• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake?

    2021-09-28 02:18:44ZhaohuiCheng程朝暉BinLei雷彬XigangLuo羅習(xí)剛JianjunYing應(yīng)劍俊ZhenyuWang王震宇TaoWu吳濤andXianhuiChen陳仙輝
    Chinese Physics B 2021年9期
    關(guān)鍵詞:吳濤朝暉

    Zhaohui Cheng(程朝暉),Bin Lei(雷彬),Xigang Luo(羅習(xí)剛),2,Jianjun Ying(應(yīng)劍俊),3,Zhenyu Wang(王震宇),3,Tao Wu(吳濤),2,3,5,?,and Xianhui Chen(陳仙輝),2,3,4,5

    1CAS Key Laboratory of Strongly-coupled Quantum Matter Physics,Department of Physics,University of Science and Technology of China,Hefei 230026,China

    2Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei 230026,China

    3CAS Center for Excellence in Superconducting Electronics(CENSE),Shanghai 200050,China

    4CAS Center for Excellence in Quantum Information and Quantum Physics,Hefei 230026,China

    5Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    Keywords:iron-based superconductors,superconductivity,electronic nematicity,strain effect

    Electronic nematic phase,in which the rotational symmetry is broken,exhibits a twist with superconductivity in the electronic phase diagram of iron-based superconductors(IBSCs).[1]Many experiments have already shown conclusive evidences for the electronic nematicity in IBSCs,including anisotropic transport,angle resolved photoemission spectroscopy(ARPES),scanning tunneling microscopy(STM),neutron scattering and so on.[2]So far,although the existence of electronic nematicity in IBSCs is well-established,[3–5]the underlying mechanism and its exact role on the superconducting pairing are still mystery and under hot debate.[1,6,7]Most of the existing experimental results support a direct competition between nematic order and superconductivity in the electronic phase diagram.[8,9]Since the nematic order is tightly twisted with a stripe-type antiferromagnetic order in the iron-pnictide family,[10–12]the competition between the nematic order and the superconductivity is widely believed to stem from the competition between antiferromagnetic order and superconductivity.[8,9]In this case,the nematic order is even considered to be driven by stripe-type spin fluctuations.[1,5,13–16]However,in iron-selenides family such as FeSe1?xSxsystems,there is no direct evidence for the competition between nematic order and superconductivity.[17,18]Interestingly,the stripe-type antiferromagnetic order is also decoupled with nematic order in the electronic phase diagram,which leads to an alternative scenario for electronic nematicity due to orbital order,[19,20]e.g.,the ferro-orbital order.Moreover,orbital fluctuations are also considered to mediate an s++superconducting pairing.[21]So far,the origin of the electronic nematicity and its role on superconductivity are still highly controversial in iron-selenides family.[1,6,7,21,22]

    As a conjugate field for electronic nematicity,strain can be used to manipulate the electronic nematicity,[3–5,24,25]which is helpful to elucidate the relationship between electronic nematicity and superconductivity.[26,27]Recently,a dominant B1g-type strain effect on superconductivity has been revealed in the underdoped Ba(Fe1?xCox)2As2.[24,25]With further electron doping,an A1g-type instead of B1g-type strain effect appears and becomes dominant in the overdoped Ba(Fe1?xCox)2As2.[28,29]These results strongly support a significant role of electronic nematicity on superconductivity.Then,a natural question is whether a similar B1g-type strain effect could be also observed in iron-selenides family or not,which would be helpful to further understand the role of electronic nematicity on the superconducting pairing in IBSCs.

    Previous study on FeSe thin films,utilizing pulsed laser deposition on different substrates,already indicates that the superconducting transition temperature(Tc)in FeSe thin films is highly tunable from 0 K to 12 K by changing the lattice parameters.[30]However,the previous study of the strain effect on Tcin bulk FeSe is not very successful due to the possible damage of FeSe single crystals by large uniaxial strain.[2]Only a small range of uniaxial strain could be applied to FeSe single crystal through a“horseshoe device”or pasting on a piezo-ceramic stack to achieve the measurements of nematic susceptibility.[31,32]In this work,in order to increase the tuning range of uniaxial strain in the bulk FeSe,we adopt a mechanical cleavage method to first cleave FeSe single crystal into thin flakes with the thickness of~25 nm,and then transfer these FeSe thin flakes on a flexible substrate.The uniaxial strain is applied to these thin flakes by bending the flexible substrate.The similar method has been successfully used for the strain tuning of MoS2and black phosphorus thin flakes.[33,34]By utilizing this method for applying uniaxial strain,Tcand Tsof FeSe thin flakes can be largely varied exceeding all previous studies on the strain effect in bulk FeSe.The maximum Tcof FeSe can be increased by 30%through applying a compressive strain up to 12 K,while the nematic transition temperature shows an anti-correlation with Tc.Detailed measuring procedures and data analysis are presented in the following part.We note that,during preparing this manuscript,a couple of similar researches on the strain-tuning effects of bulk FeSe have been published.[35–37]The strain-tuning methods in these researches are different from ours,while the main results are consistent with our experiments.

    In order to achieve continuous change of the uniaxial strain,we use flexible polyethylene terephthalate(PET)films as the substrate to stick FeSe thin flakes and then bend the substrate to produce strain.Bending the flexible substrate downward/upward could induce a tensile/compressive strain on the FeSe thin flakes(Fig.1(b)).The nominal magnitude of the strain is defined asε=ΔL/L0,whereΔL=L?L0,and L0and L are the sample length without and with strain,respectively(see supplementary materials for the details of calculation).

    Fig.1.Crystal structure,device configuration and strain-dependent Raman spectra of FeSe.(a)The crystal structure of the pristine FeSe.(b)Schematic structure of a FeSe thin flake on the flexible polyethylene terephthalate(PET)substrate.Variable compressive/tensile strains are induced on FeSe thin flakes by bending the substrate downward/upward.(c)An optical image of a FeSe thin flake supported on flexible PET substrate.(d),(e)AFM image of the dashed square in(c).The thickness of FeSe thin flake is about 25 nm along the red dashed line.(f)In-situ Raman spectroscopy of the FeSe thin flakes under different tensile and compressive strains with the strain along(110).The peaks of A1g and B1g modes move to the lower wave number with increasing the tensile strain and shift to the higher wave number with increasing the compressive strain.(g)The peak positions of A1g and B1g modes as a function of the strain.The frequencies of the A1g and B1g modes monotonously decrease with increasing the strain from negative to positive.

    As shown in Fig.1(a),due to the van der Waals interaction between different FeSe layers,the FeSe thin flakes can be easily obtained by the mechanical exfoliation with scotch tape method.FeSe thin flakes are first mechanically exfoliated from bulk crystals onto polydimethylsiloxane(PDMS)substrates,and then transferred to PET substrates by the so-called dry-transfer method.[38](see supplementary materials for the details of devices fabrication).Figure 1(b)is the schematic structure of the final strain device.In practical,proper thin flakes with good flatness and regular shape are chosen by using an optical microscopy.Then,the thickness is characterized by an atomic force microscopy(AFM).The typical thickness of the FeSe thin flakes used for the transport measurement is about 25 nm as evidenced by the AFM image as shown in Figs.1(d)and 1(e).Finally,four electrodes(Cr/Au with thicknesses of 5 and 50 nm,respectively)for transport measurements are coated on the surface of the FeSe thin flakes by using mask technique.The coated four electrodes also serve as the clamping points to prevent the sample from slippage during the bending of the substrate.Figure 1(c)displays an optical image of the actual device.It should be noted that the inplane crystal orientation of FeSe single crystal is determined by Laue diffraction measurement.The applied strain by bending the PET substrate is always along the[110]or[100]direction.The direction of the current can be changed by varying the direction of the electrodes.

    The strain induced by bending the PET substrate can be estimated by a continuum-mechanics model for an elastic beam(see supplementary material S2),in which the radius of curvature(R)from the bending of the PET substrate is assumed to be much larger than the thickness(h)of the PET substrate.Then,the magnitude of the applied strain can be calculated byε=h/2R[39](see details in Fig.S1 of the supplementary materials).A positive/negativeεdenotes a tensile/compressive strain,respectively.In this work,the thickness of the PET substrate is about 100μm,and we could extract the value of R from the profile of the bended PET substrate.In order to continuously change the strain in the FeSe thin flakes,the prepared device is fixed in the middle of two parallel plates and the distance between these two plates is continuously changed to bend the PET substrate.If no slippage happens between the FeSe thin flake and PET substrate,then the strainεin the FeSe thin flake can be directly calculated by the above formula.Here,the sample should be mounted in the middle position of the substrate.

    Fig.2.The longitudinal resistance and the temperature derivatives of the resistance at differentεalong(110).(a),(d),(g)and(j)Temperature dependence of resistance for FeSe thin flakes under different strains and different current directions.The inset is a schematic of the strain and the direction of the measured current.(b),(e),(h)and(k)The resistance at low temperatures corresponding to(a),(d),(g)and(j).(c),(f),(i)and(l)Temperature dependence of the temperature derivative of resistance for the samples corresponding to(a),(d),(g)and(j).

    Usually,x-ray diffraction(XRD)experiment is needed to verify the change of lattice parameters due to uniaxial strain.However,due to limited sample’s volume,it is very difficult to perform an in-situ XRD measurement on the FeSe thin flakes as that in large single crystal.[40]Instead,we have performed in-situ Raman measurements,which is sensitive to uniaxial strains on the FeSe thin-flake samples.As shown in Fig.1(f),we successfully obtain in-situ Raman spectra for the FeSe thin flakes under various strains along[110]direction.The A1gand B1gmodes come from the vibrations of Se atoms along the c axis and the vibrations of Fe atoms along the c axis,respectively.[41–43]By increasing the strain from tensile to compressive strain,both A1gand B1gmodes continuously shift to a higher wavenumber.The systematic evolution of A1gand B1gmodes with the uniaxial strain is shown in Fig.1(g).Qualitatively,although the absolute magnitude of the uniaxial strain on the FeSe thin flakes can not be determined precisely,the in-situ Raman result indicates that the uniaxial strain by bending the PET substrate is effectively transferred to the FeSe thin flakes.Similar in-situ Raman results are also obtained in the FeSe thin flakes under various strains along[100]direction(see supplementary materials Fig.S3).Therefore,we assume that the calculated value of strain by the above mentioned method well represents the actual strain in the FeSe thin flakes.Next,we would investigate the strain effects on both superconducting and nematic transitions in the FeSe thin flakes by electronic transport measurements.

    As shown in Fig.2,the temperature dependence of resistance for the FeSe thin flakes are systematically measured under different strains along the[110](Fe–Se–Fe)direction.In order to measure both tensile/compressive strain effects with the electric current parallel or perpendicular to the bending direction,we have prepared four similar strain devices to measure the temperature-dependent resistance.Figures 2(a)and 2(d)show the temperature dependences of resistances under tensile strain,with the electric current parallel and perpendicular to the direction of the uniaxial strain,respectively.The overall temperature dependence of resistance is very similar to the previous report on the bulk FeSe,[18]excepting a higher superconducting temperature and a lower nematic transition temperature.Such difference in superconducting and nematic temperatures between bulk FeSe and FeSe thin flake has already been reported in previous study.[44]Moreover,with increasing the tensile strain,the temperature-dependent resistances show a clear difference below the nematic transition temperature with current parallel and perpendicular to[110]direction,which suggests that the FeSe thin flake on the PET substrate is detwinned with the applied tensile substrate.The superconducting temperature(defined as the middle point of the resistive transition Tmidc)drops from the initial 9 K to 7.8 K with a tensile strain up to 0.47%in the device,when the electric current flows perpendicular to the direction of uniaxial strain.In the device with the electric current parallel to the direction of uniaxial strain,Tmidc drops from the initial 9.6 K to 6.9 K with a tensile strain up to 0.61%.In spite of slightly difference between different devices,it is clear that the superconducting temperature is almost linearly suppressed by increasing the tensile strain along the[110]direction.On the other hand,the nematic transition temperature(Ts)is determined from the derivative of the temperature-dependent resistance.As shown in Figs.2(c)and 2(f),there is a clear sharp jump due to the nematic transition in the differential curves.Tsis determined by the minimum of the jump.In the device with current parallel to the direction of uniaxial strain,Tsgradually increases from initial 71.2 K to 91.2 K with a tensile strain up to 0.61%.In the device with current perpendicular to the direction of uniaxial strain,Tsgradually increases from initial 70.4 K to 83 K with a tensile strain up to 0.47%.Therefore,in contrast to the superconducting temperature,the nematic transition temperature is clearly increased as the tensile strain increases.

    Fig.3.(a)Tc and Ts as a function of the strainεwhen the strain is applied along the[110]direction.With increasing the tensile strain,Tc gradually decreases and Ts gradually increases.With increasing the compressive strain,Tc gradually increases and Ts gradually decreases.There is a negative correlation between Tc and Ts.(b)and(c)Schematics of different strain types.εA1g is symmetry-preserving strain andεB1g is the strain component which breaks the four-fold rotational symmetry.

    In general,a uniaxial stress applied along one in-plane direction(a or b axis)will induce strains along all three principal axes.[28]Then we haveεjj=?vijεii,where vijis the intrinsic Poisson ratio for materials.This gives

    whereεA1g1andεA1g2are the non-symmetry-breaking strain such as volume expansion and change of tetragonality;and εB1gis the strain component which breaks the four-fold rotational symmetry.Based on symmetry considerations,Tcshould depend quadratically onεB2gbut linearly onεA1g.Accordingly,we have[28]

    whereαandβare the dimensionless coefficients of the dependence of TconεA1gandεB1g,respectively.In the previous study on the underdoped Ba(Fe1?xCox)2As2,the straindependent Tcis found to be dominant by aεB1gcomponent and shows a quadratical dependence.In that case,the coefficient of the quadratic termαis believed to be related to the longrange antiferromagnetic order existing in Ba(Fe1?xCox)2As2andεB1gwould enhance spin fluctuations while suppress nematic fluctuations.[45]With increasing the amount of Co doping to the overdoped region,the antiferromagnetic order in Ba(Fe1?xCox)2As2is gradually suppressed and thenεA1gbecomes dominant on the strain dependence of Tc.Following this explanation on strain-dependent Tc,the absence of longrange antiferromagnetic order in bulk FeSe would lead to a negligible value ofαand then only a linear term would be left.This is definitely confirmed by the observation in the present study.Therefore,our results indirectly support a role of stripe-type spin fluctuations on superconductivity.In addition,as reported in previous literatures,Tcis found to be very sensitive to the change of the c-axis lattice constant in FeSe thin films,[27]which might be responsible for the observed predominant A1g-type strain effect.In fact,the A1gtype strain effect could be also compared with the pressure effect in FeSe,in which the superconducting transition temperature would be enhanced by low pressure below 1 GPa while the nematic transition temperature is suppressed.However,with further increasing pressure,a long-range antiferromagnetic order would appear and then Tcwould be slightly suppressed by the development of antiferromagnetic order.[46]Here,whether a long-range antiferromagnetic order would appear or not with further increasing strain is still elusive.It may deserve further study to clarify the underlying physics for the A1g-type strain effect.On the other hand,a similar B1g-type strain effect on the nematic transition temperature was also revealed in the underdoped Ba(Fe1?xCox)2As2.[28]However,our results clearly demonstrate that such a B1g-type strain effect on Tsis absent in FeSe.If assuming a key role of spin degree of freedom on the electronic nematicity in iron-pnictides,the absence of B1g-type strain effect on Tssuggests that the orbital degree of freedom might play a key role instead of the spin degree of freedom to drive the electronic nematicity.Since the orbital order is sensitive to the change of lattice parameter,[47–49]the dominant A1g-type strain effect on Tscould be also related to the change of lattice parameter induce by uniaxial strain as that for Tc.Therefore,combining the strain effect in both FeSe and Ba(Fe1?xCox)2As,the stripe-type spin fluctuations,which would lead to a B1g-type strain effect on both Tcand Ts,play a more important role than orbital fluctuations on the superconductivity in IBSCs.In fact,this is also supported by a slight change of Tcacross the nematic quantum critical point in FeSe1?xSxsystem.[25]Recently,several experiments on the strain-tuning effects of bulk FeSe have been conducted by different groups.[35–37]Owing to different measuring methods and sample dimensions,there is a few slight differences in the detailed behavior of Ts(ε)and Tc(ε)among different experiments.[35–37]Nevertheless,consistent conclusions are obtained,which suggest intrinsic strain-tuning effects revealed in this study.

    In summary,by utilizing PET substrate,we successfully obtain a wide-range strain tuning for FeSe thin flake with both tensile and compressive strain up to about 0.7%.Our results reveal a predominant A1g-type strain effect on Tc,which is different from that of B1g-type in underdoped Ba(Fe1?xCox)2As2.Meanwhile,Tsexhibits a monotonic anticorrelation with Tcand the maximum Tcreaches to 12 K when Tsis strongly suppressed under the maximum compressive strain.Finally,in comparison with the results in the underdoped Ba(Fe1?xCox)2As2,the absence of B1g-type strain effect in FeSe further supports a role of stripe-type spin fluctuations on superconductivity.Our findings provide new insights for clarifying the underlying mechanism of nematic order and its twist with superconductivity in iron-based superconductors.

    猜你喜歡
    吳濤朝暉
    紅燈亮了
    好詩(shī)與好人
    芙蓉國(guó)里盡朝暉
    Recent advances in quasi-2D superconductors via organic molecule intercalation
    CENTRAL LIMIT THEOREM AND CONVERGENCE RATES FOR A SUPERCRITICAL BRANCHING PROCESS WITH IMMIGRATION IN A RANDOM ENVIRONMENT*
    觀巖畫(huà)
    三只蚊子
    Module 10 Units 3-4單元點(diǎn)撥
    Module 10 Units 1—2 單元點(diǎn)撥
    唆拜(外一首)
    文藝論壇(2015年23期)2015-03-04 07:57:15
    欧美在线黄色| 色94色欧美一区二区| 美女视频免费永久观看网站| 九色亚洲精品在线播放| 亚洲午夜精品一区,二区,三区| 丰满少妇做爰视频| 精品少妇内射三级| 黄色毛片三级朝国网站| 在线观看免费高清a一片| 9191精品国产免费久久| 成人永久免费在线观看视频 | 免费少妇av软件| 精品乱码久久久久久99久播| 欧美日本中文国产一区发布| 亚洲av电影在线进入| 男女免费视频国产| 一区在线观看完整版| 精品欧美一区二区三区在线| 亚洲精品久久午夜乱码| 欧美人与性动交α欧美软件| 成人av一区二区三区在线看| 不卡av一区二区三区| 91国产中文字幕| 汤姆久久久久久久影院中文字幕| 狠狠婷婷综合久久久久久88av| 男女边摸边吃奶| 美女主播在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产激情久久老熟女| 精品国产乱子伦一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 人人妻人人添人人爽欧美一区卜| 啦啦啦中文免费视频观看日本| 亚洲自偷自拍图片 自拍| a级毛片黄视频| 伊人久久大香线蕉亚洲五| 午夜视频精品福利| 狠狠精品人妻久久久久久综合| 另类精品久久| 飞空精品影院首页| 无遮挡黄片免费观看| 美女高潮喷水抽搐中文字幕| 亚洲av电影在线进入| 1024视频免费在线观看| 精品熟女少妇八av免费久了| 午夜激情久久久久久久| 免费在线观看日本一区| 欧美性长视频在线观看| 婷婷成人精品国产| 99re在线观看精品视频| 久久av网站| 黄色视频,在线免费观看| 日韩人妻精品一区2区三区| 99久久国产精品久久久| 精品午夜福利视频在线观看一区 | 亚洲 国产 在线| 国产精品久久久人人做人人爽| 男女床上黄色一级片免费看| 成年人免费黄色播放视频| 99精品欧美一区二区三区四区| 久热这里只有精品99| 亚洲,欧美精品.| 宅男免费午夜| 久久毛片免费看一区二区三区| 免费在线观看完整版高清| 日本精品一区二区三区蜜桃| 午夜福利在线免费观看网站| 国产精品 国内视频| 久久九九热精品免费| 亚洲精品乱久久久久久| 国产99久久九九免费精品| 国产精品熟女久久久久浪| 色老头精品视频在线观看| 精品欧美一区二区三区在线| 欧美国产精品一级二级三级| 高清欧美精品videossex| 国产无遮挡羞羞视频在线观看| 国产又色又爽无遮挡免费看| 日韩熟女老妇一区二区性免费视频| 狠狠狠狠99中文字幕| 久久午夜亚洲精品久久| 日韩一卡2卡3卡4卡2021年| 老司机福利观看| 成人影院久久| 一级,二级,三级黄色视频| 香蕉丝袜av| 色精品久久人妻99蜜桃| 人人妻人人澡人人看| 欧美精品av麻豆av| 精品卡一卡二卡四卡免费| 亚洲三区欧美一区| 欧美av亚洲av综合av国产av| 精品少妇黑人巨大在线播放| 夜夜爽天天搞| 女人精品久久久久毛片| 国产99久久九九免费精品| 午夜激情av网站| 精品亚洲成国产av| 国产亚洲欧美在线一区二区| 午夜福利在线观看吧| 18禁裸乳无遮挡动漫免费视频| 国产成人av激情在线播放| 九色亚洲精品在线播放| 国产日韩欧美在线精品| 人人妻人人澡人人爽人人夜夜| 免费观看a级毛片全部| 亚洲中文日韩欧美视频| av欧美777| 这个男人来自地球电影免费观看| 日日摸夜夜添夜夜添小说| 亚洲全国av大片| 99国产综合亚洲精品| 亚洲国产欧美在线一区| 少妇 在线观看| a级片在线免费高清观看视频| 制服诱惑二区| 国产在视频线精品| 一进一出好大好爽视频| 国产av又大| 久久国产亚洲av麻豆专区| 91成人精品电影| 国产免费福利视频在线观看| 国产精品 欧美亚洲| 天堂俺去俺来也www色官网| 久久久水蜜桃国产精品网| 18禁黄网站禁片午夜丰满| 午夜福利影视在线免费观看| 精品乱码久久久久久99久播| 香蕉国产在线看| 法律面前人人平等表现在哪些方面| 窝窝影院91人妻| 高清欧美精品videossex| 12—13女人毛片做爰片一| 另类亚洲欧美激情| 极品教师在线免费播放| 老鸭窝网址在线观看| 欧美亚洲 丝袜 人妻 在线| 欧美人与性动交α欧美精品济南到| 天天操日日干夜夜撸| 啪啪无遮挡十八禁网站| 一区二区三区精品91| av网站在线播放免费| 亚洲欧美一区二区三区久久| 老汉色∧v一级毛片| 久久毛片免费看一区二区三区| 日本a在线网址| 国产一区二区在线观看av| 一级毛片女人18水好多| 麻豆乱淫一区二区| 国产精品久久久av美女十八| 国产精品自产拍在线观看55亚洲 | 大香蕉久久成人网| 国产aⅴ精品一区二区三区波| 妹子高潮喷水视频| 美女高潮喷水抽搐中文字幕| 超色免费av| 中文字幕色久视频| 国精品久久久久久国模美| 日日摸夜夜添夜夜添小说| 咕卡用的链子| 不卡一级毛片| 国产又爽黄色视频| 成年人免费黄色播放视频| 国产精品成人在线| 制服人妻中文乱码| 曰老女人黄片| 国产在线观看jvid| 亚洲人成77777在线视频| 成年人黄色毛片网站| 在线播放国产精品三级| 9热在线视频观看99| av天堂在线播放| 国产在线免费精品| 国产黄频视频在线观看| 精品第一国产精品| 激情视频va一区二区三区| 1024香蕉在线观看| 69av精品久久久久久 | 十八禁网站免费在线| 色婷婷av一区二区三区视频| 亚洲中文字幕日韩| 肉色欧美久久久久久久蜜桃| 一级毛片精品| 啦啦啦免费观看视频1| 人妻久久中文字幕网| 欧美精品一区二区免费开放| 国产成人欧美在线观看 | 国产精品亚洲av一区麻豆| www.熟女人妻精品国产| 欧美精品啪啪一区二区三区| 涩涩av久久男人的天堂| 国产亚洲欧美在线一区二区| 性少妇av在线| 午夜91福利影院| 女人高潮潮喷娇喘18禁视频| 午夜福利在线免费观看网站| 99久久国产精品久久久| 国产成人免费无遮挡视频| 少妇粗大呻吟视频| 久久久水蜜桃国产精品网| 一区在线观看完整版| 久久99热这里只频精品6学生| 国产亚洲一区二区精品| 深夜精品福利| 日韩成人在线观看一区二区三区| 人妻 亚洲 视频| 国产精品.久久久| 91国产中文字幕| 高清在线国产一区| 亚洲欧美日韩另类电影网站| 国产欧美日韩一区二区三| 最近最新中文字幕大全免费视频| 日本wwww免费看| 久久热在线av| av免费在线观看网站| 国产淫语在线视频| 欧美激情高清一区二区三区| 99久久国产精品久久久| 丝袜美足系列| 精品亚洲成a人片在线观看| 亚洲人成77777在线视频| 久久这里只有精品19| 美女福利国产在线| 日韩免费av在线播放| 成人免费观看视频高清| 99热国产这里只有精品6| 啦啦啦中文免费视频观看日本| 久久久久久久大尺度免费视频| 亚洲熟妇熟女久久| 在线观看免费日韩欧美大片| 国产高清国产精品国产三级| 黑人巨大精品欧美一区二区mp4| avwww免费| 老鸭窝网址在线观看| 久久ye,这里只有精品| 精品少妇一区二区三区视频日本电影| 极品教师在线免费播放| 中文字幕最新亚洲高清| av在线播放免费不卡| 亚洲熟女精品中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 啦啦啦 在线观看视频| 精品午夜福利视频在线观看一区 | 亚洲国产精品一区二区三区在线| 最新美女视频免费是黄的| 国产野战对白在线观看| 久久性视频一级片| www.熟女人妻精品国产| 国产又爽黄色视频| 99久久精品国产亚洲精品| 国产精品亚洲一级av第二区| 日本a在线网址| 少妇猛男粗大的猛烈进出视频| 国产淫语在线视频| 精品一区二区三区四区五区乱码| 久久婷婷成人综合色麻豆| 精品国产一区二区三区久久久樱花| 99热网站在线观看| 女警被强在线播放| 中文字幕另类日韩欧美亚洲嫩草| 母亲3免费完整高清在线观看| 久久久久视频综合| 老司机深夜福利视频在线观看| h视频一区二区三区| 高清毛片免费观看视频网站 | 国产男靠女视频免费网站| 国产精品.久久久| 国产一区二区在线观看av| 香蕉久久夜色| 精品国产一区二区三区四区第35| cao死你这个sao货| 夫妻午夜视频| 亚洲欧美日韩另类电影网站| 国产伦理片在线播放av一区| 久久性视频一级片| 国产精品电影一区二区三区 | 欧美日韩黄片免| 久久精品国产亚洲av香蕉五月 | 一级片免费观看大全| av网站在线播放免费| 少妇 在线观看| 99国产精品免费福利视频| 国产国语露脸激情在线看| 中文字幕av电影在线播放| 欧美av亚洲av综合av国产av| 大型av网站在线播放| 精品第一国产精品| 久久久久久久国产电影| 在线看a的网站| 国产精品欧美亚洲77777| 精品亚洲乱码少妇综合久久| 一级片免费观看大全| 日日爽夜夜爽网站| 国产xxxxx性猛交| 免费观看a级毛片全部| 热99国产精品久久久久久7| 免费在线观看日本一区| 欧美性长视频在线观看| 久久精品国产亚洲av香蕉五月 | 久久精品成人免费网站| 色视频在线一区二区三区| 乱人伦中国视频| 99国产精品一区二区蜜桃av | 黄片播放在线免费| 伊人久久大香线蕉亚洲五| 满18在线观看网站| 国产精品一区二区在线不卡| 好男人电影高清在线观看| 人成视频在线观看免费观看| 久久热在线av| 91成人精品电影| 男女边摸边吃奶| 亚洲欧美日韩高清在线视频 | 国产97色在线日韩免费| 侵犯人妻中文字幕一二三四区| 国产午夜精品久久久久久| 一级片'在线观看视频| 999精品在线视频| 日韩欧美免费精品| 日本av手机在线免费观看| 亚洲少妇的诱惑av| 纵有疾风起免费观看全集完整版| 老熟妇乱子伦视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 国产在线免费精品| 青草久久国产| 亚洲熟女精品中文字幕| 久久精品国产综合久久久| 国产真人三级小视频在线观看| 黄片大片在线免费观看| 丝瓜视频免费看黄片| 国产福利在线免费观看视频| 怎么达到女性高潮| 乱人伦中国视频| 啪啪无遮挡十八禁网站| 精品国产乱子伦一区二区三区| 色在线成人网| 嫁个100分男人电影在线观看| 精品卡一卡二卡四卡免费| 午夜福利一区二区在线看| 日韩有码中文字幕| 色婷婷久久久亚洲欧美| 日本精品一区二区三区蜜桃| 国产亚洲欧美精品永久| 自线自在国产av| 汤姆久久久久久久影院中文字幕| 黄色a级毛片大全视频| 免费在线观看影片大全网站| 国产精品自产拍在线观看55亚洲 | 男女边摸边吃奶| 50天的宝宝边吃奶边哭怎么回事| 久久人人97超碰香蕉20202| 高清黄色对白视频在线免费看| 青青草视频在线视频观看| 无遮挡黄片免费观看| 亚洲av国产av综合av卡| 一本久久精品| 热99久久久久精品小说推荐| 三级毛片av免费| 亚洲一区中文字幕在线| 19禁男女啪啪无遮挡网站| 色综合欧美亚洲国产小说| 亚洲国产欧美日韩在线播放| 亚洲一码二码三码区别大吗| av网站在线播放免费| 成人av一区二区三区在线看| 天堂中文最新版在线下载| 久久久久久久久免费视频了| 国产一区有黄有色的免费视频| 国产黄频视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 久久久精品免费免费高清| 久久九九热精品免费| 丝袜美足系列| 美女午夜性视频免费| 日本av免费视频播放| 香蕉久久夜色| 1024香蕉在线观看| e午夜精品久久久久久久| 在线十欧美十亚洲十日本专区| 国产精品.久久久| 最近最新中文字幕大全电影3 | 中文字幕最新亚洲高清| tube8黄色片| 国产成人影院久久av| 欧美精品啪啪一区二区三区| 亚洲精品国产精品久久久不卡| 国产一区二区 视频在线| 国产高清激情床上av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美日韩另类电影网站| 99国产综合亚洲精品| 日本av手机在线免费观看| 日韩精品免费视频一区二区三区| 色婷婷av一区二区三区视频| 超碰97精品在线观看| 最近最新免费中文字幕在线| 精品国产国语对白av| 亚洲av美国av| 国产精品久久电影中文字幕 | 国产精品国产高清国产av | 久久亚洲真实| 脱女人内裤的视频| 午夜福利乱码中文字幕| 亚洲成a人片在线一区二区| 亚洲精品在线美女| 肉色欧美久久久久久久蜜桃| 国产亚洲午夜精品一区二区久久| 五月天丁香电影| 亚洲av美国av| 国产单亲对白刺激| 美女视频免费永久观看网站| 肉色欧美久久久久久久蜜桃| 国产精品电影一区二区三区 | 国产精品二区激情视频| 日韩中文字幕视频在线看片| 超碰97精品在线观看| 在线观看免费日韩欧美大片| 在线亚洲精品国产二区图片欧美| 精品国产乱码久久久久久小说| 中文亚洲av片在线观看爽 | 视频区欧美日本亚洲| 十分钟在线观看高清视频www| 精品少妇一区二区三区视频日本电影| 亚洲性夜色夜夜综合| 精品一区二区三区av网在线观看 | 男女边摸边吃奶| 亚洲自偷自拍图片 自拍| 国产免费现黄频在线看| 国产精品一区二区免费欧美| 日韩欧美一区视频在线观看| 黄色丝袜av网址大全| 亚洲第一青青草原| √禁漫天堂资源中文www| 99国产极品粉嫩在线观看| 一级片免费观看大全| 99久久99久久久精品蜜桃| 日韩欧美国产一区二区入口| 久久久久久久精品吃奶| 国产av国产精品国产| 18禁国产床啪视频网站| 色综合欧美亚洲国产小说| 国产日韩欧美亚洲二区| 欧美日韩成人在线一区二区| a级毛片黄视频| 中文字幕另类日韩欧美亚洲嫩草| 丝袜美足系列| 18禁美女被吸乳视频| 在线观看66精品国产| 后天国语完整版免费观看| av免费在线观看网站| 中文字幕另类日韩欧美亚洲嫩草| 女人久久www免费人成看片| 肉色欧美久久久久久久蜜桃| 欧美日本中文国产一区发布| 久久久久精品国产欧美久久久| 久久精品aⅴ一区二区三区四区| 国产97色在线日韩免费| 韩国精品一区二区三区| 欧美日韩福利视频一区二区| 757午夜福利合集在线观看| 国产亚洲欧美在线一区二区| 国产日韩一区二区三区精品不卡| 国产野战对白在线观看| av福利片在线| 日本黄色视频三级网站网址 | 18在线观看网站| 亚洲欧美精品综合一区二区三区| 亚洲黑人精品在线| www日本在线高清视频| 亚洲精品自拍成人| 久久久久久久国产电影| 欧美成人免费av一区二区三区 | 老司机影院毛片| 亚洲午夜精品一区,二区,三区| 久久精品亚洲av国产电影网| 另类精品久久| 91国产中文字幕| 欧美精品亚洲一区二区| 久久中文字幕人妻熟女| 精品一区二区三区av网在线观看 | 国产成人精品久久二区二区91| 一区二区三区乱码不卡18| 日韩熟女老妇一区二区性免费视频| 久久青草综合色| 一二三四社区在线视频社区8| 最近最新中文字幕大全电影3 | 12—13女人毛片做爰片一| 国产区一区二久久| 一进一出好大好爽视频| 精品高清国产在线一区| 母亲3免费完整高清在线观看| 精品国产亚洲在线| 制服诱惑二区| 亚洲第一欧美日韩一区二区三区 | 建设人人有责人人尽责人人享有的| 黄色a级毛片大全视频| 日韩大片免费观看网站| 变态另类成人亚洲欧美熟女 | 日韩欧美免费精品| 国产精品欧美亚洲77777| 亚洲精品中文字幕在线视频| 久久99一区二区三区| 亚洲欧美日韩高清在线视频 | 极品人妻少妇av视频| 一级黄色大片毛片| 岛国毛片在线播放| 黄色a级毛片大全视频| 18禁国产床啪视频网站| 国产亚洲午夜精品一区二区久久| 十八禁高潮呻吟视频| 亚洲av国产av综合av卡| 91九色精品人成在线观看| 高清视频免费观看一区二区| 777米奇影视久久| 男女午夜视频在线观看| 久久九九热精品免费| 下体分泌物呈黄色| 少妇裸体淫交视频免费看高清 | 免费一级毛片在线播放高清视频 | 亚洲精品久久成人aⅴ小说| 国产麻豆69| 午夜视频精品福利| 大香蕉久久成人网| 水蜜桃什么品种好| 男女免费视频国产| 香蕉久久夜色| 国产一卡二卡三卡精品| 亚洲avbb在线观看| 国产男靠女视频免费网站| 国产色视频综合| 侵犯人妻中文字幕一二三四区| 色94色欧美一区二区| 国精品久久久久久国模美| 涩涩av久久男人的天堂| 18禁黄网站禁片午夜丰满| 人人妻人人添人人爽欧美一区卜| 国产在线观看jvid| 日韩大码丰满熟妇| 手机成人av网站| 99国产综合亚洲精品| 亚洲色图综合在线观看| 国产高清激情床上av| 亚洲国产av新网站| 一级a爱视频在线免费观看| 一夜夜www| 在线观看舔阴道视频| 深夜精品福利| 国产高清videossex| 国产一区有黄有色的免费视频| 欧美黄色淫秽网站| 日本五十路高清| 99精品久久久久人妻精品| 在线观看免费视频日本深夜| 最近最新中文字幕大全免费视频| 国产高清国产精品国产三级| 国产欧美日韩一区二区三| 国产av又大| 大片免费播放器 马上看| 精品少妇黑人巨大在线播放| 欧美成人免费av一区二区三区 | 丝袜人妻中文字幕| 国产精品1区2区在线观看. | 另类亚洲欧美激情| 男女高潮啪啪啪动态图| 欧美日韩黄片免| 久久精品国产亚洲av高清一级| av天堂久久9| 国产高清国产精品国产三级| 日本五十路高清| 最黄视频免费看| 亚洲中文字幕日韩| 青草久久国产| 国产日韩欧美视频二区| 男女免费视频国产| 亚洲国产欧美网| 十八禁网站免费在线| 久久久国产一区二区| 美女主播在线视频| www日本在线高清视频| 一区福利在线观看| 91国产中文字幕| 久久99热这里只频精品6学生| 国产日韩欧美视频二区| 国产免费现黄频在线看| 操美女的视频在线观看| 午夜精品国产一区二区电影| 日韩有码中文字幕| 麻豆成人av在线观看| 免费观看av网站的网址| 免费一级毛片在线播放高清视频 | 青草久久国产| 国产一区二区 视频在线| 亚洲三区欧美一区| 欧美激情 高清一区二区三区| 精品国产一区二区久久| 日韩一区二区三区影片| 国产免费福利视频在线观看| 9191精品国产免费久久| 女人高潮潮喷娇喘18禁视频| 高清毛片免费观看视频网站 | 宅男免费午夜| 国产精品一区二区在线不卡| 国产淫语在线视频| 美女扒开内裤让男人捅视频| 美女午夜性视频免费| 国产成人欧美在线观看 | 亚洲五月色婷婷综合| 亚洲av国产av综合av卡| 757午夜福利合集在线观看| 国产免费现黄频在线看| 久久99热这里只频精品6学生| 欧美黑人精品巨大| 黄片大片在线免费观看| 午夜免费鲁丝|