品欧美在线观看| 一边摸一边抽搐一进一小说| 天天一区二区日本电影三级| 免费看美女性在线毛片视频| 久久久久免费精品人妻一区二区| 女生性感内裤真人,穿戴方法视频| 亚洲天堂国产精品一区在线| 国产精品av视频在线免费观看| 最新在线观看一区二区三区| 亚洲精品亚洲一区二区| 国产成人aa在线观看| av在线蜜桃| 精品人妻熟女av久视频| 欧美一区二区精品小视频在线| 毛片女人毛片| 国产成人精品久久久久久| 六月丁香七月| 老熟妇乱子伦视频在线观看| 欧美在线一区亚洲| 久久久久国产网址| 亚洲av熟女| 人妻制服诱惑在线中文字幕| 免费看美女性在线毛片视频| 真人做人爱边吃奶动态| 国产精品一区二区三区四区久久| 日本一本二区三区精品| 男女下面进入的视频免费午夜| 男人狂女人下面高潮的视频| 精品人妻视频免费看| a级毛色黄片| 免费看a级黄色片| 秋霞在线观看毛片| 欧美又色又爽又黄视频| 麻豆乱淫一区二区| 亚洲美女黄片视频| 亚洲一区高清亚洲精品| 一级a爱片免费观看的视频| 校园春色视频在线观看| 男女做爰动态图高潮gif福利片| 久久精品国产亚洲av天美| 国产私拍福利视频在线观看| 成人美女网站在线观看视频| 九色成人免费人妻av| 亚洲av中文字字幕乱码综合| 国产一区二区三区在线臀色熟女| 91在线观看av| 亚洲七黄色美女视频| 一个人看的www免费观看视频| 成人无遮挡网站| 亚洲国产高清在线一区二区三| 毛片女人毛片| 两个人的视频大全免费| 亚洲国产色片| 又粗又爽又猛毛片免费看| 欧美色欧美亚洲另类二区| 搡老岳熟女国产| 内地一区二区视频在线| 久久99热这里只有精品18| 国产综合懂色| 国产欧美日韩精品亚洲av| 人妻丰满熟妇av一区二区三区| АⅤ资源中文在线天堂| 精品一区二区三区av网在线观看| 国产成人91sexporn| 久久久a久久爽久久v久久| 欧美精品国产亚洲| 可以在线观看毛片的网站| 国产一区二区激情短视频| 久久久久久久久中文| 国产高清有码在线观看视频| 白带黄色成豆腐渣|