• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake?

    2021-09-28 02:18:44ZhaohuiCheng程朝暉BinLei雷彬XigangLuo羅習(xí)剛JianjunYing應(yīng)劍俊ZhenyuWang王震宇TaoWu吳濤andXianhuiChen陳仙輝
    Chinese Physics B 2021年9期
    關(guān)鍵詞:吳濤朝暉

    Zhaohui Cheng(程朝暉),Bin Lei(雷彬),Xigang Luo(羅習(xí)剛),2,Jianjun Ying(應(yīng)劍俊),3,Zhenyu Wang(王震宇),3,Tao Wu(吳濤),2,3,5,?,and Xianhui Chen(陳仙輝),2,3,4,5

    1CAS Key Laboratory of Strongly-coupled Quantum Matter Physics,Department of Physics,University of Science and Technology of China,Hefei 230026,China

    2Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei 230026,China

    3CAS Center for Excellence in Superconducting Electronics(CENSE),Shanghai 200050,China

    4CAS Center for Excellence in Quantum Information and Quantum Physics,Hefei 230026,China

    5Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    Keywords:iron-based superconductors,superconductivity,electronic nematicity,strain effect

    Electronic nematic phase,in which the rotational symmetry is broken,exhibits a twist with superconductivity in the electronic phase diagram of iron-based superconductors(IBSCs).[1]Many experiments have already shown conclusive evidences for the electronic nematicity in IBSCs,including anisotropic transport,angle resolved photoemission spectroscopy(ARPES),scanning tunneling microscopy(STM),neutron scattering and so on.[2]So far,although the existence of electronic nematicity in IBSCs is well-established,[3–5]the underlying mechanism and its exact role on the superconducting pairing are still mystery and under hot debate.[1,6,7]Most of the existing experimental results support a direct competition between nematic order and superconductivity in the electronic phase diagram.[8,9]Since the nematic order is tightly twisted with a stripe-type antiferromagnetic order in the iron-pnictide family,[10–12]the competition between the nematic order and the superconductivity is widely believed to stem from the competition between antiferromagnetic order and superconductivity.[8,9]In this case,the nematic order is even considered to be driven by stripe-type spin fluctuations.[1,5,13–16]However,in iron-selenides family such as FeSe1?xSxsystems,there is no direct evidence for the competition between nematic order and superconductivity.[17,18]Interestingly,the stripe-type antiferromagnetic order is also decoupled with nematic order in the electronic phase diagram,which leads to an alternative scenario for electronic nematicity due to orbital order,[19,20]e.g.,the ferro-orbital order.Moreover,orbital fluctuations are also considered to mediate an s++superconducting pairing.[21]So far,the origin of the electronic nematicity and its role on superconductivity are still highly controversial in iron-selenides family.[1,6,7,21,22]

    As a conjugate field for electronic nematicity,strain can be used to manipulate the electronic nematicity,[3–5,24,25]which is helpful to elucidate the relationship between electronic nematicity and superconductivity.[26,27]Recently,a dominant B1g-type strain effect on superconductivity has been revealed in the underdoped Ba(Fe1?xCox)2As2.[24,25]With further electron doping,an A1g-type instead of B1g-type strain effect appears and becomes dominant in the overdoped Ba(Fe1?xCox)2As2.[28,29]These results strongly support a significant role of electronic nematicity on superconductivity.Then,a natural question is whether a similar B1g-type strain effect could be also observed in iron-selenides family or not,which would be helpful to further understand the role of electronic nematicity on the superconducting pairing in IBSCs.

    Previous study on FeSe thin films,utilizing pulsed laser deposition on different substrates,already indicates that the superconducting transition temperature(Tc)in FeSe thin films is highly tunable from 0 K to 12 K by changing the lattice parameters.[30]However,the previous study of the strain effect on Tcin bulk FeSe is not very successful due to the possible damage of FeSe single crystals by large uniaxial strain.[2]Only a small range of uniaxial strain could be applied to FeSe single crystal through a“horseshoe device”or pasting on a piezo-ceramic stack to achieve the measurements of nematic susceptibility.[31,32]In this work,in order to increase the tuning range of uniaxial strain in the bulk FeSe,we adopt a mechanical cleavage method to first cleave FeSe single crystal into thin flakes with the thickness of~25 nm,and then transfer these FeSe thin flakes on a flexible substrate.The uniaxial strain is applied to these thin flakes by bending the flexible substrate.The similar method has been successfully used for the strain tuning of MoS2and black phosphorus thin flakes.[33,34]By utilizing this method for applying uniaxial strain,Tcand Tsof FeSe thin flakes can be largely varied exceeding all previous studies on the strain effect in bulk FeSe.The maximum Tcof FeSe can be increased by 30%through applying a compressive strain up to 12 K,while the nematic transition temperature shows an anti-correlation with Tc.Detailed measuring procedures and data analysis are presented in the following part.We note that,during preparing this manuscript,a couple of similar researches on the strain-tuning effects of bulk FeSe have been published.[35–37]The strain-tuning methods in these researches are different from ours,while the main results are consistent with our experiments.

    In order to achieve continuous change of the uniaxial strain,we use flexible polyethylene terephthalate(PET)films as the substrate to stick FeSe thin flakes and then bend the substrate to produce strain.Bending the flexible substrate downward/upward could induce a tensile/compressive strain on the FeSe thin flakes(Fig.1(b)).The nominal magnitude of the strain is defined asε=ΔL/L0,whereΔL=L?L0,and L0and L are the sample length without and with strain,respectively(see supplementary materials for the details of calculation).

    Fig.1.Crystal structure,device configuration and strain-dependent Raman spectra of FeSe.(a)The crystal structure of the pristine FeSe.(b)Schematic structure of a FeSe thin flake on the flexible polyethylene terephthalate(PET)substrate.Variable compressive/tensile strains are induced on FeSe thin flakes by bending the substrate downward/upward.(c)An optical image of a FeSe thin flake supported on flexible PET substrate.(d),(e)AFM image of the dashed square in(c).The thickness of FeSe thin flake is about 25 nm along the red dashed line.(f)In-situ Raman spectroscopy of the FeSe thin flakes under different tensile and compressive strains with the strain along(110).The peaks of A1g and B1g modes move to the lower wave number with increasing the tensile strain and shift to the higher wave number with increasing the compressive strain.(g)The peak positions of A1g and B1g modes as a function of the strain.The frequencies of the A1g and B1g modes monotonously decrease with increasing the strain from negative to positive.

    As shown in Fig.1(a),due to the van der Waals interaction between different FeSe layers,the FeSe thin flakes can be easily obtained by the mechanical exfoliation with scotch tape method.FeSe thin flakes are first mechanically exfoliated from bulk crystals onto polydimethylsiloxane(PDMS)substrates,and then transferred to PET substrates by the so-called dry-transfer method.[38](see supplementary materials for the details of devices fabrication).Figure 1(b)is the schematic structure of the final strain device.In practical,proper thin flakes with good flatness and regular shape are chosen by using an optical microscopy.Then,the thickness is characterized by an atomic force microscopy(AFM).The typical thickness of the FeSe thin flakes used for the transport measurement is about 25 nm as evidenced by the AFM image as shown in Figs.1(d)and 1(e).Finally,four electrodes(Cr/Au with thicknesses of 5 and 50 nm,respectively)for transport measurements are coated on the surface of the FeSe thin flakes by using mask technique.The coated four electrodes also serve as the clamping points to prevent the sample from slippage during the bending of the substrate.Figure 1(c)displays an optical image of the actual device.It should be noted that the inplane crystal orientation of FeSe single crystal is determined by Laue diffraction measurement.The applied strain by bending the PET substrate is always along the[110]or[100]direction.The direction of the current can be changed by varying the direction of the electrodes.

    The strain induced by bending the PET substrate can be estimated by a continuum-mechanics model for an elastic beam(see supplementary material S2),in which the radius of curvature(R)from the bending of the PET substrate is assumed to be much larger than the thickness(h)of the PET substrate.Then,the magnitude of the applied strain can be calculated byε=h/2R[39](see details in Fig.S1 of the supplementary materials).A positive/negativeεdenotes a tensile/compressive strain,respectively.In this work,the thickness of the PET substrate is about 100μm,and we could extract the value of R from the profile of the bended PET substrate.In order to continuously change the strain in the FeSe thin flakes,the prepared device is fixed in the middle of two parallel plates and the distance between these two plates is continuously changed to bend the PET substrate.If no slippage happens between the FeSe thin flake and PET substrate,then the strainεin the FeSe thin flake can be directly calculated by the above formula.Here,the sample should be mounted in the middle position of the substrate.

    Fig.2.The longitudinal resistance and the temperature derivatives of the resistance at differentεalong(110).(a),(d),(g)and(j)Temperature dependence of resistance for FeSe thin flakes under different strains and different current directions.The inset is a schematic of the strain and the direction of the measured current.(b),(e),(h)and(k)The resistance at low temperatures corresponding to(a),(d),(g)and(j).(c),(f),(i)and(l)Temperature dependence of the temperature derivative of resistance for the samples corresponding to(a),(d),(g)and(j).

    Usually,x-ray diffraction(XRD)experiment is needed to verify the change of lattice parameters due to uniaxial strain.However,due to limited sample’s volume,it is very difficult to perform an in-situ XRD measurement on the FeSe thin flakes as that in large single crystal.[40]Instead,we have performed in-situ Raman measurements,which is sensitive to uniaxial strains on the FeSe thin-flake samples.As shown in Fig.1(f),we successfully obtain in-situ Raman spectra for the FeSe thin flakes under various strains along[110]direction.The A1gand B1gmodes come from the vibrations of Se atoms along the c axis and the vibrations of Fe atoms along the c axis,respectively.[41–43]By increasing the strain from tensile to compressive strain,both A1gand B1gmodes continuously shift to a higher wavenumber.The systematic evolution of A1gand B1gmodes with the uniaxial strain is shown in Fig.1(g).Qualitatively,although the absolute magnitude of the uniaxial strain on the FeSe thin flakes can not be determined precisely,the in-situ Raman result indicates that the uniaxial strain by bending the PET substrate is effectively transferred to the FeSe thin flakes.Similar in-situ Raman results are also obtained in the FeSe thin flakes under various strains along[100]direction(see supplementary materials Fig.S3).Therefore,we assume that the calculated value of strain by the above mentioned method well represents the actual strain in the FeSe thin flakes.Next,we would investigate the strain effects on both superconducting and nematic transitions in the FeSe thin flakes by electronic transport measurements.

    As shown in Fig.2,the temperature dependence of resistance for the FeSe thin flakes are systematically measured under different strains along the[110](Fe–Se–Fe)direction.In order to measure both tensile/compressive strain effects with the electric current parallel or perpendicular to the bending direction,we have prepared four similar strain devices to measure the temperature-dependent resistance.Figures 2(a)and 2(d)show the temperature dependences of resistances under tensile strain,with the electric current parallel and perpendicular to the direction of the uniaxial strain,respectively.The overall temperature dependence of resistance is very similar to the previous report on the bulk FeSe,[18]excepting a higher superconducting temperature and a lower nematic transition temperature.Such difference in superconducting and nematic temperatures between bulk FeSe and FeSe thin flake has already been reported in previous study.[44]Moreover,with increasing the tensile strain,the temperature-dependent resistances show a clear difference below the nematic transition temperature with current parallel and perpendicular to[110]direction,which suggests that the FeSe thin flake on the PET substrate is detwinned with the applied tensile substrate.The superconducting temperature(defined as the middle point of the resistive transition Tmidc)drops from the initial 9 K to 7.8 K with a tensile strain up to 0.47%in the device,when the electric current flows perpendicular to the direction of uniaxial strain.In the device with the electric current parallel to the direction of uniaxial strain,Tmidc drops from the initial 9.6 K to 6.9 K with a tensile strain up to 0.61%.In spite of slightly difference between different devices,it is clear that the superconducting temperature is almost linearly suppressed by increasing the tensile strain along the[110]direction.On the other hand,the nematic transition temperature(Ts)is determined from the derivative of the temperature-dependent resistance.As shown in Figs.2(c)and 2(f),there is a clear sharp jump due to the nematic transition in the differential curves.Tsis determined by the minimum of the jump.In the device with current parallel to the direction of uniaxial strain,Tsgradually increases from initial 71.2 K to 91.2 K with a tensile strain up to 0.61%.In the device with current perpendicular to the direction of uniaxial strain,Tsgradually increases from initial 70.4 K to 83 K with a tensile strain up to 0.47%.Therefore,in contrast to the superconducting temperature,the nematic transition temperature is clearly increased as the tensile strain increases.

    Fig.3.(a)Tc and Ts as a function of the strainεwhen the strain is applied along the[110]direction.With increasing the tensile strain,Tc gradually decreases and Ts gradually increases.With increasing the compressive strain,Tc gradually increases and Ts gradually decreases.There is a negative correlation between Tc and Ts.(b)and(c)Schematics of different strain types.εA1g is symmetry-preserving strain andεB1g is the strain component which breaks the four-fold rotational symmetry.

    In general,a uniaxial stress applied along one in-plane direction(a or b axis)will induce strains along all three principal axes.[28]Then we haveεjj=?vijεii,where vijis the intrinsic Poisson ratio for materials.This gives

    whereεA1g1andεA1g2are the non-symmetry-breaking strain such as volume expansion and change of tetragonality;and εB1gis the strain component which breaks the four-fold rotational symmetry.Based on symmetry considerations,Tcshould depend quadratically onεB2gbut linearly onεA1g.Accordingly,we have[28]

    whereαandβare the dimensionless coefficients of the dependence of TconεA1gandεB1g,respectively.In the previous study on the underdoped Ba(Fe1?xCox)2As2,the straindependent Tcis found to be dominant by aεB1gcomponent and shows a quadratical dependence.In that case,the coefficient of the quadratic termαis believed to be related to the longrange antiferromagnetic order existing in Ba(Fe1?xCox)2As2andεB1gwould enhance spin fluctuations while suppress nematic fluctuations.[45]With increasing the amount of Co doping to the overdoped region,the antiferromagnetic order in Ba(Fe1?xCox)2As2is gradually suppressed and thenεA1gbecomes dominant on the strain dependence of Tc.Following this explanation on strain-dependent Tc,the absence of longrange antiferromagnetic order in bulk FeSe would lead to a negligible value ofαand then only a linear term would be left.This is definitely confirmed by the observation in the present study.Therefore,our results indirectly support a role of stripe-type spin fluctuations on superconductivity.In addition,as reported in previous literatures,Tcis found to be very sensitive to the change of the c-axis lattice constant in FeSe thin films,[27]which might be responsible for the observed predominant A1g-type strain effect.In fact,the A1gtype strain effect could be also compared with the pressure effect in FeSe,in which the superconducting transition temperature would be enhanced by low pressure below 1 GPa while the nematic transition temperature is suppressed.However,with further increasing pressure,a long-range antiferromagnetic order would appear and then Tcwould be slightly suppressed by the development of antiferromagnetic order.[46]Here,whether a long-range antiferromagnetic order would appear or not with further increasing strain is still elusive.It may deserve further study to clarify the underlying physics for the A1g-type strain effect.On the other hand,a similar B1g-type strain effect on the nematic transition temperature was also revealed in the underdoped Ba(Fe1?xCox)2As2.[28]However,our results clearly demonstrate that such a B1g-type strain effect on Tsis absent in FeSe.If assuming a key role of spin degree of freedom on the electronic nematicity in iron-pnictides,the absence of B1g-type strain effect on Tssuggests that the orbital degree of freedom might play a key role instead of the spin degree of freedom to drive the electronic nematicity.Since the orbital order is sensitive to the change of lattice parameter,[47–49]the dominant A1g-type strain effect on Tscould be also related to the change of lattice parameter induce by uniaxial strain as that for Tc.Therefore,combining the strain effect in both FeSe and Ba(Fe1?xCox)2As,the stripe-type spin fluctuations,which would lead to a B1g-type strain effect on both Tcand Ts,play a more important role than orbital fluctuations on the superconductivity in IBSCs.In fact,this is also supported by a slight change of Tcacross the nematic quantum critical point in FeSe1?xSxsystem.[25]Recently,several experiments on the strain-tuning effects of bulk FeSe have been conducted by different groups.[35–37]Owing to different measuring methods and sample dimensions,there is a few slight differences in the detailed behavior of Ts(ε)and Tc(ε)among different experiments.[35–37]Nevertheless,consistent conclusions are obtained,which suggest intrinsic strain-tuning effects revealed in this study.

    In summary,by utilizing PET substrate,we successfully obtain a wide-range strain tuning for FeSe thin flake with both tensile and compressive strain up to about 0.7%.Our results reveal a predominant A1g-type strain effect on Tc,which is different from that of B1g-type in underdoped Ba(Fe1?xCox)2As2.Meanwhile,Tsexhibits a monotonic anticorrelation with Tcand the maximum Tcreaches to 12 K when Tsis strongly suppressed under the maximum compressive strain.Finally,in comparison with the results in the underdoped Ba(Fe1?xCox)2As2,the absence of B1g-type strain effect in FeSe further supports a role of stripe-type spin fluctuations on superconductivity.Our findings provide new insights for clarifying the underlying mechanism of nematic order and its twist with superconductivity in iron-based superconductors.

    猜你喜歡
    吳濤朝暉
    紅燈亮了
    好詩(shī)與好人
    芙蓉國(guó)里盡朝暉
    Recent advances in quasi-2D superconductors via organic molecule intercalation
    CENTRAL LIMIT THEOREM AND CONVERGENCE RATES FOR A SUPERCRITICAL BRANCHING PROCESS WITH IMMIGRATION IN A RANDOM ENVIRONMENT*
    觀巖畫(huà)
    三只蚊子
    Module 10 Units 3-4單元點(diǎn)撥
    Module 10 Units 1—2 單元點(diǎn)撥
    唆拜(外一首)
    文藝論壇(2015年23期)2015-03-04 07:57:15
    久久狼人影院| 18禁黄网站禁片午夜丰满| 宅男免费午夜| 无遮挡黄片免费观看| 男人舔女人的私密视频| 国产亚洲精品久久久久久毛片 | 一二三四社区在线视频社区8| 久久人妻熟女aⅴ| 日韩欧美一区二区三区在线观看 | 大型av网站在线播放| 亚洲av美国av| 日本黄色视频三级网站网址 | 9191精品国产免费久久| 久久久久国产一级毛片高清牌| 桃红色精品国产亚洲av| 男女免费视频国产| 丝袜美腿诱惑在线| 国产有黄有色有爽视频| 日韩欧美免费精品| 午夜福利免费观看在线| 午夜福利在线免费观看网站| 99久久精品国产亚洲精品| 国产视频一区二区在线看| 成年版毛片免费区| 最近最新中文字幕大全电影3 | 亚洲第一欧美日韩一区二区三区| 中文字幕人妻熟女乱码| 很黄的视频免费| 国产单亲对白刺激| 大片电影免费在线观看免费| 成熟少妇高潮喷水视频| 亚洲精品久久午夜乱码| 午夜福利影视在线免费观看| 日日摸夜夜添夜夜添小说| 夫妻午夜视频| 成人18禁在线播放| av一本久久久久| 亚洲人成伊人成综合网2020| 一区在线观看完整版| bbb黄色大片| 中出人妻视频一区二区| 久久青草综合色| 午夜免费鲁丝| 国产1区2区3区精品| 国产aⅴ精品一区二区三区波| 大片电影免费在线观看免费| 中文字幕高清在线视频| 动漫黄色视频在线观看| 精品国产一区二区三区四区第35| 国产三级黄色录像| 国产精品偷伦视频观看了| 老司机福利观看| 看片在线看免费视频| 国产片内射在线| 天堂中文最新版在线下载| 欧美日韩亚洲综合一区二区三区_| 亚洲七黄色美女视频| 人成视频在线观看免费观看| 久久九九热精品免费| 视频区图区小说| 欧美黄色淫秽网站| 国产成人啪精品午夜网站| 91大片在线观看| 色综合婷婷激情| 成年版毛片免费区| 一级a爱视频在线免费观看| 免费看a级黄色片| 午夜福利在线免费观看网站| 成人三级做爰电影| 在线国产一区二区在线| 欧美成狂野欧美在线观看| av有码第一页| 国产成人精品久久二区二区91| 麻豆国产av国片精品| 日本精品一区二区三区蜜桃| а√天堂www在线а√下载 | 日韩中文字幕欧美一区二区| 午夜影院日韩av| 99在线人妻在线中文字幕 | 女人爽到高潮嗷嗷叫在线视频| 久久婷婷成人综合色麻豆| 国产欧美日韩一区二区三| 国产伦人伦偷精品视频| 免费观看a级毛片全部| 欧美大码av| 搡老熟女国产l中国老女人| 又黄又粗又硬又大视频| 老司机亚洲免费影院| 成人永久免费在线观看视频| 操出白浆在线播放| 久99久视频精品免费| 一进一出抽搐动态| 黄片大片在线免费观看| 一进一出抽搐动态| 欧美人与性动交α欧美精品济南到| 一级作爱视频免费观看| 麻豆国产av国片精品| 午夜久久久在线观看| 亚洲一区二区三区不卡视频| 久热这里只有精品99| 久久久久国内视频| 看片在线看免费视频| 婷婷精品国产亚洲av在线 | 黄色毛片三级朝国网站| 一边摸一边抽搐一进一出视频| 精品国产一区二区三区四区第35| 亚洲黑人精品在线| 久久青草综合色| 999久久久精品免费观看国产| 捣出白浆h1v1| 国产熟女午夜一区二区三区| 久久 成人 亚洲| 黑人巨大精品欧美一区二区蜜桃| 午夜免费成人在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 一级a爱视频在线免费观看| 成人av一区二区三区在线看| 中文字幕人妻丝袜制服| 久久久久视频综合| 女性被躁到高潮视频| 精品久久久久久,| 久久国产精品影院| 人妻 亚洲 视频| 日韩三级视频一区二区三区| 国产成人精品无人区| 91麻豆av在线| 黄色 视频免费看| 人人妻人人澡人人爽人人夜夜| 国产精品美女特级片免费视频播放器 | 999精品在线视频| 男人舔女人的私密视频| 99精国产麻豆久久婷婷| 十分钟在线观看高清视频www| 超碰成人久久| 国产av一区二区精品久久| 久久99一区二区三区| 国产精华一区二区三区| 成人三级做爰电影| 亚洲欧美日韩另类电影网站| 国产亚洲精品第一综合不卡| 久久精品91无色码中文字幕| 国产日韩一区二区三区精品不卡| 飞空精品影院首页| 久久精品国产亚洲av高清一级| 女人被狂操c到高潮| 欧美日韩国产mv在线观看视频| 国产成人系列免费观看| 欧美日韩乱码在线| 国内久久婷婷六月综合欲色啪| 色老头精品视频在线观看| 亚洲第一av免费看| 1024视频免费在线观看| 国产精品电影一区二区三区 | 在线看a的网站| 国产区一区二久久| 欧美性长视频在线观看| 捣出白浆h1v1| 操美女的视频在线观看| 免费日韩欧美在线观看| 精品久久久久久,| 天堂动漫精品| 无人区码免费观看不卡| 久久久久国产精品人妻aⅴ院 | 一区在线观看完整版| 日韩欧美在线二视频 | 日韩欧美一区二区三区在线观看 | 伦理电影免费视频| 999久久久国产精品视频| 19禁男女啪啪无遮挡网站| 成人黄色视频免费在线看| 亚洲成人手机| 亚洲第一av免费看| 18禁黄网站禁片午夜丰满| 男男h啪啪无遮挡| 国产一区二区三区视频了| 大陆偷拍与自拍| 午夜老司机福利片| av网站在线播放免费| √禁漫天堂资源中文www| videosex国产| 女同久久另类99精品国产91| 波多野结衣av一区二区av| 91精品三级在线观看| 高清黄色对白视频在线免费看| 久久久精品国产亚洲av高清涩受| 婷婷丁香在线五月| 国产精品一区二区免费欧美| 欧美日韩瑟瑟在线播放| 嫩草影视91久久| 久久中文看片网| 亚洲精品自拍成人| 亚洲一码二码三码区别大吗| 国产极品粉嫩免费观看在线| 精品无人区乱码1区二区| 久久性视频一级片| 99久久精品国产亚洲精品| 国产熟女午夜一区二区三区| 国产欧美日韩综合在线一区二区| 精品无人区乱码1区二区| 国产成人免费观看mmmm| 黄色丝袜av网址大全| 99精品在免费线老司机午夜| 欧美日韩av久久| 久久久久久免费高清国产稀缺| 99国产极品粉嫩在线观看| 国产在线观看jvid| 国产精品国产av在线观看| 人妻一区二区av| 黄色视频,在线免费观看| 超色免费av| av片东京热男人的天堂| 久久精品国产99精品国产亚洲性色 | 人人妻人人添人人爽欧美一区卜| 国产日韩一区二区三区精品不卡| 国产1区2区3区精品| 国产精品国产高清国产av | 啦啦啦 在线观看视频| 午夜亚洲福利在线播放| 久久久久国内视频| 一进一出抽搐动态| 婷婷丁香在线五月| 两个人看的免费小视频| 欧美乱码精品一区二区三区| 国产无遮挡羞羞视频在线观看| 日本精品一区二区三区蜜桃| 欧美黄色淫秽网站| 国产视频一区二区在线看| 日本黄色日本黄色录像| 日本一区二区免费在线视频| 757午夜福利合集在线观看| 一区福利在线观看| 国产不卡一卡二| 日韩熟女老妇一区二区性免费视频| 国产成人免费观看mmmm| 一边摸一边抽搐一进一出视频| 亚洲精品美女久久av网站| 国产欧美日韩综合在线一区二区| 女人爽到高潮嗷嗷叫在线视频| 午夜福利乱码中文字幕| 亚洲免费av在线视频| 搡老熟女国产l中国老女人| 在线免费观看的www视频| 国产成人av教育| 午夜福利影视在线免费观看| 女人久久www免费人成看片| av片东京热男人的天堂| 一边摸一边做爽爽视频免费| 天天操日日干夜夜撸| √禁漫天堂资源中文www| 丰满饥渴人妻一区二区三| 国内毛片毛片毛片毛片毛片| 精品第一国产精品| 国产在线一区二区三区精| 国产精品偷伦视频观看了| 亚洲精品av麻豆狂野| 国产精品久久久人人做人人爽| 制服诱惑二区| 中文字幕精品免费在线观看视频| 午夜福利在线免费观看网站| 搡老乐熟女国产| 91成人精品电影| cao死你这个sao货| 成人精品一区二区免费| 国产不卡一卡二| 男女之事视频高清在线观看| 日韩有码中文字幕| 亚洲综合色网址| 久久热在线av| 热re99久久国产66热| 欧美乱色亚洲激情| 婷婷精品国产亚洲av在线 | 777米奇影视久久| 国产成人欧美| 男女下面插进去视频免费观看| 国精品久久久久久国模美| 黑人巨大精品欧美一区二区蜜桃| 在线观看免费日韩欧美大片| 午夜日韩欧美国产| 日本欧美视频一区| 亚洲av日韩精品久久久久久密| 国产成人影院久久av| 欧美丝袜亚洲另类 | 黑人欧美特级aaaaaa片| 欧美乱码精品一区二区三区| 黄色 视频免费看| 欧美黑人欧美精品刺激| 99热网站在线观看| 一区二区三区激情视频| 亚洲av日韩精品久久久久久密| 成年女人毛片免费观看观看9 | 国产一区有黄有色的免费视频| 国产精品成人在线| 天天躁日日躁夜夜躁夜夜| 人妻 亚洲 视频| tocl精华| 精品一区二区三区av网在线观看| 天天影视国产精品| 国产区一区二久久| av不卡在线播放| 国产精品久久久av美女十八| 男人的好看免费观看在线视频 | 老司机午夜十八禁免费视频| 欧美日韩av久久| 国产三级黄色录像| 老司机午夜福利在线观看视频| 777久久人妻少妇嫩草av网站| 亚洲男人天堂网一区| 欧美黄色淫秽网站| 午夜视频精品福利| 久久精品91无色码中文字幕| 黄色成人免费大全| cao死你这个sao货| 91九色精品人成在线观看| 99热只有精品国产| 午夜久久久在线观看| 国产精品98久久久久久宅男小说| 国产精品久久久久久人妻精品电影| 9色porny在线观看| www.自偷自拍.com| 男人的好看免费观看在线视频 | 午夜久久久在线观看| tube8黄色片| 久久精品亚洲av国产电影网| av网站在线播放免费| 纯流量卡能插随身wifi吗| 黄频高清免费视频| 亚洲欧美一区二区三区久久| 99国产精品免费福利视频| 亚洲五月天丁香| 亚洲午夜理论影院| 亚洲成av片中文字幕在线观看| 别揉我奶头~嗯~啊~动态视频| 欧美激情久久久久久爽电影 | 动漫黄色视频在线观看| 亚洲av电影在线进入| 搡老乐熟女国产| 无遮挡黄片免费观看| 久久精品亚洲av国产电影网| 在线观看www视频免费| 国产av精品麻豆| 制服人妻中文乱码| 日韩成人在线观看一区二区三区| 69精品国产乱码久久久| netflix在线观看网站| 宅男免费午夜| 可以免费在线观看a视频的电影网站| 欧美成人午夜精品| 国产成人精品无人区| 无限看片的www在线观看| 精品人妻熟女毛片av久久网站| 亚洲avbb在线观看| 男女午夜视频在线观看| 一级片免费观看大全| 精品卡一卡二卡四卡免费| 久热这里只有精品99| 人人妻人人澡人人看| 成年版毛片免费区| 午夜福利在线免费观看网站| 美女福利国产在线| 国产精品免费一区二区三区在线 | 咕卡用的链子| 欧美老熟妇乱子伦牲交| 国产男女内射视频| avwww免费| 亚洲美女黄片视频| 777米奇影视久久| 久久国产精品男人的天堂亚洲| 久久久久视频综合| 欧美av亚洲av综合av国产av| 日本wwww免费看| 中文亚洲av片在线观看爽 | 精品国产国语对白av| 亚洲成av片中文字幕在线观看| av片东京热男人的天堂| 少妇粗大呻吟视频| 最新的欧美精品一区二区| 成年版毛片免费区| 亚洲性夜色夜夜综合| 精品久久久久久久久久免费视频 | 在线十欧美十亚洲十日本专区| 国产亚洲精品久久久久5区| 日日夜夜操网爽| 午夜福利乱码中文字幕| 国产成人欧美在线观看 | 久久天堂一区二区三区四区| av片东京热男人的天堂| 啦啦啦免费观看视频1| 视频区图区小说| 午夜两性在线视频| 亚洲国产精品一区二区三区在线| 久久精品国产综合久久久| 亚洲性夜色夜夜综合| 亚洲色图综合在线观看| 久久久久久人人人人人| 久久亚洲真实| 精品卡一卡二卡四卡免费| 亚洲av成人av| 熟女少妇亚洲综合色aaa.| 老熟女久久久| tocl精华| 久热爱精品视频在线9| 国产成人影院久久av| 亚洲va日本ⅴa欧美va伊人久久| 亚洲中文av在线| 国产aⅴ精品一区二区三区波| 村上凉子中文字幕在线| 人妻久久中文字幕网| 久久精品国产a三级三级三级| 后天国语完整版免费观看| 亚洲色图av天堂| 叶爱在线成人免费视频播放| 王馨瑶露胸无遮挡在线观看| а√天堂www在线а√下载 | 90打野战视频偷拍视频| 精品久久久久久久久久免费视频 | 亚洲av成人不卡在线观看播放网| 高清毛片免费观看视频网站 | 中文字幕精品免费在线观看视频| 国产91精品成人一区二区三区| 一级作爱视频免费观看| 女同久久另类99精品国产91| 久久久久久久久久久久大奶| 美国免费a级毛片| 岛国毛片在线播放| 香蕉久久夜色| 国产一区二区三区在线臀色熟女 | 一级毛片高清免费大全| 一本一本久久a久久精品综合妖精| 国产精品永久免费网站| 亚洲国产看品久久| 精品第一国产精品| 午夜精品国产一区二区电影| 叶爱在线成人免费视频播放| 香蕉国产在线看| 久久影院123| 九色亚洲精品在线播放| 国产又色又爽无遮挡免费看| 亚洲aⅴ乱码一区二区在线播放 | 国产深夜福利视频在线观看| 99精国产麻豆久久婷婷| 色尼玛亚洲综合影院| av线在线观看网站| 女人精品久久久久毛片| 精品人妻在线不人妻| 亚洲精品乱久久久久久| 嫩草影视91久久| 99久久国产精品久久久| 嫩草影视91久久| 三级毛片av免费| 精品国产超薄肉色丝袜足j| 99香蕉大伊视频| tocl精华| 午夜激情av网站| 亚洲精华国产精华精| 激情在线观看视频在线高清 | 中文字幕精品免费在线观看视频| 91av网站免费观看| 99国产精品99久久久久| 欧美老熟妇乱子伦牲交| 人人澡人人妻人| 亚洲片人在线观看| 国产男女内射视频| 99久久人妻综合| 一边摸一边抽搐一进一小说 | 亚洲色图av天堂| 国产精品久久久人人做人人爽| 亚洲aⅴ乱码一区二区在线播放 | 欧美日韩亚洲高清精品| 亚洲精品中文字幕一二三四区| 免费av中文字幕在线| 欧美日韩黄片免| 精品免费久久久久久久清纯 | 婷婷精品国产亚洲av在线 | 精品午夜福利视频在线观看一区| 老熟妇乱子伦视频在线观看| av视频免费观看在线观看| 日本vs欧美在线观看视频| 久久精品亚洲熟妇少妇任你| 丰满的人妻完整版| 久久九九热精品免费| 免费一级毛片在线播放高清视频 | 亚洲中文日韩欧美视频| 国产深夜福利视频在线观看| 中国美女看黄片| 久久精品国产综合久久久| 午夜福利一区二区在线看| 国产精品成人在线| 欧美人与性动交α欧美软件| 黄色视频,在线免费观看| xxx96com| 国产深夜福利视频在线观看| 一级片免费观看大全| 两个人看的免费小视频| 自线自在国产av| 操出白浆在线播放| ponron亚洲| av福利片在线| 一级a爱片免费观看的视频| 最近最新中文字幕大全电影3 | 亚洲第一欧美日韩一区二区三区| 国产精品免费一区二区三区在线 | 9色porny在线观看| 大陆偷拍与自拍| 韩国av一区二区三区四区| 久久香蕉国产精品| 91精品国产国语对白视频| 久久久久精品人妻al黑| 99国产精品一区二区三区| 俄罗斯特黄特色一大片| 免费在线观看视频国产中文字幕亚洲| 在线看a的网站| 色老头精品视频在线观看| 亚洲熟女精品中文字幕| ponron亚洲| 精品一区二区三区四区五区乱码| 久久人人97超碰香蕉20202| 美女扒开内裤让男人捅视频| 国产精品香港三级国产av潘金莲| 夫妻午夜视频| 午夜福利一区二区在线看| 一级毛片高清免费大全| 精品国产一区二区三区久久久樱花| 亚洲欧美一区二区三区久久| 大陆偷拍与自拍| 91在线观看av| 在线看a的网站| 丰满人妻熟妇乱又伦精品不卡| 国产免费av片在线观看野外av| 色尼玛亚洲综合影院| 免费在线观看完整版高清| 欧美日韩亚洲国产一区二区在线观看 | 嫁个100分男人电影在线观看| 又大又爽又粗| a在线观看视频网站| 国产精品影院久久| 精品免费久久久久久久清纯 | 免费日韩欧美在线观看| 国产精品久久视频播放| 中文亚洲av片在线观看爽 | 亚洲专区中文字幕在线| 少妇的丰满在线观看| 极品少妇高潮喷水抽搐| 日韩大码丰满熟妇| 精品国产一区二区三区四区第35| 亚洲av欧美aⅴ国产| 大片电影免费在线观看免费| 在线观看免费视频日本深夜| 丰满的人妻完整版| 欧美日韩一级在线毛片| 看免费av毛片| 亚洲一区中文字幕在线| 亚洲精品久久成人aⅴ小说| 国产精华一区二区三区| 黄片播放在线免费| 18禁观看日本| 免费女性裸体啪啪无遮挡网站| 国产精品免费大片| 国产一区二区三区视频了| 黄色视频,在线免费观看| 亚洲avbb在线观看| 18禁观看日本| 亚洲一区二区三区欧美精品| 高潮久久久久久久久久久不卡| 色在线成人网| 欧美日韩视频精品一区| 欧美精品亚洲一区二区| 90打野战视频偷拍视频| 精品久久蜜臀av无| 又紧又爽又黄一区二区| 巨乳人妻的诱惑在线观看| 日韩制服丝袜自拍偷拍| 色94色欧美一区二区| 波多野结衣一区麻豆| 在线av久久热| 少妇 在线观看| 91成年电影在线观看| www.精华液| 日韩欧美国产一区二区入口| a级毛片在线看网站| 精品国产国语对白av| 亚洲男人天堂网一区| 久久久久国产一级毛片高清牌| 亚洲精品国产区一区二| 日本a在线网址| 亚洲色图综合在线观看| 久久久精品免费免费高清| 日韩一卡2卡3卡4卡2021年| 精品福利观看| 成人亚洲精品一区在线观看| a在线观看视频网站| 国产精品一区二区免费欧美| 老熟妇仑乱视频hdxx| 国产蜜桃级精品一区二区三区 | 人妻丰满熟妇av一区二区三区 | 99国产精品一区二区蜜桃av | 天堂中文最新版在线下载| 亚洲精品成人av观看孕妇| 国产色视频综合| 久久国产乱子伦精品免费另类| xxx96com| 久久久国产精品麻豆| 一二三四在线观看免费中文在| 日本a在线网址| 免费在线观看影片大全网站| 久久久久久亚洲精品国产蜜桃av| 国产精品免费一区二区三区在线 | 日韩精品免费视频一区二区三区| 色尼玛亚洲综合影院| 免费高清在线观看日韩| 欧美日韩瑟瑟在线播放| 久久中文字幕人妻熟女| 亚洲精品乱久久久久久| 黑人巨大精品欧美一区二区mp4| 精品国产一区二区三区四区第35| 中亚洲国语对白在线视频|