• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-step self-calibrating generalized phase-shifting interferometry

    2022-03-12 07:44:22YuZhang張宇
    Chinese Physics B 2022年3期
    關(guān)鍵詞:張宇

    Yu Zhang(張宇)

    1Institute of Materials Physics,College of Science,Northeast Electric Power University,Jilin 132012,China

    2State Key Laboratory of Applied Optics,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130022,China

    Keywords: self-calibrating generalized phase-shifting interferomertry,phase shift,difference interferograms,modulation amplitude

    1. Introduction

    Self-calibrating generalized phase-shifting interferometry(SGPSI) is a technique for extracting the phase map from three or more phase-shifting interferograms without knowing the phase shifts.[1]It removes the restriction that accurate phase-shifting interferometry (PSI) needs accurate phase shifter,thus,it has been widely used in high precision optical metrology. Over the past few decades, many ingenious SGPSIs have been developed,and they can be divided into iterative and non-iterative ones.[2]

    Among the iterative SGPSIs,an overdetermined approach that uses least-squares algorithms has been studied extensively for randomly phase-shifting interferograms. In 2004, Wang proposed an advanced iterative algorithm (AIA), which can obtain accurate phase distribution from more than three randomly phase-shifting interferograms.[3]It resolves the limitation of the existing iterative phase-shifting algorithms(PSAs)and separates the frame-to-frame iteration from the pixel-topixel iteration. After that,many iterative PSAs based on AIA were proposed. In 2008,a new generalized iterative algorithm for extracting phase distribution from randomly and spatially nonuniform phase-shifting interferograms was proposed,it requires only four randomly phase-shifting interferograms, and finally an accurate phase map is extracted by reducing the effects of transition and tilt errors.[4]In 2019,Chenet al.evaluated the performance of AIA,and proposed an enhanced AIA(eAIA)which can control the phase shifts,frame numbers and suppress noise.[5]In general, the iterative SGPSI is relatively accurate, but the convergence of the algorithm requires more time. Moreover,a moderate number of interferograms are required to ensure high performance.

    To save time,lots of non-iterative SGPSIs have been developed. In 2011, Vargaset al.designed a well-evaluated PSI based on the principal component analysis(PCA),which can obtain two orthogonal signals by PCA. It is very fast and requires very low computational requirements, so it can be used for very large images or very large image sets.[6]In 2015, Denget al.presented an advanced principal component analysis method, two difference maps were obtained by a simple subtraction operation easily, and then the phase can be calculated by the traditional PCA.[7]From 2016 to 2017, Yatabeet al. proposed a series of PSAs based on PCA which can accurately extract the phase by integrating spatial information.[8-10]PCA is very fast, however, it needs to subtract the background intensity by acquiring more than three phase-shifting interferograms, and the phase shift should be well distributed between 0 and 2π. In addition, PCA needs to confirm the sign of the phase by extra method. In 2014,Wanget al. designed an advanced Gram-Schmidt orthonormalization algorithm(GS3),it needs only three phase-shifting interferograms. Although it costs less time than PCA, its accuracy is lower than PCA with more than three phase-shifting interferograms.[11]Non-iterative SGPSIs cost less time,however,their accuracies are lower than that of iterative SGPSIs.

    Note that all these SGPSIs here can only deal with accuracy or computational time problem, and they are hard to get high accuracy and high speed at the same time. In order to balance the speed and accuracy,it is essential to study the fast and accurate SGPSI.

    In this paper,a fast and accurate three-step SGPSI to cope with the above problems is proposed.We first discuss the principles of the proposed method and then give its verification by computer simulations and experiments. Moreover, we compare the proposed method with AIA, PCA and GS3 to verify its outstanding performance.

    2. Algorithm description

    The expression of theithframe phase-shifting interferogram is

    whereai(x,y) andbi(x,y) respectively represent the background intensity and modulation amplitude of the interferograms,φ(x,y)is the tested phase,θiis the phase shift,irepresents the image index(i=1, 2, 3), and the size of interferograms isNx×Ny.θ1can be considered to be zero without losing generality. The spatial coordinates have been omitted below for convenience.

    Firstly, we implement the subtraction between the 1stphase-shifting interferogram and theithphase-shifting interferogram. Generally for the background intensity and modulation amplitude distributions, both the fluctuation between different interferograms and the non-uniformity between different pixels exist,however,the subtraction can still filter most of the background intensity. Hence,for simplicity,we assume thatai(x,y)andbi(x,y)are irrelevant to the image index,and only relevant to the pixel position in the subtraction process.

    We calculate the intensity of difference maps between the 1stphase-shifting interferogram and theithphase-shifting interferogram as

    where‖·‖represents the 2-norm.

    Here ?D1and ?D2can be considered as two phase-shifting interference signals with no background intensity,Δis the phase shift,andcrepresents the new modulation amplitude. The difference betweenφandΦ′is a constant,which does not affect the phase distribution,soΦ′can express the tested phase. Because of the fluctuation,non-uniformity of the original modulation amplitudeband the approximation error of Eq.(6),the new modulation amplitudecis both relevant to the pixel position and image index. Hence Eqs. (7) and (8) are rewritten as

    wherem=1, 2 denotes the index of the new phase-shifting interference signals,Δ1=0 andΔ2=Δ.

    To depress the noise, we use the mean of the adjacent pixels to generate the new pixel, then the new phase-shifting interferograms are generated. The distribution diagram of the adjacent pixels is shown in Fig. 1, andMis the number of adjacent pixels.

    Fig.1. Distribution diagram of the adjacent pixels.

    Note that the boundary of new phase-shifting interference signals must be extended properly so thatMadjacent pixels are valid, such as ?Dm(Nx+1,Ny) is out of the range.According to the above eight situations in Fig. 1, we extend the size of the normalized difference maps fromNx×Nyto(Nx+4)×(Ny+4). The values of the 1stand the 2ndrows for the extended maps with the size of(Nx+4)×(Ny+4)are the same as that of the 1strow for the original maps with the size ofNx×Ny. The values of the(Nx+3)thand the(Nx+4)throws for the extended maps are the same as that of theNthxrow for the original maps. Moreover, the values of the 3rdto the(Nx+2)throws for the extended maps are the same as that of the 1stto the (Nx)throws for the original maps. Finally, the extension of the column is the same as the row.

    The expression of the new phase-shifting interferograms can be written as

    where std(·) denotes the standard deviation, and mean(·) denotes the mean value.The normalization to the mean can make this quantity independent of different measurements. According to Eq.(12),CV can be used as a parameter to evaluate the variation of the modulation amplitudeη.ηwill be irrelevant to the pixel position and image index ideally. However, because of the fluctuation, non-uniformity of the original modulation amplitudeb, the approximation error of Eq. (6) and noise depression error,ηis both relevant to the pixel position and image index. Althoughηis not a constant for different pixel positions,the difference between different pixels will also be very small. Hence,when the phase shiftδis accurate,ηis also accurate,and CV will be minimum,so the phase shiftδcan be determined through searching the minimum of CV,

    In order to further save time,a limited of pixels with equal interval can be chosen to take part in the searching process.

    3. Simulation verification

    The validity of the proposed method have been verified by the numerical simulations. In the following,all computations are performed with the CPU of Intel(R) Core(TM) i5-8265U and the 8 GB memory, and we use the Matlab software for coding.

    Figures 2(m)and 2(n)present the new phase-shifting interferograms after suppressing the noise as Fig. 1 (M=25),and we can see that the new phase-shifting interferograms are more clear than the original phase-shifting interferograms.After calculating the CV of the modulation amplitude with different phase shifts(the number of chosen samples is 41×41),Fig. 2(o) is obtained, and the phase shift between Figs. 2(m)and 2(n)corresponding to the valley can be just used to rebuild the phase map. The rebuilt phase map using the found phase shift and phase error map are given in Fig. 2(p) (note that,there are two steps to obtain the phase error map, firstly, we implement the subtraction between the rebuilt phase map and theoretical phase map,then we subtract the minimum from the existing phase error map),and the results of AIA method and PCA/GS3 method are shown in Figs.2(q)and 2(r). We calculate the RMS of phase error and computational time,as listed in Table 1. From Figs. 2(p)-2(r) and Table 1, it can be seen that the accuracy of the proposed method is higher than that of AIA, PCA and GS3, and it costs relatively less time, the accuracy of PCA and GS3 are same,but GS3 costs less time.

    We also study the effect of noise to the optimalM, and the number of chosen pixels is 41×41. Figure 2(s)shows the results, and it can be seen that, if the SNR is 20 dB,whenMis increasing,the phase error is decreasing,and for other situations,whenMis equal to 2,the phase error is maximum due to the asymmetric error of the adjacent pixels(see Fig.1). In fact,for any level of noise,the asymmetric error always exists whenMis equal to 2,however,the effect of 20 dB of noise is larger than that of the asymmetric error. In the actual experiments,the level of noise is unknown,so it is best not to setMequal to 2 to avoid the effect of asymmetric error. In addition,if the SNR is greater than 30 dB, the phase error whenMis equal to 3 is minimum. Therefore,it can be concluded that the optimalMis 25 when the SNR is 20 dB,and the optimalMis 3 if the SNR is greater than 30 dB.Although the optimalMis different for different levels of noise,whenMis equal to 3,the phase error with 20 dB noise is also relatively small,therefore,3 can be chosen as the commonMin different cases.

    Fig. 2. Illustration of the proposed method with simulated circular fringes. (a) and (b) Background intensity and modulation amplitude maps. (c)Theoretical phase map. (d)-(f)Three simulated interferograms(size: 401×401)with phase shifts θ =(0,1,3)rad. (g)and(h)Normalized difference signals as Eqs. (7) and (8). (i) and (j) RMS phase errors and computational time with different M. (k) and (l) RMS phase errors and computational time with different number of chosen pixels. (m)and(n)New phase-shifting interference signals of Eq.(10). (o)Coefficients of variation calculated by Eq.(12). (p)-(r)Reconstructed phase maps and phase error maps from the proposed,AIA,and PCA/GS3 methods,respectively. (s)RMS phase errors with different M for different levels of noise.

    It is interesting to analyze the performance of the proposed method,AIA,PCA and GS3 with various phase shifts.For the proposed method,Mis chosen as 25, the number of chosen pixels is 41×41, and other conditions remain unchanged as the circular fringes. The phase shifts of the 1stand 2ndphase-shifting interference signals remain the same, and the phase shift of the 3rdphase-shifting signal is changed from 1.3 rad to 6.0 rad. Figure 3(a)shows the results,and it can be seen that the phase error varies with the change of the phase shift with regard to different methods,and the closer to 1.3 rad and 6 rad,the larger the RMS phase error is,when the practical phase shift(θ3-θ2)/2 is close to 0 rad orπrad,and the RMS phase error will be significantly large.In addition,the range of phase shift of the proposed method is larger than that of other methods. In the whole range of phase shift, the accuracy of the proposed method is higher than that of other methods,and the accuracies of AIA and PCA/GS3 are similar for most of the phase shifts. Moreover, we also simulate the situation of small phase shifts,such as the phase shifts are set as 0,0.1 rad and 0.2 rad. When the SNR of noise is greater than 50 dB,all methods work,otherwise,they do not work because of the large noise. In the actual experiment, the noise distribution is more complex and must exist, so very small phase shifts are not suitable for general methods, including the proposed method. In the future work,we may find or study a method to slove this problem.[12]

    We also test the proposed method at different levels of noise in Fig. 3(b), compared with the current well-evaluated SGPSI. The accuracy of the proposed method is higher than that of AIA, PCA/GS3, and they are almost stable for different levels of noise. If the SNR of noise is less than 40 dB,the RMS phase error of AIA,PCA/GS3 is decreasing with the decrease of the noise, and if the SNR of noise is greater than 40 dB,they are all stable. Moreover,the RMS phase error of PCA/GS3 is large as AIA when the noise is large,but it can be similar to the proposed method if the SNR of noise is greater than 40 dB.From the above analysis,we can conclude that the proposed method is more insensitive to the noise,and suitable for any levels of noise.

    As mentioned before Eq. (6), the proposed method requires more than one fringe in the interferograms. In fact, if the number of fringes is less than one,the phase error may be relatively large, but it can also reconstruct the phase distribution. To verify this point, we compute the RMS phase errors with different number of fringes from 0 to 4, and the other parameters are same as Figs. 2(d)-2(f). Figure 3(c) presents the results,the RMS phase errors of all methods are almost invariable if the number of fringes is larger than one. However,when there is less than one fringe in the interferograms, the performance of AIA, PCA/GS3 gets worse. By contrast, the proposed method always performs well.

    Fig. 3. Comparisons on the RMS phase errors between different methods. (a) RMS phase errors with different phase shifts θ3 (θ1 =0,θ2=1 rad). (b)RMS phase errors with different levels of noise. (c)RMS phase errors with different number of fringes.

    We also simulate the complex fringes,the phase is set asφ(x,y)=4x2+4y2+4x3+4y3+4peaks(401),other conditions are the same as the circular fringes,and finally the conclusion is the same as the circular fringes. As shown in Fig.4 and Table 1,we can conclude that the proposed method is accurate and efficient for different kinds of fringes.

    Fig. 4. Illustration of the proposed method with simulated complex fringes. (a)-(c) Three simulated interferograms (size: 401×401) with phase shifts θ =(0,1,3) rad. (d) Theoretical phase map. (e) and (f) Normalized difference signals as Eqs. (7) and (8). (g) and (h) New phase-shifting interference signals of Eq.(10). (i)Coefficients of variation calculated by Eq.(12). (j)-(l)Reconstructed phase maps and phase error maps from the proposed,AIA,and PCA/GS3 methods,respectively. (m)RMS phase errors with different M for different levels of noise.

    4. Demonstration with experimental data

    The performance of the proposed method is also verified by the experimental interferograms with different kinds of fringes. Four phase-shifted interferograms with the phase shifts 0,π/2,π,and 3π/2 are acquired by the snapshot phaseshifting interferometer,the phase shift error will be very small because only a single image snapshotted is extracted by the polarization camera, and the highly accurate phase extracted by standard 4-step PSI can be set as the reference phase. According to the conclusion of above simulations, the number of chosen pixels to search the minimum CV with different phase shifts is set as 41×41. The interferograms with circular fringes are shown in Figs. 5(a)-5(d), and the reference phase map is shown in Fig.5(e). The normalized difference signals without the background intensity are presented in Figs. 5(f)-5(g),the curve of RMS phase errors with variousMis plotted in Fig.5(h),and it can be seen that,whenMis equal to 3,the RMS phase error is minimum,and it is the same as the simulation with the SNR of noise greater than 30 dB.Therefore,3 can be chosen as the optimalM. The new phase-shifting interferograms after suppressing the noise are presented in Figs.5(i)and 5(j), after calculating the CV of the modulation amplitude with different phase shifts(Fig.5(j)),the phase shift between the new phase-shifting interferograms corresponding to the valley can be just used to reconstruct the phase map, the difference map between the reference and rebuilt phase maps is regarded as the phase error map,and then subtract the minimum from the existing phase error map,the phase and phase error maps are shown in Fig. 5(l), and the results of AIA,PCA/GS3 are given in Figs.5(m)and 5(n).

    Fig. 5. Experimental phase reconstruction with circular fringes. (a)-(d) Four interferograms (size: 401×401) with phase shifts θ =(0,π/2,π,3π/2)rad. (e)Reference phase map calculated by standard 4-step PSI.(f)and(g)Normalized difference signals as Eqs.(7)and(8).(h)RMS phase errors with different M. (i)and(j)New phase-shifting interference signals of Eq.(10). (k)Coefficients of variation calculated by Eq.(12). (l)-(n)Reconstructed phase maps and phase error maps from the proposed,AIA,and PCA/GS3 methods.

    Fig.6. Experimental phase reconstruction with complex fringes. (a)-(d)Four interferograms(size: 201×201)with phase shifts θ =(0,π/2,π, 3π/2) rad. (e) Reference phase map calculated by standard 4-step PSI. (f) and (g) Normalized difference signals as Eqs. (7) and (8). (h)RMS phase errors with different M. (i)and(j)New phase-shifting interference signals of Eq.(10). (k)Coefficients of variation calculated by Eq.(12). (l)-(n)Reconstructed phase maps and phase error maps from the proposed,AIA,and PCA/GS3 methods.

    We also test the proposed method, AIA, PCA and GS3 with experimental complex fringes from a deformable mirror,as shown in Fig.6,where the optimalMis also 3.The RMS of phase errors and computational time of different methods are listed in Table 1. From Figs. 5, 6 and Table 1, ifM=1, the RMS phase error is so large because the phase map after unwrapping is unsmooth,so the suppression of noise is very important,and the RMS phase errors of AIA,PCA and GS3 are also large due to the same reason as the proposed method with the situation ofM=1. For the experiment,whether the background intensity and modulation amplitude distributions or the noise distribution may be more complex than the simulation,and PCA and AIA generally need more than three interferograms to obtain good performance,hence when the conditions are more complex, they do not work. However, the proposed method is suitable for different experimental conditions,and it can obtain highly accurate phase map and cost relatively less time simultaneously with only three randomly phase-shifting interferograms.

    Table 1. RMS phase errors and computational time via proposed,AIA,PCA and GS3 methods.

    5. Conclusions

    In conclusion,an accurate and timesaving three-step selfcalibrating phase-shifting interferometry is proposed. Both simulated and experimental results indicate that the proposed method can reconstruct the accurate phase map with high efficiency, even compared with the well-evaluated SGPSIs-AIA,PCA and GS3. Moreover,the proposed method performs well in different phase shifts,levels of noise and number of fringes.Lastly, the proposed method is suitable for different kinds of fringes and experimental conditions. We expect this method to be widely used in the future.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 61905039), Jilin Scientific and Technological Development Program, China(Grant No. 20190701018GH), Education Department of Jilin Province,China(Grant No.JJKH20190691KJ),and State Key Laboratory of Applied Optics.

    猜你喜歡
    張宇
    張宇作品
    Characteristics of plasma in a novel laserassisted pulsed plasma thruster
    有點“二”的女生也很可愛
    The ablation characteristics of laser-assisted pulsed plasma thruster with metal propellant
    娛樂圈神秘貴婦,拒絕劉德華后將丈夫捧成巨星
    Experimental investigation on the plasma morphology of ablative pulsed plasma thruster with tongue-shaped and flared electrodes
    Investigation on plasma characteristics in a laser ablation pulsed plasma thruster by optical emission spectroscopy
    連續(xù)流動
    智富時代(2015年9期)2016-01-14 06:47:34
    張宇背后的大女人——十一郎
    張宇背后的大女人
    ——十一郎
    欧美色视频一区免费| 一a级毛片在线观看| 在线观看66精品国产| 美女视频免费永久观看网站| 国产精品影院久久| 欧美黄色片欧美黄色片| 满18在线观看网站| 中国美女看黄片| 久久久国产成人免费| 亚洲精品乱久久久久久| 午夜免费鲁丝| 亚洲专区国产一区二区| 一二三四社区在线视频社区8| 黄色视频不卡| 日本a在线网址| 国产精品 国内视频| 亚洲精华国产精华精| 99精品久久久久人妻精品| 黄色片一级片一级黄色片| 大码成人一级视频| 黄色丝袜av网址大全| 欧美最黄视频在线播放免费 | 中国美女看黄片| 校园春色视频在线观看| 欧美不卡视频在线免费观看 | 久久人妻福利社区极品人妻图片| 免费不卡黄色视频| 一本大道久久a久久精品| 亚洲伊人色综图| 国产精品.久久久| 国产熟女午夜一区二区三区| 精品久久久久久久久久免费视频 | 精品人妻1区二区| 国产午夜精品久久久久久| 成年人黄色毛片网站| 亚洲avbb在线观看| 成人精品一区二区免费| 99国产极品粉嫩在线观看| 日韩熟女老妇一区二区性免费视频| 欧美色视频一区免费| 高潮久久久久久久久久久不卡| 国产亚洲一区二区精品| 亚洲熟妇中文字幕五十中出 | 亚洲欧美日韩高清在线视频| 老司机靠b影院| 亚洲熟妇中文字幕五十中出 | 日日爽夜夜爽网站| www.自偷自拍.com| 国产精品av久久久久免费| 国产精品秋霞免费鲁丝片| 啦啦啦视频在线资源免费观看| 12—13女人毛片做爰片一| 一二三四社区在线视频社区8| 成人手机av| 丰满迷人的少妇在线观看| 少妇 在线观看| 国产不卡一卡二| 69av精品久久久久久| 人妻久久中文字幕网| 在线观看舔阴道视频| 亚洲精品在线观看二区| 叶爱在线成人免费视频播放| 久久久久国产一级毛片高清牌| 两性午夜刺激爽爽歪歪视频在线观看 | 精品久久蜜臀av无| 欧美激情久久久久久爽电影 | 99久久人妻综合| 露出奶头的视频| 精品无人区乱码1区二区| 国产99久久九九免费精品| 每晚都被弄得嗷嗷叫到高潮| 久久国产精品大桥未久av| av片东京热男人的天堂| 成年版毛片免费区| 18禁国产床啪视频网站| 在线观看日韩欧美| 午夜91福利影院| 亚洲美女黄片视频| 久久亚洲真实| 男女高潮啪啪啪动态图| 老汉色∧v一级毛片| 欧美激情极品国产一区二区三区| 精品无人区乱码1区二区| 精品久久久精品久久久| 人妻 亚洲 视频| 一级,二级,三级黄色视频| 高清在线国产一区| 日韩中文字幕欧美一区二区| 91精品三级在线观看| 亚洲,欧美精品.| 老鸭窝网址在线观看| 法律面前人人平等表现在哪些方面| 欧美日韩av久久| av视频免费观看在线观看| 又大又爽又粗| 黄色毛片三级朝国网站| 十八禁高潮呻吟视频| 丝袜美腿诱惑在线| 成熟少妇高潮喷水视频| 午夜两性在线视频| 女人久久www免费人成看片| 精品一区二区三区四区五区乱码| 在线观看免费高清a一片| 丝瓜视频免费看黄片| 大陆偷拍与自拍| 亚洲精品乱久久久久久| 一级黄色大片毛片| 欧美激情极品国产一区二区三区| 中文字幕色久视频| 麻豆乱淫一区二区| 午夜福利免费观看在线| 自拍欧美九色日韩亚洲蝌蚪91| 成年版毛片免费区| 男女床上黄色一级片免费看| 国产成人免费观看mmmm| 国产精品免费视频内射| av有码第一页| 大片电影免费在线观看免费| 一区二区三区激情视频| 午夜福利在线免费观看网站| 亚洲精品国产一区二区精华液| a级毛片黄视频| 欧美午夜高清在线| 男人操女人黄网站| 亚洲 欧美一区二区三区| 麻豆成人av在线观看| 99re6热这里在线精品视频| 99热国产这里只有精品6| 丝袜美足系列| 国产主播在线观看一区二区| 91国产中文字幕| 日日夜夜操网爽| 男女午夜视频在线观看| 色精品久久人妻99蜜桃| 丁香六月欧美| 久久精品熟女亚洲av麻豆精品| 一边摸一边抽搐一进一小说 | 中文字幕另类日韩欧美亚洲嫩草| 日韩欧美在线二视频 | 极品人妻少妇av视频| 高清欧美精品videossex| 精品视频人人做人人爽| 国产精华一区二区三区| 亚洲av片天天在线观看| 久久精品熟女亚洲av麻豆精品| 一区二区三区精品91| 国产成人免费无遮挡视频| av中文乱码字幕在线| 欧美在线一区亚洲| 看免费av毛片| 搡老岳熟女国产| 亚洲人成电影观看| 国精品久久久久久国模美| 国产野战对白在线观看| 大香蕉久久成人网| 久久精品亚洲精品国产色婷小说| 日韩欧美一区视频在线观看| 18禁黄网站禁片午夜丰满| 热99国产精品久久久久久7| 两个人免费观看高清视频| 香蕉国产在线看| 成人精品一区二区免费| 少妇被粗大的猛进出69影院| 免费看十八禁软件| 搡老熟女国产l中国老女人| 在线观看免费视频网站a站| 欧美乱妇无乱码| 在线国产一区二区在线| 国产精品国产av在线观看| 国产黄色免费在线视频| 9191精品国产免费久久| 91麻豆精品激情在线观看国产 | 少妇猛男粗大的猛烈进出视频| 一级a爱片免费观看的视频| 交换朋友夫妻互换小说| 看片在线看免费视频| 成人特级黄色片久久久久久久| 国产精品免费一区二区三区在线 | 一级毛片女人18水好多| 国产不卡一卡二| 男人操女人黄网站| 国产精品98久久久久久宅男小说| 大香蕉久久网| 在线播放国产精品三级| 极品少妇高潮喷水抽搐| 午夜福利在线观看吧| 亚洲色图综合在线观看| 精品一区二区三卡| 国产麻豆69| 9热在线视频观看99| 天堂动漫精品| 午夜成年电影在线免费观看| 纯流量卡能插随身wifi吗| а√天堂www在线а√下载 | 亚洲av欧美aⅴ国产| 亚洲色图综合在线观看| 热99久久久久精品小说推荐| 日本撒尿小便嘘嘘汇集6| 国产精品免费视频内射| 91av网站免费观看| 91老司机精品| 亚洲精品久久成人aⅴ小说| 精品熟女少妇八av免费久了| 欧美成人午夜精品| 性色av乱码一区二区三区2| 精品第一国产精品| 一区福利在线观看| 亚洲成a人片在线一区二区| 少妇 在线观看| 亚洲人成77777在线视频| 丰满人妻熟妇乱又伦精品不卡| 伊人久久大香线蕉亚洲五| 久久久久久久精品吃奶| 精品国产国语对白av| 国产欧美日韩一区二区三| 色婷婷av一区二区三区视频| 丰满饥渴人妻一区二区三| 欧美日韩亚洲综合一区二区三区_| 黑人猛操日本美女一级片| www.自偷自拍.com| 亚洲色图 男人天堂 中文字幕| 欧美乱色亚洲激情| videosex国产| 国产成人av激情在线播放| 免费看a级黄色片| 欧美亚洲 丝袜 人妻 在线| 黑人操中国人逼视频| 宅男免费午夜| 国产精品免费大片| 午夜影院日韩av| 香蕉国产在线看| 又黄又爽又免费观看的视频| 女人久久www免费人成看片| 国产精品永久免费网站| 99re在线观看精品视频| 99热网站在线观看| 好男人电影高清在线观看| 久久精品成人免费网站| 香蕉久久夜色| tube8黄色片| 久久九九热精品免费| 亚洲自偷自拍图片 自拍| 亚洲精品美女久久av网站| 日本vs欧美在线观看视频| 国产精品一区二区精品视频观看| 国产欧美亚洲国产| 久久人妻av系列| 色在线成人网| 日本vs欧美在线观看视频| 动漫黄色视频在线观看| 日韩人妻精品一区2区三区| 精品高清国产在线一区| 日本精品一区二区三区蜜桃| 久久久久精品国产欧美久久久| 免费看a级黄色片| 制服诱惑二区| 一二三四在线观看免费中文在| 国产一区二区三区在线臀色熟女 | 久久久久久免费高清国产稀缺| 久久精品国产亚洲av高清一级| 看片在线看免费视频| 1024香蕉在线观看| 国产男女内射视频| 天天躁狠狠躁夜夜躁狠狠躁| 久99久视频精品免费| 在线观看免费视频日本深夜| 国产成人精品无人区| 亚洲国产欧美网| 日韩欧美三级三区| 亚洲欧洲精品一区二区精品久久久| 免费黄频网站在线观看国产| 国产成人一区二区三区免费视频网站| 激情视频va一区二区三区| 高清黄色对白视频在线免费看| 在线国产一区二区在线| 国产精品.久久久| 最新美女视频免费是黄的| 亚洲第一av免费看| 夜夜夜夜夜久久久久| 国产精品久久久久久精品古装| 大型av网站在线播放| 国产成人精品久久二区二区免费| 欧美黑人欧美精品刺激| av天堂久久9| 国产又色又爽无遮挡免费看| 欧美丝袜亚洲另类 | 亚洲中文字幕日韩| 又大又爽又粗| 亚洲精品成人av观看孕妇| 国产精品一区二区在线观看99| 精品一区二区三区av网在线观看| 日韩欧美三级三区| 成人18禁高潮啪啪吃奶动态图| 精品国产一区二区三区四区第35| 可以免费在线观看a视频的电影网站| 自线自在国产av| 国产精华一区二区三区| 国产亚洲精品久久久久久毛片 | 动漫黄色视频在线观看| 黄片大片在线免费观看| 又紧又爽又黄一区二区| а√天堂www在线а√下载 | 欧美精品一区二区免费开放| 一边摸一边做爽爽视频免费| 日韩大码丰满熟妇| 麻豆成人av在线观看| 男女下面插进去视频免费观看| 窝窝影院91人妻| 欧美黄色片欧美黄色片| 国产日韩一区二区三区精品不卡| 另类亚洲欧美激情| 国产精品免费大片| 欧美黑人精品巨大| 亚洲精品国产一区二区精华液| 久久国产乱子伦精品免费另类| 精品熟女少妇八av免费久了| 中文字幕制服av| 桃红色精品国产亚洲av| 欧美成人午夜精品| 超色免费av| 一级a爱视频在线免费观看| 亚洲七黄色美女视频| 久久精品国产综合久久久| 久久香蕉国产精品| 日日爽夜夜爽网站| 五月开心婷婷网| 免费观看精品视频网站| 久久久水蜜桃国产精品网| 久久影院123| 在线观看免费视频网站a站| 亚洲第一欧美日韩一区二区三区| 巨乳人妻的诱惑在线观看| 国产97色在线日韩免费| 国产一区有黄有色的免费视频| 亚洲人成伊人成综合网2020| 国产深夜福利视频在线观看| 亚洲人成电影免费在线| 自线自在国产av| 欧美成狂野欧美在线观看| 亚洲成人手机| 久久中文看片网| 亚洲综合色网址| 成人av一区二区三区在线看| 久久亚洲真实| 91精品国产国语对白视频| 久久精品熟女亚洲av麻豆精品| 如日韩欧美国产精品一区二区三区| 欧美日韩国产mv在线观看视频| 他把我摸到了高潮在线观看| 极品人妻少妇av视频| 一级a爱视频在线免费观看| 女性生殖器流出的白浆| 欧美另类亚洲清纯唯美| 日韩免费av在线播放| 亚洲av欧美aⅴ国产| 热re99久久国产66热| 欧美午夜高清在线| 国产麻豆69| 欧美成人午夜精品| 欧美日韩乱码在线| 久久人人爽av亚洲精品天堂| 老熟女久久久| 18禁裸乳无遮挡免费网站照片 | 国产精品乱码一区二三区的特点 | 亚洲成人免费av在线播放| 日韩有码中文字幕| 亚洲 国产 在线| 一级作爱视频免费观看| 大型黄色视频在线免费观看| 99热网站在线观看| 搡老岳熟女国产| 91麻豆av在线| av视频免费观看在线观看| 国内久久婷婷六月综合欲色啪| 久热这里只有精品99| www.熟女人妻精品国产| 国产精品免费一区二区三区在线 | 亚洲片人在线观看| 久久ye,这里只有精品| 亚洲成人国产一区在线观看| 欧美久久黑人一区二区| 91精品三级在线观看| 精品国内亚洲2022精品成人 | 精品第一国产精品| 亚洲男人天堂网一区| 国产高清videossex| 亚洲第一av免费看| 色尼玛亚洲综合影院| 国产蜜桃级精品一区二区三区 | 亚洲精品美女久久av网站| 国产精品电影一区二区三区 | 免费在线观看视频国产中文字幕亚洲| 高清黄色对白视频在线免费看| 手机成人av网站| 99国产精品一区二区蜜桃av | 久久性视频一级片| 色婷婷久久久亚洲欧美| 99在线人妻在线中文字幕 | 天堂动漫精品| 亚洲精品国产色婷婷电影| 侵犯人妻中文字幕一二三四区| 男女之事视频高清在线观看| 欧美精品人与动牲交sv欧美| 制服人妻中文乱码| 国产不卡一卡二| 操美女的视频在线观看| 热re99久久精品国产66热6| 免费观看人在逋| 亚洲色图综合在线观看| 久久精品国产清高在天天线| 精品久久蜜臀av无| 亚洲 国产 在线| 男人的好看免费观看在线视频 | 人人澡人人妻人| 午夜福利视频在线观看免费| 免费观看a级毛片全部| 精品少妇一区二区三区视频日本电影| 俄罗斯特黄特色一大片| 欧美中文综合在线视频| 精品亚洲成a人片在线观看| 国产精品成人在线| 97人妻天天添夜夜摸| 免费观看人在逋| 一区二区三区国产精品乱码| 国产蜜桃级精品一区二区三区 | 搡老岳熟女国产| av片东京热男人的天堂| 久久人人97超碰香蕉20202| 亚洲人成电影观看| 老熟妇乱子伦视频在线观看| 91av网站免费观看| 精品国产国语对白av| 久久香蕉国产精品| av一本久久久久| 大型黄色视频在线免费观看| 一区二区三区精品91| 老熟妇乱子伦视频在线观看| 亚洲精品中文字幕一二三四区| 精品卡一卡二卡四卡免费| 亚洲av美国av| 可以免费在线观看a视频的电影网站| 成人18禁高潮啪啪吃奶动态图| 两个人免费观看高清视频| 两个人看的免费小视频| 色94色欧美一区二区| 在线观看舔阴道视频| 亚洲精品中文字幕一二三四区| 国产精品98久久久久久宅男小说| 国产av又大| 国产视频一区二区在线看| 在线观看免费日韩欧美大片| 日韩免费av在线播放| 久久久久久亚洲精品国产蜜桃av| 亚洲片人在线观看| 亚洲精品久久午夜乱码| 国产精品av久久久久免费| 一边摸一边抽搐一进一出视频| 在线观看午夜福利视频| 国产高清视频在线播放一区| 精品一区二区三区四区五区乱码| 一a级毛片在线观看| 久久人妻av系列| 五月开心婷婷网| 又黄又粗又硬又大视频| 日韩大码丰满熟妇| 韩国精品一区二区三区| 老司机福利观看| 国产欧美日韩一区二区三| 亚洲色图综合在线观看| 午夜亚洲福利在线播放| 一边摸一边做爽爽视频免费| 三级毛片av免费| 国产又爽黄色视频| 国产日韩一区二区三区精品不卡| 人人妻人人澡人人爽人人夜夜| 老司机亚洲免费影院| 久久久久国内视频| 91字幕亚洲| 少妇的丰满在线观看| 国产不卡av网站在线观看| 脱女人内裤的视频| 一夜夜www| 亚洲熟女毛片儿| 国产成人一区二区三区免费视频网站| 国产不卡一卡二| 精品一区二区三区av网在线观看| 国产精品av久久久久免费| 国产精品一区二区精品视频观看| 桃红色精品国产亚洲av| 日韩制服丝袜自拍偷拍| 国产成人啪精品午夜网站| 一本一本久久a久久精品综合妖精| 在线国产一区二区在线| av超薄肉色丝袜交足视频| 亚洲精品成人av观看孕妇| 国产精品美女特级片免费视频播放器 | xxx96com| 国产有黄有色有爽视频| 中文亚洲av片在线观看爽 | 久热这里只有精品99| 欧美最黄视频在线播放免费 | 国产精品成人在线| 亚洲美女黄片视频| 成人18禁高潮啪啪吃奶动态图| 午夜福利免费观看在线| 国产精品一区二区精品视频观看| 免费在线观看黄色视频的| 日本欧美视频一区| 久久久久久久久免费视频了| 精品国产乱码久久久久久男人| 亚洲精品成人av观看孕妇| 午夜老司机福利片| 黄色女人牲交| 亚洲成人手机| 亚洲精品自拍成人| 亚洲国产欧美日韩在线播放| 777米奇影视久久| 久久中文看片网| 在线观看舔阴道视频| 在线观看午夜福利视频| 亚洲精品在线观看二区| 成年女人毛片免费观看观看9 | 亚洲人成电影观看| 韩国精品一区二区三区| 高清在线国产一区| 老司机影院毛片| 少妇 在线观看| 一区在线观看完整版| 老汉色∧v一级毛片| 午夜精品久久久久久毛片777| 久久国产乱子伦精品免费另类| 高清在线国产一区| 人人妻人人爽人人添夜夜欢视频| 免费在线观看日本一区| 久久中文字幕一级| 久久久久久免费高清国产稀缺| 欧美黄色淫秽网站| 亚洲,欧美精品.| 欧美乱码精品一区二区三区| 欧美亚洲 丝袜 人妻 在线| 女人高潮潮喷娇喘18禁视频| 成人18禁高潮啪啪吃奶动态图| 精品国产一区二区三区久久久樱花| 国产亚洲av高清不卡| 日本撒尿小便嘘嘘汇集6| 国产不卡av网站在线观看| 久久精品国产综合久久久| 99riav亚洲国产免费| 极品少妇高潮喷水抽搐| xxx96com| 亚洲精品中文字幕一二三四区| 久久婷婷成人综合色麻豆| 成人三级做爰电影| 国产欧美日韩精品亚洲av| 欧美日韩瑟瑟在线播放| 国产欧美日韩一区二区精品| 美女午夜性视频免费| 国产99久久九九免费精品| 免费人成视频x8x8入口观看| 亚洲 国产 在线| av一本久久久久| 精品国产一区二区三区久久久樱花| 亚洲成人免费电影在线观看| 老司机午夜十八禁免费视频| 亚洲成人国产一区在线观看| 国产免费男女视频| 青草久久国产| 美女午夜性视频免费| 国产成人免费无遮挡视频| 亚洲五月天丁香| 99久久人妻综合| 91大片在线观看| 免费女性裸体啪啪无遮挡网站| 国产成人欧美| 熟女少妇亚洲综合色aaa.| 大香蕉久久网| 老司机深夜福利视频在线观看| 久久久久国内视频| 午夜视频精品福利| 在线av久久热| 黑人巨大精品欧美一区二区蜜桃| 夫妻午夜视频| 久久精品国产亚洲av香蕉五月 | 国产日韩欧美亚洲二区| 91麻豆av在线| 欧美黄色片欧美黄色片| 国产片内射在线| 日本精品一区二区三区蜜桃| 中文字幕高清在线视频| 亚洲成人国产一区在线观看| 啦啦啦视频在线资源免费观看| 日本a在线网址| 中文亚洲av片在线观看爽 | av线在线观看网站| 精品午夜福利视频在线观看一区| 欧美激情 高清一区二区三区| 免费一级毛片在线播放高清视频 | 亚洲全国av大片| 亚洲精品乱久久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品国产99精品国产亚洲性色 | 美女高潮到喷水免费观看| 王馨瑶露胸无遮挡在线观看| 国产成人精品无人区| 激情视频va一区二区三区| 国产精品秋霞免费鲁丝片| 久久精品熟女亚洲av麻豆精品| 国产精品一区二区免费欧美| 国产精品一区二区在线观看99| 欧美日韩瑟瑟在线播放| 超色免费av| 亚洲av成人不卡在线观看播放网| 色综合欧美亚洲国产小说| 亚洲,欧美精品.| 精品卡一卡二卡四卡免费|