• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved decoy-state quantum key distribution with uncharacterized heralded single-photon sources

    2024-02-29 09:16:54LeChenXu徐樂(lè)辰ChunHuiZhang張春輝XingYuZhou周星宇andQinWang王琴
    Chinese Physics B 2024年2期
    關(guān)鍵詞:春輝

    Le-Chen Xu(徐樂(lè)辰), Chun-Hui Zhang(張春輝), Xing-Yu Zhou(周星宇), and Qin Wang(王琴),?

    1Institute of Quantum Information and Technology,Nanjing 210003,China

    2Broadband Wireless Communication and Sensor Network Technology,Key Laboratory of Ministry of Education,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    3Telecommunication and Networks National Engineering Research Center,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    Keywords: quantum key distribution,heralded single-photon source,decoy-state method

    1.Introduction

    Quantum key distribution (QKD),[1,2]based on the fundamental laws of physics,[3,4]allows two distant parties,Alice and Bob, to share secret keys in the presence of a malicious eavesdropper,Eve.Since the first QKD protocol(BB84)was proposed in 1984,[1]a great number of QKD experiments have been reported.[5–12]In most previous QKD protocols and corresponding security proofs,[13–19]people often assume the prepared states are perfect.However,preparation flaws inevitably exist in real-life situations due to the imperfect devices,resulting in reduced security of practical QKD systems.

    To alleviate the influence of state preparations flaws,Tamakiet al.[20]presented a loss-tolerant protocol, but it requires full characterization of the preparation states and causes increased system complexity.Fortunately, Yinet al.[21]proposed a QKD protocol without characterizing misalignment errors and the only assumption is that the quantum states are prepared in a two-dimensional Hilbert space.With which the secret keys can be extracted out using uncharacterized sources by exploiting the mismatched-basis statistics which are normally discarded, and related experiments have been successfully demonstrated.[22–24]

    Based on those previous works,[21–23]here we present a four-intensity decoy-state proposal on quantum key distribution using uncharacterized heralded single-photon sources(HSPS).First,the four-intensity scheme with biased basis can help to improve the key rate compared with the standard threeintensity method.[22,23]Second,by employing the intrinsic advantages of HSPS with a higher single-photon probability and a lower dark count rate compared with weak coherent sources(WCS),[25,26]one can obtain not only a much longer secure transmission distance, but also a higher key rate, compared with previous similar works.[22,23]

    2.Protocol description

    In our four-intensity BB84 protocol, Alice randomly modulates each pulse into one of the four different intensities,i.e.,the signal stateμ,the decoy statesνandω,and the vacuum stateo.However, different from the standard threeintensity method,Alice only prepares the signal pulses in basisZAand randomly prepares the decoy pulses in basisZAor basisXA.Considering typical encoding misalignments, Alice randomly prepares quantum states|?0〉=|0〉,|?1〉=sina|0〉+cosa|1〉,|?2〉 = cos(π/4+b)|0〉+sin(π/4+b)|1〉,|?3〉 =sin(π/4+c)|0〉-cos(π/4+c)|1〉, in which the degrees of anglesa,b, andcare the encoding misalignments.We define that basisZAconsists of|?0〉 and|?1〉, while basisXAconsists of|?2〉 and|?3〉.Besides, we make the assumption that Bob performs projective measurement on the received states to ensure protocol security.[21]Let Bob’s measurement for basisZBbe a projection onto{|ˉ?0〉,|ˉ?1〉}, and for basisXBbe{|ˉ?2〉,|ˉ?3〉}, where〈ˉ?0|ˉ?1〉 =〈ˉ?2|ˉ?3〉 = 0 and|ˉ?0〉〈ˉ?0|+|ˉ?1〉〈ˉ?1| =|ˉ?2〉〈ˉ?2|+|ˉ?3〉〈ˉ?3| =I.After basis sifting, the number of detected pulses can be obtained,of which matched-basis events are kept as sifted keys and mismatched-basis events are used to estimate the information leaked to Eve.

    By sacrificing some bits from matched-basis events and revealing all bits from mismatched-basis events, we can deduce conditional probability distributionPλ(y|x),whereλ ∈{μ,ν,ω,o},x ∈{|?0〉,|?1〉,|?2〉,|?3〉}andy ∈{|ˉ?0〉,|ˉ?1〉,|ˉ?2〉,|ˉ?3〉}.For simplicity, we assign value 0 to|?0〉 and|ˉ?0〉, value 1 to|?1〉 and|ˉ?1〉, value 2 to|?2〉 and|ˉ?2〉, and value 3 to|?3〉 and|ˉ?3〉.Pλ(y|x) can be expressed as follows:

    ηt=η10-αl/10represents the total transmission and detection efficiency,whereηrepresents the detection efficiency of the single-photon detector,αdenotes the loss coefficient of standard optical fibers andLdenotes the fiber length.F(j)represents the probability of the valid detection events (those only one detector clicks)onj-photon states,such as

    wheredrepresents the dark count rate of the single-photon detector andPi(λ)is the photon number distribution of the light sources.Here, we take HSPS as the uncharacterized source.Through a parametric down-conversion process, a two-mode state,including the idler mode and the signal mode,[27]is generated in HSPS.The idler modes are detected by Alice’s local single-photon detector working as heralding signals and the signal modes will be encoded and sent out to Bob.The photon number distribution of HSPS can be expressed as[26]

    wheredAandηAeach denote the dark count rate and the detection efficiency of Alice’s local detector,respectively.

    With Eqs.(1)–(3), we can obtain the expression of each observableMλ(y|x),namely the number of valid detections at Bob’s side after sifting.Considering statistical fluctuation,we use method in Refs.[28,29] to account for the finite-size key effects, which provides a tighter bound for the deviation between ideal expectations and actual observations.Then, the underlying expectation value ofMλ(y|x) for a given failure probabilityεis

    whereNλ(y|x) represents the total conditional detection events.Then,by using decoy-state method,[5,25]we can bound the conditional probabilities of single-photon eventsp(y|x)for both matched-basis and mismatched-basis as

    Thus, the detections on single-photon pulses with intensityλin basisZcan be expressed as

    and the lower bound of theMZ1,λsatisfies the following expressions:

    where

    and the single-photon phase error rate is bounded by

    We note thatp(y|x) in the above equations is constrained by lower boundp(y|x)Land upper boundp(y|x)U.

    Finally,the secret key rate in basisZis given by[23]

    3.Numerical simulation and discussion

    In this section, we carry out corresponding numerical simulations for our present scheme.In order to show the performance of our scheme, we first compare it with the threeintensity method in Ref.[23].To explain the main factors that make our scheme performs better, we do comparison of the phase error rate and comparison of the numbers of valid single-photon detection events used to generate final key bits.Indispensably, we also show that our scheme can generate secret key against encoding misalignments.Moreover,we also do comparisons between using HSPS and WCS.The full parameter optimization is carried out to obtain better performance, including optimizing the intensities of the signal state,two decoy states,and the probability to prepare quantum states with different intensities.In practical implementation of QKD,people often use the non-degenerated parametric downconversion to produce photon pairs, with one photon at the wavelength convenient for detection acting as heralding signal, and the other falls into the telecommunication windows for optimal propagation along the fiber or in open air acting as heralded signal.For example, in Ref.[10], the idler mode and signal mode are each centered at 633 nm and 1545 nm,respectively,and each is detected with a silicon-avalanche photodiode detector (SAPD) and InGaAs single-photon detector.Therefore, in our simulations, we have set reasonable values for the system parameters as shown in Table 1.Simulation results are shown in Figs.1–5.

    Table 1.List of practical parameters for simulations. η(ηA)represents the detection efficiency of the single-photon detector at Bob(Alice)’s side;d (dA)represents the dark count rate of the singlephoton detector at Bob (Alice)’s side; ed is the misalignment-error probability; α denotes the loss coefficient of standard optical fibers; fEC represents the inefficiency of error correction;ε represents the failure probability and N represents the total number of pulses sent out by Alice.

    In Fig.1,we do comparisons on the key rate between using different light sources(HSPS and WCS)and using different decoy-state methods whena=b=c=0?,i.e.,the threeintensity method[23]and the present four-intensity method.When comparing with using different light sources, it shows that HSPS experiences an enhancement of 17 km in the transmission distance,approximately 14%improvement due to the much lower vacuum component in HSPS.On the other hand,when comparing schemes with different decoy-state methods,although there is no obvious improvement in transmission distance,the four-intensity scheme significantly increases the key rate.As a result, the combination of HSPS and the fourintensity scheme can improve both the secure key rate and the transmission distance.

    Fig.1.Secure key rate versus transmission distance for different decoy-state schemes: The red solid(dash)lines represent four(three)-intensity method with HSPS for a=b=c=0?.The blue solid (dash) lines represent four(three)-intensity method with WCS for a=b=c=0?.

    We compare the phase error rate and the single-photon detection event between using different light sources whena=b=c=0?in Figs.2 and 3 respectively.As we can see from Fig.2 that, our present work using HSPS gives a much lower phase error rate comparing those using WCS because of the negligible vacuum components.Besides, for the ones using WCS, the curves of the single-photon detection event decline rapidly after 120 km,while for those using HSPS,the cut-off points reach up to 140 km.

    In Fig.4,based on four-intensity decoy-state method with HSPS(WCS),we plot out variations of the key rate with transmission distance under different values of encoding misalignments.The transmission distance decreases 4 km(5 km)whena=b=c= 3?and 18 km (23 km) whena=b=c= 6?as using HSPS (WCS).Overall, our protocol exhibits excellent tolerance to the existence of misalignment errors.It is worth noting that there is no need to characterize encoding errors in practical applications for our scheme,and consequently above-mentioned misalignments are just used to test the robust.

    Fig.2.Phase error rate versus transmission distance for different decoystate schemes.The red solid (dash) lines represent four (three)-intensity method with HSPS for a=b=c=0?.The blue solid(dash)lines represent four(three)-intensity method with WCS for a=b=c=0?.

    Fig.3.Valid single-photon detections versus transmission distance for different decoy-state schemes.The red solid(dash)lines represent four(three)-intensity method with HSPS for a=b=c=0?.The blue solid(dash)lines represent four(three)-intensity method with WCS for a=b=c=0?.

    Fig.4.Secure key rate versus transmission distance for different schemes with different source preparation errors.The red lines represent fourintensity method with HSPS for a=b=c=0?, 3?, 6?.The blue lines represent four-intensity method with WCS for a=b=c=0?,3?,6?.

    Finally, we do investigation on the detection efficiency of the local detectors at Alice’s side (ηA), by fixing the encoding misalignments asa=b=c=3?, see Fig.5.We can see from Fig.5 that the higher the detection efficiency, the higher the key rate and the transmission distance.With the state-of-the-art superconducting nanowire single-photon detector(ηA=0.9),[30]our scheme only presents a slightly lower key rate than the one using WCS at short transmission distance(<90 km);while shows more than 20-km longer transmission distance.

    Fig.5.Secure key rate versus transmission distance by using different light sources: The blue lines represent four-intensity method with WCS.The red lines represent four-intensity method with HSPS for ηA=0.9 and 1.

    4.Conclusion

    In conclusion, we have presented an improved decoystate QKD protocol with uncharacterized HSPS and investigated its performance.By exploiting the mismatched-basis statistics and preparing quantum states in a two-dimensional Hilbert space,our scheme reduces the requirements for preparation errors and lowers the system complexity compared with normal BB84 QKD protocol.Moreover,our simulation results show that the secure key rate and transmission distance have been significantly improved by using our present scheme comparing with former similar protocols.Therefore, our present work seems to be a very promising choice for practical implementations of QKD systems.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.12074194, 12104240, and 62101285), the Industrial Prospect and Key Core Technology Projects of Jiangsu Provincial Key Research and Development Program (Grant No.BE2022071), and the Natural Science Foundation of Jiangsu Province, China (Grant Nos.BK20192001 and BK20210582).

    猜你喜歡
    春輝
    背著“房子”的二次根式
    Quantum synchronization with correlated baths
    Gray code based gradient-free optimization algorithm for parameterized quantum circuit
    城市軌道交通員工專業(yè)英語(yǔ)素養(yǎng)構(gòu)建探討
    Performance of passive decoy-state quantum key distribution with mismatched local detectors
    解答抽象函數(shù)問(wèn)題的兩個(gè)策略
    Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process*
    羅綺映春輝——張萱《虢國(guó)夫人游春圖》品鑒
    4 萬(wàn)公里騎行:只為了滿滿的母愛(ài)
    Improving the Performance of Practical Decoy-State Measurement-Device-Independent Quantum Key Distribution with Biased Basis Choice?
    国产亚洲一区二区精品| √禁漫天堂资源中文www| 久久精品成人免费网站| 国产一区二区三区在线臀色熟女 | 999精品在线视频| 黑人操中国人逼视频| av一本久久久久| 女人精品久久久久毛片| 日本av免费视频播放| a级毛片在线看网站| 99精国产麻豆久久婷婷| 捣出白浆h1v1| 久久久精品免费免费高清| 国产成人系列免费观看| 亚洲伊人色综图| 三上悠亚av全集在线观看| 国产亚洲av高清不卡| a 毛片基地| 国产成人精品久久二区二区免费| 少妇猛男粗大的猛烈进出视频| 黄色怎么调成土黄色| 中国国产av一级| 欧美日韩亚洲国产一区二区在线观看 | 成人av一区二区三区在线看 | 亚洲九九香蕉| 久久久国产精品麻豆| 欧美日本中文国产一区发布| 亚洲av美国av| 欧美黑人精品巨大| 久久久欧美国产精品| 午夜福利,免费看| 欧美变态另类bdsm刘玥| 免费少妇av软件| 亚洲国产看品久久| 成人国产一区最新在线观看| 成年人午夜在线观看视频| 亚洲av成人一区二区三| 免费一级毛片在线播放高清视频 | 久久国产亚洲av麻豆专区| 日本av免费视频播放| 午夜福利在线观看吧| 亚洲五月婷婷丁香| 国产黄色免费在线视频| 中文字幕色久视频| 亚洲国产av新网站| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人av教育| 免费不卡黄色视频| 国产成人一区二区三区免费视频网站| 视频区图区小说| 两性夫妻黄色片| 国产精品偷伦视频观看了| 汤姆久久久久久久影院中文字幕| 久久av网站| 久久天躁狠狠躁夜夜2o2o| 欧美+亚洲+日韩+国产| 最近最新免费中文字幕在线| 亚洲av男天堂| 精品福利永久在线观看| 国产精品九九99| 久久久国产欧美日韩av| 亚洲熟女毛片儿| 黄网站色视频无遮挡免费观看| 精品少妇内射三级| 精品国内亚洲2022精品成人 | 亚洲欧美清纯卡通| netflix在线观看网站| 日本av手机在线免费观看| 法律面前人人平等表现在哪些方面 | 一级片'在线观看视频| 久久这里只有精品19| 亚洲美女黄色视频免费看| 别揉我奶头~嗯~啊~动态视频 | 我要看黄色一级片免费的| 久久精品国产综合久久久| 亚洲精品av麻豆狂野| 男男h啪啪无遮挡| 精品国产乱子伦一区二区三区 | 日韩电影二区| 久久国产精品男人的天堂亚洲| 亚洲伊人久久精品综合| 亚洲欧美一区二区三区黑人| 久久人妻熟女aⅴ| www.av在线官网国产| a级片在线免费高清观看视频| avwww免费| 亚洲成人免费av在线播放| 国产淫语在线视频| 两个人免费观看高清视频| 久久久精品免费免费高清| 久久av网站| 国产欧美日韩精品亚洲av| 午夜福利在线免费观看网站| www.999成人在线观看| 亚洲成人国产一区在线观看| 国产伦理片在线播放av一区| 国产欧美日韩精品亚洲av| 日韩,欧美,国产一区二区三区| 视频区欧美日本亚洲| 少妇裸体淫交视频免费看高清 | 免费观看人在逋| 少妇裸体淫交视频免费看高清 | 国产亚洲午夜精品一区二区久久| 成人三级做爰电影| 亚洲综合色网址| 黑人猛操日本美女一级片| 91大片在线观看| 免费一级毛片在线播放高清视频 | 中文欧美无线码| av福利片在线| 视频区图区小说| 国产色视频综合| 操美女的视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 精品国内亚洲2022精品成人 | 又紧又爽又黄一区二区| 亚洲欧美激情在线| 天堂俺去俺来也www色官网| 精品国产超薄肉色丝袜足j| 999久久久国产精品视频| 精品一区二区三卡| 亚洲,欧美精品.| 在线天堂中文资源库| 免费女性裸体啪啪无遮挡网站| 狠狠狠狠99中文字幕| 亚洲激情五月婷婷啪啪| 中亚洲国语对白在线视频| 日本av免费视频播放| 亚洲伊人久久精品综合| 高清在线国产一区| 国产成人av激情在线播放| 丝袜美足系列| 五月天丁香电影| 韩国高清视频一区二区三区| 999久久久国产精品视频| 国产日韩欧美亚洲二区| 亚洲第一青青草原| 国产精品.久久久| 91av网站免费观看| 最近最新免费中文字幕在线| 三级毛片av免费| 亚洲国产欧美在线一区| 国产精品 欧美亚洲| 青青草视频在线视频观看| 一本久久精品| 色老头精品视频在线观看| 日韩一区二区三区影片| 建设人人有责人人尽责人人享有的| 每晚都被弄得嗷嗷叫到高潮| 免费少妇av软件| 午夜福利,免费看| 久久99一区二区三区| 波多野结衣一区麻豆| av片东京热男人的天堂| 国产亚洲午夜精品一区二区久久| 啦啦啦在线免费观看视频4| 亚洲一区中文字幕在线| 蜜桃国产av成人99| 日韩电影二区| 黄色视频不卡| 中文字幕另类日韩欧美亚洲嫩草| 国产黄色免费在线视频| 少妇人妻久久综合中文| 欧美另类亚洲清纯唯美| 国产一区二区 视频在线| 天天躁日日躁夜夜躁夜夜| 性色av一级| 搡老岳熟女国产| 岛国毛片在线播放| 欧美激情高清一区二区三区| 最近最新免费中文字幕在线| 日韩大片免费观看网站| 丰满人妻熟妇乱又伦精品不卡| 女人爽到高潮嗷嗷叫在线视频| 婷婷色av中文字幕| 精品人妻1区二区| 在线观看www视频免费| 欧美97在线视频| 美女高潮到喷水免费观看| 亚洲国产欧美一区二区综合| 色婷婷av一区二区三区视频| 国产高清videossex| 国产精品偷伦视频观看了| 最新在线观看一区二区三区| 91老司机精品| netflix在线观看网站| 一区二区三区激情视频| 天天躁狠狠躁夜夜躁狠狠躁| 十八禁网站网址无遮挡| 天堂中文最新版在线下载| 制服诱惑二区| 欧美另类一区| 亚洲成人手机| 久久久久国产精品人妻一区二区| 男女午夜视频在线观看| 欧美激情 高清一区二区三区| 高清黄色对白视频在线免费看| 久久精品亚洲av国产电影网| 在线av久久热| 大片免费播放器 马上看| 黄色视频在线播放观看不卡| 人人妻,人人澡人人爽秒播| 午夜福利在线免费观看网站| 色婷婷av一区二区三区视频| 在线av久久热| 脱女人内裤的视频| 天堂俺去俺来也www色官网| 亚洲国产看品久久| 亚洲av电影在线进入| 亚洲美女黄色视频免费看| 国产男女内射视频| 亚洲专区字幕在线| 欧美 日韩 精品 国产| 日韩精品免费视频一区二区三区| 久久精品国产亚洲av高清一级| 午夜久久久在线观看| 天堂俺去俺来也www色官网| 久久亚洲精品不卡| 黑丝袜美女国产一区| 美女主播在线视频| 免费在线观看日本一区| 国产精品1区2区在线观看. | 大香蕉久久网| 久久久久久久久久久久大奶| 老司机午夜福利在线观看视频 | 日本wwww免费看| 高潮久久久久久久久久久不卡| 侵犯人妻中文字幕一二三四区| 免费黄频网站在线观看国产| 色94色欧美一区二区| 国产黄色免费在线视频| 成年女人毛片免费观看观看9 | 欧美xxⅹ黑人| 久久久久国内视频| 亚洲综合色网址| 欧美激情久久久久久爽电影 | 高清在线国产一区| 久久精品亚洲熟妇少妇任你| 在线亚洲精品国产二区图片欧美| 亚洲成av片中文字幕在线观看| 久久天躁狠狠躁夜夜2o2o| 自拍欧美九色日韩亚洲蝌蚪91| 9191精品国产免费久久| 亚洲精品国产区一区二| 国产av一区二区精品久久| 欧美精品人与动牲交sv欧美| 亚洲精品国产一区二区精华液| 日韩免费高清中文字幕av| 日本五十路高清| 性高湖久久久久久久久免费观看| 在线观看免费午夜福利视频| 亚洲 欧美一区二区三区| 久久久精品区二区三区| 日韩欧美一区二区三区在线观看 | 天堂8中文在线网| 亚洲精品第二区| 人妻一区二区av| 亚洲精品自拍成人| 男女高潮啪啪啪动态图| 国产精品一区二区精品视频观看| 男女无遮挡免费网站观看| 啪啪无遮挡十八禁网站| 少妇的丰满在线观看| av电影中文网址| 午夜影院在线不卡| 91av网站免费观看| 永久免费av网站大全| 亚洲第一欧美日韩一区二区三区 | tocl精华| 欧美一级毛片孕妇| 9色porny在线观看| 亚洲欧美清纯卡通| 波多野结衣av一区二区av| 天天添夜夜摸| e午夜精品久久久久久久| 精品久久久精品久久久| 国产深夜福利视频在线观看| 俄罗斯特黄特色一大片| 日本vs欧美在线观看视频| 99国产精品99久久久久| 国产成人免费观看mmmm| 国产日韩一区二区三区精品不卡| 侵犯人妻中文字幕一二三四区| 国产伦理片在线播放av一区| 欧美精品一区二区免费开放| 亚洲精品久久午夜乱码| 婷婷色av中文字幕| 久久久久精品人妻al黑| 麻豆国产av国片精品| 看免费av毛片| 国产欧美日韩一区二区三区在线| 亚洲人成77777在线视频| 国产97色在线日韩免费| 夜夜骑夜夜射夜夜干| 久久久国产欧美日韩av| 最近最新中文字幕大全免费视频| 亚洲欧洲日产国产| 亚洲中文字幕日韩| 精品人妻熟女毛片av久久网站| 别揉我奶头~嗯~啊~动态视频 | 十八禁网站免费在线| 久久精品亚洲av国产电影网| 天堂8中文在线网| 少妇粗大呻吟视频| 日韩,欧美,国产一区二区三区| 女警被强在线播放| 热re99久久国产66热| av在线老鸭窝| 欧美日韩亚洲综合一区二区三区_| 亚洲五月婷婷丁香| 久久国产精品人妻蜜桃| 建设人人有责人人尽责人人享有的| 免费在线观看完整版高清| 国产av又大| av国产精品久久久久影院| 悠悠久久av| 99精国产麻豆久久婷婷| 亚洲精品国产一区二区精华液| 黑人巨大精品欧美一区二区mp4| 91麻豆精品激情在线观看国产 | 久久久久国产一级毛片高清牌| 欧美激情久久久久久爽电影 | 黑人操中国人逼视频| 亚洲成人免费av在线播放| 亚洲欧美精品自产自拍| 人妻久久中文字幕网| av免费在线观看网站| 成年动漫av网址| 成年美女黄网站色视频大全免费| 一级片'在线观看视频| 国产精品久久久久久精品古装| 最近中文字幕2019免费版| 熟女少妇亚洲综合色aaa.| 亚洲午夜精品一区,二区,三区| 亚洲成人国产一区在线观看| 久久精品久久久久久噜噜老黄| 亚洲中文日韩欧美视频| 欧美av亚洲av综合av国产av| 十八禁人妻一区二区| 美女福利国产在线| 国产成人系列免费观看| 男女边摸边吃奶| 日日夜夜操网爽| 亚洲少妇的诱惑av| 国产成人精品久久二区二区91| 91老司机精品| 日本五十路高清| 大型av网站在线播放| 丰满迷人的少妇在线观看| av线在线观看网站| 亚洲av日韩在线播放| 精品第一国产精品| 日韩制服丝袜自拍偷拍| 亚洲国产精品一区二区三区在线| 亚洲欧洲精品一区二区精品久久久| 一区二区三区激情视频| 黑丝袜美女国产一区| av天堂久久9| 欧美+亚洲+日韩+国产| 香蕉丝袜av| 国产高清videossex| 欧美日韩亚洲高清精品| 国产在线免费精品| 18禁裸乳无遮挡动漫免费视频| av不卡在线播放| 91麻豆精品激情在线观看国产 | 国产高清国产精品国产三级| 999久久久国产精品视频| 69av精品久久久久久 | 黄色毛片三级朝国网站| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成电影观看| 在线观看舔阴道视频| 日韩视频在线欧美| 麻豆av在线久日| 亚洲欧洲日产国产| 五月天丁香电影| 五月开心婷婷网| 国产男人的电影天堂91| 亚洲精品国产区一区二| 成年美女黄网站色视频大全免费| 欧美大码av| 午夜免费成人在线视频| 麻豆av在线久日| 久久 成人 亚洲| 午夜影院在线不卡| 成年人黄色毛片网站| 免费在线观看视频国产中文字幕亚洲 | 男人添女人高潮全过程视频| 香蕉国产在线看| 丝袜脚勾引网站| 99国产综合亚洲精品| 窝窝影院91人妻| 欧美精品高潮呻吟av久久| 国产黄色免费在线视频| 国产av国产精品国产| 少妇精品久久久久久久| 国产一区二区三区av在线| 91九色精品人成在线观看| 成年动漫av网址| 国产极品粉嫩免费观看在线| 男人爽女人下面视频在线观看| 国产在线视频一区二区| av又黄又爽大尺度在线免费看| 妹子高潮喷水视频| 天天添夜夜摸| 中国国产av一级| av在线老鸭窝| 后天国语完整版免费观看| 手机成人av网站| 国产精品.久久久| 国产精品久久久av美女十八| 成年人黄色毛片网站| 免费日韩欧美在线观看| 91精品三级在线观看| 大片电影免费在线观看免费| 久久久久久免费高清国产稀缺| 国产亚洲精品久久久久5区| 91老司机精品| 精品国产一区二区三区四区第35| 亚洲天堂av无毛| 手机成人av网站| 91成年电影在线观看| 黄片播放在线免费| 国产xxxxx性猛交| 亚洲免费av在线视频| 国产精品影院久久| 大型av网站在线播放| 午夜福利视频精品| 国产免费av片在线观看野外av| 精品久久久久久电影网| 不卡一级毛片| 一级片免费观看大全| 久久99热这里只频精品6学生| 日韩精品免费视频一区二区三区| 亚洲伊人久久精品综合| 韩国高清视频一区二区三区| 国产福利在线免费观看视频| 日日夜夜操网爽| 日韩欧美一区视频在线观看| 国产麻豆69| 黄网站色视频无遮挡免费观看| 成年美女黄网站色视频大全免费| 日日夜夜操网爽| 日韩欧美一区二区三区在线观看 | 免费在线观看日本一区| 午夜福利视频在线观看免费| 美女主播在线视频| 亚洲精品第二区| 免费女性裸体啪啪无遮挡网站| av在线播放精品| 欧美变态另类bdsm刘玥| 自拍欧美九色日韩亚洲蝌蚪91| 日韩欧美国产一区二区入口| 欧美亚洲 丝袜 人妻 在线| 超碰成人久久| videosex国产| 高潮久久久久久久久久久不卡| 日韩欧美一区二区三区在线观看 | 国产精品99久久99久久久不卡| 叶爱在线成人免费视频播放| netflix在线观看网站| 亚洲中文字幕日韩| 美女大奶头黄色视频| 老司机在亚洲福利影院| 中文字幕另类日韩欧美亚洲嫩草| 丁香六月欧美| 久久精品国产亚洲av香蕉五月 | 成年动漫av网址| 桃花免费在线播放| 亚洲国产欧美日韩在线播放| 丝袜人妻中文字幕| 热99国产精品久久久久久7| 久久国产精品大桥未久av| av国产精品久久久久影院| 宅男免费午夜| 高清av免费在线| 精品人妻1区二区| 99香蕉大伊视频| 国产精品久久久久久精品古装| 中国美女看黄片| 下体分泌物呈黄色| 天堂中文最新版在线下载| 欧美日韩国产mv在线观看视频| 老汉色av国产亚洲站长工具| 国产激情久久老熟女| 天天躁狠狠躁夜夜躁狠狠躁| 女警被强在线播放| 老汉色∧v一级毛片| 1024视频免费在线观看| 国产老妇伦熟女老妇高清| 久久人妻福利社区极品人妻图片| 久久 成人 亚洲| 久久久水蜜桃国产精品网| 青春草亚洲视频在线观看| 午夜福利乱码中文字幕| 欧美一级毛片孕妇| 无遮挡黄片免费观看| 亚洲伊人久久精品综合| 亚洲 国产 在线| 欧美日韩福利视频一区二区| 国产高清视频在线播放一区 | 一边摸一边做爽爽视频免费| 久久人妻熟女aⅴ| 女人爽到高潮嗷嗷叫在线视频| 亚洲av日韩精品久久久久久密| 美女福利国产在线| 国产精品九九99| 丁香六月欧美| 黄色视频不卡| 丁香六月欧美| 国产欧美亚洲国产| 黄色怎么调成土黄色| 日本黄色日本黄色录像| 午夜免费鲁丝| 99国产精品免费福利视频| 国产成人av激情在线播放| 高清视频免费观看一区二区| 久久热在线av| 精品视频人人做人人爽| 国产一区二区在线观看av| 国产亚洲精品一区二区www | 老司机影院毛片| 国产av又大| 国产麻豆69| 欧美另类亚洲清纯唯美| 美国免费a级毛片| 国产精品久久久人人做人人爽| 午夜成年电影在线免费观看| 成年动漫av网址| 久久久久精品国产欧美久久久 | 啪啪无遮挡十八禁网站| 欧美 亚洲 国产 日韩一| 国产男女超爽视频在线观看| 99九九在线精品视频| 日韩视频一区二区在线观看| 中文字幕高清在线视频| 90打野战视频偷拍视频| 丝袜美足系列| 国产精品自产拍在线观看55亚洲 | 亚洲欧美一区二区三区黑人| 免费在线观看视频国产中文字幕亚洲 | av福利片在线| 久久人人97超碰香蕉20202| 一进一出抽搐动态| 嫩草影视91久久| 菩萨蛮人人尽说江南好唐韦庄| av天堂在线播放| 女人精品久久久久毛片| 丝瓜视频免费看黄片| 亚洲伊人久久精品综合| videos熟女内射| 可以免费在线观看a视频的电影网站| 午夜免费成人在线视频| 亚洲av男天堂| 天天影视国产精品| 国产激情久久老熟女| 久久精品国产亚洲av香蕉五月 | 欧美日本中文国产一区发布| 国产99久久九九免费精品| 国产欧美亚洲国产| 99国产精品99久久久久| 老司机影院毛片| 搡老熟女国产l中国老女人| 亚洲av日韩在线播放| 亚洲欧美精品综合一区二区三区| 久久性视频一级片| 黑人巨大精品欧美一区二区蜜桃| 视频区图区小说| 999久久久国产精品视频| av片东京热男人的天堂| 无遮挡黄片免费观看| 人妻久久中文字幕网| 人妻 亚洲 视频| 亚洲国产精品一区三区| 久久久水蜜桃国产精品网| 9191精品国产免费久久| 久久人妻福利社区极品人妻图片| 欧美精品啪啪一区二区三区 | 50天的宝宝边吃奶边哭怎么回事| 国产一区二区三区综合在线观看| 91精品伊人久久大香线蕉| 亚洲人成77777在线视频| 亚洲av片天天在线观看| 少妇裸体淫交视频免费看高清 | 一区二区av电影网| av线在线观看网站| 精品久久久久久电影网| 亚洲欧美色中文字幕在线| 亚洲avbb在线观看| 日韩电影二区| 黑人欧美特级aaaaaa片| 亚洲中文av在线| 亚洲av成人一区二区三| 性色av乱码一区二区三区2| 女性被躁到高潮视频| 久久精品成人免费网站| 国产一级毛片在线| 日本撒尿小便嘘嘘汇集6| 美女午夜性视频免费| 久久久久精品国产欧美久久久 | 操出白浆在线播放| 国产精品影院久久| 人妻久久中文字幕网| 在线观看免费视频网站a站| 青青草视频在线视频观看| 性高湖久久久久久久久免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 悠悠久久av| 国产97色在线日韩免费| 欧美黑人精品巨大| 高潮久久久久久久久久久不卡| 人人妻人人澡人人爽人人夜夜| 又黄又粗又硬又大视频| 美女大奶头黄色视频|