• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental investigation on the plasma morphology of ablative pulsed plasma thruster with tongue-shaped and flared electrodes

    2020-09-14 01:13:20JianjunWU吳建軍YuZHANG張宇YangOU歐陽andHuaZHANG張華
    Plasma Science and Technology 2020年9期
    關(guān)鍵詞:張宇張華建軍

    Jianjun WU (吳建軍),Yu ZHANG (張宇),Yang OU (歐陽) and Hua ZHANG (張華)

    1 College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,People’s Republic of China

    2 Jiuquan Satellite Launch Centre,Jiuquan 735000,People’s Republic of China

    3 Authors to whom any correspondence should be addressed.

    Abstract

    Keywords:pulsed plasma thruster,high-speed camera,optical emission spectrum,plume distribution

    1.Introduction

    Satellites have been widely used in remote sensing,communication,navigation and other fields in modern society.The satellite needs a propulsion system for station-keeping and orbit control [1].Carrying propellant results in an increased satellite mass,therefore,yields higher costs for the manufacturing and launch of the spacecraft.Compared with chemical propulsion,electric propulsion thrusters (EPTs) have the advantages of low-cost,low-mass,and high specific impulse[2].Recently,an increasing number of satellites have adopted EPTs for spacecraft orientation and propulsion[3,4].As a member of EPTs,the ablative pulsed plasma thruster(APPT) is considered as an attractive propulsion option for satellites with limited mass and power because of its low power requirements,simple design,robustness,and high specific impulse (~1000 s) [5-7].However,the drawback of low efficiency significantly limits its application [8].Recently,an APPT with tongue-shaped and flared electrodes has been proposed,which owned better performance [9].

    Figure 1 presents the schematic of APPT with tongueshaped and flared electrodes.In this APPT,the capacitor is fully charged before the spark plug ignites.After the ignition signal is sent,the voltage between the anode and cathode of the spark plug begins to increase.When the voltage exceeds the breakdown voltage of the spark plug,breakdown occurs and an initial plasma is generated.The discharge of the spark plug will trigger a breakdown between the APPT electrodes and generate a discharge arc.The discharge arc across the surface of the propellant will ablate a portion of the propellant,ionize it,and then accelerate it to generate thrust electromagnetically[7,10].The APPT’s propellant PTFE is a polymer containing several elements,hence the APPT plasmas have a complex composition with multiple species (CI,CII,CIII,FI,FII,FIII,etc).Otherwise,the working duration of APPT is about ten microseconds,and the internal physical mechanisms and interactions of APPT are very challenging to study.

    Figure 1.Schematic of the APPT with tongue-shaped and flared electrodes.(a) Front view,and (b) top view.

    Figure 2.Schematic of the experimental set-up.

    Many investigations have been carried out on the mechanisms of APPT.The effect of the propellant and electrodes on the performance of APPT has been studied by several researchers [10-12].Antropov et al [13]studied the effect of shape and angle of electrodes on APPT’s performance,and proposed that the efficiency of the APPT with tongue-shaped electrodes can increase about 10% compared with rectangular electrodes.Schonherr’s study further confirmed Antropov’s conclusion,and then proposed that the flared angle can also affect the APPT’s performance [14].Otherwise,several measuring methods have been proposed and used to investigate the plasma characteristics in the plume.The optical emission spectroscopy and Mach-Zehnder interferometry were applied to investigate the plasma properties of APPT,the velocity and temperature of plasmas were obtained [15,16].The ultra-high-speed camera and magnetic probe were used to obtain the plasma distribution and density[3,17-19].

    Most of these researches focused on the performance of APPTs and the characteristics of plumes.However,efforts about the plasma morphology between electrodes are somewhat limited.The variation of plasma morphology can present the arc forming process between electrodes,and then reveal the working process of APPT.Due to the short discharge time of a single pulse of APPT,the residence time of plasma between electrodes is very short,it is difficult to record the development of plasma morphology between electroplates.Therefore,this paper adopts a high-speed camera and optical emission spectrum (OES) to investigate the plasma morphology between the electrodes of the APPT.The plasma characteristics including the spatial distribution and composition evolution are experimentally studied,which is helpful to understand the physical mechanism of an APPT with tongue-shaped and flared electrodes.

    2.Experiment

    2.1.Experimental set-up

    The APPT used in experiments is shown in figure 1.The APPT contains a capacitor (capacitance of 10 μF,peak charged voltage of 2000 V),a couple of tongue-shaped electrodes (flared angle of 28°,inter-electrode space of 20 mm,length of 40 mm),and a solid propellant (PTFE).In our experiments,nine uniformly distributed positions between electrodes are chosen for measurement by the OES.With the center of PTFE surface as the origin of the coordinate,the corresponding coordinates of the nine positions are characterized as position 1 (5 mm,10 mm),position 2 (15 mm,10 mm),position 3 (25 mm,10 mm),position 4(5 mm,0),position 5(15 mm,0),position 6(25 mm,0),position 7 (5 mm,?10 mm),position 8 (15 mm,?10 mm),and position 9 (25 mm,?10 mm) respectively,as presented in figure 1.

    Figure 3.Comparison of plume images before and after pseudo-color processing.(a) Before,and (b) after.

    Figure 4.Discharge curves and shutter timings of the high-speed camera.

    In order to experimentally investigate the plasma morphology of APPT,both the high-speed camera and OES are simultaneously adopted in the experiments,as shown in figure 2.The high-speed camera (Model:XXRapidFrame) is produced by Stanford Computer Optics company,with 1360×1024 pixels,minimum shutter time of 0.2 ns,minimum exposure time of 1.2 ns.In these experiments,the exposure time was set to 50 ns which was short enough to freeze the motion of plume during imaging.The OES system consists of the following instruments:(1) the optical fiber(QP600-2-SR),which was used to transmit the optical signals emitted by the discharge between the electrodes to the spectrometer;(2) the spectrometer (Acton SP2300i),which was used to disperse and diffract optical signals;(3)the ICCD camera (PI-MAX2),which was used to collect and enhance the optical signals transmitted from the spectrometer;(4) the controller(ST-133),which was used to control the rotation of the grating and the shutting time of the camera.

    The APPT experiments were carried out in a vacuum chamber with a diameter of 2.4 m and a length of 3 m.The chamber is equipped with a booster pump (Z-300),two oil diffusion pumps (K-900C) and three oil-free claw pumps(4ZBWS-30).The base pressure was less than 5×10?3Pa before the experiments.It is noticeable that the size of the vacuum chamber in the experiments is much larger than the thruster,hence the change of base pressure caused by the thruster working can be ignored.

    2.2.Image processing method

    In our experiments,the images taken by the high-speed camera were gray.In order to improve the visibility of the images and reveal more details of the plasma distribution,the pseudo-color processing method was utilized to transform the gray images to color images.As one of the traditional image enhancement techniques,the pseudo-color processing method has been widely used to convert black-and-white images into color images.The mapping relationships between red,green,blue and gray can be expressed as Figure 3 shows the plume images before and after pseudocolor processing.It can be obviously observed that,the processed images which have better visibility can clearly display the plume morphology and the distribution characteristics of plasmas.

    Figure 5.Variation of plume images with time.(a)0.6 μs,(b)1.6 μs,(c)2.6 μs,(d)3.6 μs,(e)4.6 μs,(f)5.6 μs,(g)6.6 μs,and(h)7.6 μs.

    Figure 6.Spectrograms at positions 5 mm away from the ablation surface.(a) Position 1,(b) position 4,and (c) position 7.

    3.Results and discussion

    3.1.Spatial distribution of plasmas

    The discharge waveforms (voltage and current) and shutter timings are shown in figure 4.The discharge current is monitored with a current monitor(PEARSON Current Sensor 4997),and the discharge voltage is measured using a standard high-voltage probe (Tektronix P5100).The APPT can be assumed to be an RLC circuit,and the discharge waveform is an underdamped oscillation with a period of about 7 μs.During the discharge cycle,the discharge current increased to the maximum value of 12 000 A at 2 μs,and then decreased to 0 at 3.7 μs,afterward,the current increased to 8000 A in the reverse direction.

    Figure 7.Spectrograms at positions 15 mm away from the ablation surface.(a) Position 2,(b) position 5,and (c) position 8.

    In order to record the variation of plume images with time,the plume images between the electrodes of APPT are shown in figure 5,and the time interval between adjacent images is 1 μs.It can be seen in figure 5,the plasmas between the electrodes change periodically,and the plasmas generated at different positions experience different trajectories and states of motion.Once the discharge starts,a layer of plasmas with uniform thickness is formed nearby the ablation surface of the propellant,as shown in figure 5(a).Under the action of the discharge arc,the number of plasmas increases gradually,and the plasmas accelerate and expand with the interaction of the electromagnetic field and aerodynamic force.After that,the thickness of the plasma layer becomes uneven,and two clusters of plasmas are formed near the anode and cathode,meanwhile,the two clusters of plasmas present different velocities and directions,as shown in figure 5(b).The cluster of plasmas near the anode moves towards the cathode with an angle (α) from the horizontal direction,and the cluster of plasmas near the cathode moves towards the anode with an angle (β) from the horizontal direction.The angle α is obviously greater than β,hence the two clusters meet downstream,and the intersection is closer to the cathode,then a cavity is formed near the ablation surface of the propellant and the center of the discharge channel,as shown in figure 5(c).

    In addition,at each measuring position of figure 1,the spectral images are collected every 0.5 μs,and then all the spectral curves are superimposed together to obtain the spectral information of the whole period of each measuring position.Compared with the spectral lines of neutral molecules,the spectral lines of atoms and ions are thinner,and the intensities are higher [20].The spectral lines of atoms and ions can be distinguished more accurately,hence only the spectral lines of atoms and ions are obtained in this experiment.Figure 6 presents the spectra of the discharge width at positions 1,4,and 7 which are 5 mm away from the ablation surface of PTFE.According to the spectral database of the National Institute of Standards and Technology in America,it is found that the plume consists mainly of CI,CII,CII,FI,FII,CuII,and CuIII particles.CI,CII,CII,FI,and FII are generated by the ablation of PTFE,while CuII and CuIII are caused by the ablation of electrodes.By comparing the spectra of positions 1,4,and 7,it can be found that both the plasma species and density at position 1 are the largest,followed by position 4.It means that the plasmas are mainly concentrated on the anode side,and the average density gradually decreases from the anode to the cathode side.Meanwhile,there are many wideband spectral lines near the abode (position 1),which is caused by neutral molecules.This means the ablation of PTFE has mainly occurred near the anode side,which is confirmed by observing the ablation morphology of PTFE.However,there are also differences in the density distribution for different particles,for example,CIII is mainly distributed near the anode,while CII is concentrated in the middle area between the electrodes,and CuII is mainly distributed near the anode.Therefore,in order to improve the life of APPT,the anode needs to be anti-ablation treated.

    Figure 8.Spectrograms at positions 25 mm away from the ablation surface.(a) Position 3,(b) position 6,and (c) position 9.

    Figure 7 shows the spectra of the discharge width at positions 2,5,and 8 which are 15 mm away from the ablation surface of PTFE.Compared with figure 6,it can be seen from figure 7 that the plasma species and density near the anode,the middle position,and the cathode tend to be more uniform.The area at the midpoint between electrodes experiences the largest number of particles and the highest density,followed by the area near the cathode,while the plasma species and average plasma density are lowest in the area near the anode.It has been observed from figure 5 that the plasmas near the anode move towards the cathode with an angle (α),and the plasmas near the cathode move towards the anode with an angle (β).The motion of plasmas results in the difference of plasma species and density at different positions away from the ablation surface of PTFE.Moreover,the plasma clusters gradually expand and diffuse as plasmas move,hence the farther away from the ablation surface,the more uniform the plasmas distribute.

    The spectra of the discharge width at positions 3,6,and 9 which are 25 mm away from the ablation surface of PTFE are given in figure 8.The largest number of plasma species is concentrated at the area of the midpoint between electrodes,next to the cathode side,and the least near the anode.Compared with figures 6 and 7,the average density of plasma tends to be more uniform at the plane 25 mm away from the ablation surface.The average density of plasma at the midpoint between electrodes is slightly larger,and that near the anode and cathode is almost the same.In a word,with the increasing distance from the ablation surface of PTFE,the species of particles tend to be similar,and the average density of plasmas tends to be uniform.

    3.2.Time course of spectra

    Figure 9.Spectral variations at different positions.(a) Position 1,(b) position 2,(c) position 3,(d) position 4,(e) position 5,(f) position 6,(g) position 7,(h) position 8,(i) position 9,and (j) the trajectory of CuII.

    Figure 9 shows the time course of the spectra at different positions,meanwhile,the wavelength of the spectral line of CuII is also presented in the figure.It is found that the variation of spectral intensity at each position shows a certain periodicity,and the change cycles at different positions are approximately the same.However,the occurrence of spectral intensity and the time maximum spectral intensity at different positions is quite different,which is mainly caused by the uneven distribution and the diffusion of plasmas in the discharge channel.Otherwise,the maximum emission spectrum wavelengths are different at different positions,indicating that the compositions of plasma plume are also different at different positions.It can be seen from figure 9 that the ionization is mainly concentrated in the first discharge cycle.At the end of the discharge,both the intensity and the number of the spectral lines decrease significantly,which means the density of atoms and ions decreases.The composition of the plume and the proportion of each component are quite different at different stages of discharge,which is mainly due to the different ionization energy and time required by different particles in the discharge process.By comparing the spectrum evolution processes at different positions with the same distance from the ablation surface,it can be found that the time of occurrences of the spectrum and maximum spectral intensity is different,and the changing law of spectral lines of different wavelengths is also different.These results show that,in the discharge channel,the velocity distribution of plasma is not uniform,and different kinds of plasma particles have different velocities and distributions.

    In addition,during the working process of APPT,the ablation of electrodes is inevitable,which will reduce the life of thruster.Therefore,it is necessary to investigate the generation and distribution of Cu element to reduce the ablation of electrodes.The wavelength of the spectral line of CuII is presented in figure 9.The ablation of electrodes can be obtained by measuring the spectral strength at the intersection of the curve and the spectral lines at each time.At points 1,2 and 4,the CuII occurs at 2.6 μs.At point position 5,the CuII can be observed at both 2.6 μs and 3.6 μs.At point positions 6,8 and 9,the CuII can only be observed at 3.6 μs.At point positions 3 and 7,the CuII has not been observed.Therefore,it can be concluded that the CuII is caused by the ablation of the anode,and then it moves to the downstream of the thruster.Its trajectory can be drawn as shown in figure 9(j).

    4.Conclusions

    In this paper,we use the high-speed camera and optical emission spectroscopy to investigate the composition and spatial distribution of plasmas between the electrodes of APPT.According to the experimental results,the main conclusions are drawn.

    (1) The plasma density changes periodically in the discharge channel of the thruster,and the plasma generated at different positions experiences different trajectories and states of motion.At the beginning of discharge,a uniform plasma layer is formed near the surface of PTFE.As the discharge processing,the thickness of the plasma layer gradually becomes uneven,and two clusters of plasmas near the anode and cathode are formed,then the two clusters meet at a certain distance from the ablation surface.

    (2) The plume between the electrodes is mainly composed of CI,CII,CIII,FI,FII,CuI,CuII,and CuIII.In the plane 5 mm from the ablation surface,the plume near the anode has the largest average plasma density and most types of plasma particles.In the plane 15 mm from the ablation surface,the midpoint between electroplates experiences the largest average plasma density and most types of plasma particles.In the plane 25 mm from the ablation surface,the plasma species and average density are distributed uniform except for the slightly larger density at the midpoint.With the increase of the distance from the ablation surface,the differences of the kinds of particles in the plume become smaller,and the distribution of plasma density tends to be more uniform.

    The study of this paper gives a deeper understanding of the plasma characteristics between the electrodes of APPT,and the conclusion can be used to improve the design of APPT.However,further quantitative data such as the ionization rate,electron temperature,and various component densities are needed.These will possibly be obtained combining with other measuring means.

    Acknowledgments

    The authors would like to thank National Natural Science Foundation of China (No.11772354) for the financial assistance provided for this work.

    猜你喜歡
    張宇張華建軍
    冬天的風(fēng)在說什么
    慶祝建軍95周年
    Three-step self-calibrating generalized phase-shifting interferometry
    年輪
    娛樂圈神秘貴婦,拒絕劉德華后將丈夫捧成巨星
    Spatio-temporal evolution characteristics and pattern formation of a gas–liquid interfacial AC current argon discharge plasma with a deionized water electrode
    白衣天使
    風(fēng)
    無論等多久
    Investigation on plasma characteristics in a laser ablation pulsed plasma thruster by optical emission spectroscopy
    色5月婷婷丁香| 久久久久久久精品精品| 亚洲国产精品999| 亚洲av不卡在线观看| 日本黄色片子视频| 青春草视频在线免费观看| 欧美激情国产日韩精品一区| 三级国产精品欧美在线观看| 国产精品国产三级国产av玫瑰| 六月丁香七月| 丝瓜视频免费看黄片| 人妻制服诱惑在线中文字幕| 最新中文字幕久久久久| 美女内射精品一级片tv| 狠狠精品人妻久久久久久综合| 国产成人精品一,二区| 国产精品一区二区三区四区免费观看| 日本wwww免费看| 一区二区三区四区激情视频| 久久久久久久大尺度免费视频| 国产毛片在线视频| 69精品国产乱码久久久| 男男h啪啪无遮挡| 国产精品蜜桃在线观看| 日韩,欧美,国产一区二区三区| 欧美亚洲 丝袜 人妻 在线| 一边亲一边摸免费视频| a 毛片基地| 国产色婷婷99| 国产女主播在线喷水免费视频网站| 七月丁香在线播放| 国产免费一区二区三区四区乱码| 一个人免费看片子| 天堂中文最新版在线下载| 一本色道久久久久久精品综合| 午夜91福利影院| 丝袜在线中文字幕| 91精品一卡2卡3卡4卡| 亚洲激情五月婷婷啪啪| 偷拍熟女少妇极品色| 国产黄色视频一区二区在线观看| a级一级毛片免费在线观看| 午夜福利网站1000一区二区三区| 久久久精品94久久精品| 日韩 亚洲 欧美在线| 在线观看免费视频网站a站| 国产精品一区二区三区四区免费观看| 精品国产一区二区久久| 一本大道久久a久久精品| av黄色大香蕉| av福利片在线观看| 成人国产av品久久久| 国产极品天堂在线| 2018国产大陆天天弄谢| 少妇熟女欧美另类| 亚洲性久久影院| 最新的欧美精品一区二区| 精品一区在线观看国产| 99热这里只有是精品在线观看| 亚洲欧美成人精品一区二区| 国产精品无大码| 免费大片18禁| 女的被弄到高潮叫床怎么办| 亚洲成人av在线免费| 99久久精品热视频| 大香蕉97超碰在线| 欧美变态另类bdsm刘玥| 日产精品乱码卡一卡2卡三| 久久午夜综合久久蜜桃| 久久久久久久大尺度免费视频| 看免费成人av毛片| 搡女人真爽免费视频火全软件| 在线观看免费高清a一片| 九九爱精品视频在线观看| 国产精品.久久久| 少妇丰满av| av卡一久久| 久久99热6这里只有精品| 亚洲无线观看免费| 国产精品秋霞免费鲁丝片| 18禁在线无遮挡免费观看视频| 亚洲av在线观看美女高潮| 欧美最新免费一区二区三区| 最黄视频免费看| 免费av中文字幕在线| 有码 亚洲区| 黑丝袜美女国产一区| 亚洲在久久综合| 97超碰精品成人国产| h日本视频在线播放| 我的老师免费观看完整版| 日本与韩国留学比较| 五月伊人婷婷丁香| 午夜激情久久久久久久| 亚洲,一卡二卡三卡| 国产美女午夜福利| 麻豆乱淫一区二区| 少妇精品久久久久久久| 麻豆精品久久久久久蜜桃| 国产片特级美女逼逼视频| 99热这里只有精品一区| 欧美老熟妇乱子伦牲交| .国产精品久久| 天天躁夜夜躁狠狠久久av| 亚洲精品日韩av片在线观看| 久久久久久伊人网av| 中国国产av一级| 一区二区三区乱码不卡18| 免费看av在线观看网站| 亚洲欧美成人精品一区二区| 国产精品无大码| 18禁裸乳无遮挡动漫免费视频| 最后的刺客免费高清国语| 日本欧美视频一区| 制服丝袜香蕉在线| 精品国产乱码久久久久久小说| 69精品国产乱码久久久| 久久这里有精品视频免费| 欧美变态另类bdsm刘玥| av福利片在线观看| 免费高清在线观看视频在线观看| 七月丁香在线播放| 免费观看无遮挡的男女| 久久久国产欧美日韩av| 高清午夜精品一区二区三区| 搡女人真爽免费视频火全软件| 免费不卡的大黄色大毛片视频在线观看| 亚洲成人av在线免费| 高清午夜精品一区二区三区| 如日韩欧美国产精品一区二区三区 | 国产成人91sexporn| 噜噜噜噜噜久久久久久91| 国产精品免费大片| 国内精品宾馆在线| 国产欧美日韩一区二区三区在线 | 99久久精品一区二区三区| 国产精品一区二区在线观看99| 街头女战士在线观看网站| 九色成人免费人妻av| 99久国产av精品国产电影| 久热这里只有精品99| 国产极品天堂在线| 能在线免费看毛片的网站| 国产色婷婷99| 日本午夜av视频| videossex国产| 极品少妇高潮喷水抽搐| 久久免费观看电影| 18禁在线无遮挡免费观看视频| 中文字幕久久专区| 国产极品天堂在线| 日韩欧美精品免费久久| 国产又色又爽无遮挡免| 桃花免费在线播放| 久久久久国产精品人妻一区二区| 伦理电影大哥的女人| 免费不卡的大黄色大毛片视频在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲国产日韩一区二区| 男女边吃奶边做爰视频| 晚上一个人看的免费电影| 精品国产露脸久久av麻豆| 夫妻午夜视频| 精品亚洲成a人片在线观看| 成人毛片60女人毛片免费| 青春草亚洲视频在线观看| 欧美成人午夜免费资源| 男人舔奶头视频| 免费观看无遮挡的男女| 国产又色又爽无遮挡免| 18禁裸乳无遮挡动漫免费视频| 少妇人妻精品综合一区二区| 成人免费观看视频高清| 欧美少妇被猛烈插入视频| 91精品国产九色| 亚洲av二区三区四区| 国产亚洲91精品色在线| 纯流量卡能插随身wifi吗| 日本黄大片高清| 国产精品女同一区二区软件| 自线自在国产av| 在线看a的网站| 一级二级三级毛片免费看| 亚洲精品一区蜜桃| 中文欧美无线码| 国语对白做爰xxxⅹ性视频网站| 午夜免费观看性视频| 看非洲黑人一级黄片| 国内精品宾馆在线| h日本视频在线播放| 日本猛色少妇xxxxx猛交久久| 亚洲精品中文字幕在线视频 | 久久久久久久精品精品| 午夜免费观看性视频| 26uuu在线亚洲综合色| 男人爽女人下面视频在线观看| 国产成人一区二区在线| 亚洲av男天堂| 美女视频免费永久观看网站| 天天操日日干夜夜撸| 免费观看性生交大片5| 国产一区有黄有色的免费视频| 亚洲av国产av综合av卡| 日韩欧美精品免费久久| 国产欧美亚洲国产| 亚洲av电影在线观看一区二区三区| 亚洲av在线观看美女高潮| 午夜日本视频在线| 老司机亚洲免费影院| 尾随美女入室| 色哟哟·www| 久久久久久久大尺度免费视频| 高清午夜精品一区二区三区| 99久久中文字幕三级久久日本| 亚洲性久久影院| 国产白丝娇喘喷水9色精品| 国产 一区精品| 亚洲av电影在线观看一区二区三区| 最近2019中文字幕mv第一页| 少妇的逼水好多| 日韩人妻高清精品专区| av一本久久久久| 99热全是精品| 少妇被粗大的猛进出69影院 | 国产精品不卡视频一区二区| 亚洲av福利一区| 99热6这里只有精品| 中文在线观看免费www的网站| 丰满少妇做爰视频| 国产中年淑女户外野战色| 中文字幕久久专区| 内射极品少妇av片p| 成人国产麻豆网| 天堂8中文在线网| 精品亚洲乱码少妇综合久久| 97在线人人人人妻| 久久狼人影院| 欧美精品一区二区免费开放| 91久久精品国产一区二区成人| 精品人妻熟女av久视频| 国产日韩欧美在线精品| 国产白丝娇喘喷水9色精品| 国内揄拍国产精品人妻在线| 热re99久久国产66热| 亚洲国产欧美日韩在线播放 | 菩萨蛮人人尽说江南好唐韦庄| 午夜福利视频精品| 久久久久久久亚洲中文字幕| 一级,二级,三级黄色视频| 大片电影免费在线观看免费| 我要看黄色一级片免费的| 男人添女人高潮全过程视频| 91久久精品电影网| 成人18禁高潮啪啪吃奶动态图 | 多毛熟女@视频| 久久久久久久国产电影| 九九在线视频观看精品| 久久免费观看电影| av在线播放精品| 日韩一区二区三区影片| a级毛色黄片| h日本视频在线播放| 免费久久久久久久精品成人欧美视频 | 精品99又大又爽又粗少妇毛片| 如何舔出高潮| 日韩成人伦理影院| 国产 一区精品| 一级毛片我不卡| 亚洲第一av免费看| 久久久久久久久久人人人人人人| 99热网站在线观看| 99久国产av精品国产电影| 99re6热这里在线精品视频| 国产极品粉嫩免费观看在线 | 国产精品三级大全| 免费看av在线观看网站| 国产欧美亚洲国产| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美一区二区三区国产| 成年女人在线观看亚洲视频| 男人舔奶头视频| 中文字幕av电影在线播放| 日日啪夜夜爽| 欧美日韩一区二区视频在线观看视频在线| 精品午夜福利在线看| 好男人视频免费观看在线| 国产又色又爽无遮挡免| 精华霜和精华液先用哪个| 嫩草影院新地址| 国产深夜福利视频在线观看| 午夜福利在线观看免费完整高清在| 人人澡人人妻人| 久久久久久人妻| 欧美三级亚洲精品| 精品一区二区免费观看| 欧美精品亚洲一区二区| kizo精华| 精品国产乱码久久久久久小说| 在现免费观看毛片| 国产精品人妻久久久久久| 日日啪夜夜撸| 久久青草综合色| 久久久精品免费免费高清| 99热国产这里只有精品6| 在现免费观看毛片| 亚洲久久久国产精品| 亚洲怡红院男人天堂| 人妻系列 视频| 久久久欧美国产精品| 九九久久精品国产亚洲av麻豆| 久久精品久久久久久久性| 久久久久久久久久人人人人人人| 亚洲综合色惰| 久久精品夜色国产| 亚洲,欧美,日韩| 亚洲精品视频女| 亚洲婷婷狠狠爱综合网| 久久精品夜色国产| 久久久久久久久久久免费av| 日韩欧美 国产精品| 国产精品一区二区在线不卡| 国产无遮挡羞羞视频在线观看| 午夜福利,免费看| av福利片在线| 国产高清有码在线观看视频| 国产亚洲av片在线观看秒播厂| 久久99一区二区三区| 97在线视频观看| 特大巨黑吊av在线直播| 国产有黄有色有爽视频| 精品久久国产蜜桃| 亚洲精品中文字幕在线视频 | 一边亲一边摸免费视频| 成年av动漫网址| 日韩人妻高清精品专区| 91久久精品国产一区二区成人| 久久久国产欧美日韩av| 亚洲av中文av极速乱| 嫩草影院入口| 国产欧美日韩精品一区二区| 精品久久久久久久久亚洲| 夜夜骑夜夜射夜夜干| 18禁动态无遮挡网站| 日韩免费高清中文字幕av| 纯流量卡能插随身wifi吗| 永久免费av网站大全| 嫩草影院新地址| 久久久a久久爽久久v久久| 国产亚洲5aaaaa淫片| 六月丁香七月| 91久久精品国产一区二区三区| 亚洲人与动物交配视频| 国产高清不卡午夜福利| 日韩av免费高清视频| 亚洲av免费高清在线观看| 不卡视频在线观看欧美| 99久久中文字幕三级久久日本| 亚洲成人一二三区av| 国产白丝娇喘喷水9色精品| 一级片'在线观看视频| 欧美成人午夜免费资源| 91久久精品电影网| 美女内射精品一级片tv| 一级爰片在线观看| 午夜日本视频在线| 六月丁香七月| 国产成人一区二区在线| 免费av中文字幕在线| 日本91视频免费播放| 汤姆久久久久久久影院中文字幕| 亚洲成人手机| 精品亚洲乱码少妇综合久久| freevideosex欧美| 亚洲婷婷狠狠爱综合网| 色5月婷婷丁香| av又黄又爽大尺度在线免费看| 2021少妇久久久久久久久久久| 久久青草综合色| 大又大粗又爽又黄少妇毛片口| 国产一区二区三区av在线| 热99国产精品久久久久久7| 黄色日韩在线| 人人妻人人添人人爽欧美一区卜| 亚洲美女搞黄在线观看| 这个男人来自地球电影免费观看 | 欧美日韩综合久久久久久| 欧美日韩视频高清一区二区三区二| 日本91视频免费播放| 亚洲天堂av无毛| 国产精品国产三级国产专区5o| 久久久久久久久久久久大奶| 卡戴珊不雅视频在线播放| 另类亚洲欧美激情| 成人国产麻豆网| 麻豆乱淫一区二区| 亚洲av日韩在线播放| 99九九在线精品视频 | 亚洲一级一片aⅴ在线观看| 乱系列少妇在线播放| 色网站视频免费| 国产高清有码在线观看视频| 亚洲精华国产精华液的使用体验| 日韩中文字幕视频在线看片| 看非洲黑人一级黄片| 夫妻午夜视频| 成年av动漫网址| 国产熟女午夜一区二区三区 | 王馨瑶露胸无遮挡在线观看| 精品视频人人做人人爽| 男人舔奶头视频| 欧美 亚洲 国产 日韩一| 久久久久久久久久久免费av| 国产日韩一区二区三区精品不卡 | 狂野欧美激情性bbbbbb| 99视频精品全部免费 在线| 国产av国产精品国产| av专区在线播放| 美女国产视频在线观看| 久久久久久久大尺度免费视频| 日产精品乱码卡一卡2卡三| 免费观看无遮挡的男女| 青春草视频在线免费观看| 亚洲av.av天堂| 成年av动漫网址| 亚洲精品亚洲一区二区| 国语对白做爰xxxⅹ性视频网站| 看十八女毛片水多多多| 中国国产av一级| 青春草视频在线免费观看| 人人妻人人澡人人看| 嘟嘟电影网在线观看| 2022亚洲国产成人精品| 亚洲欧美中文字幕日韩二区| av天堂中文字幕网| 国产成人免费无遮挡视频| 久久久欧美国产精品| 精品久久国产蜜桃| 免费黄频网站在线观看国产| 亚洲欧洲国产日韩| 国产欧美日韩一区二区三区在线 | 精品国产乱码久久久久久小说| 国产一级毛片在线| 亚洲av中文av极速乱| 亚洲va在线va天堂va国产| 免费大片黄手机在线观看| 中国三级夫妇交换| 免费黄网站久久成人精品| 免费观看a级毛片全部| 国产乱来视频区| 成人毛片60女人毛片免费| 色婷婷久久久亚洲欧美| 日本免费在线观看一区| 性色avwww在线观看| 精品少妇黑人巨大在线播放| 国产视频首页在线观看| 国产日韩欧美亚洲二区| 日本与韩国留学比较| 99热这里只有是精品在线观看| 亚洲欧美精品专区久久| 熟女人妻精品中文字幕| 韩国高清视频一区二区三区| 寂寞人妻少妇视频99o| 国产在视频线精品| 欧美日韩综合久久久久久| 午夜福利影视在线免费观看| 久久国产精品大桥未久av | 欧美高清成人免费视频www| 国产男女内射视频| 国产日韩欧美在线精品| 亚洲国产精品专区欧美| 欧美成人午夜免费资源| 日韩伦理黄色片| 久久久久国产精品人妻一区二区| 成年美女黄网站色视频大全免费 | 国产淫片久久久久久久久| 在线天堂最新版资源| 在现免费观看毛片| 亚洲国产精品一区二区三区在线| av国产久精品久网站免费入址| 亚洲中文av在线| av在线播放精品| 99国产精品免费福利视频| 国产日韩一区二区三区精品不卡 | 亚洲国产欧美日韩在线播放 | 亚洲精品中文字幕在线视频 | 18禁在线无遮挡免费观看视频| 日韩,欧美,国产一区二区三区| 天美传媒精品一区二区| 熟女av电影| 国产精品一区二区在线不卡| 大又大粗又爽又黄少妇毛片口| 久久人人爽人人爽人人片va| 亚洲av成人精品一区久久| 亚洲怡红院男人天堂| 高清在线视频一区二区三区| 免费播放大片免费观看视频在线观看| 欧美成人精品欧美一级黄| 亚洲av中文av极速乱| 日本黄色片子视频| 欧美日韩精品成人综合77777| 91精品国产九色| 美女主播在线视频| 嘟嘟电影网在线观看| 欧美亚洲 丝袜 人妻 在线| 99热全是精品| 蜜臀久久99精品久久宅男| 久久精品国产亚洲网站| 欧美bdsm另类| 成年女人在线观看亚洲视频| 国精品久久久久久国模美| 国产成人精品久久久久久| 欧美丝袜亚洲另类| 亚州av有码| 国产成人一区二区在线| 高清欧美精品videossex| 在线观看免费日韩欧美大片 | 国产精品一区二区在线观看99| 熟女人妻精品中文字幕| 日韩不卡一区二区三区视频在线| 日韩一区二区视频免费看| 久久青草综合色| 亚洲av日韩在线播放| 嘟嘟电影网在线观看| 亚洲国产欧美在线一区| 日韩,欧美,国产一区二区三区| 在现免费观看毛片| 3wmmmm亚洲av在线观看| 免费人成在线观看视频色| 久久6这里有精品| 亚洲精品aⅴ在线观看| 嘟嘟电影网在线观看| xxx大片免费视频| 久久精品国产亚洲av涩爱| 夜夜骑夜夜射夜夜干| av播播在线观看一区| av在线老鸭窝| 日韩成人av中文字幕在线观看| 中文字幕人妻丝袜制服| 国产精品一二三区在线看| 我的女老师完整版在线观看| 国产伦理片在线播放av一区| 亚洲欧美清纯卡通| 深夜a级毛片| 成人综合一区亚洲| 日日摸夜夜添夜夜爱| 22中文网久久字幕| 香蕉精品网在线| 国产精品国产三级国产av玫瑰| 伦精品一区二区三区| 大香蕉97超碰在线| 欧美日韩精品成人综合77777| 精品视频人人做人人爽| 国产成人a∨麻豆精品| 亚洲精品乱码久久久久久按摩| 九九爱精品视频在线观看| 伦理电影免费视频| 亚洲成人av在线免费| 丰满饥渴人妻一区二区三| 最近最新中文字幕免费大全7| 伦精品一区二区三区| 日韩亚洲欧美综合| 久久精品久久久久久噜噜老黄| 国产av一区二区精品久久| 国模一区二区三区四区视频| 国产精品成人在线| 午夜影院在线不卡| 日日爽夜夜爽网站| 亚洲精品乱码久久久久久按摩| av黄色大香蕉| 色视频在线一区二区三区| 高清黄色对白视频在线免费看 | 少妇的逼好多水| 岛国毛片在线播放| 水蜜桃什么品种好| 国产成人免费观看mmmm| 国产成人一区二区在线| 国产片特级美女逼逼视频| 搡女人真爽免费视频火全软件| 亚洲精华国产精华液的使用体验| 高清欧美精品videossex| 欧美日韩精品成人综合77777| 日韩欧美一区视频在线观看 | 国产永久视频网站| 99热网站在线观看| 久久av网站| 国产老妇伦熟女老妇高清| 亚洲av成人精品一二三区| 国产精品人妻久久久久久| 99久久精品国产国产毛片| 久久精品国产自在天天线| 免费看不卡的av| av不卡在线播放| 最黄视频免费看| 久久久欧美国产精品| 中文字幕精品免费在线观看视频 | 亚洲av国产av综合av卡| 国产高清三级在线| 青春草亚洲视频在线观看| 国产成人精品久久久久久| 熟妇人妻不卡中文字幕| 18禁在线播放成人免费| 欧美精品一区二区大全| 新久久久久国产一级毛片| 久久精品久久精品一区二区三区| 日韩av不卡免费在线播放| 观看免费一级毛片| 国产成人免费无遮挡视频| 免费人妻精品一区二区三区视频| 夜夜爽夜夜爽视频| 精品少妇内射三级| 一区二区三区精品91| 久久精品国产鲁丝片午夜精品| 日韩av免费高清视频| 国产一区二区三区综合在线观看 | av免费在线看不卡|