• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recent advances in quasi-2D superconductors via organic molecule intercalation

    2022-10-26 09:52:32MengzhuShi石孟竹BaoleiKang康寶蕾TaoWu吳濤andXianhuiChen陳仙輝
    Chinese Physics B 2022年10期
    關(guān)鍵詞:吳濤

    Mengzhu Shi(石孟竹) Baolei Kang(康寶蕾) Tao Wu(吳濤) and Xianhui Chen(陳仙輝)

    1Department of Physics,University of Science and Technology of China,Hefei 230026,China

    2CAS Key Laboratory of Strongly-coupled Quantum Matter Physics,University of Science and Technology of China,Hefei 230026,China

    3Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    4CAS Center for Excellence in Superconducting Electronics(CENSE),Shanghai 200050,China

    Keywords: organic molecular intercalation,two-dimensional superconductivity,organic-inorganic hybrid materials

    1. Introduction

    Superconductivity (SC) is a macroscopic quantum phenomenon. Generally, with reduced dimensionality, the increased spatial and temporal fluctuations will strongly suppress and even destroy superconductivity in systems.[1–5]Within classical theories, the famous Mermin–Wagner theorem points out that continuous spontaneous symmetry breaking is forbidden in neither one- nor two-dimensional systems at finite temperatures, thus disenabling conventional superconducting transitions at the 2D limit.[2]Nevertheless,the Berezinskii–Kosterlitz–Thouless(BKT)theory provides a compatible understanding for this issue. It predicts a thermodynamic instability in the form of vortex–antivortex pairs,which spontaneously dissociate into free vortices at a characteristic transition temperatureTBKT.[6–8]Such a transition is a topological phase transition without any form of symmetry breaking, which manifests itself as a jump in the power-law exponent in current–voltage (I–V) characteristic curves and in a disappearance of ohmic resistance obeying the Halperin–Nelson scaling law.[9,10]At present,BKT physics has become an important feature of 2D superconductors.

    In the past few decades, superconductivity at the 2D limit has become one of the hottest frontiers in the field of condensed matter physics. The emergent novel quantum phenomena, including anomalously enhancedHc2, quantum metallic states and quantum Griffiths singularity in conventional Bardeen–Cooper–Schrieffer (BCS) superconductors,shed light on not only fundamental research but also practical applications to non-dissipative micro/nanoelectronics.[11–16]Particularly, distinct from conventional BCS superconductors, all high-Tcsuperconductors have a layered structure with varying degrees of anisotropy. Very recently,monolayer Bi2Sr2CaCu2O8+δ(Bi2212) has been reported to display all the fundamental physics of high-Tcsuperconductivity as its three-dimensional (3D) counterparts, verifying the quasi-2D nature of its bulk state.[17]Coincidentally, for iron-based superconductors that have a more 3D layered structure,the discovery of exotic high-Tcsuperconductivity in a single-layer FeSe film on a SrTiO3substrate (FeSe/STO) further highlights the key role of reduced dimensionality.[18,19]It exhibits a large superconducting gap of approximately 20 meV with a gap opening temperature of approximately 65 K, while the zero-resistance critical temperature (Tc0) determined by electrical transport measurements is mostly below 40 K.[20–23]Such a result reveals much enhanced high-Tcsuperconductivity compared to its 3D bulk phase and possible links with the pseudogap behavior in high-Tccuprate superconductors.[24–27]The apparent dichotomy with conventional BCS superconductors hints at great importance for the quasi-2D nature of both cuprate and iron-based superconductors,which provides a unique perspective for the experimental study of high-Tcsuperconductors.

    In the early days, the most popular methods for the fabrication of 2D superconductors were thermal evaporation and sputtering of granular and amorphous metallic film.[28,29]Driven by the rapid advancement in film growth techniques,including molecular beam epitaxy(MBE)and pulsed laser deposition(PLD),the existence of 2D superconductors with truly atomic-scale thickness and the fabrication of complicated heterostructures have been established.[15,30,31]In addition to the bottom-up approaches that start from the atomic ingredients,mechanical exfoliation and liquid exfoliation provide an alternative to fabricate 2D superconductors through up-bottom approaches.[32–34]However,restricted by the limited size and intrinsic features of thin films, intensive studies in the traditional experimental framework based on bulk samples, such as specific heat,anisotropic electrical transport and NMR measurements,have been totally impeded. Here,we explore a series of quasi-2D superconductors in bulk phase,which are synthesized through a simple and gentle method, that is, electrochemical intercalation.[35–38]New advances in these quasi-2D superconductors in the bulk phase are the focus of this review article. Our results establish dimensionality as an effective parameter for studying novel physics in both BCS superconductors and high-Tcsuperconductors.

    2. Experimental techniques

    There are several methods to achieve or enhance the twodimensionalization in 2D materials with high crystallinity.The first method to enhance the two-dimensionality is to insert inorganic insulating layers with different thicknesses between the functional layers. For example, in the study of cuprate superconductors,Tccan be gradually increased by inserting insulating inorganic layers with different thicknesses into the CuO2plane. Taking the Hg-Ba-Ca-Cu-O system as an example,theTcof the material gradually increases with increasing thickness of the inorganic insulating layer.[39]However, such a series of materials make it difficult to obtain large crystals,and only several limited systems have been reported. The second method to realize two-dimensionalization is to change the thickness of the material by the micromechanical exfoliation method or the growth of thin films through the molecular beam epitaxy(MBE)or chemical vapour deposition(CVD)method.This is a more general way to modify the physical properties of the material by dimensionality control. With decreasing thickness,different types of charge density wave(CDW)orders can be observed,and the magnetic transition temperature orTccan also be regulated. For example, the TaS2thin flake sample shows a thickness-dependent CDW state.[40]With decreasing thickness, the CDW transition temperature of 1T-TaS2gradually decreases and finally disappears. TheTcof NbSe2decreases with decreasing thickness.[41]However,theTcof single layer FeSe/SrTiO3as high as 65 K is much higher than that of bulk FeSe,[20–23]which has a lowTcof only approximately 8 K. Despite the many advantages mentioned above,the problem of these thin layer samples is that it is difficult to obtain large enough samples for structural research, specific heat testing, anisotropic resistance, anisotropic susceptibility and NMR measurements.

    Recently, a new method for the synthesis of twodimensional bulk materials has attracted much attention.[35,36]It enables the measurement of the correlated electronic properties of two-dimensional systems with strong anisotropy.That is the organic molecules intercalation method where the organic molecules are inserted into the interlayer of twodimensional materials.

    Intercalation is a widely used method for material preparation. Many ions, molecular and inorganic structural layers can be inserted into the two-dimensional materials, which is very significant in graphite intercalation compounds. Compared with the inserted alkali metals, the insertion of organic molecules can greatly increase the interlayer distance and realize a two-dimensional structure.At the same time,due to the poor conductivity of the organic molecular layer,the transport of electrons can only be confined in the inorganic layer within theabplane, and it is difficult to transmit between layers in thec-axis direction, which may lead to the two-dimensional transport characteristics of charges and spin.

    In our previous work,we adopted the electrochemical intercalation method to tune the physical properties, especially the superconductivity of 2D materials. Electrochemical intercalation can be easily realized through the driving force of the current.As shown in Fig.1(a),an electrolytic cell is assembled with the target material as the working electrode,the Ag piece as the counter electrode and the solution containing quaternary ammonium cations as the electrolyte.[42]A constant current is applied to the above electrolytic cell. When the current passes through the cell,the counter electrode loses electrons,and the working electrode obtains electrons accompanied by the insertion of organic ions to maintain the charge balance.

    Taking TaS2as an example,the above process can be expressed by the following equations:

    After cleaning and drying the product, we obtained the organic ion intercalated bulk sample for further physical measurements. Through the above electrochemical intercalation process, we can quickly obtain crystals with anabplane size greater than 1 mm for various bulk measurements, including structure characterization, anisotropic resistance and susceptibility measurements, specific heat tests and NMR measurements.

    Fig.1. (a)Schematic of the electrolytic cell;(b)and(c)crystal structures of TaS2 and(CTA)xTaS2;(d)and(e)resistivity curve and Hall coefficient for(CTA)xTaS2;(f)resistivity curve for(CTA)0.1TaS2 under different magnetic fields;(g)upper critical field of(CTA)0.1TaS2 from the data in(f).Panel(a)is from Ref.[42],(b)–(f)are from Ref.[38].

    3. Quasi-2D superconductors through organic molecule intercalation

    3.1. Tunable superconductivity in TaS2 via organic molecule intercalation

    As a typical transition metal disulfide compound, the CDW and SC states in TaS2and the competition between them have attracted the attention of researchers.[43,44]The link between S–Ta–S covalent bonds leads to different coordination polyhedrons,and the alternating stacking of coordination polyhedrons in thec-axis direction brings rich isomers.[45]The most typical structures are the 1T phase and 2H phase.[46]In the 1T phase,Ta and S form octahedra;in the 2H phase,Ta and S form prisms. 1T-TaS2exhibits a series of CDW transitions with decreasing temperature, from incommensurate CDW at 600 K and near-commensurate CDW at 350 K to commensurate CDW at 180 K.[47]In 2H phase TaS2, superconductivity and CDW can coexist.

    In 1T-TaS2, the CDW state can be regulated by reducing the thickness of the thin flake sample,and superconductivity can be induced through the lithium-ion-gel gating method.In 2H-TaS2, the coexistence of CDW and SC attracts attention to investigate the completion of these different orders with the regulation of electron doping and dimensionality control.Therefore, we used electrochemical intercalation of the organic molecules to study the influence of charge doping and dimensionality reduction on the superconductivity and CDW in 2H-TaS2.[38]

    Before the intercalation of the organic molecules,the resistance curve of the bulk 2H-TaS2exhibits a kink near 70 K(Fig.1(d)),and the Hall coefficient changes sign near this temperature (Fig. 1(e)), corresponding to the change in the main carrier type and the formation of the CDW state.[48]Further lowering the temperature, the resistance curve shows superconductivity at 0.8 K, showing the coexistence of superconductivity with CDW.[49]After the intercalation of the organic molecule, the interlayer distance of 2H-TaS2increases from the initial 6 ?A (Fig. 1(b)) to approximately 32 ?A (Fig. 1(c)),which is consistent with the sum of the thickness of monolayer TaS2and the length of the CTA+molecule. This indicates that the structure of(CTA)xTaS2is composed of one layer of TaS2and one layer of CTA+molecules with a vertical arrangement alternately stacked along thecaxis. Moreover,the lattice parameter of the intercalation products in thec-axis increases slowly with increasing doping amount, which may be related to the angle change of the arrangement of organic molecules in the interlayer.[50]The TEM images of TaS2and (CTA)xTaS2also confirm the structure model in Fig.1(c).[38]

    As a result, the physical properties of the intercalated products have changed greatly. In terms of electrical transport,the CDW transition near 70 K disappears after the insertion of organic molecules into TaS2. The Hall coefficient is negative in the whole temperature range of 2–300 K,indicating that the organic molecule intercalation introduces electron doping to TaS2(Fig.1(e)). At the same time,the intercalated samples show superconductivity between 2–3.5 K(Fig.1(d)),which is much higher than that of the primitive TaS2. This implies that the organic ions introduce carriers after intercalation, which destroys the CDW order and increases theTc.This indicates that there may be competition between the SC and CDW orders in TaS2.Tcis suppressed gradually with increasing applied magnetic field(Fig.1(f)). The upper critical field shows a positive curvature (Fig. 1(g)), which confirms the type II superconductivity under the clean limit. The upper critical field obtained by fitting is 0.63 T,which is much higher than the 0.11 T of the parent TaS2but still lower than the Pauli limit.[51]

    It has been reported that theTcof 2H-TaS2can be improved from 0.5 K in the bulk sample to 2.2 K for the 3.5 nm thin flake sample.[52]The enhanced superconductivity is attributed to an enhancement of the effective electron–phonon coupling constant as the layers thin down. However,it is necessary to note that the resistivity curve of (CTA)0.1TaS2in Fig.1(f)does not resemble the features observed in quasi-2D superconductivity,although the interlayer distance of TaS2has been greatly increased to more than 3 nm. The increasedTcof TaS2is mainly attributed to the electron doping effect.

    The above results show that in TaS2intercalated by organic molecules, the interlayer distance is increased, and the introduction of carriers inhibits the CDW order and improves theTc. This suggests that the electrochemical organic molecule intercalation method can effectively regulate the physical properties of two-dimensional materials.

    In fact,the intercalation method is a frequently used way to achieve superconductivity in TMDs due to the easy control of carrier doping. For example,the organic amine intercalated TaS2obtained through a solvothermal reaction achieves superconductivity,and theTcdepends on the doping level of charge transferred from the organic amine.[53]Furthermore,the liquid ammonia method is also successfully applied on Td-WTe2[54]and 2H-MoS2[55]and achieves superconductivity with the intercalation of alkaline metal. However,it is difficult to obtain high-quality crystals in this way, which makes further bulk physical characterization impossible.

    3.2. BKT physics in organic molecules intercalated SnSe2

    Apart from the improvement of theTcin CTA+intercalated TaS2, the intercalation of organic molecules into 2D materials can also induce superconductivity in an insulator.As a layered dichalcogenide compound, 1T-SnSe2is a direct band gap semiconductor with an energy gap of 1.0 eV.[56]In this material, superconductivity can be introduced through the growth of thin films,[57]ionic liquid gating[58]and Li intercalation.[59]In particular, the coexistence of superconductivity and ferromagnetism can also be observed when cobaltocene molecules are inserted into the adjacent layer of SnSe2.[60]Recently,through the cointercalation of lithium and organic molecules, a close relationship betweenTcand interlayer distance was reported, whereTcwas independent of the content of intercalation species.[59]Finding the appropriate way to further increase the interlayer distance of SnSe2and study its transport behavior is crucial for understanding the superconducting physics of SnSe2.

    The interlayer distance of intercalation products can be well controlled by changing the size of organic molecules by electrochemical intercalation. Using this method, CTA+and TBA+molecules can be inserted into the interlayer of SnSe2,[37]and the interlayer distances are increased from 6.12 ?A (Fig. 2(a)) to 14.74 ?A (Fig. 2(b)) and 18.62 ?A(Fig. 2(c)), respectively. TheTcvalues of the corresponding products are 7.1 K and 6.4 K (Fig. 2(g)), respectively. As shown in Fig. 2(g), the phase diagram withTcand the interlayer distance shows a dome-like behavior. Similar behavior has been observed in the intercalated HfNCl system.

    Fig.2. (a)–(c)Crystal structures of SnSe2,(CTA)xSnSe2 and(TBA)xSnSe2,respectively; (d)the magnetic susceptibility curve of(CTA)0.5SnSe2 with the field H//c and H//ab plane;(e)the in-plane(in black)and out-of-plane(in red)resistivity curves of(CTA)0.5SnSe2;(f) the temperaturedependent anisotropy resistivity ratio(ρc/ρa(bǔ)b)of SnSe2 (in black)and(CTA)0.5SnSe2 (in blue). Panels(a)–(f)are from Ref.[37].

    Fig.3. (a)The I–V curves of(CTA)0.5SnSe2 at different temperatures around Tc;(b)the resistivity curve of(CTA)0.5SnSe2 with the Y-axis on the[dlnR/dT]-2/3 scale;(c)the temperature-dependent α obtained from(a)with the fitting function V ∝Iα. Panels(a)–(c)are from Ref.[37].

    Previously, the quasi-2D SC withTc= 3.9 K was observed in the ionic liquid gated 1T-SnSe2thin flake sample.[58]The intrinsic 2D superconductivity is suggested through transport measurement. The angle-dependent upper critical field of the gated thin flake 1T-SnSe2obeys the 2D Tinkham model.Furthermore,similar transport behavior is also observed in the ion-gated insulator ZrNCl, indicating the universality of such novel transport properties.[12]Our organic molecule intercalation shows an improvedTcand quasi-2D SC due to the increase of the interlayer distance in a bulk sample.These results indicate that 2D SC can also be supported in bulk samples.

    Fig. 4. (a) The schematic crystal structure of (CTA)xFeSe (cetyltrimethyl ammonium, CTA+).[35] The distance between adjacent FeSe layers is~14.5 ?A. (b) The schematic crystal structure of (TBA)xFeSe (tetrabutylammonium, TBA+).[36] The distance between adjacent FeSe layers is~15.5 ?A.(c)Temperature dependence of anisotropic magnetic susceptibility for(TBA)xFeSe. An external magnetic field of 5 Oe is applied along the ab-plane(blue)and c-axis(red). (d)The anisotropy ratio of resistivity(ρc/ρa(bǔ)b)for(TBA)xFeSe and pristine FeSe. The FeSe data are adopted from Ref.[68]. (e)Temperature dependence of the Knight shift(upper panel)and its first derivative(lower panel)for(TBA)xFeSe. (f)Temperature evolution of the spin-lattice relaxation rate divided by temperature (upper panel) and its first derivative (lower panel) for (TBA)xFeSe. (g) The high-field magnetic susceptibility χab and χc measured in field-cooling mode with a magnetic field of 7 T applied along the ab-plane(green)and c-axis(orange),respectively. The black solid lines are the extrapolation fitting curves of high-temperature behavior. The arrow indicates the onset of diamagnetism. (h) Temperature dependence of the Nernst effect under a magnetic field of 13.5 T applied along the c-axis. A vortex-related Nernst signal is observed well above Tc0. The arrow shows the onset of the vortex-related Nernst effect at ~65 K.It should be noted that the Tp determined by the Nernst effect is slightly higher than that determined by the other probes,which suggests that the Nernst effect is more sensitive to detecting superconducting fluctuations. Panels(c)–(h)are from Ref.[63].

    3.3. Pseudogap behavior in quasi-2D high-Tc FeSe-based superconductors

    Apart from the improvement of theTcand induction of the quasi-2D SC, the intercalation of organic molecules into 2D superconductors can also favor novel transport behaviors,such as pseudogap behavior, due to the extremely improved anisotropy.

    As a high-Tciron-based superconductor with the simplest van der Waals layered structure, FeSe provides an ideal platform to study the dimensional crossover effect and underlying physics.At ambient pressure,FeSe exhibits a superconducting transition atTc~8.5 K.[62]By employing the electrochemical intercalation method,two new kinds of FeSe-based superconductors,namely,(CTA)xFeSe and(TBA)xFeSe,withTc0above 40 K,have been synthesized.[35,36]As shown in Figs.4(a)and 4(b), the organic-ion-intercalated FeSe-based superconductors consist of alternate stacking of FeSe layers and organic molecules. With the intercalation of chemically inert organic molecules, the enhanced superconductivity and anisotropy have been confirmed by both anisotropic magnetic susceptibility and electrical transport measurements.Taking(TBA)xFeSe as an example,as shown in Figs.4(c)and 4(d),the significant difference in the diamagnetic shielding fraction between the two field orientations, even up to dozens of times, suggests a strong 2D character. Dramatically, the anisotropy ratio of resistivity is enhanced by approximately 5 orders of magnitude compared to bulk FeSe, supporting an intercalation-induced dimensional crossover from 3D to 2D.[63]

    Nuclear magnetic resonance (NMR) is a bulk-sensitive local probe to measure electronic spin susceptibility (χs),which is commonly used to reveal the pseudogap behavior in high-Tccuprate superconductors.[64,65]As shown in Figs.4(e)and 4(f), by measuring the Knight shift and nuclear spinlattice relaxation rate, an intrinsic pseudogap behavior belowTp~60 K is unambiguously revealed. A weak 2D diamagnetic signal and remarkable Nernst effect far aboveTc0further indicate the existence of strong superconducting fluctuations[Figs.4(g)and 4(h)],confirming the preformed Cooper pairing scenario. In addition,the power-law transition withV~I(xiàn)αin the characteristicI–Vcurves and the disappearance of ohmic resistance obeying the Halperin–Nelson scaling law reveal the BKT-like superconducting transition in these organic-ionintercalated FeSe-based superconductors, definitely verifying the quasi-2D nature.

    Such a result hints that the same preformed Cooper pairing scenario may be applied to FeSe/STO at the extreme 2D limit as well. The preformed pairing scenario in FeSe/STO has been clarified throughin situspectroscopic and electrical transport measurements.[66,67]The enhanced superconductivity and emergent pseudogap behavior reveal that dimensionality is an effective parameter to study the novel physics in iron-based superconductors. The similar pseudogap behavior observed in both cuprate superconductors and iron-based superconductors possibly suggests a crucial role of reduced dimensionality in high-Tcsuperconductors, especially in the emergence of pseudogap behavior.

    The pseudogap behavior in organic molecule intercalated FeSe suggests that it is a powerful method to find novel transport behavior in other layered 2D superconductors.

    4. Summary and prospects

    Using the organic molecule intercalation method,we obtained high-quality bulk single crystals for the study of quasi-2D superconductivity and observed pseudogap behavior in the intercalated FeSe.

    In recent years,thanks to the development of micro/nano processing technology, researchers have developed a new method to study quasi-2D superconductivity, which provides thin flake crystals with high crystallinity. In particular, the newly developed fieldeffect transistor using ionic liquid as the dielectric provides a clean method to tune the quasi-2D superconductivity. As a newly developed method, the organic molecule intercalation method can provide a large single crystal for further bulk measurements, which provides a new research platform for further understanding quasi-2D superconductivity.

    Of course,the materials obtained by organic molecule intercalation still have some drawbacks to overcome. For example,it is still difficult to continuously control the interlayer distance and doping concentration. The intercalated samples are sensitive to air and water,and the two-dimensional materials that can be intercalated with organic molecules are limited.With the development of new methods for material preparation and modulation, the study of 2D superconductivity will gradually deepen and gradually clarify the intrinsic physical connotation between superconductivity and dimensionality.

    Acknowledgements

    Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB25000000), the National Natural Science Foundation of China (Grant No. 11888101), the National Key R&D Program of China (Grant No. 2017YFA0303001), the Anhui Initiative in Quantum Information Technologies,China(Grant No.AHY160000),and the Key Research Program of Frontier Sciences,CAS(Grant No.QYZDYSSW-SLH021).

    猜你喜歡
    吳濤
    紅燈亮了
    好詩與好人
    觀巖畫
    Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake?
    Module 10 Units 3-4單元點(diǎn)撥
    高考語法考點(diǎn)專項練習(xí)題
    Module 10 Units 1—2 單元點(diǎn)撥
    模塊1—4知識點(diǎn)盤點(diǎn)與高考鏈接
    跑個步,賺點(diǎn)小錢
    幸福(2016年17期)2016-07-25 12:05:04
    跑個步,賺點(diǎn)小錢
    幸福·悅讀(2016年6期)2016-04-08 06:39:08
    日韩强制内射视频| 国产69精品久久久久777片| 久久99热这里只有精品18| 麻豆国产97在线/欧美| 少妇人妻久久综合中文| 亚洲av福利一区| 五月伊人婷婷丁香| 国产精品国产三级专区第一集| 亚洲成人中文字幕在线播放| 99热网站在线观看| 大片电影免费在线观看免费| 搡老乐熟女国产| 99九九线精品视频在线观看视频| 免费观看性生交大片5| 日日摸夜夜添夜夜爱| 久久ye,这里只有精品| 欧美少妇被猛烈插入视频| 国产精品免费大片| 18禁裸乳无遮挡动漫免费视频| 又大又黄又爽视频免费| 亚洲成人av在线免费| 精品国产露脸久久av麻豆| av在线蜜桃| 国产成人freesex在线| 亚洲三级黄色毛片| 久久鲁丝午夜福利片| 国产精品国产av在线观看| 老师上课跳d突然被开到最大视频| 久久精品国产亚洲av天美| 久久精品国产鲁丝片午夜精品| 亚洲美女搞黄在线观看| 国产免费又黄又爽又色| 亚洲最大成人中文| 欧美+日韩+精品| 国产免费又黄又爽又色| a级毛色黄片| 一个人免费看片子| 国产黄色视频一区二区在线观看| xxx大片免费视频| 婷婷色综合大香蕉| 深夜a级毛片| 亚洲av二区三区四区| 欧美激情国产日韩精品一区| 国产乱来视频区| 国产成人a∨麻豆精品| 成人18禁高潮啪啪吃奶动态图 | 日日啪夜夜撸| 青春草视频在线免费观看| 亚洲国产成人一精品久久久| 精品久久久久久久久av| 亚洲无线观看免费| 大陆偷拍与自拍| 国产人妻一区二区三区在| 有码 亚洲区| 精品一区在线观看国产| 最近中文字幕高清免费大全6| 18禁在线无遮挡免费观看视频| 久久精品久久精品一区二区三区| 成人影院久久| 免费播放大片免费观看视频在线观看| 日韩中字成人| 亚洲av日韩在线播放| 国产男女超爽视频在线观看| 久久女婷五月综合色啪小说| h日本视频在线播放| 国产欧美日韩精品一区二区| 少妇被粗大猛烈的视频| 下体分泌物呈黄色| 综合色丁香网| 日韩中字成人| 欧美精品国产亚洲| 日韩人妻高清精品专区| 成人高潮视频无遮挡免费网站| 99久久精品一区二区三区| 成人综合一区亚洲| 秋霞伦理黄片| 97超碰精品成人国产| 亚洲在久久综合| 久久婷婷青草| 秋霞伦理黄片| 男人添女人高潮全过程视频| 久热这里只有精品99| 亚洲国产日韩一区二区| 欧美三级亚洲精品| 亚洲精品色激情综合| 久久97久久精品| 国产精品国产三级国产专区5o| 国产在线男女| 久久精品人妻少妇| 色视频在线一区二区三区| 国产精品一二三区在线看| 少妇的逼水好多| 国产免费一级a男人的天堂| 美女主播在线视频| 大香蕉久久网| 婷婷色麻豆天堂久久| 一个人免费看片子| 高清毛片免费看| 国产精品国产三级国产专区5o| 国模一区二区三区四区视频| 美女cb高潮喷水在线观看| 在线观看美女被高潮喷水网站| 多毛熟女@视频| 91久久精品国产一区二区三区| 国产精品秋霞免费鲁丝片| 日日撸夜夜添| 大片电影免费在线观看免费| 97在线视频观看| 亚洲精品色激情综合| 国产精品成人在线| 欧美精品一区二区免费开放| 久久久久久久久大av| 国产成人免费观看mmmm| 日韩中文字幕视频在线看片 | 亚洲av男天堂| 国产 一区精品| 午夜福利在线观看免费完整高清在| 成人午夜精彩视频在线观看| 精品视频人人做人人爽| 国产大屁股一区二区在线视频| 九九爱精品视频在线观看| 成年人午夜在线观看视频| a 毛片基地| 久久久久精品性色| 少妇熟女欧美另类| 国产有黄有色有爽视频| 日韩视频在线欧美| 99久久精品一区二区三区| 国产久久久一区二区三区| 最近2019中文字幕mv第一页| 直男gayav资源| 春色校园在线视频观看| 成人无遮挡网站| 夜夜骑夜夜射夜夜干| 韩国高清视频一区二区三区| 久久久久久久大尺度免费视频| 久久精品久久久久久久性| 免费黄频网站在线观看国产| 赤兔流量卡办理| 黄色配什么色好看| h日本视频在线播放| 高清黄色对白视频在线免费看 | 久久精品久久久久久噜噜老黄| 久久国产精品大桥未久av | 久久精品人妻少妇| 亚洲精品日韩在线中文字幕| 亚洲av中文av极速乱| 久久精品久久久久久噜噜老黄| 久久久午夜欧美精品| 久久国产乱子免费精品| 国产精品人妻久久久影院| 最近中文字幕高清免费大全6| 嫩草影院入口| 国产亚洲精品久久久com| 久久人人爽人人片av| 久久久欧美国产精品| 日本与韩国留学比较| 偷拍熟女少妇极品色| 在线亚洲精品国产二区图片欧美 | 一个人看视频在线观看www免费| 成人国产麻豆网| 美女内射精品一级片tv| 老女人水多毛片| 全区人妻精品视频| 我要看日韩黄色一级片| 日日啪夜夜爽| 亚洲激情五月婷婷啪啪| 中国国产av一级| 妹子高潮喷水视频| 欧美日韩综合久久久久久| 亚州av有码| 中文字幕精品免费在线观看视频 | 亚洲,一卡二卡三卡| 精品人妻一区二区三区麻豆| 亚洲成色77777| 18禁裸乳无遮挡动漫免费视频| 精品人妻熟女av久视频| 成人一区二区视频在线观看| 精品久久久久久久久亚洲| 成人漫画全彩无遮挡| 香蕉精品网在线| 黄色日韩在线| 欧美国产精品一级二级三级 | 国产色婷婷99| 自拍偷自拍亚洲精品老妇| 美女福利国产在线 | 在线观看一区二区三区| 下体分泌物呈黄色| 久久鲁丝午夜福利片| 日韩大片免费观看网站| 99热这里只有是精品在线观看| 另类亚洲欧美激情| 免费人妻精品一区二区三区视频| 国产成人免费无遮挡视频| 精品99又大又爽又粗少妇毛片| 永久网站在线| 777米奇影视久久| 麻豆乱淫一区二区| 国产熟女欧美一区二区| 色哟哟·www| 欧美丝袜亚洲另类| 亚洲在久久综合| 国产精品国产三级国产av玫瑰| a 毛片基地| 日韩,欧美,国产一区二区三区| 少妇被粗大猛烈的视频| 亚洲精品成人av观看孕妇| 伊人久久精品亚洲午夜| 大片电影免费在线观看免费| 国产深夜福利视频在线观看| 91久久精品电影网| 毛片一级片免费看久久久久| 久久毛片免费看一区二区三区| 欧美日韩视频精品一区| 欧美精品亚洲一区二区| 三级经典国产精品| 成人影院久久| 久久精品国产a三级三级三级| 身体一侧抽搐| 大片免费播放器 马上看| 一级爰片在线观看| 精华霜和精华液先用哪个| 美女cb高潮喷水在线观看| 在线精品无人区一区二区三 | a级一级毛片免费在线观看| 精品久久久久久久久亚洲| 丝袜脚勾引网站| 大香蕉久久网| 欧美国产精品一级二级三级 | 99精国产麻豆久久婷婷| 黄色怎么调成土黄色| 精品亚洲成国产av| av在线观看视频网站免费| 一级毛片我不卡| 日韩成人伦理影院| 亚洲精品色激情综合| 成人二区视频| 亚洲精品视频女| 一本久久精品| 另类亚洲欧美激情| av又黄又爽大尺度在线免费看| 亚洲成人一二三区av| 制服丝袜香蕉在线| 国产精品久久久久久av不卡| 久久亚洲国产成人精品v| 99久久中文字幕三级久久日本| 美女高潮的动态| 亚洲色图av天堂| 成人国产av品久久久| 免费观看无遮挡的男女| 久久久久久久亚洲中文字幕| 亚洲怡红院男人天堂| 精品一区二区三区视频在线| 精品酒店卫生间| 97在线视频观看| 99热这里只有精品一区| 午夜福利高清视频| 午夜福利影视在线免费观看| 国产成人一区二区在线| 精品久久久久久久久av| 久久精品国产亚洲av天美| 亚洲精品亚洲一区二区| 18禁在线无遮挡免费观看视频| 国产一区有黄有色的免费视频| 欧美精品人与动牲交sv欧美| 亚洲精品自拍成人| 一区二区av电影网| 少妇的逼好多水| 精品久久久精品久久久| 亚洲图色成人| 麻豆成人av视频| 亚洲av欧美aⅴ国产| 自拍欧美九色日韩亚洲蝌蚪91 | 91久久精品国产一区二区成人| 国产精品久久久久久精品古装| 日韩一区二区视频免费看| 国产欧美亚洲国产| 久久久久久九九精品二区国产| 97在线视频观看| 精品亚洲乱码少妇综合久久| 交换朋友夫妻互换小说| 青青草视频在线视频观看| av线在线观看网站| 麻豆成人av视频| 亚洲伊人久久精品综合| 中文字幕亚洲精品专区| 国产高潮美女av| 国产精品久久久久久av不卡| 成年女人在线观看亚洲视频| 国产成人91sexporn| 99热这里只有是精品在线观看| 99精国产麻豆久久婷婷| 天美传媒精品一区二区| 亚洲国产毛片av蜜桃av| 国产精品av视频在线免费观看| 精品一区二区三区视频在线| 成年美女黄网站色视频大全免费 | 中国美白少妇内射xxxbb| 国产精品国产三级国产av玫瑰| 六月丁香七月| 九草在线视频观看| 日韩伦理黄色片| 亚洲欧美中文字幕日韩二区| 国产色婷婷99| 亚洲国产精品专区欧美| 六月丁香七月| 亚洲国产精品999| 国产成人精品婷婷| 美女高潮的动态| 黄色配什么色好看| 噜噜噜噜噜久久久久久91| 免费黄频网站在线观看国产| 少妇人妻一区二区三区视频| 成年免费大片在线观看| 国产黄片美女视频| 日本爱情动作片www.在线观看| 欧美日韩亚洲高清精品| 日本与韩国留学比较| 国语对白做爰xxxⅹ性视频网站| 免费少妇av软件| 国产一区二区三区av在线| 日本欧美国产在线视频| a级一级毛片免费在线观看| 日韩精品有码人妻一区| 精品少妇久久久久久888优播| 少妇的逼水好多| 亚洲av福利一区| 国产v大片淫在线免费观看| 在线观看免费日韩欧美大片 | www.色视频.com| 国产精品久久久久久精品古装| 亚洲无线观看免费| 久久久精品94久久精品| 青春草国产在线视频| 肉色欧美久久久久久久蜜桃| 国产精品爽爽va在线观看网站| 一级爰片在线观看| 亚洲精品日韩在线中文字幕| 国产精品一区www在线观看| 国产av精品麻豆| 丰满迷人的少妇在线观看| 亚洲三级黄色毛片| 美女国产视频在线观看| 精品人妻一区二区三区麻豆| 日韩欧美 国产精品| 激情 狠狠 欧美| 亚洲精品国产av蜜桃| 国产爱豆传媒在线观看| 国产男女内射视频| 少妇人妻精品综合一区二区| 国产熟女欧美一区二区| 高清欧美精品videossex| 欧美老熟妇乱子伦牲交| 亚洲国产精品一区三区| 久久亚洲国产成人精品v| 18禁裸乳无遮挡动漫免费视频| 国产深夜福利视频在线观看| 国产午夜精品久久久久久一区二区三区| av不卡在线播放| 免费看日本二区| 成人毛片a级毛片在线播放| 免费播放大片免费观看视频在线观看| 秋霞在线观看毛片| 麻豆成人av视频| av一本久久久久| 国产av一区二区精品久久 | 日韩不卡一区二区三区视频在线| 热re99久久精品国产66热6| 色网站视频免费| 久久韩国三级中文字幕| 伊人久久精品亚洲午夜| 日韩强制内射视频| 国产伦理片在线播放av一区| 亚洲国产欧美人成| 18+在线观看网站| a级毛片免费高清观看在线播放| av黄色大香蕉| 各种免费的搞黄视频| 国产v大片淫在线免费观看| 日本av免费视频播放| av国产久精品久网站免费入址| 岛国毛片在线播放| 国产精品一区二区在线不卡| 久久国产精品男人的天堂亚洲 | 最后的刺客免费高清国语| 国产午夜精品一二区理论片| 亚洲精品国产成人久久av| 国产色爽女视频免费观看| 丰满人妻一区二区三区视频av| 51国产日韩欧美| 男的添女的下面高潮视频| 美女中出高潮动态图| 蜜臀久久99精品久久宅男| 最近2019中文字幕mv第一页| 亚洲精品久久久久久婷婷小说| 97热精品久久久久久| 成人亚洲欧美一区二区av| 国产亚洲最大av| 美女中出高潮动态图| 最近最新中文字幕免费大全7| 乱码一卡2卡4卡精品| 成人国产av品久久久| 久久av网站| 夫妻午夜视频| 亚洲av成人精品一区久久| 日韩大片免费观看网站| 蜜桃亚洲精品一区二区三区| 欧美日韩在线观看h| 午夜福利影视在线免费观看| 国产白丝娇喘喷水9色精品| 美女xxoo啪啪120秒动态图| 日日摸夜夜添夜夜添av毛片| 男女国产视频网站| 欧美激情国产日韩精品一区| 国产亚洲91精品色在线| 成人一区二区视频在线观看| 国产亚洲午夜精品一区二区久久| 精品一区二区三卡| 欧美国产精品一级二级三级 | 九草在线视频观看| 亚洲国产精品一区三区| 成人高潮视频无遮挡免费网站| 久久久久人妻精品一区果冻| 伊人久久精品亚洲午夜| 最后的刺客免费高清国语| 色综合色国产| 国产在视频线精品| 欧美精品一区二区大全| 日本欧美国产在线视频| 男女边摸边吃奶| 美女cb高潮喷水在线观看| 身体一侧抽搐| 91精品国产国语对白视频| 国产精品.久久久| 成人无遮挡网站| 色综合色国产| 婷婷色综合www| 交换朋友夫妻互换小说| av不卡在线播放| 男的添女的下面高潮视频| 一区二区三区免费毛片| 日本免费在线观看一区| 亚洲精品日本国产第一区| 国产精品久久久久久久电影| 国产老妇伦熟女老妇高清| 亚洲成人av在线免费| 亚洲av免费高清在线观看| 亚洲久久久国产精品| 久久精品久久精品一区二区三区| 国产白丝娇喘喷水9色精品| 一区二区三区四区激情视频| 成人免费观看视频高清| 超碰av人人做人人爽久久| www.av在线官网国产| 多毛熟女@视频| 免费看不卡的av| 日本爱情动作片www.在线观看| 成人午夜精彩视频在线观看| 啦啦啦中文免费视频观看日本| 亚洲av成人精品一区久久| 丰满迷人的少妇在线观看| 日韩视频在线欧美| 狂野欧美激情性xxxx在线观看| 成人一区二区视频在线观看| 偷拍熟女少妇极品色| 女性生殖器流出的白浆| 少妇猛男粗大的猛烈进出视频| 精品国产露脸久久av麻豆| 国产 精品1| 午夜福利网站1000一区二区三区| 97热精品久久久久久| 伦理电影大哥的女人| 国产高清有码在线观看视频| 99国产精品免费福利视频| 少妇猛男粗大的猛烈进出视频| 天堂中文最新版在线下载| 久久国产亚洲av麻豆专区| 欧美日韩一区二区视频在线观看视频在线| 国产精品一区www在线观看| 成人毛片60女人毛片免费| 亚洲精品第二区| 亚洲欧美精品自产自拍| 51国产日韩欧美| 亚洲成色77777| 婷婷色综合www| 日韩人妻高清精品专区| 国产人妻一区二区三区在| 国产又色又爽无遮挡免| 搡老乐熟女国产| 黄色一级大片看看| 久久97久久精品| 一级毛片黄色毛片免费观看视频| 久久人人爽人人片av| 国产精品国产三级专区第一集| 91精品国产九色| www.色视频.com| 免费黄频网站在线观看国产| 国产精品精品国产色婷婷| 成人免费观看视频高清| 国产av国产精品国产| 欧美日韩一区二区视频在线观看视频在线| 少妇的逼好多水| 亚洲欧美成人精品一区二区| 国产成人免费无遮挡视频| 岛国毛片在线播放| 五月天丁香电影| 国产精品福利在线免费观看| 亚洲av不卡在线观看| 在线观看一区二区三区| 亚洲精品中文字幕在线视频 | 免费观看在线日韩| 国产乱来视频区| 精品人妻偷拍中文字幕| 狂野欧美白嫩少妇大欣赏| 又大又黄又爽视频免费| 亚洲av在线观看美女高潮| 国产成人精品婷婷| 国产一区有黄有色的免费视频| 狂野欧美激情性xxxx在线观看| 亚洲经典国产精华液单| 久久国产亚洲av麻豆专区| av在线蜜桃| 婷婷色av中文字幕| 99久久精品热视频| 联通29元200g的流量卡| 亚洲av福利一区| 欧美+日韩+精品| 国产亚洲精品久久久com| 欧美最新免费一区二区三区| 最近2019中文字幕mv第一页| 亚洲欧美精品自产自拍| 亚洲国产精品成人久久小说| 婷婷色综合大香蕉| 亚洲av在线观看美女高潮| 亚洲国产欧美人成| 成人高潮视频无遮挡免费网站| 国产免费一区二区三区四区乱码| 91午夜精品亚洲一区二区三区| 国内精品宾馆在线| 欧美日韩视频精品一区| 久久久久久久亚洲中文字幕| 精品久久久久久电影网| 大又大粗又爽又黄少妇毛片口| 久久久久久久精品精品| www.av在线官网国产| 女性被躁到高潮视频| av播播在线观看一区| 天堂俺去俺来也www色官网| 国产伦精品一区二区三区视频9| 老师上课跳d突然被开到最大视频| 国产精品爽爽va在线观看网站| 黄色日韩在线| 热99国产精品久久久久久7| 免费人妻精品一区二区三区视频| av在线app专区| 国产伦精品一区二区三区视频9| 午夜视频国产福利| 18禁在线无遮挡免费观看视频| 制服丝袜香蕉在线| 91精品国产九色| 免费人妻精品一区二区三区视频| 久久精品国产鲁丝片午夜精品| 久久影院123| 内射极品少妇av片p| 免费观看的影片在线观看| 欧美日韩在线观看h| 内地一区二区视频在线| 精品久久久久久久久av| 色5月婷婷丁香| 天美传媒精品一区二区| 99国产精品免费福利视频| 欧美zozozo另类| 在线观看av片永久免费下载| 少妇猛男粗大的猛烈进出视频| 久久热精品热| 精品亚洲乱码少妇综合久久| 日日撸夜夜添| 麻豆成人av视频| 国产欧美日韩精品一区二区| 91精品国产国语对白视频| 亚洲精品日韩在线中文字幕| 国产日韩欧美亚洲二区| 天美传媒精品一区二区| 高清黄色对白视频在线免费看 | 观看免费一级毛片| 一边亲一边摸免费视频| 国产欧美亚洲国产| 男人爽女人下面视频在线观看| 中文欧美无线码| 狂野欧美白嫩少妇大欣赏| 婷婷色麻豆天堂久久| 18禁动态无遮挡网站| 一级毛片 在线播放| 大又大粗又爽又黄少妇毛片口| 国产精品三级大全| 少妇 在线观看| 欧美日韩精品成人综合77777| 久久精品熟女亚洲av麻豆精品| 高清不卡的av网站| 亚洲第一区二区三区不卡| 亚洲人成网站在线播| 亚洲欧洲日产国产| 国产毛片在线视频| 女性被躁到高潮视频| 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产鲁丝片午夜精品| 欧美性感艳星| 免费观看av网站的网址| 亚洲,一卡二卡三卡| av天堂中文字幕网| 日韩成人av中文字幕在线观看| 一个人看视频在线观看www免费| 一级片'在线观看视频| 蜜桃在线观看..| 日本猛色少妇xxxxx猛交久久|