• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recent advances in quasi-2D superconductors via organic molecule intercalation

    2022-10-26 09:52:32MengzhuShi石孟竹BaoleiKang康寶蕾TaoWu吳濤andXianhuiChen陳仙輝
    Chinese Physics B 2022年10期
    關(guān)鍵詞:吳濤

    Mengzhu Shi(石孟竹) Baolei Kang(康寶蕾) Tao Wu(吳濤) and Xianhui Chen(陳仙輝)

    1Department of Physics,University of Science and Technology of China,Hefei 230026,China

    2CAS Key Laboratory of Strongly-coupled Quantum Matter Physics,University of Science and Technology of China,Hefei 230026,China

    3Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    4CAS Center for Excellence in Superconducting Electronics(CENSE),Shanghai 200050,China

    Keywords: organic molecular intercalation,two-dimensional superconductivity,organic-inorganic hybrid materials

    1. Introduction

    Superconductivity (SC) is a macroscopic quantum phenomenon. Generally, with reduced dimensionality, the increased spatial and temporal fluctuations will strongly suppress and even destroy superconductivity in systems.[1–5]Within classical theories, the famous Mermin–Wagner theorem points out that continuous spontaneous symmetry breaking is forbidden in neither one- nor two-dimensional systems at finite temperatures, thus disenabling conventional superconducting transitions at the 2D limit.[2]Nevertheless,the Berezinskii–Kosterlitz–Thouless(BKT)theory provides a compatible understanding for this issue. It predicts a thermodynamic instability in the form of vortex–antivortex pairs,which spontaneously dissociate into free vortices at a characteristic transition temperatureTBKT.[6–8]Such a transition is a topological phase transition without any form of symmetry breaking, which manifests itself as a jump in the power-law exponent in current–voltage (I–V) characteristic curves and in a disappearance of ohmic resistance obeying the Halperin–Nelson scaling law.[9,10]At present,BKT physics has become an important feature of 2D superconductors.

    In the past few decades, superconductivity at the 2D limit has become one of the hottest frontiers in the field of condensed matter physics. The emergent novel quantum phenomena, including anomalously enhancedHc2, quantum metallic states and quantum Griffiths singularity in conventional Bardeen–Cooper–Schrieffer (BCS) superconductors,shed light on not only fundamental research but also practical applications to non-dissipative micro/nanoelectronics.[11–16]Particularly, distinct from conventional BCS superconductors, all high-Tcsuperconductors have a layered structure with varying degrees of anisotropy. Very recently,monolayer Bi2Sr2CaCu2O8+δ(Bi2212) has been reported to display all the fundamental physics of high-Tcsuperconductivity as its three-dimensional (3D) counterparts, verifying the quasi-2D nature of its bulk state.[17]Coincidentally, for iron-based superconductors that have a more 3D layered structure,the discovery of exotic high-Tcsuperconductivity in a single-layer FeSe film on a SrTiO3substrate (FeSe/STO) further highlights the key role of reduced dimensionality.[18,19]It exhibits a large superconducting gap of approximately 20 meV with a gap opening temperature of approximately 65 K, while the zero-resistance critical temperature (Tc0) determined by electrical transport measurements is mostly below 40 K.[20–23]Such a result reveals much enhanced high-Tcsuperconductivity compared to its 3D bulk phase and possible links with the pseudogap behavior in high-Tccuprate superconductors.[24–27]The apparent dichotomy with conventional BCS superconductors hints at great importance for the quasi-2D nature of both cuprate and iron-based superconductors,which provides a unique perspective for the experimental study of high-Tcsuperconductors.

    In the early days, the most popular methods for the fabrication of 2D superconductors were thermal evaporation and sputtering of granular and amorphous metallic film.[28,29]Driven by the rapid advancement in film growth techniques,including molecular beam epitaxy(MBE)and pulsed laser deposition(PLD),the existence of 2D superconductors with truly atomic-scale thickness and the fabrication of complicated heterostructures have been established.[15,30,31]In addition to the bottom-up approaches that start from the atomic ingredients,mechanical exfoliation and liquid exfoliation provide an alternative to fabricate 2D superconductors through up-bottom approaches.[32–34]However,restricted by the limited size and intrinsic features of thin films, intensive studies in the traditional experimental framework based on bulk samples, such as specific heat,anisotropic electrical transport and NMR measurements,have been totally impeded. Here,we explore a series of quasi-2D superconductors in bulk phase,which are synthesized through a simple and gentle method, that is, electrochemical intercalation.[35–38]New advances in these quasi-2D superconductors in the bulk phase are the focus of this review article. Our results establish dimensionality as an effective parameter for studying novel physics in both BCS superconductors and high-Tcsuperconductors.

    2. Experimental techniques

    There are several methods to achieve or enhance the twodimensionalization in 2D materials with high crystallinity.The first method to enhance the two-dimensionality is to insert inorganic insulating layers with different thicknesses between the functional layers. For example, in the study of cuprate superconductors,Tccan be gradually increased by inserting insulating inorganic layers with different thicknesses into the CuO2plane. Taking the Hg-Ba-Ca-Cu-O system as an example,theTcof the material gradually increases with increasing thickness of the inorganic insulating layer.[39]However, such a series of materials make it difficult to obtain large crystals,and only several limited systems have been reported. The second method to realize two-dimensionalization is to change the thickness of the material by the micromechanical exfoliation method or the growth of thin films through the molecular beam epitaxy(MBE)or chemical vapour deposition(CVD)method.This is a more general way to modify the physical properties of the material by dimensionality control. With decreasing thickness,different types of charge density wave(CDW)orders can be observed,and the magnetic transition temperature orTccan also be regulated. For example, the TaS2thin flake sample shows a thickness-dependent CDW state.[40]With decreasing thickness, the CDW transition temperature of 1T-TaS2gradually decreases and finally disappears. TheTcof NbSe2decreases with decreasing thickness.[41]However,theTcof single layer FeSe/SrTiO3as high as 65 K is much higher than that of bulk FeSe,[20–23]which has a lowTcof only approximately 8 K. Despite the many advantages mentioned above,the problem of these thin layer samples is that it is difficult to obtain large enough samples for structural research, specific heat testing, anisotropic resistance, anisotropic susceptibility and NMR measurements.

    Recently, a new method for the synthesis of twodimensional bulk materials has attracted much attention.[35,36]It enables the measurement of the correlated electronic properties of two-dimensional systems with strong anisotropy.That is the organic molecules intercalation method where the organic molecules are inserted into the interlayer of twodimensional materials.

    Intercalation is a widely used method for material preparation. Many ions, molecular and inorganic structural layers can be inserted into the two-dimensional materials, which is very significant in graphite intercalation compounds. Compared with the inserted alkali metals, the insertion of organic molecules can greatly increase the interlayer distance and realize a two-dimensional structure.At the same time,due to the poor conductivity of the organic molecular layer,the transport of electrons can only be confined in the inorganic layer within theabplane, and it is difficult to transmit between layers in thec-axis direction, which may lead to the two-dimensional transport characteristics of charges and spin.

    In our previous work,we adopted the electrochemical intercalation method to tune the physical properties, especially the superconductivity of 2D materials. Electrochemical intercalation can be easily realized through the driving force of the current.As shown in Fig.1(a),an electrolytic cell is assembled with the target material as the working electrode,the Ag piece as the counter electrode and the solution containing quaternary ammonium cations as the electrolyte.[42]A constant current is applied to the above electrolytic cell. When the current passes through the cell,the counter electrode loses electrons,and the working electrode obtains electrons accompanied by the insertion of organic ions to maintain the charge balance.

    Taking TaS2as an example,the above process can be expressed by the following equations:

    After cleaning and drying the product, we obtained the organic ion intercalated bulk sample for further physical measurements. Through the above electrochemical intercalation process, we can quickly obtain crystals with anabplane size greater than 1 mm for various bulk measurements, including structure characterization, anisotropic resistance and susceptibility measurements, specific heat tests and NMR measurements.

    Fig.1. (a)Schematic of the electrolytic cell;(b)and(c)crystal structures of TaS2 and(CTA)xTaS2;(d)and(e)resistivity curve and Hall coefficient for(CTA)xTaS2;(f)resistivity curve for(CTA)0.1TaS2 under different magnetic fields;(g)upper critical field of(CTA)0.1TaS2 from the data in(f).Panel(a)is from Ref.[42],(b)–(f)are from Ref.[38].

    3. Quasi-2D superconductors through organic molecule intercalation

    3.1. Tunable superconductivity in TaS2 via organic molecule intercalation

    As a typical transition metal disulfide compound, the CDW and SC states in TaS2and the competition between them have attracted the attention of researchers.[43,44]The link between S–Ta–S covalent bonds leads to different coordination polyhedrons,and the alternating stacking of coordination polyhedrons in thec-axis direction brings rich isomers.[45]The most typical structures are the 1T phase and 2H phase.[46]In the 1T phase,Ta and S form octahedra;in the 2H phase,Ta and S form prisms. 1T-TaS2exhibits a series of CDW transitions with decreasing temperature, from incommensurate CDW at 600 K and near-commensurate CDW at 350 K to commensurate CDW at 180 K.[47]In 2H phase TaS2, superconductivity and CDW can coexist.

    In 1T-TaS2, the CDW state can be regulated by reducing the thickness of the thin flake sample,and superconductivity can be induced through the lithium-ion-gel gating method.In 2H-TaS2, the coexistence of CDW and SC attracts attention to investigate the completion of these different orders with the regulation of electron doping and dimensionality control.Therefore, we used electrochemical intercalation of the organic molecules to study the influence of charge doping and dimensionality reduction on the superconductivity and CDW in 2H-TaS2.[38]

    Before the intercalation of the organic molecules,the resistance curve of the bulk 2H-TaS2exhibits a kink near 70 K(Fig.1(d)),and the Hall coefficient changes sign near this temperature (Fig. 1(e)), corresponding to the change in the main carrier type and the formation of the CDW state.[48]Further lowering the temperature, the resistance curve shows superconductivity at 0.8 K, showing the coexistence of superconductivity with CDW.[49]After the intercalation of the organic molecule, the interlayer distance of 2H-TaS2increases from the initial 6 ?A (Fig. 1(b)) to approximately 32 ?A (Fig. 1(c)),which is consistent with the sum of the thickness of monolayer TaS2and the length of the CTA+molecule. This indicates that the structure of(CTA)xTaS2is composed of one layer of TaS2and one layer of CTA+molecules with a vertical arrangement alternately stacked along thecaxis. Moreover,the lattice parameter of the intercalation products in thec-axis increases slowly with increasing doping amount, which may be related to the angle change of the arrangement of organic molecules in the interlayer.[50]The TEM images of TaS2and (CTA)xTaS2also confirm the structure model in Fig.1(c).[38]

    As a result, the physical properties of the intercalated products have changed greatly. In terms of electrical transport,the CDW transition near 70 K disappears after the insertion of organic molecules into TaS2. The Hall coefficient is negative in the whole temperature range of 2–300 K,indicating that the organic molecule intercalation introduces electron doping to TaS2(Fig.1(e)). At the same time,the intercalated samples show superconductivity between 2–3.5 K(Fig.1(d)),which is much higher than that of the primitive TaS2. This implies that the organic ions introduce carriers after intercalation, which destroys the CDW order and increases theTc.This indicates that there may be competition between the SC and CDW orders in TaS2.Tcis suppressed gradually with increasing applied magnetic field(Fig.1(f)). The upper critical field shows a positive curvature (Fig. 1(g)), which confirms the type II superconductivity under the clean limit. The upper critical field obtained by fitting is 0.63 T,which is much higher than the 0.11 T of the parent TaS2but still lower than the Pauli limit.[51]

    It has been reported that theTcof 2H-TaS2can be improved from 0.5 K in the bulk sample to 2.2 K for the 3.5 nm thin flake sample.[52]The enhanced superconductivity is attributed to an enhancement of the effective electron–phonon coupling constant as the layers thin down. However,it is necessary to note that the resistivity curve of (CTA)0.1TaS2in Fig.1(f)does not resemble the features observed in quasi-2D superconductivity,although the interlayer distance of TaS2has been greatly increased to more than 3 nm. The increasedTcof TaS2is mainly attributed to the electron doping effect.

    The above results show that in TaS2intercalated by organic molecules, the interlayer distance is increased, and the introduction of carriers inhibits the CDW order and improves theTc. This suggests that the electrochemical organic molecule intercalation method can effectively regulate the physical properties of two-dimensional materials.

    In fact,the intercalation method is a frequently used way to achieve superconductivity in TMDs due to the easy control of carrier doping. For example,the organic amine intercalated TaS2obtained through a solvothermal reaction achieves superconductivity,and theTcdepends on the doping level of charge transferred from the organic amine.[53]Furthermore,the liquid ammonia method is also successfully applied on Td-WTe2[54]and 2H-MoS2[55]and achieves superconductivity with the intercalation of alkaline metal. However,it is difficult to obtain high-quality crystals in this way, which makes further bulk physical characterization impossible.

    3.2. BKT physics in organic molecules intercalated SnSe2

    Apart from the improvement of theTcin CTA+intercalated TaS2, the intercalation of organic molecules into 2D materials can also induce superconductivity in an insulator.As a layered dichalcogenide compound, 1T-SnSe2is a direct band gap semiconductor with an energy gap of 1.0 eV.[56]In this material, superconductivity can be introduced through the growth of thin films,[57]ionic liquid gating[58]and Li intercalation.[59]In particular, the coexistence of superconductivity and ferromagnetism can also be observed when cobaltocene molecules are inserted into the adjacent layer of SnSe2.[60]Recently,through the cointercalation of lithium and organic molecules, a close relationship betweenTcand interlayer distance was reported, whereTcwas independent of the content of intercalation species.[59]Finding the appropriate way to further increase the interlayer distance of SnSe2and study its transport behavior is crucial for understanding the superconducting physics of SnSe2.

    The interlayer distance of intercalation products can be well controlled by changing the size of organic molecules by electrochemical intercalation. Using this method, CTA+and TBA+molecules can be inserted into the interlayer of SnSe2,[37]and the interlayer distances are increased from 6.12 ?A (Fig. 2(a)) to 14.74 ?A (Fig. 2(b)) and 18.62 ?A(Fig. 2(c)), respectively. TheTcvalues of the corresponding products are 7.1 K and 6.4 K (Fig. 2(g)), respectively. As shown in Fig. 2(g), the phase diagram withTcand the interlayer distance shows a dome-like behavior. Similar behavior has been observed in the intercalated HfNCl system.

    Fig.2. (a)–(c)Crystal structures of SnSe2,(CTA)xSnSe2 and(TBA)xSnSe2,respectively; (d)the magnetic susceptibility curve of(CTA)0.5SnSe2 with the field H//c and H//ab plane;(e)the in-plane(in black)and out-of-plane(in red)resistivity curves of(CTA)0.5SnSe2;(f) the temperaturedependent anisotropy resistivity ratio(ρc/ρa(bǔ)b)of SnSe2 (in black)and(CTA)0.5SnSe2 (in blue). Panels(a)–(f)are from Ref.[37].

    Fig.3. (a)The I–V curves of(CTA)0.5SnSe2 at different temperatures around Tc;(b)the resistivity curve of(CTA)0.5SnSe2 with the Y-axis on the[dlnR/dT]-2/3 scale;(c)the temperature-dependent α obtained from(a)with the fitting function V ∝Iα. Panels(a)–(c)are from Ref.[37].

    Previously, the quasi-2D SC withTc= 3.9 K was observed in the ionic liquid gated 1T-SnSe2thin flake sample.[58]The intrinsic 2D superconductivity is suggested through transport measurement. The angle-dependent upper critical field of the gated thin flake 1T-SnSe2obeys the 2D Tinkham model.Furthermore,similar transport behavior is also observed in the ion-gated insulator ZrNCl, indicating the universality of such novel transport properties.[12]Our organic molecule intercalation shows an improvedTcand quasi-2D SC due to the increase of the interlayer distance in a bulk sample.These results indicate that 2D SC can also be supported in bulk samples.

    Fig. 4. (a) The schematic crystal structure of (CTA)xFeSe (cetyltrimethyl ammonium, CTA+).[35] The distance between adjacent FeSe layers is~14.5 ?A. (b) The schematic crystal structure of (TBA)xFeSe (tetrabutylammonium, TBA+).[36] The distance between adjacent FeSe layers is~15.5 ?A.(c)Temperature dependence of anisotropic magnetic susceptibility for(TBA)xFeSe. An external magnetic field of 5 Oe is applied along the ab-plane(blue)and c-axis(red). (d)The anisotropy ratio of resistivity(ρc/ρa(bǔ)b)for(TBA)xFeSe and pristine FeSe. The FeSe data are adopted from Ref.[68]. (e)Temperature dependence of the Knight shift(upper panel)and its first derivative(lower panel)for(TBA)xFeSe. (f)Temperature evolution of the spin-lattice relaxation rate divided by temperature (upper panel) and its first derivative (lower panel) for (TBA)xFeSe. (g) The high-field magnetic susceptibility χab and χc measured in field-cooling mode with a magnetic field of 7 T applied along the ab-plane(green)and c-axis(orange),respectively. The black solid lines are the extrapolation fitting curves of high-temperature behavior. The arrow indicates the onset of diamagnetism. (h) Temperature dependence of the Nernst effect under a magnetic field of 13.5 T applied along the c-axis. A vortex-related Nernst signal is observed well above Tc0. The arrow shows the onset of the vortex-related Nernst effect at ~65 K.It should be noted that the Tp determined by the Nernst effect is slightly higher than that determined by the other probes,which suggests that the Nernst effect is more sensitive to detecting superconducting fluctuations. Panels(c)–(h)are from Ref.[63].

    3.3. Pseudogap behavior in quasi-2D high-Tc FeSe-based superconductors

    Apart from the improvement of theTcand induction of the quasi-2D SC, the intercalation of organic molecules into 2D superconductors can also favor novel transport behaviors,such as pseudogap behavior, due to the extremely improved anisotropy.

    As a high-Tciron-based superconductor with the simplest van der Waals layered structure, FeSe provides an ideal platform to study the dimensional crossover effect and underlying physics.At ambient pressure,FeSe exhibits a superconducting transition atTc~8.5 K.[62]By employing the electrochemical intercalation method,two new kinds of FeSe-based superconductors,namely,(CTA)xFeSe and(TBA)xFeSe,withTc0above 40 K,have been synthesized.[35,36]As shown in Figs.4(a)and 4(b), the organic-ion-intercalated FeSe-based superconductors consist of alternate stacking of FeSe layers and organic molecules. With the intercalation of chemically inert organic molecules, the enhanced superconductivity and anisotropy have been confirmed by both anisotropic magnetic susceptibility and electrical transport measurements.Taking(TBA)xFeSe as an example,as shown in Figs.4(c)and 4(d),the significant difference in the diamagnetic shielding fraction between the two field orientations, even up to dozens of times, suggests a strong 2D character. Dramatically, the anisotropy ratio of resistivity is enhanced by approximately 5 orders of magnitude compared to bulk FeSe, supporting an intercalation-induced dimensional crossover from 3D to 2D.[63]

    Nuclear magnetic resonance (NMR) is a bulk-sensitive local probe to measure electronic spin susceptibility (χs),which is commonly used to reveal the pseudogap behavior in high-Tccuprate superconductors.[64,65]As shown in Figs.4(e)and 4(f), by measuring the Knight shift and nuclear spinlattice relaxation rate, an intrinsic pseudogap behavior belowTp~60 K is unambiguously revealed. A weak 2D diamagnetic signal and remarkable Nernst effect far aboveTc0further indicate the existence of strong superconducting fluctuations[Figs.4(g)and 4(h)],confirming the preformed Cooper pairing scenario. In addition,the power-law transition withV~I(xiàn)αin the characteristicI–Vcurves and the disappearance of ohmic resistance obeying the Halperin–Nelson scaling law reveal the BKT-like superconducting transition in these organic-ionintercalated FeSe-based superconductors, definitely verifying the quasi-2D nature.

    Such a result hints that the same preformed Cooper pairing scenario may be applied to FeSe/STO at the extreme 2D limit as well. The preformed pairing scenario in FeSe/STO has been clarified throughin situspectroscopic and electrical transport measurements.[66,67]The enhanced superconductivity and emergent pseudogap behavior reveal that dimensionality is an effective parameter to study the novel physics in iron-based superconductors. The similar pseudogap behavior observed in both cuprate superconductors and iron-based superconductors possibly suggests a crucial role of reduced dimensionality in high-Tcsuperconductors, especially in the emergence of pseudogap behavior.

    The pseudogap behavior in organic molecule intercalated FeSe suggests that it is a powerful method to find novel transport behavior in other layered 2D superconductors.

    4. Summary and prospects

    Using the organic molecule intercalation method,we obtained high-quality bulk single crystals for the study of quasi-2D superconductivity and observed pseudogap behavior in the intercalated FeSe.

    In recent years,thanks to the development of micro/nano processing technology, researchers have developed a new method to study quasi-2D superconductivity, which provides thin flake crystals with high crystallinity. In particular, the newly developed fieldeffect transistor using ionic liquid as the dielectric provides a clean method to tune the quasi-2D superconductivity. As a newly developed method, the organic molecule intercalation method can provide a large single crystal for further bulk measurements, which provides a new research platform for further understanding quasi-2D superconductivity.

    Of course,the materials obtained by organic molecule intercalation still have some drawbacks to overcome. For example,it is still difficult to continuously control the interlayer distance and doping concentration. The intercalated samples are sensitive to air and water,and the two-dimensional materials that can be intercalated with organic molecules are limited.With the development of new methods for material preparation and modulation, the study of 2D superconductivity will gradually deepen and gradually clarify the intrinsic physical connotation between superconductivity and dimensionality.

    Acknowledgements

    Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB25000000), the National Natural Science Foundation of China (Grant No. 11888101), the National Key R&D Program of China (Grant No. 2017YFA0303001), the Anhui Initiative in Quantum Information Technologies,China(Grant No.AHY160000),and the Key Research Program of Frontier Sciences,CAS(Grant No.QYZDYSSW-SLH021).

    猜你喜歡
    吳濤
    紅燈亮了
    好詩與好人
    觀巖畫
    Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake?
    Module 10 Units 3-4單元點(diǎn)撥
    高考語法考點(diǎn)專項練習(xí)題
    Module 10 Units 1—2 單元點(diǎn)撥
    模塊1—4知識點(diǎn)盤點(diǎn)與高考鏈接
    跑個步,賺點(diǎn)小錢
    幸福(2016年17期)2016-07-25 12:05:04
    跑個步,賺點(diǎn)小錢
    幸福·悅讀(2016年6期)2016-04-08 06:39:08
    久久99蜜桃精品久久| 欧美xxxx黑人xx丫x性爽| 国产中年淑女户外野战色| 国产乱人偷精品视频| av在线亚洲专区| 国产精品一区二区性色av| 国产精品一及| 久久午夜福利片| 免费看日本二区| 91精品一卡2卡3卡4卡| 亚洲精品aⅴ在线观看| 99热网站在线观看| 午夜亚洲福利在线播放| 麻豆精品久久久久久蜜桃| 极品教师在线视频| 能在线免费看毛片的网站| 欧美bdsm另类| 国产伦精品一区二区三区视频9| 国产成年人精品一区二区| 18禁裸乳无遮挡动漫免费视频 | 亚洲精品国产av成人精品| 五月天丁香电影| 亚洲成人一二三区av| 精品人妻一区二区三区麻豆| 日韩欧美一区视频在线观看 | 欧美丝袜亚洲另类| 中文字幕亚洲精品专区| 精品人妻一区二区三区麻豆| 男女无遮挡免费网站观看| 欧美激情国产日韩精品一区| 成人亚洲精品一区在线观看 | 国国产精品蜜臀av免费| 中文精品一卡2卡3卡4更新| 亚洲精品国产色婷婷电影| 69人妻影院| 欧美日韩国产mv在线观看视频 | 麻豆乱淫一区二区| 成人鲁丝片一二三区免费| 熟妇人妻不卡中文字幕| 乱码一卡2卡4卡精品| 可以在线观看毛片的网站| 欧美老熟妇乱子伦牲交| 九九在线视频观看精品| 国产午夜福利久久久久久| 美女国产视频在线观看| 亚洲最大成人手机在线| 亚洲av中文字字幕乱码综合| 国产精品偷伦视频观看了| 国产精品爽爽va在线观看网站| 亚洲精品第二区| 看黄色毛片网站| 久久久亚洲精品成人影院| 高清av免费在线| 男人爽女人下面视频在线观看| 免费少妇av软件| 亚洲第一区二区三区不卡| 黑人高潮一二区| 国产亚洲av嫩草精品影院| 国产综合懂色| 中文天堂在线官网| 欧美一区二区亚洲| 成年av动漫网址| 国产毛片a区久久久久| 黄片wwwwww| 国产综合精华液| 亚洲精品456在线播放app| 亚洲在久久综合| 赤兔流量卡办理| 全区人妻精品视频| 男女国产视频网站| 成人二区视频| 国产白丝娇喘喷水9色精品| 日韩伦理黄色片| 国产高清有码在线观看视频| 亚洲国产成人一精品久久久| 久久久久久久久久久免费av| 草草在线视频免费看| 精品久久久久久久末码| 大又大粗又爽又黄少妇毛片口| 国产成人精品久久久久久| 2018国产大陆天天弄谢| 久久精品久久久久久久性| 国产成人一区二区在线| 日本wwww免费看| 国模一区二区三区四区视频| 免费人成在线观看视频色| 午夜福利高清视频| 午夜亚洲福利在线播放| 老师上课跳d突然被开到最大视频| 全区人妻精品视频| 青春草亚洲视频在线观看| 成年免费大片在线观看| av福利片在线观看| 啦啦啦在线观看免费高清www| 精品一区二区三区视频在线| 内射极品少妇av片p| 精品国产乱码久久久久久小说| 一二三四中文在线观看免费高清| 国产日韩欧美在线精品| 久久99精品国语久久久| 一个人观看的视频www高清免费观看| 熟妇人妻不卡中文字幕| 最近中文字幕2019免费版| 最近最新中文字幕免费大全7| 午夜福利视频1000在线观看| 久久久精品免费免费高清| 婷婷色麻豆天堂久久| 青青草视频在线视频观看| 久热久热在线精品观看| 一级毛片黄色毛片免费观看视频| 激情 狠狠 欧美| a级毛色黄片| 成人高潮视频无遮挡免费网站| 欧美日韩精品成人综合77777| 少妇猛男粗大的猛烈进出视频 | 五月玫瑰六月丁香| 麻豆乱淫一区二区| 色网站视频免费| 777米奇影视久久| 午夜爱爱视频在线播放| 国产欧美亚洲国产| 大码成人一级视频| 美女高潮的动态| 免费看光身美女| 日韩精品有码人妻一区| 国产成人aa在线观看| 亚洲国产精品999| 少妇丰满av| 亚洲aⅴ乱码一区二区在线播放| 日本三级黄在线观看| 你懂的网址亚洲精品在线观看| 大码成人一级视频| 免费看日本二区| 国产男女超爽视频在线观看| 有码 亚洲区| 国产精品一二三区在线看| 人妻制服诱惑在线中文字幕| 亚洲av福利一区| 免费在线观看成人毛片| 99精国产麻豆久久婷婷| 亚洲最大成人av| 美女视频免费永久观看网站| 大话2 男鬼变身卡| 久久精品久久精品一区二区三区| 老师上课跳d突然被开到最大视频| 边亲边吃奶的免费视频| 国产成人免费无遮挡视频| 亚洲天堂国产精品一区在线| freevideosex欧美| 亚洲婷婷狠狠爱综合网| 一级爰片在线观看| 日韩欧美精品v在线| 午夜福利视频精品| 亚洲国产精品国产精品| 在线看a的网站| 久久影院123| 内地一区二区视频在线| 成人毛片60女人毛片免费| 亚洲最大成人av| 精品99又大又爽又粗少妇毛片| 人体艺术视频欧美日本| 亚洲av电影在线观看一区二区三区 | 国产综合懂色| 免费看a级黄色片| 亚洲国产精品成人综合色| 又黄又爽又刺激的免费视频.| 国产高清不卡午夜福利| 最新中文字幕久久久久| 日韩 亚洲 欧美在线| 又爽又黄a免费视频| .国产精品久久| 自拍欧美九色日韩亚洲蝌蚪91 | 成年人午夜在线观看视频| 日日摸夜夜添夜夜添av毛片| 中国三级夫妇交换| 女人被狂操c到高潮| 欧美最新免费一区二区三区| 国产亚洲最大av| 亚洲精品国产av蜜桃| 成年女人看的毛片在线观看| 最近中文字幕高清免费大全6| 尤物成人国产欧美一区二区三区| 免费高清在线观看视频在线观看| 男男h啪啪无遮挡| 青春草视频在线免费观看| 国产精品无大码| av国产久精品久网站免费入址| 免费人成在线观看视频色| 久久国产乱子免费精品| 亚洲人与动物交配视频| 在线a可以看的网站| 久久久久久久午夜电影| 午夜精品国产一区二区电影 | 成人无遮挡网站| 午夜免费观看性视频| 成人黄色视频免费在线看| 一级毛片我不卡| 免费看不卡的av| 一区二区av电影网| 亚洲成人一二三区av| 夜夜看夜夜爽夜夜摸| 中国国产av一级| 直男gayav资源| 日韩一本色道免费dvd| 国产av国产精品国产| 国产日韩欧美在线精品| 少妇被粗大猛烈的视频| a级毛色黄片| 国产熟女欧美一区二区| 久久97久久精品| 成人综合一区亚洲| 精品国产三级普通话版| 免费观看无遮挡的男女| 国产成人午夜福利电影在线观看| 亚洲av免费在线观看| 美女高潮的动态| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品日本国产第一区| 亚洲,欧美,日韩| 18禁裸乳无遮挡动漫免费视频 | 我的女老师完整版在线观看| 如何舔出高潮| 男女边摸边吃奶| 精品久久久久久久末码| 国产成人freesex在线| 精品午夜福利在线看| 又爽又黄无遮挡网站| 亚洲电影在线观看av| 18禁在线播放成人免费| 99久久精品一区二区三区| 久久精品久久久久久噜噜老黄| 午夜爱爱视频在线播放| 亚洲第一区二区三区不卡| 久久久久久久精品精品| 亚洲人成网站在线观看播放| 大码成人一级视频| 新久久久久国产一级毛片| 蜜臀久久99精品久久宅男| 久久久久九九精品影院| 大香蕉久久网| 欧美日韩视频高清一区二区三区二| 又黄又爽又刺激的免费视频.| 日本色播在线视频| 久久精品夜色国产| 大话2 男鬼变身卡| 亚洲精品影视一区二区三区av| 亚洲精华国产精华液的使用体验| 国产黄a三级三级三级人| 蜜桃久久精品国产亚洲av| 久久久午夜欧美精品| 最后的刺客免费高清国语| 欧美人与善性xxx| 亚洲国产欧美在线一区| 亚洲精品一区蜜桃| 精品久久久久久久久亚洲| 最近2019中文字幕mv第一页| 免费观看av网站的网址| 性插视频无遮挡在线免费观看| 18+在线观看网站| 高清日韩中文字幕在线| 熟妇人妻不卡中文字幕| 亚洲精品成人久久久久久| 简卡轻食公司| 欧美三级亚洲精品| 好男人视频免费观看在线| 国产伦理片在线播放av一区| 久久久久久久午夜电影| 亚洲丝袜综合中文字幕| 亚洲精品色激情综合| 久久久久久久国产电影| 亚洲精品成人久久久久久| 在线免费观看不下载黄p国产| 一级毛片黄色毛片免费观看视频| av国产久精品久网站免费入址| 亚洲,欧美,日韩| 亚洲欧洲日产国产| 成人美女网站在线观看视频| 我的女老师完整版在线观看| 精品亚洲乱码少妇综合久久| 少妇丰满av| 天堂俺去俺来也www色官网| 国产女主播在线喷水免费视频网站| 王馨瑶露胸无遮挡在线观看| 国产黄片美女视频| av国产精品久久久久影院| 少妇的逼水好多| 国产精品国产三级国产av玫瑰| 极品教师在线视频| 2022亚洲国产成人精品| 国产淫片久久久久久久久| 精品国产一区二区三区久久久樱花 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 中文字幕av成人在线电影| 色播亚洲综合网| 国产伦在线观看视频一区| 夫妻午夜视频| 精品一区二区三卡| 国产成人精品婷婷| 丝袜喷水一区| 亚洲欧美成人综合另类久久久| 天堂俺去俺来也www色官网| 亚洲av欧美aⅴ国产| 性色avwww在线观看| 欧美激情久久久久久爽电影| 69人妻影院| 国产伦理片在线播放av一区| 欧美性猛交╳xxx乱大交人| 青春草视频在线免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av播播在线观看一区| 日韩 亚洲 欧美在线| av在线蜜桃| 丰满少妇做爰视频| 亚洲成色77777| 亚洲色图综合在线观看| 看免费成人av毛片| 69人妻影院| 91狼人影院| 亚洲精品国产色婷婷电影| 一级毛片aaaaaa免费看小| 国产欧美另类精品又又久久亚洲欧美| 尤物成人国产欧美一区二区三区| 美女国产视频在线观看| 老师上课跳d突然被开到最大视频| 最新中文字幕久久久久| 欧美高清性xxxxhd video| 亚洲成人中文字幕在线播放| 亚洲av不卡在线观看| 黄片无遮挡物在线观看| 干丝袜人妻中文字幕| 男女啪啪激烈高潮av片| 97精品久久久久久久久久精品| 日韩欧美 国产精品| 毛片女人毛片| 身体一侧抽搐| 中文乱码字字幕精品一区二区三区| 你懂的网址亚洲精品在线观看| 久久午夜福利片| h日本视频在线播放| 久久99热这里只频精品6学生| 亚洲精品一二三| 欧美少妇被猛烈插入视频| 国产淫语在线视频| 日韩av免费高清视频| 亚洲av成人精品一区久久| 色吧在线观看| 真实男女啪啪啪动态图| 成人国产av品久久久| 亚洲国产精品专区欧美| 日日啪夜夜爽| 18禁裸乳无遮挡动漫免费视频 | 嫩草影院精品99| 午夜视频国产福利| 亚洲精品国产成人久久av| 午夜免费观看性视频| 亚洲内射少妇av| 一级毛片aaaaaa免费看小| 一边亲一边摸免费视频| 波多野结衣巨乳人妻| 国产一区二区亚洲精品在线观看| 精品久久久久久久人妻蜜臀av| 九色成人免费人妻av| 日韩电影二区| 精品一区在线观看国产| 亚洲精品一二三| 中国国产av一级| 在线播放无遮挡| 中国国产av一级| 久久亚洲国产成人精品v| 国产亚洲最大av| 免费看不卡的av| 国产高清国产精品国产三级 | 2022亚洲国产成人精品| 成人鲁丝片一二三区免费| 亚洲欧美精品专区久久| 如何舔出高潮| 亚洲怡红院男人天堂| 精品亚洲乱码少妇综合久久| 亚州av有码| 国产精品麻豆人妻色哟哟久久| 中国三级夫妇交换| 男女无遮挡免费网站观看| 九色成人免费人妻av| 99久久精品一区二区三区| 丝袜喷水一区| 高清av免费在线| 一级毛片aaaaaa免费看小| 国产亚洲午夜精品一区二区久久 | 欧美激情在线99| 成人高潮视频无遮挡免费网站| 国产av国产精品国产| 国产精品.久久久| 丝袜美腿在线中文| 老司机影院毛片| av在线播放精品| 欧美激情久久久久久爽电影| 国模一区二区三区四区视频| 国产成人精品久久久久久| 久久久久网色| 亚洲av国产av综合av卡| 美女高潮的动态| 哪个播放器可以免费观看大片| 如何舔出高潮| 久久久久久久久大av| 国产精品麻豆人妻色哟哟久久| 中文精品一卡2卡3卡4更新| 可以在线观看毛片的网站| 亚洲精品国产成人久久av| a级一级毛片免费在线观看| 欧美国产精品一级二级三级 | 99热这里只有是精品50| 日韩av免费高清视频| 80岁老熟妇乱子伦牲交| 成人漫画全彩无遮挡| 麻豆成人av视频| 久久99热这里只频精品6学生| 99久久九九国产精品国产免费| 久久午夜福利片| av.在线天堂| 精品一区二区三区视频在线| 日韩av在线免费看完整版不卡| 日韩一区二区三区影片| 精品久久久久久久久亚洲| 日本三级黄在线观看| 中国三级夫妇交换| 久久久精品免费免费高清| av在线天堂中文字幕| 亚洲国产日韩一区二区| 一级毛片我不卡| 三级国产精品欧美在线观看| 久久精品国产亚洲网站| 少妇丰满av| videos熟女内射| av又黄又爽大尺度在线免费看| 秋霞伦理黄片| 欧美性猛交╳xxx乱大交人| 天天一区二区日本电影三级| 亚洲精品影视一区二区三区av| 国产熟女欧美一区二区| 国产黄色视频一区二区在线观看| 亚洲熟女精品中文字幕| 丝瓜视频免费看黄片| 亚洲精品色激情综合| 成人午夜精彩视频在线观看| 国产黄片视频在线免费观看| 国产熟女欧美一区二区| 狂野欧美白嫩少妇大欣赏| 国产一区二区三区av在线| 亚洲国产成人一精品久久久| 亚洲一级一片aⅴ在线观看| 欧美97在线视频| 中国三级夫妇交换| 免费人成在线观看视频色| 久久ye,这里只有精品| 国产一区二区三区综合在线观看 | 晚上一个人看的免费电影| 欧美bdsm另类| 在线观看一区二区三区激情| 久久久精品94久久精品| www.av在线官网国产| 久久久久九九精品影院| 午夜日本视频在线| 中文字幕免费在线视频6| 日本wwww免费看| 午夜精品一区二区三区免费看| 久久精品综合一区二区三区| 久久精品国产亚洲av涩爱| 久久午夜福利片| 制服丝袜香蕉在线| 韩国高清视频一区二区三区| 亚洲欧洲国产日韩| 国产大屁股一区二区在线视频| 有码 亚洲区| 欧美+日韩+精品| 国产成人a∨麻豆精品| 大话2 男鬼变身卡| 欧美3d第一页| 99久久中文字幕三级久久日本| 久久这里有精品视频免费| 黄色怎么调成土黄色| 黄色日韩在线| 精品人妻熟女av久视频| 久久国产乱子免费精品| 男女那种视频在线观看| 搡老乐熟女国产| 黄色配什么色好看| 久久国内精品自在自线图片| 国产亚洲5aaaaa淫片| 亚洲久久久久久中文字幕| 欧美精品国产亚洲| 特级一级黄色大片| 日本一二三区视频观看| 亚洲激情五月婷婷啪啪| 亚洲久久久久久中文字幕| 国产成人精品婷婷| 伊人久久精品亚洲午夜| 久久午夜福利片| 精品人妻偷拍中文字幕| 99热这里只有精品一区| 精品久久久久久久久av| 国产成人精品福利久久| 国产精品久久久久久精品电影小说 | 亚洲自拍偷在线| 欧美极品一区二区三区四区| 久久久国产一区二区| 精品少妇黑人巨大在线播放| 禁无遮挡网站| av在线观看视频网站免费| 久久精品国产a三级三级三级| 国产成人精品婷婷| 亚洲欧美日韩东京热| 免费观看的影片在线观看| 神马国产精品三级电影在线观看| 99久久人妻综合| 欧美另类一区| 亚洲成色77777| 熟女人妻精品中文字幕| 精品国产三级普通话版| 成人午夜精彩视频在线观看| 毛片一级片免费看久久久久| 久久久亚洲精品成人影院| 国产爽快片一区二区三区| av又黄又爽大尺度在线免费看| 国产成人一区二区在线| 99久久精品国产国产毛片| av播播在线观看一区| 老女人水多毛片| 听说在线观看完整版免费高清| 亚洲成人av在线免费| 一级黄片播放器| 国产成人91sexporn| 成人午夜精彩视频在线观看| 欧美成人a在线观看| 久久精品人妻少妇| 亚洲精品一区蜜桃| 国产高清国产精品国产三级 | 爱豆传媒免费全集在线观看| 国产毛片在线视频| 免费观看的影片在线观看| 91aial.com中文字幕在线观看| 涩涩av久久男人的天堂| 国产精品女同一区二区软件| 免费观看av网站的网址| 免费看日本二区| 亚洲av福利一区| 久久久久国产网址| 亚洲国产精品成人久久小说| 黄片wwwwww| 午夜免费观看性视频| 天天躁日日操中文字幕| freevideosex欧美| 免费黄频网站在线观看国产| 美女xxoo啪啪120秒动态图| 国产熟女欧美一区二区| 女人被狂操c到高潮| 亚洲av福利一区| 九草在线视频观看| 亚洲欧美一区二区三区国产| 精品一区二区免费观看| av在线亚洲专区| 一本久久精品| 亚洲精品日韩av片在线观看| 欧美潮喷喷水| 精品久久久久久久末码| 自拍偷自拍亚洲精品老妇| 老女人水多毛片| 黄色怎么调成土黄色| 纵有疾风起免费观看全集完整版| 亚洲av不卡在线观看| 97在线视频观看| 99精国产麻豆久久婷婷| 欧美3d第一页| 日韩av免费高清视频| 人人妻人人澡人人爽人人夜夜| 韩国av在线不卡| 国产精品一及| 日韩国内少妇激情av| 国产精品一区www在线观看| 日韩制服骚丝袜av| 97超碰精品成人国产| 久久国内精品自在自线图片| 国产一区二区在线观看日韩| 秋霞伦理黄片| 一级毛片我不卡| 日本色播在线视频| 成人午夜精彩视频在线观看| 国语对白做爰xxxⅹ性视频网站| 深夜a级毛片| 免费人成在线观看视频色| 王馨瑶露胸无遮挡在线观看| 久久99蜜桃精品久久| 亚洲三级黄色毛片| 美女内射精品一级片tv| 欧美日韩在线观看h| 欧美97在线视频| 美女内射精品一级片tv| 欧美日韩在线观看h| 秋霞伦理黄片| 插阴视频在线观看视频| 哪个播放器可以免费观看大片| 久热这里只有精品99| 精品久久久精品久久久| 亚洲自拍偷在线| 午夜免费观看性视频| 亚洲欧美一区二区三区黑人 | 国产亚洲精品久久久com| 亚洲精品乱码久久久久久按摩| 成人二区视频| 国产真实伦视频高清在线观看| eeuss影院久久| 国产91av在线免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 男人添女人高潮全过程视频| 嫩草影院精品99| 看十八女毛片水多多多|