• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient and stable wireless power transfer based on the non-Hermitian physics

    2022-01-23 06:37:12ChaoZeng曾超ZhiweiGuo郭志偉KejiaZhu??杉?/span>CaifuFan范才富GuoLi李果JunJiang江俊YunhuiLi李云輝HaitaoJiang江海濤YapingYang羊亞平YongSun孫勇andHongChen陳鴻
    Chinese Physics B 2022年1期
    關(guān)鍵詞:李果亞平海濤

    Chao Zeng(曾超) Zhiwei Guo(郭志偉) Kejia Zhu(??杉? Caifu Fan(范才富)Guo Li(李果)Jun Jiang(江俊) Yunhui Li(李云輝)Haitao Jiang(江海濤)Yaping Yang(羊亞平) Yong Sun(孫勇) and Hong Chen(陳鴻)

    1MOE Key Laboratory of Advanced Micro-structured Materials,School of Physics Sciences and Engineering,Tongji University,Shanghai 200092,China

    2Department of Electrical Engineering,Tongji University,Shanghai 201804,China

    3School of Automotive Studies,Tongji University,Shanghai 210804,China

    Keywords: wireless power transfer,non-Hermitian physics,topological edge states

    1. Introduction

    Magnetic resonance wireless power transfer(WPT)technologies proposed by Kurset al.[1]have been one of the most fascinating areas of energy transfer in recent years. The key components of such a scheme are two coupled resonance coils,where one of them provides energy input (transmitter) and the other receives energy to the load(receiver).[1]Up to now,WPT has been intensively investigated in a variety of applications such as medical implanted devices, electric vehicles,drones, portable electronic devices and so on.[2-6]However,the transfer efficiency in the system of resonance WPT is sensitive to the variation of the coupling condition. On the one hand, the strong magnetic coupling between resonance coils always leads to the splitting of working frequency, which seriously reduces the stability of the devices. On the other hand,the transfer distance strongly depends on the size of the coils.Normally,once the transfer distance is larger than the radius of the coils,the transmission efficient will decrease significantly.In order to obtain the stable and efficient energy transfer,many controlled strategies were proposed based on stability analysis of such WPT systems. For example, an impedance matching method for automatically matching the impedance between transmitter,receiver and power source is proposed. When the coupling distance changes, the reduction of the power transmission efficiency can be effectively avoided.[7,8]Another method is a working frequency tracking scheme, which can track the maximum efficiency point dynamically according to different coupling conditions.[9,10]These methods have been proved to be effective for optimizing the transferred efficiency in electric circuit.However,these circuit-based research methods have some limitations and could not provide clear physical pictures for people to understand some interesting and important phenomena in WPT system. For example, why does the transfer efficiency decrease rapidly(frequency splitting)when the transfer distance is greater (less) than the critical transfer distance and how to realize efficient long-range[11,12]or directional[13,14]energy transfer?

    Very recently, the interaction between coupling (coherent effect) and gain/loss (incoherent effect) in the non-Hermitian system has shown many interesting and unexpected features.[15]In particularly, parity-time (PT) symmetry and exceptional points(EPs)associated with phase transition drawn from non-Hermitian physics have attracted considerable attention.[16-18]From the perspective of non-Hermitian photonics, the coherent and incoherent effects compete and coexist in the WPT system. Especially,it can undergo a phase transition that restores the broken symmetry. When the transfer distance is small, the coherent effect is dominant in this strong coupling region,which leads to the working frequency splitting. On the contrary,when the transfer distance is large,the WPT system corresponds to the weak coupling region(broken phase) of the non-Hermitian physical model. As a result,the transfer efficiency decreases rapidly as the transfer distance increases. Non-Hermitian physics can clearly show the limitations of the current WPT system,and provide a new way to solve the difficulties of previous designs.[3-6,19]

    In this review,we mainly introduce our latest progress in resonance WPT based on non-Hermitian physics.In Section 2,based on the coupled-mode theory, we establish a bridge between open WPT system and PT symmetry in non-Hermitian system,and show that stable power transfer states correspond to the real eigenvalues of the effective Hamiltonian. The frequency splitting in the strong coupling region and the significantly reduced efficiency after passing the critical coupling point are explained clearly by the phase diagram of PT symmetry. In Section 3,we introduce that for a non-ideal secondorder PT symmetric system of the non-Hermitian physics with unbalanced effective gain and loss,there is a special state with real eigenvalue (i.e., bound state in the continuum, BIC) in the broken phase. At the fixed frequency of BIC, efficient and stable WPT can be realized. Furthermore, based on the high-order PT symmetry of non-Hermitian physics,the thirdorder PT symmetric WPT system is presented, which can be used to achieve stable and efficient WPT without frequency tracking and idle power loss remains low. In second part of Section 4, combining the edge state of a topological chain and non-Hermitian physics,the long-range WPT devices with topological properties are introduced. This topological WPT inherits the physical properties of the edge states and has good electromagnetic compatibility because it is immune to impurities and perturbations. Finally,Section 5 summarizes the conclusions of this review.

    2. Non-Hermitian properties of the resonance WPT

    Fig.1. Scheme of a standard magnetic resonance WPT system. Transmitter and receiver coils are resonant coils. Source and load coils are non-resonant coils. γ1 (γ2) represents the coupling strength between source (load) and transmitter(receiver)coils. κ denotes the coupling strength between transmitter and receiver coils.

    Let us start with a standard magnetic resonance WPT system of four-coil configuration. It is composed of the two resonant coils (i.e., transmitter and receiver coils) and two nonresonant coils(i.e., source and load coils), which is shown in Fig.1. When a continuous harmonic waves1+=S1+e-iωtat a real frequencyωis fed into the WPT system, the coupledmode equations for the system are presented as[19]H11=ω0+iγ1,H22=ω0-iγ2,andH12=H21=κ. Comparing Eq. (3) with the Schr¨odinger equation, one can find thatHcan be regarded as the effective Hamiltonian of the system.It is worth noting that the coefficient ofa1has changed from-iγ1in Eq.(1)to iγ1in Eq.(3)under the zero-reflection condition. In this case, the resonator modea1has an effect gainγ1, which comes from the external environment (the incident waves) instead of the actual gain material. Whenγ1=γ2is satisfied,His invariant under the joint action of the parity(H11?H22,H12?H21) and time reversal (i→-i) operators. Therefore, the traditional resonance WPT systems with symmetric configuration can be treated as a second-order PT symmetric system under zero-reflection condition.[23]

    By solving|H-ωI|=0(whereIis an identical matrix),eigenfrequencies of the effective Hamiltonian in Eq.(4)can be obtained as

    Fig. 2. Eigenfrequencies of resonant two-coil WPT systems with ideal PT symmetry(γ1=γ2).

    Analyzing the eigenfrequencies of the effective Hamiltonian could reveal the physics of PT symmetry in WPT system.For the standard symmetric configuration (γ1=γ2=γ), the WPT system meets the requirement of an ideal second-order PT symmetry. In Fig. 2, the transition of the PT symmetry from exact PT phase to PT broken phase is labeled by the gradient color from orange to blue. The exact PT symmetric phase of the second-order system corresponds to the strongly coupled region of the WPT system (κ>γ), whose eigenfrequencies are purely real.[24,25]If the WPT system works at a pure real eigenfrequency, the optimal efficiency transfer can be achieved. However,these eigenfrequencies are very sensitive to the change of the coupling strengthκ, which directly depends on the coupling distance between the transmitter and receiver coils. Especially,when the transfer distance is small,the coherent effect is dominant in this strong coupling region,which leads to the working frequency splitting. But when the transfer distance is large,the WPT system corresponds to the weak coupling region (broken phase) of the non-Hermitian physical model, thus the transfer efficiency decreases rapidly as the transfer distance increases. Therefore, non-Hermitian physics can clearly explain the experimental results of the current resonance WPT systems.[26]Moreover,non-Hermitian physics can also be used to solve some key difficulties of previous designs. From Fig. 2, one can see that when the transmission distance changes,the pure real eigenvalues of the effective Hamiltonian in the non-Hermitian system will change.In order to achieve good transmission,the working frequency of the resonant WPT system needs to change accordingly.[19]Recently,Assawaworraritet al.[19]and Zhouet al.[3]have proposed a nonlinear PT-symmetric system,which automatically tracks the real eigenfrequency through the nonlinear saturable gain to ensure robust WPT. In addition, the PT symmetric broken phase region in Fig. 2(a) corresponds to the weakly coupled region of the WPT system (κ<γ). In this case,the imaginary part of the eigenfrequencies increases sharply with the coupling distance, which leads to the instability of the WPT system, that is, the transfer efficiency will decrease drastically with the increase of the coupling distance. Therefore,the critical transfer distance of the WPT system is determined by the PT phase transition pointκ=γ(also known as the second-order EP) at which the two eigenfrequencies collapse. Although the WPT system can operate under EP with fixed frequency, such a scheme would be extremely difficult in practical implementation due to the intrinsic sensitivity of EP.[18]

    3. Stable and efficient WPT system based on PT symmetry

    3.1. Two-coil WPT system based on non-ideal secondorder PT symmetry

    In order to solve the problems of frequency splitting in the PT symmetric phase and the sensitivity of the EP point,a valuable question naturally arises: is it possible to find a fixed real eigenfrequency in the PT symmetric broken phase to achieve stable energy transmission? In addition, this scheme can be used to improve the transfer distance. As introduced in the above section, the transfer distance of resonance WPT in the PT symmetric broken phase could also be extended beyond the critical transfer distance determined by EP (κ=γ).For a non-ideal PT-symmetry (γ1/=γ2) WPT system withκ<κc=(γ1+γ2)/2,the imaginary part of the eigenfrequency is split into two branches, and one of them will pass through the real frequency axis when the relationshipκ2=γ1γ2is met,as shown in Fig. 3. Although there is no a whole purely real branch in the phase diagram of non-ideal PT symmetry, this critical relationship could ensure a real eigenfrequencyω0of the system. It should be point out that this solution cannot be found in the previous non-Hermitian system without gain except for the caseκ=0.

    Under the circumstance of non-ideal PT-symmetry,Eq.(5)can be rewritten as

    Fig.3. Eigenfrequencies of resonant two-coil WPT systems with non-ideal PT symmetry(γ1/=γ2).

    3.2. Three-coil WPT system based on third-order PT symmetry

    From Fig. 3 in Subsection 3.1, we can see that the real eigenfrequency in the non-ideal PT symmetry system corresponds to a point in the parameter space of PT phase diagram.In order to maintain a stable power transfer, people need to adjustγ2according to the coupling strengthκ. In this section,we will introduce a stable and efficient WPT based on the third-order PT symmetry of non-Hermitian system, in which the working frequency(real eigenfrequency)does not depend on the coupling strength. At present, it has been proved that the three-coil system with the insertion structure of a relay coil,[30-34]metamaterials[35-39]or metsurfaces[40-43]between the transmitter and receiver coils can improve the transmission distance compared with WPT system with two coils. Similar to treating the resonant two-coil system as a second-order PT symmetric system, one can also deal with a three-coil WPT system using the third-order PT symmetry.[44]As shown in Fig.4(a),the system’s effective Hamiltonian is

    Here,κ12(κ23)is the coupling strength between the transmitter(relay)and relay(receiver)coils. When the intrinsic loss Γ(due to absorption or radiation)of the resonant coil is negligible andκ12=κ23=κ,the ideal third-order PT symmetry can be established. For example,Sakhdariet al.tune the values of the two coupling strengths equally by rotating the transmitter coil with a feedback algorithm.[45]By solving the characteristic equation|ωI-H′|=0,the eigenfrequencies are obtained as follows:

    Theoretical and experimental results show that, at the fixed frequency, the efficiency stability of the third-order PT symmetric WPT system is significantly superior to that of the second-order PT symmetry, as shown in Fig. 4(c). This three-coil system is further extended to WPT with miniaturized receivers as an example,which shows stable transfer efficiency with a wide range of axial transfer distance and lateral misalignment.[40]Besides, the idle (in idle state without receiver terminals) power loss of this three-coil WPT system is also very low [see Fig. 4(d)], benefiting wireless charging intermittently. Considering utilizing higher-order(N>4)PT symmetry for WPT system, we can predict that the oddorder (N= 2m+1,mis a positive integer) resonant coils will show more stable transfer performance than that of evenorder (N= 2m) resonant coils because there is a couplingindependent entirely real eigenfrequency.

    Fig.4.(a)Schemes of three-coil WPT system with third-order PT symmetry.(b)The real(left)and imaginary(right)eigenfrequencies of third-order PT symmetric systems. (c)Transfer efficiency versus distance in three-coil(red)and two-coil(black)WPT systems at fixed operating frequency.(d)Idle power losses versus frequency in three-coil(red)and two-coil(black)WPT systems.[44]

    4. Non-Hermitian topological dimer chain for long-range robust WPT

    With the development of WPT devices, the efficient long-range and robust WPT is highly desirable but also challenging.[46-49]Recently, the possibility of obtaining photonic topological modes that are robust against perturbations by mimicking the topological properties of solid state system,has brought a profound impact on optical sciences.[50,51]In particular, topological non-Hermitian systems provide an effective avenue for studying the intriguing properties of topological structures involving PT symmetry and developing new wave functional devices.[52]For example, using the EP of a non-Hermitian dimer chain, a new sensor that is sensitive to perturbation of on-site frequency at the end of the structure and yet topologically protected from internal perturbation of site-to-site couplings is realized.[53]In this section, we introduce the topological dimer chain with effective PT symmetry,which is composed of the topological edge modes(TEMs)and topological interface modes (TIMs), can be used to the long-range WPT.Especially,this topological WPT inherits the physical properties of topological modes and has good electromagnetic compatibility because it is immune to impurities and perturbations.

    In 2018, Jianget al.firstly proposed that the nontrivial dimer chain will provide a suitable platform for the study of robust WPT in the RF regime.[54]The photonic topological dimer chain is inspired by the basic topological Su-Schrieffer-Heeger (SSH) model in condensed-matter physics.[55]Specially, based on the dimer chain composed of split-ring-resonators, the robustness of edge states,[54]topological invariant,[56]and the coupling between two SSH chains[57]have been demonstrated in recent years. The topological dimer chain on the long-range WPT with immunity to disturbance is of great significance in science and technology.Very recently,the physical mechanism of the effective second order PT system with TEMs in the dimer chain is analyzed and corresponding experiments are carried out to verify the long-range WPT.[58-60]Moreover, in order to solve the special technical problems of standby power loss and frequency tracking, Ref. [59] uncovered that an optimized topological WPT system with effective third-order PT symmetry, which is constructed by using one TIM and two TEMs, as shown in Fig. 5(a). The measured reflection spectra of the topological dimer chain with effective third-order PT symmetry under working and standby states are shown in Figs. 5(b) and 5(d),respectively. It should be noted that the reflection is not zero due to the influence of intrinsic loss. Nevertheless, the maximum value of transmission efficiency still corresponds to the real eigenvalue calculated theoretically. Figures 5(b) and 5(d)clearly show that the refection of the chain under working(standby)state is low(high)at the reference frequency,which means the standby power loss of the topological dimer chain with effective third-order PT symmetry is small.[59]Furthermore, in order to intuitively show the characteristics of low standby power loss in the topological WPT system with effective third-order PT symmetry,a source coil is placed at the left end of the chain and both ends of the chain are equipped with an LED lamp. One can see that two LED lamps will be lit up at the working state, as shown in Fig. 5(c). However,two LED lamps remain dark at the reference frequency for the standby state, as shown in Fig.5(e). Therefore, the small standby power loss of the topological dimer chain with effective third-order PT symmetry is demonstrated in Figs.5(c)and 5(d). Although TEMs and TIMs can be used for robust WPT with topological protection and can be immune to purities and perturbations,once the topological edge is totally broken,the topology WPT will be destroyed. In this case,the topological WPT is disappearing.

    Fig.5. (a)Scheme of a multi-coil WPT system based on the effective third-order PT symmetry in a composite topological dimer chain,which is formed by the interaction of the three topological modes, including two TEMs at two ends of the chain and one TIM at the center of the chain.(b) Measured reflection spectrum of the topological dimer chain with effective third-order PT symmetry. (c) Experimental demonstration of the topological WPT of topological dimer chain with effective third-order PT symmetry by lighting two LED lamps at two ends of the chain. (d),(e)Similar to(b),(c),but for the standby state of the topological WPT with third-order PT symmetry.[59]

    Overall,this WPT technology has many advantages in the field of long-range WPT: (1) There is low idle power loss,which can avoid the risk of burning the circuit due to excessive no-load power, thus greatly increasing safety and stability of the WPT system. (2) Stable and efficient transfer can always be realized at a fixed working frequency, which promotes practicability of WPT system. (3) This topological WPT system is realized by TEMs and TIMs,which has topological protection and is insensitive to internal perturbations and structural errors. The rise of topological photonics provides a powerful tool for near-field robust control of WPT.In addition to the properties of robustness and long-range, the robust directional WPT has been demonstrated using asymmetric topological edge states.[61,62]Especially, the realization of actively tuned TEMs in the topological quasiperiodic chain will open up a new avenue in the dynamical control of robust long-range WPT.[62]Although the current topological WPT schemes are mainly based on one-dimensional systems,the concept of topological manipulation can be consulted for higher dimensional system and related WPT devices. Therefore,the investigation in the topological dimer chain provides insightful guidance to exploring the exciting applications associated with topological transport in WPT regime.

    5. Summary and outlook

    This paper reviews some advances in stable and efficient WPT based on non-Hermitian physics, including using the bound states in the continuum of the two-coil WPT system with non-ideal second-order PT symmetry and resorting to the three-coil WPT system with third-order PT symmetry. Moreover, the robust long-range WPT with topological protection is also introduced combing the topological photonics and non-Hermitian physics. In a word,non-Hermitian physics not only provides new perspective to understand the abundant and interesting phenomena in the advanced resonance WPT,but also pave the ways for solving some key difficulties of previous designs.

    The WPT system with high-order PT symmetry can significantly enhance the transfer distance. However, due to the use of more resonant coils, the WPT device has a large size.Considering how to introduce the synthetic dimensions[63-65]and build a multi-mode coupled high-order non-Hermitian system in a single coil is the direction of efforts to realize long-distance, efficient and miniaturized WPT devices in the future. In addition, the non-Hermitian system can also be established by asymmetric coupling rather than gain/loss engineering.[66,67]Specially, it is very interesting that all the eigenmodes are localized in the non-Hermitian system with asymmetric coupling, which are promising for efficient and robust WPT independent on the working frequency.

    Acknowledgements

    This research was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301101), the National Natural Science Foundation of China (Grant Nos. 91850206, 61621001, 2004284,11674247, and 11974261), Shanghai Science and Technology Committee, China (Grant Nos. 18JC1410900 and 18ZR1442900), the China Postdoctoral Science Foundation(Grant Nos. 2019TQ0232 and 2019M661605), the Shanghai Super Postdoctoral Incentive Program, and Fundamental Research Funds for the Central Universities,China.

    猜你喜歡
    李果亞平海濤
    那年的盛夏沒(méi)有果實(shí)
    上海故事(2023年2期)2023-05-30 10:48:04
    軍事文摘(2022年20期)2023-01-10 07:19:44
    高空跳傘
    羅海濤作品
    國(guó)畫家(2022年3期)2022-06-16 05:30:06
    琴聲起(微小說(shuō))
    Effect of blade shape on hydraulic performance and vortex structure of vortex pumps *
    孔亞平和她的三個(gè)夢(mèng)
    李果
    通過(guò)反思尋求最優(yōu)解
    南海隨筆
    草原(2016年1期)2016-01-31 21:21:51
    丝袜美腿诱惑在线| 成人国语在线视频| 欧美精品啪啪一区二区三区| 国产欧美日韩一区二区三区在线| 国产片内射在线| 在线观看午夜福利视频| av有码第一页| 免费日韩欧美在线观看| 亚洲色图综合在线观看| 99久久综合精品五月天人人| 黄色片一级片一级黄色片| 欧美日韩乱码在线| 在线永久观看黄色视频| 99国产极品粉嫩在线观看| 丁香六月欧美| 极品人妻少妇av视频| 成人手机av| 久久精品影院6| 无遮挡黄片免费观看| 午夜a级毛片| 悠悠久久av| 天堂俺去俺来也www色官网| 老司机福利观看| 中国美女看黄片| 男女下面插进去视频免费观看| 少妇裸体淫交视频免费看高清 | 88av欧美| 黄色a级毛片大全视频| 女人被狂操c到高潮| 欧美黄色淫秽网站| 香蕉国产在线看| 中文欧美无线码| 亚洲人成电影观看| 中国美女看黄片| 久久性视频一级片| 亚洲成a人片在线一区二区| 日韩欧美在线二视频| xxxhd国产人妻xxx| 国产伦一二天堂av在线观看| a级毛片黄视频| 亚洲成人免费电影在线观看| 久久天堂一区二区三区四区| 香蕉国产在线看| 人人澡人人妻人| 午夜两性在线视频| 欧美日本中文国产一区发布| 成人黄色视频免费在线看| 久久影院123| 国产亚洲av高清不卡| 欧美午夜高清在线| 欧美色视频一区免费| xxx96com| 嫩草影视91久久| 国产精品九九99| 午夜精品久久久久久毛片777| 精品一区二区三区av网在线观看| 国产精品综合久久久久久久免费 | 精品国产美女av久久久久小说| 一个人观看的视频www高清免费观看 | 久久人妻熟女aⅴ| 国产亚洲欧美98| 韩国av一区二区三区四区| 亚洲av成人不卡在线观看播放网| 中文字幕人妻丝袜制服| 老司机午夜福利在线观看视频| 中文字幕精品免费在线观看视频| 国产免费av片在线观看野外av| 久久亚洲真实| 我的亚洲天堂| 国产深夜福利视频在线观看| 国内毛片毛片毛片毛片毛片| 美女扒开内裤让男人捅视频| 一边摸一边抽搐一进一出视频| 午夜a级毛片| 日韩人妻精品一区2区三区| 国产激情久久老熟女| 一边摸一边抽搐一进一出视频| 亚洲精品久久成人aⅴ小说| 大型av网站在线播放| 精品久久久久久成人av| 精品国产亚洲在线| 天堂动漫精品| 国产97色在线日韩免费| 变态另类成人亚洲欧美熟女 | 亚洲一区二区三区欧美精品| 免费在线观看日本一区| 国产乱人伦免费视频| 亚洲精品在线观看二区| 香蕉丝袜av| www国产在线视频色| 不卡av一区二区三区| 99re在线观看精品视频| 这个男人来自地球电影免费观看| 国产精品电影一区二区三区| 在线观看一区二区三区激情| 国产黄色免费在线视频| 久久 成人 亚洲| 精品人妻1区二区| 长腿黑丝高跟| 神马国产精品三级电影在线观看 | 夫妻午夜视频| aaaaa片日本免费| 亚洲精华国产精华精| 性色av乱码一区二区三区2| 91国产中文字幕| 久久精品国产99精品国产亚洲性色 | 色综合站精品国产| 91麻豆av在线| 九色亚洲精品在线播放| 一进一出好大好爽视频| 亚洲欧美激情综合另类| 在线十欧美十亚洲十日本专区| 日本 av在线| 18禁裸乳无遮挡免费网站照片 | 欧美人与性动交α欧美精品济南到| 久久 成人 亚洲| 日本五十路高清| 日本免费a在线| 电影成人av| 久久午夜综合久久蜜桃| 成人国产一区最新在线观看| 亚洲aⅴ乱码一区二区在线播放 | 精品国产乱码久久久久久男人| 两人在一起打扑克的视频| 国产免费男女视频| 免费在线观看完整版高清| 一级作爱视频免费观看| 岛国在线观看网站| 黄色视频不卡| 亚洲精品国产一区二区精华液| 久久国产精品影院| 精品久久久久久久毛片微露脸| 久久久国产成人精品二区 | 久久香蕉激情| a级毛片黄视频| 久久中文看片网| 国产欧美日韩综合在线一区二区| 日韩精品中文字幕看吧| 老汉色av国产亚洲站长工具| 桃色一区二区三区在线观看| 亚洲 欧美 日韩 在线 免费| 久久中文字幕一级| xxx96com| 国产精品久久久av美女十八| 中国美女看黄片| 欧美最黄视频在线播放免费 | 日韩有码中文字幕| 精品福利观看| 成人亚洲精品一区在线观看| 国产人伦9x9x在线观看| 国产三级在线视频| 久久性视频一级片| 色婷婷久久久亚洲欧美| 亚洲精品美女久久av网站| 免费在线观看亚洲国产| 丰满饥渴人妻一区二区三| 久久精品人人爽人人爽视色| 在线播放国产精品三级| 亚洲少妇的诱惑av| 国产精品成人在线| 欧美 亚洲 国产 日韩一| 男女做爰动态图高潮gif福利片 | svipshipincom国产片| 亚洲人成网站在线播放欧美日韩| 91av网站免费观看| 淫妇啪啪啪对白视频| 大型黄色视频在线免费观看| 亚洲一区二区三区欧美精品| 日韩免费高清中文字幕av| 80岁老熟妇乱子伦牲交| 操美女的视频在线观看| 激情视频va一区二区三区| 久久久久久大精品| 亚洲欧洲精品一区二区精品久久久| 99久久久亚洲精品蜜臀av| 欧美日韩乱码在线| 国产精品电影一区二区三区| 欧美黑人精品巨大| 极品人妻少妇av视频| 水蜜桃什么品种好| 黑丝袜美女国产一区| 国产精品久久电影中文字幕| 日本五十路高清| 中亚洲国语对白在线视频| 丁香六月欧美| 国产不卡一卡二| 香蕉国产在线看| 久久精品亚洲精品国产色婷小说| 99国产精品免费福利视频| 国产精品亚洲av一区麻豆| 亚洲精品成人av观看孕妇| 视频区欧美日本亚洲| 欧美成人免费av一区二区三区| 亚洲欧美日韩另类电影网站| 日韩欧美免费精品| 国产激情欧美一区二区| 80岁老熟妇乱子伦牲交| 精品国产一区二区久久| 亚洲成人免费电影在线观看| 久久99一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 精品一区二区三卡| 人人妻人人澡人人看| 97人妻天天添夜夜摸| 久久久久久久午夜电影 | 99在线人妻在线中文字幕| 老司机午夜福利在线观看视频| 动漫黄色视频在线观看| 国产精品久久久久久人妻精品电影| 午夜免费鲁丝| 日本 av在线| 视频区图区小说| 精品福利观看| 少妇裸体淫交视频免费看高清 | 国产免费av片在线观看野外av| 热99re8久久精品国产| 国产乱人伦免费视频| 琪琪午夜伦伦电影理论片6080| 国产成人精品无人区| √禁漫天堂资源中文www| 天天躁夜夜躁狠狠躁躁| 国产色视频综合| 亚洲va日本ⅴa欧美va伊人久久| www.999成人在线观看| 成人国语在线视频| 日本免费一区二区三区高清不卡 | 亚洲国产中文字幕在线视频| 亚洲少妇的诱惑av| 成人黄色视频免费在线看| 欧美人与性动交α欧美软件| 一个人免费在线观看的高清视频| 精品国产乱子伦一区二区三区| 国产又爽黄色视频| 日本撒尿小便嘘嘘汇集6| 国产亚洲av高清不卡| 亚洲九九香蕉| 美女福利国产在线| 一二三四社区在线视频社区8| 亚洲第一欧美日韩一区二区三区| 欧美亚洲日本最大视频资源| 国产成人影院久久av| 亚洲专区字幕在线| 日韩欧美一区二区三区在线观看| 大码成人一级视频| 新久久久久国产一级毛片| 在线观看免费日韩欧美大片| 亚洲欧美精品综合一区二区三区| 久久精品国产亚洲av高清一级| 国产精品电影一区二区三区| 人人妻人人爽人人添夜夜欢视频| 日本三级黄在线观看| av天堂在线播放| 国产色视频综合| 精品久久久精品久久久| 无遮挡黄片免费观看| 国产三级黄色录像| 久久天堂一区二区三区四区| 麻豆国产av国片精品| 两个人看的免费小视频| 天堂俺去俺来也www色官网| 女生性感内裤真人,穿戴方法视频| 最新在线观看一区二区三区| 最新在线观看一区二区三区| 日日摸夜夜添夜夜添小说| 国产成+人综合+亚洲专区| 亚洲成人久久性| 色综合站精品国产| e午夜精品久久久久久久| 中文字幕精品免费在线观看视频| 男女做爰动态图高潮gif福利片 | 国产精品偷伦视频观看了| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美另类亚洲清纯唯美| 在线视频色国产色| 桃色一区二区三区在线观看| 亚洲伊人色综图| 嫁个100分男人电影在线观看| 热99国产精品久久久久久7| 国产亚洲欧美在线一区二区| 亚洲欧美日韩高清在线视频| 午夜福利,免费看| 国产精品久久电影中文字幕| 国产又色又爽无遮挡免费看| 日本vs欧美在线观看视频| 老司机靠b影院| 在线观看午夜福利视频| 成年版毛片免费区| 亚洲aⅴ乱码一区二区在线播放 | 日韩大码丰满熟妇| 黄色成人免费大全| 久久久久久久久久久久大奶| 欧美日韩瑟瑟在线播放| 少妇裸体淫交视频免费看高清 | 亚洲av成人av| 成人影院久久| 少妇被粗大的猛进出69影院| 校园春色视频在线观看| 国产一区在线观看成人免费| 女人被狂操c到高潮| 亚洲专区中文字幕在线| 国产熟女午夜一区二区三区| 久久婷婷成人综合色麻豆| 久久久久国内视频| 国产精品1区2区在线观看.| 黄频高清免费视频| 免费在线观看视频国产中文字幕亚洲| 欧美日韩亚洲综合一区二区三区_| xxxhd国产人妻xxx| 久久精品影院6| 欧美大码av| 在线观看免费视频网站a站| 欧美黄色淫秽网站| 免费看a级黄色片| 国产极品粉嫩免费观看在线| 三上悠亚av全集在线观看| 成年人黄色毛片网站| 精品少妇一区二区三区视频日本电影| 交换朋友夫妻互换小说| 岛国在线观看网站| 亚洲aⅴ乱码一区二区在线播放 | 99精品久久久久人妻精品| 在线观看www视频免费| 日韩人妻精品一区2区三区| 色婷婷久久久亚洲欧美| 国产成人精品无人区| 欧美乱色亚洲激情| 午夜亚洲福利在线播放| 欧美人与性动交α欧美软件| 51午夜福利影视在线观看| 亚洲午夜理论影院| 国产精品爽爽va在线观看网站 | 黄色片一级片一级黄色片| 999精品在线视频| 在线观看免费日韩欧美大片| 国产99白浆流出| 黄片大片在线免费观看| 黄网站色视频无遮挡免费观看| 一级,二级,三级黄色视频| 亚洲国产精品合色在线| 交换朋友夫妻互换小说| 国产精品1区2区在线观看.| 亚洲aⅴ乱码一区二区在线播放 | 日本一区二区免费在线视频| 成人国产一区最新在线观看| 男人操女人黄网站| 精品久久久精品久久久| 欧美午夜高清在线| 视频在线观看一区二区三区| 亚洲一区二区三区不卡视频| 日本精品一区二区三区蜜桃| 在线观看免费日韩欧美大片| 久久久精品国产亚洲av高清涩受| 老熟妇乱子伦视频在线观看| 国产一卡二卡三卡精品| 国产亚洲欧美98| 老司机在亚洲福利影院| 婷婷六月久久综合丁香| 国产极品粉嫩免费观看在线| 9热在线视频观看99| 久久久水蜜桃国产精品网| 成人亚洲精品av一区二区 | 两人在一起打扑克的视频| 国产精品综合久久久久久久免费 | 国产成人精品在线电影| 亚洲一码二码三码区别大吗| 久久热在线av| 亚洲自偷自拍图片 自拍| 在线视频色国产色| 69av精品久久久久久| 精品国产国语对白av| 黄片小视频在线播放| 男人操女人黄网站| 亚洲专区字幕在线| 他把我摸到了高潮在线观看| 精品熟女少妇八av免费久了| 看片在线看免费视频| 男女下面进入的视频免费午夜 | 久久久久精品国产欧美久久久| 亚洲精品一区av在线观看| 久久久久久久久久久久大奶| 91九色精品人成在线观看| 亚洲九九香蕉| 亚洲一区中文字幕在线| 久久精品成人免费网站| 久久精品91蜜桃| tocl精华| 国产深夜福利视频在线观看| 久久久国产成人精品二区 | xxx96com| 国产一区二区在线av高清观看| av网站在线播放免费| 国产精品久久久av美女十八| 午夜久久久在线观看| 精品一品国产午夜福利视频| 91大片在线观看| 日本精品一区二区三区蜜桃| 真人做人爱边吃奶动态| 极品教师在线免费播放| 又黄又爽又免费观看的视频| 久久久久国内视频| 亚洲国产欧美日韩在线播放| 国产麻豆69| 婷婷精品国产亚洲av在线| 国产97色在线日韩免费| 男人舔女人下体高潮全视频| 91大片在线观看| 亚洲精品美女久久久久99蜜臀| 啦啦啦在线免费观看视频4| 90打野战视频偷拍视频| 日韩国内少妇激情av| 男女下面插进去视频免费观看| av免费在线观看网站| 亚洲一区二区三区欧美精品| 久久婷婷成人综合色麻豆| 日韩有码中文字幕| 亚洲自拍偷在线| 欧美成人免费av一区二区三区| 一区福利在线观看| 黑人欧美特级aaaaaa片| 久久精品人人爽人人爽视色| 两性午夜刺激爽爽歪歪视频在线观看 | 可以在线观看毛片的网站| 久久久国产精品麻豆| 久久精品国产综合久久久| 日本免费a在线| 欧美不卡视频在线免费观看 | 神马国产精品三级电影在线观看 | 国产精品免费一区二区三区在线| 黄色怎么调成土黄色| 国产三级黄色录像| 国产精品久久久久成人av| 人成视频在线观看免费观看| 欧美成人午夜精品| 99香蕉大伊视频| 精品人妻1区二区| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品香港三级国产av潘金莲| 国产人伦9x9x在线观看| av网站在线播放免费| 好男人电影高清在线观看| 国产亚洲欧美98| 久久狼人影院| av天堂久久9| 亚洲熟妇中文字幕五十中出 | 国产精品久久久久久人妻精品电影| 侵犯人妻中文字幕一二三四区| tocl精华| 国产亚洲精品第一综合不卡| √禁漫天堂资源中文www| 岛国视频午夜一区免费看| 看片在线看免费视频| 少妇裸体淫交视频免费看高清 | 51午夜福利影视在线观看| 国产精品98久久久久久宅男小说| 真人一进一出gif抽搐免费| 18禁观看日本| 99久久精品国产亚洲精品| 久久狼人影院| 亚洲欧美日韩高清在线视频| 亚洲九九香蕉| 久久国产精品影院| 99热国产这里只有精品6| 无遮挡黄片免费观看| 免费av中文字幕在线| 亚洲男人天堂网一区| 热re99久久国产66热| 狠狠狠狠99中文字幕| 国产精品亚洲一级av第二区| 国产精品美女特级片免费视频播放器 | 日韩 欧美 亚洲 中文字幕| 国产精品一区二区在线不卡| 啦啦啦 在线观看视频| 国产精品一区二区免费欧美| 亚洲第一青青草原| 精品久久久久久电影网| 欧美一级毛片孕妇| 两个人看的免费小视频| 在线永久观看黄色视频| av天堂久久9| 国产高清激情床上av| www.精华液| 两个人免费观看高清视频| 多毛熟女@视频| 日韩欧美一区二区三区在线观看| 亚洲avbb在线观看| 国产高清激情床上av| 国产片内射在线| 99热只有精品国产| 黄色a级毛片大全视频| 国产一卡二卡三卡精品| 亚洲第一欧美日韩一区二区三区| 无遮挡黄片免费观看| 女人被狂操c到高潮| 精品久久久久久,| 成年女人毛片免费观看观看9| 美女午夜性视频免费| 久久久国产一区二区| 欧美午夜高清在线| 夜夜躁狠狠躁天天躁| 国产一区二区激情短视频| 免费一级毛片在线播放高清视频 | 久久久久久久午夜电影 | 香蕉丝袜av| 91在线观看av| 一个人免费在线观看的高清视频| 中文字幕高清在线视频| 久久国产精品影院| 久久久水蜜桃国产精品网| 欧美大码av| 99香蕉大伊视频| 99久久久亚洲精品蜜臀av| 99精品久久久久人妻精品| 国产精品综合久久久久久久免费 | 另类亚洲欧美激情| 久久国产精品人妻蜜桃| 两个人免费观看高清视频| 精品久久蜜臀av无| 午夜影院日韩av| 18禁黄网站禁片午夜丰满| 久久久久久免费高清国产稀缺| www.www免费av| 亚洲成人免费电影在线观看| 国产成人影院久久av| 国产免费男女视频| 欧美成人性av电影在线观看| 久久久久国产精品人妻aⅴ院| 久久人妻福利社区极品人妻图片| 精品卡一卡二卡四卡免费| 19禁男女啪啪无遮挡网站| 亚洲 欧美一区二区三区| 亚洲熟妇中文字幕五十中出 | 天堂动漫精品| 男人操女人黄网站| 在线观看舔阴道视频| 露出奶头的视频| 在线观看免费高清a一片| 亚洲久久久国产精品| 可以在线观看毛片的网站| 免费高清在线观看日韩| 美女国产高潮福利片在线看| 日韩大码丰满熟妇| 国产无遮挡羞羞视频在线观看| 成人黄色视频免费在线看| 最好的美女福利视频网| 老司机福利观看| 日韩欧美三级三区| 啦啦啦在线免费观看视频4| 天堂√8在线中文| 免费在线观看日本一区| 午夜影院日韩av| 午夜成年电影在线免费观看| 欧美黑人欧美精品刺激| 丝袜美足系列| 亚洲七黄色美女视频| 又紧又爽又黄一区二区| 成年人黄色毛片网站| 精品人妻1区二区| 精品久久蜜臀av无| 欧美激情 高清一区二区三区| 亚洲色图综合在线观看| 久久人妻熟女aⅴ| 侵犯人妻中文字幕一二三四区| 一区二区三区精品91| 日韩精品青青久久久久久| 欧美成人免费av一区二区三区| 久久亚洲精品不卡| 人妻丰满熟妇av一区二区三区| 亚洲av日韩精品久久久久久密| 美国免费a级毛片| 久久人妻熟女aⅴ| 97人妻天天添夜夜摸| 久久香蕉激情| 91成人精品电影| 夫妻午夜视频| 欧美黄色片欧美黄色片| 看免费av毛片| 淫秽高清视频在线观看| 欧美国产精品va在线观看不卡| 日韩大码丰满熟妇| 午夜视频精品福利| 欧美黄色淫秽网站| 99re在线观看精品视频| 亚洲精品国产色婷婷电影| 91精品三级在线观看| 中文字幕高清在线视频| 国产成人精品久久二区二区91| 亚洲专区国产一区二区| 视频区图区小说| 国产精品香港三级国产av潘金莲| 久久人人爽av亚洲精品天堂| 国产精品爽爽va在线观看网站 | 欧美国产精品va在线观看不卡| 久久久久久久久久久久大奶| 亚洲精品一卡2卡三卡4卡5卡| 99精品久久久久人妻精品| 亚洲国产毛片av蜜桃av| 在线播放国产精品三级| 美女高潮到喷水免费观看| 国产免费男女视频| 一边摸一边抽搐一进一小说| 国产精品综合久久久久久久免费 | 久久天躁狠狠躁夜夜2o2o| 热re99久久精品国产66热6| 视频区图区小说| 久久国产精品男人的天堂亚洲| 黑人猛操日本美女一级片| 国产欧美日韩精品亚洲av| 国产熟女xx| 视频在线观看一区二区三区| 国产精品亚洲一级av第二区| 国产成人av教育| 99re在线观看精品视频| 亚洲在线自拍视频| 成人亚洲精品一区在线观看| 欧美精品亚洲一区二区|