• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spin-orbit stable dirac nodal line in monolayer B6O

    2022-03-12 07:44:46WenRongLiu劉文榮LiangZhang張亮XiaoJingDong董曉晶WeiXiaoJi紀(jì)維霄PeiJiWang王培吉andChangWenZhang張昌文
    Chinese Physics B 2022年3期
    關(guān)鍵詞:張亮

    Wen-Rong Liu(劉文榮) Liang Zhang(張亮) Xiao-Jing Dong(董曉晶) Wei-Xiao Ji(紀(jì)維霄)Pei-Ji Wang(王培吉) and Chang-Wen Zhang(張昌文)

    1School of Physics and Technology,Institute of Spintronics,University of Jinan,Jinan 250022,China

    2School of Physics and Physical Engineering,Qufu Normal University,Qufu 273100,China

    Keywords: monolayer B6O,Dirac nodal line,two-band tight-binding model

    The 2D materials[1-4]have attracted much attention because of their rich properties. Among the rest, topological semimetals (TSMs) are a class of systems in which the conduction and valence bands cross each other within the Brillouin zone, while they are robust. These excellent properties provide a unique site for singular phenomena derived from band topology.[5,6]DNL semimetals,[7-19]as one of the TSMs,connect the gapless and gapped phases and can be tuned to a variety of other topological phases, such as topological insulators,Dirac and Weyl semimetals.[20-27]It has become a new class of quantum materials that are more promising for scientific research. Many excellent physical properties have been obtained in these nodal line materials, including Friedel oscillation, nondispersive Landau energy level,[28]and specific long-range Coulomb interactions,[29]etc., which pioneers a new path for Dirac materials in future low dissipation device applications. These proposals,however,are dependent on the effect of spin-orbit coupling(SOC):when SOC is considered,the structure of node line will be broken,and there is a sizable gap at the intersection of conduction band and valence band.Until now,PbTaSe2,a nodal line semi-metallic structure with strong SOC,is only experimentally confirmed.[12]

    The fundamental conceptions of Dirac, Weyl and DNL semimetals are also suitable for use in 2D materials.Some current theoretical works.[30-32]illustrate nodal wire-band crossing with weak SOC.However,similar to the three-dimensional(3D) case, the nodal line band present in these materials is broken when SOC is turned on. It is reported that 2D DNL fermions with SOC in single-layer Cu2Si have been realized experimentally.[33]Interestingly, a recent article[34]summarizes and classifies all possible structures with cross properties in 2D noncentro-symmetric systems with SOC and time inversion invariance. According to the prediction of this research,when a material has appropriate geometric symmetry,the node line band crossing is stable for SOC.In fact,weak SOC materials,such as Be2C,BeH2,[35]and Na2CrBi trilayer[36]are proposed as intriguing 2D nodal line materials.Therefore,finding 2D materials with high-stable nodal line bands is a more nontrivial work.

    In this paper, we demonstrate that monolayer B6O(Figs. 1(a) and 1(b)), which has remarkably energetic stability and positively dynamical stability, possesses a nodal line band structure that maintains robust even if considering the effect of SOC. Compared with the single Dirac point of other 2D allotropes, the band structure of B6O is characterized by elliptical DNL, and its Fermi velocity is 106m/s, which is as the same as that of graphene. The nodal line band crossing is further explained by combiningk·pmodel calculation with symmetry analysis. Also, B6O/h-BN superstructure is proposed to realize DNL feature of monolayer B6O in experiments. Our results not only reveal a new DNL fermion of matter, but also offer promising material platform for realizing novel low-dissipation devices.

    All the structural and electronic properties are calculated by using the projector augmented wave(PAW)method[37]implemented in the Viennaab initiosimulation package(VASP)code.[38,39]The Perdew-Burke-Ernzerhof (PBE) form of the generalized gradient approximation (GGA) exchangecorrelation functional[40]is adopted, while the more accurate electronic band structure is obtained by HSE06[41,42]hybrid functional. The wave functions of all systems are expanded by using a plane wave basis with a cut-off energy of 550 eV,and the Brillouin zone sampling grids are set to be concentrated enough to guarantee convergence. The maximum force is less than 0.01 eV/°A during optimization. The vibrational spectrums are simulated by using DFT perturbation theory as implemented in the PHONOPY code.[43]The 3D energy band structure of monolayer B6O is obtained from the postprocessing maximum localized Wannier Hamiltonian derived from the code of WANNIER90.[44-46]

    Fig.1. (a)and(b)The top and side views of monolayer B6O with lattice vectors a(~2.88 °A)in the x-y plane. The unit cell is marked with a rhombus.(c)The phonon spectrum of B6O.

    Monolayer B6O has a hexagonal configuration with three different types of atoms in a unit cell and shares the space groupP6/mmmsymmetry, as illustrated in Fig. 1(a). The outmost-layer B1atoms possess graphenelike plane,while the second kind B2, accompanied with oxygen, banked up between top and bottom B1planes, forms a pillar that hold two B1layers. There are three kinds of bond lengths, which are labeledd1,d2,andd3,as shown in Fig.1(b). Thed1=1.66 °A is the length of the outmost graphene-like layered bonding,which is formed by two B1atoms close to sp2hybridization and the value ofd1is close to that of graphene. All the other B2atoms form a bond length,d2=1.91 °A,whiled3=1.36 °A is along for B2-O-B2pillar. The chemical bonding character of B6O can be illustrated by the electron localization function(ELF)in Fig.2. One can see that ELF is situated on the area in the middle of the B1-B1bonds within the flat hexagonal plane (Fig. 2(a)), whereas no electron localization occurs in between B1-B2atoms (Fig. 2(b)), suggesting the ionic bond character along B-O bonding. Similar results are found for B2-O-B2bonding. Additionally,the ELF plots for the sliced planes are shown in Figs.2(d)-2(f),where a high ELF distribution(0.75)is centered at the middle of B1-B1and B2-O-B2bonding, suggesting a very strong covalent bond. While for the sliced plane in Fig.2(e),the ELF equals to 0.4,suggesting partially ionic bond,which is consistent with the Bader charge analysis.[47]Further calculation and analysis show that the column composed of B2-O-B2has an average of 0.85 electrons transferred to its adjacent B1,i.e.,B2atoms act as an electron supply source to transfer electrons to the unoccupied state of sp2in plane, so that the stability of B6O is significantly enhanced. This mechanism is similar to the boronrich borides MB2or MB4,where B atoms form a hexagonal lattice like to graphene and interact with triangular metal lattice.[48]Therefore monolayer B6O is ionic,consisting of graphenelike plane and B2O pillars.

    Structural stability of B6O can be further evaluated by the formation energy asEcoh=EB6O-6EB-1/2EO2,whereEB6Ois the total energy of B6O,EBandEO2is the energy of B atom and oxygen, respectively. The relative energy is -5.13 eV/atom, which is close to that of other boronbased allotropes such as B2S3(-4.9 eV/atom)[49]and B2S(-5.3 eV/atom).[50]The dynamical stability of B6O is also checked from the vibrational spectrum,as shown in Fig.1(c).There is no appreciable imaginary frequency in the phonon energy spectrum, establishing the dynamically structural stability of B6O.That is to say,when the lattice vibration is normal,B6O can maintain its basic crystal structure. We also calculate the elastic constants and find thatC11,C12,C22, andC66are 236.02 N/m, 231.25 N/m, 231.28 N/m, and 104.76 N/m,respectively.These values content the mechanical stability criteria(C11×C22-C222>0,C66>0),which illustrates that B6O has good mechanical stability and can resist small deformation. Throughab initiomolecular dynamics simulation, after heating to 300 K in a time step of 1 fs, B6O still maintains its basic crystal structure, small thermal oscillation and no obvious structural collapse. All these results illustrate that monolayer B6O has excellent thermostability and can retain its structural integrity at room temperature.

    Fig.2. (a)Top view and(b)side view of the electron localization function of monolayer B6O with isovalue 0.8. (c)The different cutting planes for ELF.The ELF of plane cut along the olive dotted line(d),along the orange dotted line(e)and along the yellow solid line(f).

    Figure 3(a) presents the band structure along theM-ΓK-Mpath for monolayer B6O.It portrays the nodal line band structure, and although SOC is considered, the energy band structure remains stable due to its ?MZspecular reflection symmetry(Fig.1(b)).Interestingly,the bottom of conduction band and the top of valence band cross near theKpoint and form a typical DNL.In order to confirm whether single-layer B6O is a real node line crossing or an anti-crossing structure with small energy separation,we use a theoretical model mentioned in recent research[34]to classify the band crossings in 2D systems. According to the theoretical analysis,if(i)the 2D plane has mirror reflection symmetry,and(ii)the two crossed bands have different mirror eigenvalues,it can be explained that the nodal semi-metallic state of 2D material will be stable.

    For monolayer B6O in Fig.1(a),it is unchangeable under the mirror reflection aboutx-yplane,so it meets the situation described in condition(i). In this respect, the Hamiltonian ?Hshould commute with the mirror reflection operator ?MZ

    Obviously, ?MZdoes not change the 2D momentumk,demonstrating that the energy eigenstates for the crystal momentumkare eigenstates of ?MZ. Due to the eigenvalue spectrum of ?MZis discrete, the continuous change of energy eigenstates as a function ofkin an energy band cannot change the eigenvalue of ?MZ, so each energy band of ?Hhas a well-defined mirror eigenvalue.

    We now take the mirror eigenvalues of DNL into account,which attracts our interest. As can be seen from Fig.3, there are two crossing bands interacting along the high symmetryΓ-K-Mline in momentum space. Contributions of different orbits are represented by the orbital-projected density of states(DOSs). Two bands close toEForiginate from the B-pzorbital,linearly crossing each other,then the charge carriers can be characterized by massless Dirac fermions. This is similar to the most other 2D lattices with a Dirac point, such as Mn-DCA,[51]while the px/pyatomic orbitals only play a role in the energy bands. Obviously,when there is no symmetry protection,the two cross energy bands will interact which results in opening of the band gap. In order to check whether the two bands meet condition(ii),rough information of the wave function characteristics of the two bands is required, because the mirror eigenvalues may be discontinuous, and the mirror eigenvalues of each band can be determined to the wave functions. In the reciprocal space ofP6/mmm,high-symmetry lineΓ-Kpossess a littleD3hpoint group,including a twofold rotation axeC2yand threefold rotation axeC3z. In this respect,theKpoint is just the time-reversal-symmetry(T)partner in momentum space. The algebraic relationship within these generators should be written as

    Here, the occupied and unoccupied low-energy bands atKpoint are doubly degenerate. Making use ofD3hgroup analysis, we find that irreducible representations (IRs) of pzband nearKpoint areE′andE′′, respectively. According to Eqs. (1)-(3), the whole BZ is invariant for ?MZand at anyKpoints, the eigenvalues ofC3zandC2yof all bands keep their signs unchanged. Since the IRsE′andE′′do not couple with each other,a DNL forms centeredKpoint,which will be discussed further with a theoreticalk·pmodel later.

    Fig.3.(a)Orbital projected band structure of B6O.The orbital contribution is drawn in different colors,and the spot size represents its weight. The green,yellow and purple dots denoted the pxy, pz, and s orbitals of boron, respectively. (b)Density of states,where the blue,red and black lines represent the contributions of B atoms,O atoms and the total contribution,respectively.

    To confirm this expectation of B6O,we propose 3D band dispersion based on B-p orbit by constructing tight bound Hamiltonian from MLWFs.[52]Figure 4(a) displays the calculated MLWF and DFT band structures, which in perfect agreement with DFT results, further confirming the accuracy of our B6O orbital component analysis. As a consequence,an entire elliptical DNL centered atKpoint can be obtained,see Fig. 4(b). It is clearly different from conventional Diraccone materials with a discrete DP nearEF. In order to visually display the band touching, we further perform a scan around crossing point D1alongΓ-Kdirection. The linearly dispersed B-pzband crosses each other, forming a serial of DPs with a tip to tip. Similar results are observed forK-Mdirection for B6O.Noticeably,though 3D DNL state has been observed experimentally,DNL in 2D boron-based sheet is rarely reported.The intriguing point of B6O band structure is that the band crossings in MS form a closed DNL because of the coexistence of time reversal and inversion symmetry.

    From the crossing point with linear bands of B6O,we estimate the Fermi velocity(vF),by a linear fitting of DFT results.vFcan be understood as the transmission velocity of massless Dirac fermions,and the calculation formula is expressed as

    wherektis the total number of points fromΓtoM,Δkis the number ofKpoints on a certain energy band taken betweenΓtoM,ΔEis the energy difference of this energy band,andais the lattice constant of structure.

    We find that the radial velocities of the Dirac point are in the range of 0.54×106-0.63×106m/s,which is comparable to the value 0.82×106m/s in graphene. It is the ultrahigh Fermi velocity of B6O that is advantageous for building highspeed electronic devices such as field effect transistor.

    Now, we discuss the forming mechanism of DNL by inferring an effective low-energyk·pmodel. As a general rule,a two-band Hamiltonian capturing the band crossing is able to be written as

    wheredi(k),(i=1,2,3)is real function ofk(kx, ky, kz).σ0andσ1,2,3are the 2×2 unit matrix and Pauli matrices characterizing the space of two bands, which are mainly from B-p orbitals in B6O. In the space groupP6/mmm, thekis not an invariant point underPorT, but theTPsymmetry keeps theKpoint invariant,and it commutes with all generators. So we can write downPT=κ,whereκis the complex conjugation in a proper orbital basis. Here,the spin and orbital part of the electronic wave function are decoupled. Therefore, for each spin channel,all crystalline symmetries are retained separately as for non-spin particles. By the symmetry analysis, the two crossing bands inkz=0 plane have opposite eigenvalues ofMz. Along theΓ Kdirection, these two bands with the same eigenvalues ofC2yand opposite eigenvalues ofMx. Thus,the representation matrices of these generators requires that

    Thus,B6O forms a DNL whenM/A >0.

    The effects of HSE06 on band structure of B6O are further examined. We find that the band structures alongΓ-K-Mline at HSE06 level are similar to that of PBE level, where two crossing bands linearly remains atEF. Although the PBE underestimates the band gap atΓpoint, the fact that HSE06 method gives the same DNL strengthens our understanding of the effectiveness of B6O band structure, which presents an ideal material for practical applications. In 2016, Fanget al.[53]reviewed the theoretical research progress of nodal line semimetals, in which the explicit form of topological invariants of each symmetric group is discussed by analyzing the wave function on Fermi surface. Zhanget al.[54]also found that the formation mechanism of Tl2Nb2O6.5triply-degenerate nodal point can be well explained byk·pmodel. We believe our work can further promote the progress of research on DNL in 2D materials.

    Now, we consider the stability of the nodal line band in the case of symmetry breaking. When we break theC3rotational symmetry, the nodal line is still robust owing to theMzmirror symmetry. On the contrary,when we break theMzmirror symmetry,the node lines not any more exist stably and may evolve into Dirac points or anti crossing structures. If some points on the nodal line become vestigial owing to the residual symmetry after the destruction ofMzmirror symmetry,the nodal line structure turns into Dirac points.In this case,B6O hasMxmirror symmetry,which can guarantee the degeneracy on theMxmirror invariant line. However, as shown in Fig. 1(b), theK(K′) point is not on theMxmirror symmetry line along theΓ-Mline in the momentum space,so the nodal line energy band crossing becomes a Dirac point band structure.

    Fig. 5. (a) Top and side view of the epitaxial growth of B6O on h-BN substrate. (b)The corresponding energy band structure without SOC.The green and blue green dots are mainly from B6O and h-BN,respectively.

    It is inevitable that the 2D lattice grows on the substrate,which will break the spatial symmetry of B6O, resulting in a gap in the energy bands of DNL. However, the Dirac points can be maximally preserved due to the weak interface interactions in between two sublattices. For instance, ARPES measurements do not give any characteristics about the gap opening of NL dispersion in 2D Cu2Si.[33]From the perspective of practical applications, the inherited quantum transport in Dirac materials is more fascinating because it is less vulnerable to symmetry breaking. As a matter of fact, Dirac point resides only in a free-standing graphene owing to symmetry protection. When graphene is deposited on substrate,the spatial symmetry of the two carbon atoms is broken,which leads to the opening of the gap in graphene. However,the quantum transport which is in graphene, including half-integer quantum Hall effect,[55,56]fractional QHE,[57]and ultra-high carrier mobility,[58]remains in graphene deposited on multifarious substrates. Consequently, we deduce that the quantum properties of NL materials can be maintained in B6O-based heterostructure (HTS) so long as the space symmetry is preserved to a large extent. To confirm this, we put B6O on h-BN substrate to construct B6O/h-BN HTS, which is illustrated in Fig. 5(a). Structural optimizations demonstrate that the layer spacing between B6O and h-BN substrate is 3.18 °A with a weaker binding energy of 34.6 meV,indicating the existence of van der Waals interaction. Figure 5(b) shows the band structure of B6O/h-BN in the energy range of-3 eV to 3 eV,in consistent with that of monolayer B6O.Also,the DNL fermions aroundKpoint keep well, only a tiny band gaps (a few 0.23 meV)are opened due to the symmetrical characteristic broken.

    In summary,we predicted the DNL phase in 2D B6O allotrope based on first-principles calculations and TB model,which has an outstanding energetic stability and superior dynamical stability. It possesses an elliptical DNL fermion,with a Fermi velocity of 106m/s perfectly matched the order of magnitude of graphene. A two-bandk·pmodel is constructed to explain the formation mechanism of DNL in B6O. It is worth mentioning that Anosha Rubabet al.[59]reported that borophene is a perfect Dirac material. Its large surface area,high Young’s modulus and extremely high Fermi velocity make it applicable to sensors,electronics and energy converters. In 2019, Zuoet al.[60]also found that time reversal symmetry and mirror reflection symmetry can protect the nodal line inβ-boron sheet, and a nanodevice that can manipulate and control the nodal line has been proposed. These findings have opened up a new path for the realization of novel high-speed and low-power devices,and 2D B6O may be a new platform for the development of nano-devices in the future.

    Acknowledgments

    Project supported by Taishan Scholar Program of Shandong Province, China (Grant No. ts20190939), Independent Cultivation Program of Innovation Team of Jinan City(Grant No.2021GXRC043),and the National Natural Science Foundation of China(Grant Nos.52173283 and 62071200).

    猜你喜歡
    張亮
    “失蹤”的母親
    公路橋梁靜載試驗(yàn)檢測技術(shù)探討
    No.5 張亮和楊國福誰的“人設(shè)”更討喜?
    彩虹
    離家的孩子
    東方劍(2017年6期)2017-11-13 20:51:23
    順風(fēng)車
    Experimental study of hydrodynamic performance of full-scale horizontal axis tidal current turbine*
    賣房
    捕獲、跟蹤、瞄準(zhǔn)系統(tǒng)中光斑探測相機(jī)的定位精度
    新晉男神之張亮
    東方電影(2014年2期)2014-04-29 00:44:03
    久久精品国产亚洲av涩爱 | 久久久久国产精品人妻aⅴ院| 麻豆久久精品国产亚洲av| 啦啦啦免费观看视频1| 琪琪午夜伦伦电影理论片6080| 亚洲av一区综合| 精品欧美国产一区二区三| 校园春色视频在线观看| 欧美不卡视频在线免费观看| 最新中文字幕久久久久| 亚洲欧美一区二区三区黑人| 美女高潮的动态| 99热精品在线国产| 又粗又爽又猛毛片免费看| 国产精品一及| 国产亚洲精品久久久com| 黄色丝袜av网址大全| 又黄又爽又免费观看的视频| 国内揄拍国产精品人妻在线| 91在线精品国自产拍蜜月 | 久久99热这里只有精品18| 少妇裸体淫交视频免费看高清| 国产成人av教育| 欧美大码av| 国产精品98久久久久久宅男小说| 精品人妻1区二区| 美女高潮喷水抽搐中文字幕| 国产精品自产拍在线观看55亚洲| 九九热线精品视视频播放| 色综合站精品国产| 国内毛片毛片毛片毛片毛片| 日本a在线网址| 日本一二三区视频观看| 真人一进一出gif抽搐免费| 在线免费观看不下载黄p国产 | 国产三级黄色录像| 日本免费a在线| 午夜福利视频1000在线观看| 亚洲人与动物交配视频| 欧美中文综合在线视频| 国产av麻豆久久久久久久| 91九色精品人成在线观看| 国产 一区 欧美 日韩| 国产精品永久免费网站| 99热精品在线国产| 国产精品国产高清国产av| 日韩中文字幕欧美一区二区| 午夜福利18| 国产免费av片在线观看野外av| 欧美性猛交黑人性爽| 欧美激情在线99| 亚洲欧美日韩高清专用| 老司机午夜十八禁免费视频| 熟女少妇亚洲综合色aaa.| 亚洲人成网站在线播| 99热精品在线国产| 又黄又爽又免费观看的视频| 1000部很黄的大片| 此物有八面人人有两片| 一区福利在线观看| 亚洲自拍偷在线| 亚洲精品成人久久久久久| 欧美又色又爽又黄视频| 日韩欧美精品v在线| 国产欧美日韩一区二区三| 中文字幕熟女人妻在线| 日韩高清综合在线| 午夜精品久久久久久毛片777| 熟女少妇亚洲综合色aaa.| 日日摸夜夜添夜夜添小说| 亚洲av五月六月丁香网| 91久久精品电影网| 男女下面进入的视频免费午夜| 99在线人妻在线中文字幕| 91久久精品国产一区二区成人 | 国产激情欧美一区二区| 国产精品乱码一区二三区的特点| 亚洲成人免费电影在线观看| 村上凉子中文字幕在线| 久久精品国产亚洲av香蕉五月| 长腿黑丝高跟| 岛国在线免费视频观看| 麻豆国产av国片精品| 狂野欧美激情性xxxx| 国产 一区 欧美 日韩| 好看av亚洲va欧美ⅴa在| 在线天堂最新版资源| 无遮挡黄片免费观看| 97超视频在线观看视频| 国内毛片毛片毛片毛片毛片| 国产亚洲精品久久久com| 女人被狂操c到高潮| 淫妇啪啪啪对白视频| 99久久精品一区二区三区| 亚洲av五月六月丁香网| 亚洲 国产 在线| 婷婷六月久久综合丁香| 精品久久久久久久毛片微露脸| 免费人成视频x8x8入口观看| 成人性生交大片免费视频hd| 精品久久久久久成人av| 真人做人爱边吃奶动态| 国产乱人伦免费视频| 91字幕亚洲| 国产伦精品一区二区三区视频9 | 国产日本99.免费观看| 青草久久国产| 成年免费大片在线观看| 亚洲在线自拍视频| 色老头精品视频在线观看| 亚洲 国产 在线| 日本 av在线| 噜噜噜噜噜久久久久久91| 性色avwww在线观看| 欧美3d第一页| 天堂av国产一区二区熟女人妻| 欧美精品啪啪一区二区三区| 免费在线观看影片大全网站| 国内揄拍国产精品人妻在线| 亚洲狠狠婷婷综合久久图片| 欧美乱妇无乱码| 成熟少妇高潮喷水视频| 色综合婷婷激情| 国产亚洲精品久久久久久毛片| 欧美+亚洲+日韩+国产| 色综合亚洲欧美另类图片| 最近视频中文字幕2019在线8| 18禁裸乳无遮挡免费网站照片| 国产亚洲欧美98| 成人一区二区视频在线观看| 亚洲av二区三区四区| 久久精品人妻少妇| 18禁国产床啪视频网站| 亚洲七黄色美女视频| 国内精品久久久久久久电影| xxx96com| 欧美日韩精品网址| 男女午夜视频在线观看| 国产成人福利小说| 日韩高清综合在线| 99久久综合精品五月天人人| av专区在线播放| 精品国产亚洲在线| 在线观看一区二区三区| 极品教师在线免费播放| 久9热在线精品视频| 成人18禁在线播放| 久久精品国产亚洲av涩爱 | 白带黄色成豆腐渣| 日本五十路高清| 变态另类丝袜制服| 午夜老司机福利剧场| 欧洲精品卡2卡3卡4卡5卡区| 久久人妻av系列| 国产精品1区2区在线观看.| 少妇人妻一区二区三区视频| 草草在线视频免费看| 欧美性猛交╳xxx乱大交人| 好男人在线观看高清免费视频| 亚洲精品乱码久久久v下载方式 | 国产一区二区三区在线臀色熟女| 久久九九热精品免费| 国产精品久久电影中文字幕| 岛国在线观看网站| 国产高清视频在线播放一区| 亚洲精品在线观看二区| 久久精品国产自在天天线| 国产精品免费一区二区三区在线| 一夜夜www| 非洲黑人性xxxx精品又粗又长| 淫妇啪啪啪对白视频| 手机成人av网站| 人人妻人人澡欧美一区二区| 19禁男女啪啪无遮挡网站| 亚洲五月婷婷丁香| 免费看日本二区| netflix在线观看网站| 99久久久亚洲精品蜜臀av| 美女黄网站色视频| 免费看十八禁软件| 欧美一级毛片孕妇| 又黄又粗又硬又大视频| 婷婷精品国产亚洲av在线| 久久香蕉国产精品| 国产亚洲精品久久久com| 尤物成人国产欧美一区二区三区| 婷婷亚洲欧美| 亚洲成人中文字幕在线播放| or卡值多少钱| 非洲黑人性xxxx精品又粗又长| 啦啦啦韩国在线观看视频| 亚洲国产高清在线一区二区三| 五月伊人婷婷丁香| 我要搜黄色片| 成年免费大片在线观看| 亚洲国产日韩欧美精品在线观看 | 别揉我奶头~嗯~啊~动态视频| 国产色爽女视频免费观看| 小说图片视频综合网站| 宅男免费午夜| 午夜福利在线观看吧| 99热这里只有精品一区| 日韩精品中文字幕看吧| 美女免费视频网站| 叶爱在线成人免费视频播放| 日韩亚洲欧美综合| 国产成人a区在线观看| 全区人妻精品视频| 国产精品,欧美在线| 最近最新免费中文字幕在线| 国产精品久久电影中文字幕| 欧美精品啪啪一区二区三区| 午夜福利18| 在线观看美女被高潮喷水网站 | 十八禁人妻一区二区| 国内久久婷婷六月综合欲色啪| 99久久九九国产精品国产免费| 97人妻精品一区二区三区麻豆| 免费观看人在逋| 99久国产av精品| 欧美日韩瑟瑟在线播放| 日本 av在线| 日韩欧美三级三区| 午夜福利在线观看吧| 久久久久精品国产欧美久久久| 波野结衣二区三区在线 | 男人的好看免费观看在线视频| 级片在线观看| 九九在线视频观看精品| 亚洲av免费在线观看| 给我免费播放毛片高清在线观看| 观看免费一级毛片| 亚洲中文字幕一区二区三区有码在线看| 97超视频在线观看视频| 精品欧美国产一区二区三| 99久久成人亚洲精品观看| 成人高潮视频无遮挡免费网站| 亚洲精品成人久久久久久| 岛国在线免费视频观看| 国产成人啪精品午夜网站| 老司机在亚洲福利影院| 午夜a级毛片| 色精品久久人妻99蜜桃| 内地一区二区视频在线| 老司机在亚洲福利影院| 九九久久精品国产亚洲av麻豆| 亚洲精华国产精华精| 国产在视频线在精品| 久久精品91蜜桃| 久久久成人免费电影| 69av精品久久久久久| 51国产日韩欧美| 露出奶头的视频| 国产69精品久久久久777片| 丁香六月欧美| 18禁黄网站禁片免费观看直播| 日韩高清综合在线| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩精品网址| 日韩欧美三级三区| 国内精品久久久久久久电影| 激情在线观看视频在线高清| 国产高清视频在线观看网站| 亚洲第一欧美日韩一区二区三区| 国产精品久久久久久久电影 | 亚洲avbb在线观看| 日本黄大片高清| 听说在线观看完整版免费高清| 国产69精品久久久久777片| 一个人看的www免费观看视频| 中文字幕人成人乱码亚洲影| 一本久久中文字幕| 国产高清三级在线| 99久久久亚洲精品蜜臀av| 久久久国产精品麻豆| 亚洲欧美激情综合另类| 亚洲最大成人中文| 一二三四社区在线视频社区8| 非洲黑人性xxxx精品又粗又长| 黄色日韩在线| 国产一区二区在线观看日韩 | 波多野结衣高清无吗| 日本与韩国留学比较| 亚洲七黄色美女视频| 一本精品99久久精品77| av在线蜜桃| 观看美女的网站| www.熟女人妻精品国产| 国语自产精品视频在线第100页| 色老头精品视频在线观看| 国产综合懂色| 一级黄色大片毛片| 18禁国产床啪视频网站| 女警被强在线播放| 日韩大尺度精品在线看网址| 国产精品久久久久久久电影 | 久久性视频一级片| 中文字幕久久专区| 亚洲真实伦在线观看| av视频在线观看入口| 日韩欧美在线二视频| 成人特级黄色片久久久久久久| 在线免费观看的www视频| 国产欧美日韩一区二区精品| 国产亚洲精品综合一区在线观看| 日韩欧美精品v在线| 91久久精品国产一区二区成人 | 国产精品亚洲一级av第二区| 变态另类丝袜制服| 最新在线观看一区二区三区| 又黄又爽又免费观看的视频| 久久久成人免费电影| 成人性生交大片免费视频hd| 熟妇人妻久久中文字幕3abv| 他把我摸到了高潮在线观看| 好男人在线观看高清免费视频| 午夜日韩欧美国产| 亚洲片人在线观看| 一本一本综合久久| 亚洲成av人片在线播放无| 啦啦啦免费观看视频1| 禁无遮挡网站| 欧美高清成人免费视频www| 国产不卡一卡二| 精品一区二区三区视频在线 | 51午夜福利影视在线观看| 日本在线视频免费播放| 91久久精品电影网| 一个人观看的视频www高清免费观看| 国内精品久久久久精免费| 国产精品影院久久| 免费搜索国产男女视频| 可以在线观看毛片的网站| 亚洲国产精品999在线| 午夜福利在线观看吧| 波多野结衣巨乳人妻| 亚洲片人在线观看| 亚洲国产色片| 亚洲va日本ⅴa欧美va伊人久久| 在线免费观看的www视频| 美女高潮的动态| 亚洲成人免费电影在线观看| 天天添夜夜摸| 中文字幕人妻熟人妻熟丝袜美 | 国产视频内射| 亚洲成人免费电影在线观看| 偷拍熟女少妇极品色| 国产在视频线在精品| 午夜福利在线在线| 免费看十八禁软件| 国产亚洲精品综合一区在线观看| 国产高清激情床上av| 精品熟女少妇八av免费久了| 亚洲最大成人中文| 国产欧美日韩精品亚洲av| 色综合欧美亚洲国产小说| 人妻夜夜爽99麻豆av| 日本黄色视频三级网站网址| 长腿黑丝高跟| 婷婷丁香在线五月| 亚洲一区二区三区色噜噜| 一个人免费在线观看电影| svipshipincom国产片| 男人舔奶头视频| 欧美黑人巨大hd| 麻豆一二三区av精品| 亚洲美女视频黄频| 一进一出抽搐动态| 婷婷精品国产亚洲av| 麻豆国产97在线/欧美| 亚洲avbb在线观看| 大型黄色视频在线免费观看| 老鸭窝网址在线观看| av专区在线播放| 99久久精品热视频| 久久久久性生活片| 三级男女做爰猛烈吃奶摸视频| 午夜福利免费观看在线| 黄色丝袜av网址大全| 精品人妻1区二区| 久久九九热精品免费| 亚洲最大成人中文| 19禁男女啪啪无遮挡网站| 精品久久久久久成人av| 欧美+亚洲+日韩+国产| 日韩欧美精品免费久久 | 内射极品少妇av片p| 亚洲18禁久久av| 特大巨黑吊av在线直播| 亚洲成人久久性| 嫩草影院入口| 在线播放无遮挡| 亚洲,欧美精品.| 亚洲欧美精品综合久久99| 好男人电影高清在线观看| 午夜老司机福利剧场| 欧美乱色亚洲激情| 天堂√8在线中文| 日韩欧美在线二视频| 日本五十路高清| 男人和女人高潮做爰伦理| 亚洲最大成人中文| 久久精品综合一区二区三区| 在线播放国产精品三级| 午夜福利18| 一级作爱视频免费观看| 激情在线观看视频在线高清| 露出奶头的视频| 国产高清三级在线| 少妇丰满av| 久久久久性生活片| 色哟哟哟哟哟哟| 夜夜爽天天搞| 欧美乱码精品一区二区三区| 亚洲精品美女久久久久99蜜臀| 国产精品久久电影中文字幕| 日本五十路高清| 最近在线观看免费完整版| 网址你懂的国产日韩在线| 国产伦人伦偷精品视频| 国产亚洲精品综合一区在线观看| 99热只有精品国产| 成人亚洲精品av一区二区| 此物有八面人人有两片| 午夜免费激情av| 欧美乱色亚洲激情| 久久香蕉国产精品| 天堂影院成人在线观看| 亚洲成人中文字幕在线播放| 99热6这里只有精品| 国产精品久久久久久久电影 | 亚洲av五月六月丁香网| 欧美性猛交╳xxx乱大交人| 脱女人内裤的视频| www.色视频.com| 色综合欧美亚洲国产小说| 婷婷精品国产亚洲av在线| 国产欧美日韩一区二区精品| 三级男女做爰猛烈吃奶摸视频| 男女之事视频高清在线观看| 国产欧美日韩精品一区二区| www.色视频.com| 国产成人欧美在线观看| 精品人妻1区二区| 高清毛片免费观看视频网站| 欧美日韩瑟瑟在线播放| 国产精品久久久久久精品电影| 成熟少妇高潮喷水视频| 人人妻人人澡欧美一区二区| 国产成人aa在线观看| 女同久久另类99精品国产91| 天美传媒精品一区二区| 少妇的逼水好多| 听说在线观看完整版免费高清| 少妇熟女aⅴ在线视频| 日本 欧美在线| 在线a可以看的网站| 亚洲五月天丁香| 亚洲色图av天堂| 有码 亚洲区| 国产精品野战在线观看| 色哟哟哟哟哟哟| 免费在线观看成人毛片| eeuss影院久久| 观看免费一级毛片| 噜噜噜噜噜久久久久久91| 757午夜福利合集在线观看| 日韩高清综合在线| 嫩草影视91久久| 久久草成人影院| 他把我摸到了高潮在线观看| 看片在线看免费视频| 免费大片18禁| 午夜两性在线视频| 一级黄片播放器| 男女下面进入的视频免费午夜| 日本一本二区三区精品| 国产精品精品国产色婷婷| 手机成人av网站| 亚洲成av人片免费观看| 女人高潮潮喷娇喘18禁视频| 日韩欧美在线二视频| 长腿黑丝高跟| 久久精品国产亚洲av涩爱 | 日韩欧美国产在线观看| 欧美一区二区国产精品久久精品| 日韩精品中文字幕看吧| 1024手机看黄色片| 无遮挡黄片免费观看| 国产精品永久免费网站| 成年女人永久免费观看视频| av专区在线播放| 久久久久久久午夜电影| a级一级毛片免费在线观看| 亚洲熟妇熟女久久| 高潮久久久久久久久久久不卡| 久久亚洲精品不卡| 久久伊人香网站| www日本黄色视频网| 欧美成人免费av一区二区三区| 精品久久久久久,| 美女高潮的动态| 久久欧美精品欧美久久欧美| 午夜激情欧美在线| 日韩免费av在线播放| 最近在线观看免费完整版| 我的老师免费观看完整版| 国产成人影院久久av| 国产老妇女一区| 亚洲精品久久国产高清桃花| 欧美日韩综合久久久久久 | 免费电影在线观看免费观看| 日韩欧美在线二视频| 国产真实伦视频高清在线观看 | 亚洲成人中文字幕在线播放| 成人鲁丝片一二三区免费| 日本与韩国留学比较| 性欧美人与动物交配| 2021天堂中文幕一二区在线观| 在线看三级毛片| 久久人人精品亚洲av| 少妇的丰满在线观看| 少妇人妻一区二区三区视频| 亚洲av不卡在线观看| 五月伊人婷婷丁香| 99热这里只有精品一区| 国产主播在线观看一区二区| 色尼玛亚洲综合影院| 精品国产美女av久久久久小说| 级片在线观看| 久久中文看片网| 国产成人a区在线观看| 美女高潮喷水抽搐中文字幕| 亚洲欧美日韩高清在线视频| 天堂√8在线中文| a级一级毛片免费在线观看| 久久久国产精品麻豆| 亚洲国产日韩欧美精品在线观看 | 国产伦在线观看视频一区| 亚洲av一区综合| 757午夜福利合集在线观看| 欧美在线一区亚洲| 网址你懂的国产日韩在线| 免费看十八禁软件| 日本黄色视频三级网站网址| 男人和女人高潮做爰伦理| 一进一出抽搐gif免费好疼| 国产美女午夜福利| 精品人妻1区二区| 老司机午夜福利在线观看视频| 啦啦啦免费观看视频1| 99久久成人亚洲精品观看| 男女床上黄色一级片免费看| 窝窝影院91人妻| 中文字幕熟女人妻在线| 搞女人的毛片| 欧美在线一区亚洲| 麻豆成人av在线观看| 高清毛片免费观看视频网站| 老汉色∧v一级毛片| 国产精品美女特级片免费视频播放器| 午夜福利在线在线| 成年女人毛片免费观看观看9| 男人舔女人下体高潮全视频| 高清在线国产一区| 欧美黄色片欧美黄色片| 成人一区二区视频在线观看| or卡值多少钱| 亚洲最大成人中文| 欧美xxxx黑人xx丫x性爽| 国产午夜福利久久久久久| 亚洲成人久久爱视频| 午夜影院日韩av| 欧美另类亚洲清纯唯美| 久久久久久久久大av| 亚洲欧美日韩高清在线视频| 九九热线精品视视频播放| 国产精品亚洲美女久久久| 91久久精品国产一区二区成人 | 久久香蕉国产精品| 亚洲无线观看免费| 母亲3免费完整高清在线观看| 99视频精品全部免费 在线| 久99久视频精品免费| 无遮挡黄片免费观看| 国产日本99.免费观看| 国产精品久久久久久亚洲av鲁大| 免费看日本二区| 九九热线精品视视频播放| 国产精品一区二区三区四区久久| 丁香六月欧美| 一个人免费在线观看电影| 亚洲av二区三区四区| 成年人黄色毛片网站| 亚洲av成人不卡在线观看播放网| 最新在线观看一区二区三区| 日本 av在线| 高潮久久久久久久久久久不卡| 精品久久久久久久毛片微露脸| 成年版毛片免费区| 青草久久国产| 好男人电影高清在线观看| 国产v大片淫在线免费观看| 久久精品国产清高在天天线| 丁香六月欧美| 亚洲欧美一区二区三区黑人| 又紧又爽又黄一区二区| 精品熟女少妇八av免费久了| 亚洲欧美日韩无卡精品| 久久国产精品人妻蜜桃| 亚洲无线在线观看| 成年版毛片免费区| 午夜精品久久久久久毛片777| 亚洲自拍偷在线| 中文在线观看免费www的网站|