• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental investigation on the plasma morphology of ablative pulsed plasma thruster with tongue-shaped and flared electrodes

    2020-09-14 01:13:20JianjunWU吳建軍YuZHANG張宇YangOU歐陽andHuaZHANG張華
    Plasma Science and Technology 2020年9期
    關(guān)鍵詞:張宇張華建軍

    Jianjun WU (吳建軍),Yu ZHANG (張宇),Yang OU (歐陽) and Hua ZHANG (張華)

    1 College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,People’s Republic of China

    2 Jiuquan Satellite Launch Centre,Jiuquan 735000,People’s Republic of China

    3 Authors to whom any correspondence should be addressed.

    Abstract

    Keywords:pulsed plasma thruster,high-speed camera,optical emission spectrum,plume distribution

    1.Introduction

    Satellites have been widely used in remote sensing,communication,navigation and other fields in modern society.The satellite needs a propulsion system for station-keeping and orbit control [1].Carrying propellant results in an increased satellite mass,therefore,yields higher costs for the manufacturing and launch of the spacecraft.Compared with chemical propulsion,electric propulsion thrusters (EPTs) have the advantages of low-cost,low-mass,and high specific impulse[2].Recently,an increasing number of satellites have adopted EPTs for spacecraft orientation and propulsion[3,4].As a member of EPTs,the ablative pulsed plasma thruster(APPT) is considered as an attractive propulsion option for satellites with limited mass and power because of its low power requirements,simple design,robustness,and high specific impulse (~1000 s) [5-7].However,the drawback of low efficiency significantly limits its application [8].Recently,an APPT with tongue-shaped and flared electrodes has been proposed,which owned better performance [9].

    Figure 1 presents the schematic of APPT with tongueshaped and flared electrodes.In this APPT,the capacitor is fully charged before the spark plug ignites.After the ignition signal is sent,the voltage between the anode and cathode of the spark plug begins to increase.When the voltage exceeds the breakdown voltage of the spark plug,breakdown occurs and an initial plasma is generated.The discharge of the spark plug will trigger a breakdown between the APPT electrodes and generate a discharge arc.The discharge arc across the surface of the propellant will ablate a portion of the propellant,ionize it,and then accelerate it to generate thrust electromagnetically[7,10].The APPT’s propellant PTFE is a polymer containing several elements,hence the APPT plasmas have a complex composition with multiple species (CI,CII,CIII,FI,FII,FIII,etc).Otherwise,the working duration of APPT is about ten microseconds,and the internal physical mechanisms and interactions of APPT are very challenging to study.

    Figure 1.Schematic of the APPT with tongue-shaped and flared electrodes.(a) Front view,and (b) top view.

    Figure 2.Schematic of the experimental set-up.

    Many investigations have been carried out on the mechanisms of APPT.The effect of the propellant and electrodes on the performance of APPT has been studied by several researchers [10-12].Antropov et al [13]studied the effect of shape and angle of electrodes on APPT’s performance,and proposed that the efficiency of the APPT with tongue-shaped electrodes can increase about 10% compared with rectangular electrodes.Schonherr’s study further confirmed Antropov’s conclusion,and then proposed that the flared angle can also affect the APPT’s performance [14].Otherwise,several measuring methods have been proposed and used to investigate the plasma characteristics in the plume.The optical emission spectroscopy and Mach-Zehnder interferometry were applied to investigate the plasma properties of APPT,the velocity and temperature of plasmas were obtained [15,16].The ultra-high-speed camera and magnetic probe were used to obtain the plasma distribution and density[3,17-19].

    Most of these researches focused on the performance of APPTs and the characteristics of plumes.However,efforts about the plasma morphology between electrodes are somewhat limited.The variation of plasma morphology can present the arc forming process between electrodes,and then reveal the working process of APPT.Due to the short discharge time of a single pulse of APPT,the residence time of plasma between electrodes is very short,it is difficult to record the development of plasma morphology between electroplates.Therefore,this paper adopts a high-speed camera and optical emission spectrum (OES) to investigate the plasma morphology between the electrodes of the APPT.The plasma characteristics including the spatial distribution and composition evolution are experimentally studied,which is helpful to understand the physical mechanism of an APPT with tongue-shaped and flared electrodes.

    2.Experiment

    2.1.Experimental set-up

    The APPT used in experiments is shown in figure 1.The APPT contains a capacitor (capacitance of 10 μF,peak charged voltage of 2000 V),a couple of tongue-shaped electrodes (flared angle of 28°,inter-electrode space of 20 mm,length of 40 mm),and a solid propellant (PTFE).In our experiments,nine uniformly distributed positions between electrodes are chosen for measurement by the OES.With the center of PTFE surface as the origin of the coordinate,the corresponding coordinates of the nine positions are characterized as position 1 (5 mm,10 mm),position 2 (15 mm,10 mm),position 3 (25 mm,10 mm),position 4(5 mm,0),position 5(15 mm,0),position 6(25 mm,0),position 7 (5 mm,?10 mm),position 8 (15 mm,?10 mm),and position 9 (25 mm,?10 mm) respectively,as presented in figure 1.

    Figure 3.Comparison of plume images before and after pseudo-color processing.(a) Before,and (b) after.

    Figure 4.Discharge curves and shutter timings of the high-speed camera.

    In order to experimentally investigate the plasma morphology of APPT,both the high-speed camera and OES are simultaneously adopted in the experiments,as shown in figure 2.The high-speed camera (Model:XXRapidFrame) is produced by Stanford Computer Optics company,with 1360×1024 pixels,minimum shutter time of 0.2 ns,minimum exposure time of 1.2 ns.In these experiments,the exposure time was set to 50 ns which was short enough to freeze the motion of plume during imaging.The OES system consists of the following instruments:(1) the optical fiber(QP600-2-SR),which was used to transmit the optical signals emitted by the discharge between the electrodes to the spectrometer;(2) the spectrometer (Acton SP2300i),which was used to disperse and diffract optical signals;(3)the ICCD camera (PI-MAX2),which was used to collect and enhance the optical signals transmitted from the spectrometer;(4) the controller(ST-133),which was used to control the rotation of the grating and the shutting time of the camera.

    The APPT experiments were carried out in a vacuum chamber with a diameter of 2.4 m and a length of 3 m.The chamber is equipped with a booster pump (Z-300),two oil diffusion pumps (K-900C) and three oil-free claw pumps(4ZBWS-30).The base pressure was less than 5×10?3Pa before the experiments.It is noticeable that the size of the vacuum chamber in the experiments is much larger than the thruster,hence the change of base pressure caused by the thruster working can be ignored.

    2.2.Image processing method

    In our experiments,the images taken by the high-speed camera were gray.In order to improve the visibility of the images and reveal more details of the plasma distribution,the pseudo-color processing method was utilized to transform the gray images to color images.As one of the traditional image enhancement techniques,the pseudo-color processing method has been widely used to convert black-and-white images into color images.The mapping relationships between red,green,blue and gray can be expressed as Figure 3 shows the plume images before and after pseudocolor processing.It can be obviously observed that,the processed images which have better visibility can clearly display the plume morphology and the distribution characteristics of plasmas.

    Figure 5.Variation of plume images with time.(a)0.6 μs,(b)1.6 μs,(c)2.6 μs,(d)3.6 μs,(e)4.6 μs,(f)5.6 μs,(g)6.6 μs,and(h)7.6 μs.

    Figure 6.Spectrograms at positions 5 mm away from the ablation surface.(a) Position 1,(b) position 4,and (c) position 7.

    3.Results and discussion

    3.1.Spatial distribution of plasmas

    The discharge waveforms (voltage and current) and shutter timings are shown in figure 4.The discharge current is monitored with a current monitor(PEARSON Current Sensor 4997),and the discharge voltage is measured using a standard high-voltage probe (Tektronix P5100).The APPT can be assumed to be an RLC circuit,and the discharge waveform is an underdamped oscillation with a period of about 7 μs.During the discharge cycle,the discharge current increased to the maximum value of 12 000 A at 2 μs,and then decreased to 0 at 3.7 μs,afterward,the current increased to 8000 A in the reverse direction.

    Figure 7.Spectrograms at positions 15 mm away from the ablation surface.(a) Position 2,(b) position 5,and (c) position 8.

    In order to record the variation of plume images with time,the plume images between the electrodes of APPT are shown in figure 5,and the time interval between adjacent images is 1 μs.It can be seen in figure 5,the plasmas between the electrodes change periodically,and the plasmas generated at different positions experience different trajectories and states of motion.Once the discharge starts,a layer of plasmas with uniform thickness is formed nearby the ablation surface of the propellant,as shown in figure 5(a).Under the action of the discharge arc,the number of plasmas increases gradually,and the plasmas accelerate and expand with the interaction of the electromagnetic field and aerodynamic force.After that,the thickness of the plasma layer becomes uneven,and two clusters of plasmas are formed near the anode and cathode,meanwhile,the two clusters of plasmas present different velocities and directions,as shown in figure 5(b).The cluster of plasmas near the anode moves towards the cathode with an angle (α) from the horizontal direction,and the cluster of plasmas near the cathode moves towards the anode with an angle (β) from the horizontal direction.The angle α is obviously greater than β,hence the two clusters meet downstream,and the intersection is closer to the cathode,then a cavity is formed near the ablation surface of the propellant and the center of the discharge channel,as shown in figure 5(c).

    In addition,at each measuring position of figure 1,the spectral images are collected every 0.5 μs,and then all the spectral curves are superimposed together to obtain the spectral information of the whole period of each measuring position.Compared with the spectral lines of neutral molecules,the spectral lines of atoms and ions are thinner,and the intensities are higher [20].The spectral lines of atoms and ions can be distinguished more accurately,hence only the spectral lines of atoms and ions are obtained in this experiment.Figure 6 presents the spectra of the discharge width at positions 1,4,and 7 which are 5 mm away from the ablation surface of PTFE.According to the spectral database of the National Institute of Standards and Technology in America,it is found that the plume consists mainly of CI,CII,CII,FI,FII,CuII,and CuIII particles.CI,CII,CII,FI,and FII are generated by the ablation of PTFE,while CuII and CuIII are caused by the ablation of electrodes.By comparing the spectra of positions 1,4,and 7,it can be found that both the plasma species and density at position 1 are the largest,followed by position 4.It means that the plasmas are mainly concentrated on the anode side,and the average density gradually decreases from the anode to the cathode side.Meanwhile,there are many wideband spectral lines near the abode (position 1),which is caused by neutral molecules.This means the ablation of PTFE has mainly occurred near the anode side,which is confirmed by observing the ablation morphology of PTFE.However,there are also differences in the density distribution for different particles,for example,CIII is mainly distributed near the anode,while CII is concentrated in the middle area between the electrodes,and CuII is mainly distributed near the anode.Therefore,in order to improve the life of APPT,the anode needs to be anti-ablation treated.

    Figure 8.Spectrograms at positions 25 mm away from the ablation surface.(a) Position 3,(b) position 6,and (c) position 9.

    Figure 7 shows the spectra of the discharge width at positions 2,5,and 8 which are 15 mm away from the ablation surface of PTFE.Compared with figure 6,it can be seen from figure 7 that the plasma species and density near the anode,the middle position,and the cathode tend to be more uniform.The area at the midpoint between electrodes experiences the largest number of particles and the highest density,followed by the area near the cathode,while the plasma species and average plasma density are lowest in the area near the anode.It has been observed from figure 5 that the plasmas near the anode move towards the cathode with an angle (α),and the plasmas near the cathode move towards the anode with an angle (β).The motion of plasmas results in the difference of plasma species and density at different positions away from the ablation surface of PTFE.Moreover,the plasma clusters gradually expand and diffuse as plasmas move,hence the farther away from the ablation surface,the more uniform the plasmas distribute.

    The spectra of the discharge width at positions 3,6,and 9 which are 25 mm away from the ablation surface of PTFE are given in figure 8.The largest number of plasma species is concentrated at the area of the midpoint between electrodes,next to the cathode side,and the least near the anode.Compared with figures 6 and 7,the average density of plasma tends to be more uniform at the plane 25 mm away from the ablation surface.The average density of plasma at the midpoint between electrodes is slightly larger,and that near the anode and cathode is almost the same.In a word,with the increasing distance from the ablation surface of PTFE,the species of particles tend to be similar,and the average density of plasmas tends to be uniform.

    3.2.Time course of spectra

    Figure 9.Spectral variations at different positions.(a) Position 1,(b) position 2,(c) position 3,(d) position 4,(e) position 5,(f) position 6,(g) position 7,(h) position 8,(i) position 9,and (j) the trajectory of CuII.

    Figure 9 shows the time course of the spectra at different positions,meanwhile,the wavelength of the spectral line of CuII is also presented in the figure.It is found that the variation of spectral intensity at each position shows a certain periodicity,and the change cycles at different positions are approximately the same.However,the occurrence of spectral intensity and the time maximum spectral intensity at different positions is quite different,which is mainly caused by the uneven distribution and the diffusion of plasmas in the discharge channel.Otherwise,the maximum emission spectrum wavelengths are different at different positions,indicating that the compositions of plasma plume are also different at different positions.It can be seen from figure 9 that the ionization is mainly concentrated in the first discharge cycle.At the end of the discharge,both the intensity and the number of the spectral lines decrease significantly,which means the density of atoms and ions decreases.The composition of the plume and the proportion of each component are quite different at different stages of discharge,which is mainly due to the different ionization energy and time required by different particles in the discharge process.By comparing the spectrum evolution processes at different positions with the same distance from the ablation surface,it can be found that the time of occurrences of the spectrum and maximum spectral intensity is different,and the changing law of spectral lines of different wavelengths is also different.These results show that,in the discharge channel,the velocity distribution of plasma is not uniform,and different kinds of plasma particles have different velocities and distributions.

    In addition,during the working process of APPT,the ablation of electrodes is inevitable,which will reduce the life of thruster.Therefore,it is necessary to investigate the generation and distribution of Cu element to reduce the ablation of electrodes.The wavelength of the spectral line of CuII is presented in figure 9.The ablation of electrodes can be obtained by measuring the spectral strength at the intersection of the curve and the spectral lines at each time.At points 1,2 and 4,the CuII occurs at 2.6 μs.At point position 5,the CuII can be observed at both 2.6 μs and 3.6 μs.At point positions 6,8 and 9,the CuII can only be observed at 3.6 μs.At point positions 3 and 7,the CuII has not been observed.Therefore,it can be concluded that the CuII is caused by the ablation of the anode,and then it moves to the downstream of the thruster.Its trajectory can be drawn as shown in figure 9(j).

    4.Conclusions

    In this paper,we use the high-speed camera and optical emission spectroscopy to investigate the composition and spatial distribution of plasmas between the electrodes of APPT.According to the experimental results,the main conclusions are drawn.

    (1) The plasma density changes periodically in the discharge channel of the thruster,and the plasma generated at different positions experiences different trajectories and states of motion.At the beginning of discharge,a uniform plasma layer is formed near the surface of PTFE.As the discharge processing,the thickness of the plasma layer gradually becomes uneven,and two clusters of plasmas near the anode and cathode are formed,then the two clusters meet at a certain distance from the ablation surface.

    (2) The plume between the electrodes is mainly composed of CI,CII,CIII,FI,FII,CuI,CuII,and CuIII.In the plane 5 mm from the ablation surface,the plume near the anode has the largest average plasma density and most types of plasma particles.In the plane 15 mm from the ablation surface,the midpoint between electroplates experiences the largest average plasma density and most types of plasma particles.In the plane 25 mm from the ablation surface,the plasma species and average density are distributed uniform except for the slightly larger density at the midpoint.With the increase of the distance from the ablation surface,the differences of the kinds of particles in the plume become smaller,and the distribution of plasma density tends to be more uniform.

    The study of this paper gives a deeper understanding of the plasma characteristics between the electrodes of APPT,and the conclusion can be used to improve the design of APPT.However,further quantitative data such as the ionization rate,electron temperature,and various component densities are needed.These will possibly be obtained combining with other measuring means.

    Acknowledgments

    The authors would like to thank National Natural Science Foundation of China (No.11772354) for the financial assistance provided for this work.

    猜你喜歡
    張宇張華建軍
    冬天的風(fēng)在說什么
    慶祝建軍95周年
    Three-step self-calibrating generalized phase-shifting interferometry
    年輪
    娛樂圈神秘貴婦,拒絕劉德華后將丈夫捧成巨星
    Spatio-temporal evolution characteristics and pattern formation of a gas–liquid interfacial AC current argon discharge plasma with a deionized water electrode
    白衣天使
    風(fēng)
    無論等多久
    Investigation on plasma characteristics in a laser ablation pulsed plasma thruster by optical emission spectroscopy
    99久久九九国产精品国产免费| 国产亚洲91精品色在线| 国产黄色免费在线视频| 高清视频免费观看一区二区| 亚洲人成网站在线观看播放| 国产成人精品一,二区| 免费少妇av软件| 美女被艹到高潮喷水动态| 看黄色毛片网站| 麻豆乱淫一区二区| 国产精品99久久99久久久不卡 | 韩国av在线不卡| 久久精品夜色国产| 国产人妻一区二区三区在| 亚洲成人久久爱视频| 一级黄片播放器| 欧美丝袜亚洲另类| 热re99久久精品国产66热6| 国产v大片淫在线免费观看| 日本三级黄在线观看| 99热这里只有是精品50| 久久久久久久亚洲中文字幕| 久久这里有精品视频免费| 欧美变态另类bdsm刘玥| 亚洲性久久影院| 岛国毛片在线播放| 亚洲电影在线观看av| 日韩一本色道免费dvd| 国产精品成人在线| 亚洲成人精品中文字幕电影| 一区二区av电影网| 视频区图区小说| 精品国产露脸久久av麻豆| 久久午夜福利片| 日韩免费高清中文字幕av| 乱系列少妇在线播放| 99热6这里只有精品| 又爽又黄无遮挡网站| 亚洲av在线观看美女高潮| 日韩电影二区| 亚洲在久久综合| 亚洲成色77777| 两个人的视频大全免费| 街头女战士在线观看网站| 26uuu在线亚洲综合色| 99久久中文字幕三级久久日本| 国产成人福利小说| 丰满乱子伦码专区| 深爱激情五月婷婷| 美女xxoo啪啪120秒动态图| 国产女主播在线喷水免费视频网站| 黄色视频在线播放观看不卡| 亚洲国产av新网站| 精品人妻一区二区三区麻豆| 亚洲精品,欧美精品| 精品国产露脸久久av麻豆| 亚洲在久久综合| 在线精品无人区一区二区三 | 另类亚洲欧美激情| 国产又色又爽无遮挡免| 黄色一级大片看看| 欧美xxⅹ黑人| 男人舔奶头视频| 少妇被粗大猛烈的视频| 一本色道久久久久久精品综合| 欧美少妇被猛烈插入视频| 免费大片18禁| 国产免费一区二区三区四区乱码| 成年人午夜在线观看视频| 啦啦啦啦在线视频资源| av线在线观看网站| 日韩欧美一区视频在线观看 | 国产高清有码在线观看视频| 国产精品三级大全| 欧美日韩一区二区视频在线观看视频在线 | tube8黄色片| 国产日韩欧美亚洲二区| 国产色婷婷99| 中文资源天堂在线| 黄色配什么色好看| 熟女电影av网| 国产熟女欧美一区二区| 国产爱豆传媒在线观看| 久久99精品国语久久久| 久久99蜜桃精品久久| 久久国产乱子免费精品| 亚洲av免费在线观看| 一级a做视频免费观看| 久久精品久久精品一区二区三区| 午夜福利视频1000在线观看| 亚洲国产色片| 亚洲精品456在线播放app| 国产大屁股一区二区在线视频| 午夜视频国产福利| 精品少妇黑人巨大在线播放| 岛国毛片在线播放| 熟女电影av网| 午夜福利高清视频| 久久99精品国语久久久| 少妇人妻一区二区三区视频| 国内揄拍国产精品人妻在线| 九色成人免费人妻av| 成人特级av手机在线观看| 校园人妻丝袜中文字幕| 一级毛片我不卡| 国产片特级美女逼逼视频| 少妇 在线观看| 久久精品国产自在天天线| 亚洲av在线观看美女高潮| 亚洲婷婷狠狠爱综合网| 亚州av有码| 男的添女的下面高潮视频| 免费看不卡的av| 国产精品99久久99久久久不卡 | 色视频www国产| 成人国产av品久久久| 亚洲色图av天堂| 亚洲av二区三区四区| 国产熟女欧美一区二区| 边亲边吃奶的免费视频| 国产黄频视频在线观看| 99久久精品热视频| 七月丁香在线播放| 啦啦啦在线观看免费高清www| 国产国拍精品亚洲av在线观看| 男女边吃奶边做爰视频| 色播亚洲综合网| 亚洲国产最新在线播放| 久久久久国产精品人妻一区二区| 欧美3d第一页| av线在线观看网站| 久久精品熟女亚洲av麻豆精品| 成人亚洲精品av一区二区| 男女边吃奶边做爰视频| 超碰av人人做人人爽久久| 国产成人免费无遮挡视频| 2021少妇久久久久久久久久久| 人妻系列 视频| 天堂俺去俺来也www色官网| 97在线人人人人妻| 91狼人影院| 天天一区二区日本电影三级| 国产又色又爽无遮挡免| 美女视频免费永久观看网站| 亚洲欧美一区二区三区国产| 国产成人a∨麻豆精品| 在线观看国产h片| 九九久久精品国产亚洲av麻豆| 久久精品人妻少妇| 九草在线视频观看| kizo精华| 欧美97在线视频| 尤物成人国产欧美一区二区三区| 韩国av在线不卡| 国产老妇伦熟女老妇高清| 免费观看无遮挡的男女| 99九九线精品视频在线观看视频| 亚洲av免费在线观看| 精品国产乱码久久久久久小说| 天天躁夜夜躁狠狠久久av| .国产精品久久| 国产毛片a区久久久久| 国产精品不卡视频一区二区| tube8黄色片| 欧美丝袜亚洲另类| 国产精品一二三区在线看| 亚洲图色成人| 色5月婷婷丁香| 中文天堂在线官网| 少妇丰满av| 久久人人爽av亚洲精品天堂 | 欧美激情在线99| 精品人妻熟女av久视频| 久久精品久久久久久久性| 在线观看一区二区三区激情| 久久鲁丝午夜福利片| 神马国产精品三级电影在线观看| 国产成人免费观看mmmm| 在线观看免费高清a一片| 少妇人妻精品综合一区二区| 国产色爽女视频免费观看| 亚洲最大成人中文| 亚洲一区二区三区欧美精品 | 国产成人a区在线观看| 亚洲电影在线观看av| 男女下面进入的视频免费午夜| 狂野欧美激情性xxxx在线观看| 美女内射精品一级片tv| 午夜免费鲁丝| 男人和女人高潮做爰伦理| 国产91av在线免费观看| 日韩欧美一区视频在线观看 | 午夜福利视频1000在线观看| 亚洲精品乱码久久久v下载方式| 麻豆成人av视频| 99久久九九国产精品国产免费| 精品人妻视频免费看| 国产亚洲午夜精品一区二区久久 | 日韩成人av中文字幕在线观看| 大片电影免费在线观看免费| av.在线天堂| 国产免费福利视频在线观看| 成人毛片60女人毛片免费| 涩涩av久久男人的天堂| 国产成人freesex在线| 亚洲精品乱码久久久久久按摩| 日韩三级伦理在线观看| 插阴视频在线观看视频| 成年av动漫网址| 国产精品99久久久久久久久| 久久久亚洲精品成人影院| 菩萨蛮人人尽说江南好唐韦庄| 最近中文字幕高清免费大全6| 久久久久国产精品人妻一区二区| 黄色欧美视频在线观看| 三级经典国产精品| 91aial.com中文字幕在线观看| 精品久久国产蜜桃| 热99国产精品久久久久久7| 丝袜喷水一区| 最近中文字幕2019免费版| 欧美激情国产日韩精品一区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 婷婷色av中文字幕| 人妻系列 视频| 国产精品一二三区在线看| 国产精品一二三区在线看| 直男gayav资源| 国产高清三级在线| 一级爰片在线观看| 国产 一区 欧美 日韩| 99久久人妻综合| 欧美成人午夜免费资源| 如何舔出高潮| 色5月婷婷丁香| 只有这里有精品99| 97在线视频观看| 国产成人aa在线观看| 国产 一区 欧美 日韩| 国产精品一区二区在线观看99| 欧美日韩在线观看h| 在线观看国产h片| 亚洲精品成人av观看孕妇| 日韩一区二区视频免费看| 亚洲第一区二区三区不卡| 最新中文字幕久久久久| 亚洲av一区综合| 久久人人爽人人片av| 亚洲欧美成人精品一区二区| 日韩欧美 国产精品| 免费电影在线观看免费观看| 日日摸夜夜添夜夜爱| 国产精品伦人一区二区| 欧美人与善性xxx| 精华霜和精华液先用哪个| 一级毛片久久久久久久久女| 超碰97精品在线观看| 国产伦理片在线播放av一区| 国产亚洲5aaaaa淫片| 狂野欧美激情性xxxx在线观看| 日本黄色片子视频| 欧美人与善性xxx| 我的女老师完整版在线观看| 日韩av免费高清视频| 午夜福利视频1000在线观看| 男人添女人高潮全过程视频| 1000部很黄的大片| 色哟哟·www| 少妇人妻精品综合一区二区| 中文精品一卡2卡3卡4更新| 菩萨蛮人人尽说江南好唐韦庄| 午夜亚洲福利在线播放| 亚洲精品中文字幕在线视频 | 国产熟女欧美一区二区| 国产午夜精品久久久久久一区二区三区| 国产男女内射视频| 丰满少妇做爰视频| 日本三级黄在线观看| 亚洲,欧美,日韩| 纵有疾风起免费观看全集完整版| 色吧在线观看| 日日摸夜夜添夜夜爱| 精品99又大又爽又粗少妇毛片| 亚洲欧美日韩东京热| 精华霜和精华液先用哪个| 亚洲,一卡二卡三卡| 91精品国产九色| 天天一区二区日本电影三级| 国产精品偷伦视频观看了| 国产亚洲91精品色在线| 99久久精品国产国产毛片| 亚洲精品国产av蜜桃| 看十八女毛片水多多多| 免费播放大片免费观看视频在线观看| 国产高清有码在线观看视频| 亚洲美女搞黄在线观看| av福利片在线观看| 国产女主播在线喷水免费视频网站| 免费看a级黄色片| 欧美性猛交╳xxx乱大交人| 国产精品国产三级国产专区5o| 国产淫语在线视频| 伦精品一区二区三区| 久久久久久九九精品二区国产| 欧美xxxx黑人xx丫x性爽| 亚洲人成网站在线播| 欧美区成人在线视频| 啦啦啦在线观看免费高清www| 亚洲欧美中文字幕日韩二区| 夜夜爽夜夜爽视频| 亚洲精品乱码久久久久久按摩| 亚洲最大成人av| 麻豆精品久久久久久蜜桃| 人妻一区二区av| 自拍偷自拍亚洲精品老妇| 69人妻影院| 日日啪夜夜爽| 天天一区二区日本电影三级| 熟女电影av网| 黑人高潮一二区| 亚洲av免费高清在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲精品自拍成人| 18禁在线播放成人免费| 97精品久久久久久久久久精品| 亚洲av中文字字幕乱码综合| 亚洲精品日韩在线中文字幕| 在线观看三级黄色| 亚洲国产精品成人久久小说| 97超碰精品成人国产| 国产精品福利在线免费观看| 91久久精品国产一区二区成人| 日日啪夜夜爽| 在线看a的网站| 丰满乱子伦码专区| 国产v大片淫在线免费观看| 亚洲经典国产精华液单| 99热国产这里只有精品6| 一区二区三区精品91| 午夜亚洲福利在线播放| 99久久人妻综合| 成人免费观看视频高清| 在线播放无遮挡| 久久国产乱子免费精品| 69av精品久久久久久| 久久精品国产a三级三级三级| 精品熟女少妇av免费看| 国产成人精品婷婷| 熟女人妻精品中文字幕| 在线精品无人区一区二区三 | 免费观看av网站的网址| 亚洲国产欧美人成| 亚洲成人一二三区av| .国产精品久久| xxx大片免费视频| 麻豆乱淫一区二区| 国产成人精品福利久久| 在线观看一区二区三区| 国产亚洲av嫩草精品影院| 国产又色又爽无遮挡免| 日韩中字成人| 99久国产av精品国产电影| 免费看不卡的av| 亚洲成人中文字幕在线播放| 春色校园在线视频观看| 国产午夜精品一二区理论片| 国产精品成人在线| 欧美xxxx黑人xx丫x性爽| 国产精品国产av在线观看| 少妇人妻一区二区三区视频| 青青草视频在线视频观看| 中文字幕制服av| 免费观看在线日韩| 中文精品一卡2卡3卡4更新| 成年人午夜在线观看视频| 国产又色又爽无遮挡免| 成人国产麻豆网| 久久久久九九精品影院| 91狼人影院| 777米奇影视久久| 欧美3d第一页| 欧美三级亚洲精品| 狠狠精品人妻久久久久久综合| 精华霜和精华液先用哪个| 欧美xxxx黑人xx丫x性爽| 免费av观看视频| 欧美bdsm另类| 日韩三级伦理在线观看| 欧美xxxx性猛交bbbb| 精品酒店卫生间| 国产国拍精品亚洲av在线观看| 国产精品一区www在线观看| 五月开心婷婷网| 自拍欧美九色日韩亚洲蝌蚪91 | 麻豆成人av视频| 美女国产视频在线观看| 日韩亚洲欧美综合| 亚洲无线观看免费| 国产精品久久久久久精品电影| 亚洲精品日本国产第一区| 国产欧美亚洲国产| 亚洲内射少妇av| 久久久久久久国产电影| 麻豆久久精品国产亚洲av| 免费观看性生交大片5| 国产免费又黄又爽又色| 日本与韩国留学比较| 99久久精品国产国产毛片| 熟女av电影| 亚洲怡红院男人天堂| 中文乱码字字幕精品一区二区三区| 免费大片黄手机在线观看| 一级a做视频免费观看| 丝瓜视频免费看黄片| 亚洲精品乱码久久久久久按摩| 国产亚洲精品久久久com| 黄色一级大片看看| 在线观看三级黄色| 欧美 日韩 精品 国产| 日韩av不卡免费在线播放| 亚洲va在线va天堂va国产| 搞女人的毛片| 大片电影免费在线观看免费| 丝瓜视频免费看黄片| 午夜福利在线在线| 亚洲精品国产av成人精品| 精品酒店卫生间| 视频中文字幕在线观看| 精品一区二区三卡| 精品一区二区免费观看| 国产成人免费观看mmmm| 国产精品熟女久久久久浪| 91狼人影院| 精品久久国产蜜桃| av线在线观看网站| freevideosex欧美| 免费观看的影片在线观看| 国产精品99久久久久久久久| 国产亚洲91精品色在线| 亚洲欧美一区二区三区国产| 日本免费在线观看一区| 美女xxoo啪啪120秒动态图| 乱码一卡2卡4卡精品| 只有这里有精品99| 成年人午夜在线观看视频| 夫妻性生交免费视频一级片| 欧美国产精品一级二级三级 | 亚洲自偷自拍三级| 成人亚洲精品av一区二区| 亚洲av中文av极速乱| 色婷婷久久久亚洲欧美| 伊人久久国产一区二区| 91精品一卡2卡3卡4卡| 菩萨蛮人人尽说江南好唐韦庄| 天堂俺去俺来也www色官网| 亚洲精品aⅴ在线观看| 人体艺术视频欧美日本| 国产黄a三级三级三级人| 国产爽快片一区二区三区| 亚洲精品久久久久久婷婷小说| 国语对白做爰xxxⅹ性视频网站| 亚洲精华国产精华液的使用体验| 黑人高潮一二区| 丝瓜视频免费看黄片| 亚洲天堂av无毛| 丝袜喷水一区| 亚洲精品成人久久久久久| 国产av国产精品国产| 成年av动漫网址| 久久精品人妻少妇| 插阴视频在线观看视频| 97超碰精品成人国产| 又大又黄又爽视频免费| 王馨瑶露胸无遮挡在线观看| 欧美激情国产日韩精品一区| 日日啪夜夜撸| 久久6这里有精品| 小蜜桃在线观看免费完整版高清| www.色视频.com| 18禁动态无遮挡网站| 免费看a级黄色片| 亚洲国产色片| 国产有黄有色有爽视频| 91精品伊人久久大香线蕉| av在线亚洲专区| 久久久久久久午夜电影| 国产色婷婷99| 亚洲精品乱久久久久久| 日日啪夜夜爽| 亚洲欧美成人综合另类久久久| 香蕉精品网在线| 亚洲熟女精品中文字幕| 久久99热6这里只有精品| 午夜日本视频在线| 乱系列少妇在线播放| 午夜福利网站1000一区二区三区| 国语对白做爰xxxⅹ性视频网站| 成年版毛片免费区| 国精品久久久久久国模美| 高清视频免费观看一区二区| 国国产精品蜜臀av免费| 成人综合一区亚洲| 777米奇影视久久| 国产免费又黄又爽又色| 爱豆传媒免费全集在线观看| 亚洲av在线观看美女高潮| 亚洲欧美成人综合另类久久久| 成人二区视频| 2022亚洲国产成人精品| 午夜激情福利司机影院| 亚洲欧美一区二区三区黑人 | 精品久久久久久久末码| 免费大片黄手机在线观看| 国产综合精华液| 人人妻人人看人人澡| 久久久久久久午夜电影| 午夜视频国产福利| 国产成人福利小说| 免费人成在线观看视频色| 一边亲一边摸免费视频| av线在线观看网站| 精品久久久久久电影网| 亚洲av不卡在线观看| 日本午夜av视频| 男人狂女人下面高潮的视频| 久久99蜜桃精品久久| 国产 精品1| 国产免费一级a男人的天堂| 色播亚洲综合网| 国产探花极品一区二区| 观看美女的网站| 99re6热这里在线精品视频| 久久久久久久精品精品| 一个人看视频在线观看www免费| av又黄又爽大尺度在线免费看| 新久久久久国产一级毛片| 国产精品成人在线| 国产精品一二三区在线看| 91午夜精品亚洲一区二区三区| 亚洲成人久久爱视频| 亚洲av国产av综合av卡| 麻豆精品久久久久久蜜桃| 国产黄色免费在线视频| 免费黄色在线免费观看| 久久久久久九九精品二区国产| 狂野欧美白嫩少妇大欣赏| 男女啪啪激烈高潮av片| 最近的中文字幕免费完整| 男女啪啪激烈高潮av片| 免费在线观看成人毛片| 亚洲真实伦在线观看| 欧美丝袜亚洲另类| 一区二区三区四区激情视频| 亚洲国产日韩一区二区| 久久韩国三级中文字幕| 黄色日韩在线| 春色校园在线视频观看| 麻豆久久精品国产亚洲av| 免费少妇av软件| 色吧在线观看| 国产综合懂色| 丰满人妻一区二区三区视频av| 国产大屁股一区二区在线视频| 亚州av有码| 80岁老熟妇乱子伦牲交| 美女xxoo啪啪120秒动态图| 91精品一卡2卡3卡4卡| 免费观看性生交大片5| 成人免费观看视频高清| 国产亚洲精品久久久com| 22中文网久久字幕| 好男人在线观看高清免费视频| 在线观看av片永久免费下载| 麻豆精品久久久久久蜜桃| 中文欧美无线码| 亚洲av不卡在线观看| 久久久久久久久大av| 亚洲av成人精品一区久久| 国产男女内射视频| 中文资源天堂在线| 久久99热这里只频精品6学生| 伦理电影大哥的女人| 能在线免费看毛片的网站| 九九在线视频观看精品| 男人爽女人下面视频在线观看| 亚洲精品亚洲一区二区| 又爽又黄无遮挡网站| 久久久久精品久久久久真实原创| 丝瓜视频免费看黄片| 一本色道久久久久久精品综合| 夜夜爽夜夜爽视频| 97在线视频观看| 国产精品久久久久久av不卡| 天天一区二区日本电影三级| 久久精品久久精品一区二区三区| 国产成人精品福利久久| av在线播放精品| 黄色欧美视频在线观看| 国产精品一区二区性色av| 乱系列少妇在线播放| 2021天堂中文幕一二区在线观| 美女视频免费永久观看网站| 久久99热这里只有精品18| 国产日韩欧美在线精品| 成人特级av手机在线观看| 在线播放无遮挡| 亚洲欧美日韩卡通动漫| 在线a可以看的网站| 国产精品久久久久久精品电影小说 | 久久人人爽人人爽人人片va| 欧美变态另类bdsm刘玥| 偷拍熟女少妇极品色| 天天一区二区日本电影三级| 亚洲高清免费不卡视频| 身体一侧抽搐|