• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-energy picosecond single-pass multi-stage optical parametric generator and amplifier

    2022-01-23 06:34:40YangYu余洋ZhaoLiu劉釗KeLiu劉可ChaoMa馬超HongWeiGao高宏偉XiaoJunWang王小軍YongBo薄勇DaFuCui崔大復(fù)andQinJunPeng彭欽軍
    Chinese Physics B 2022年1期
    關(guān)鍵詞:劉釗馬超

    Yang Yu(余洋) Zhao Liu(劉釗) Ke Liu(劉可) Chao Ma(馬超) Hong-Wei Gao(高宏偉)Xiao-Jun Wang(王小軍) Yong Bo(薄勇) Da-Fu Cui(崔大復(fù)) and Qin-Jun Peng(彭欽軍)

    1Key Laboratory of Solid-state Lasers,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    2Key Laboratory of Functional Crystal and Laser Technology,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    3University of Chinese Academy of Sciences,Beijing 100190,China

    Keywords: high-energy,picosecond,optical parametric frequency conversion

    1. Introduction

    High-energy picosecond (ps) mid-infrared laser has become an important tool in many fields, including spectroscopy,[1]surgery,[2]laser ranging,[3]high-order harmonic generation.[4,5]It is attractive to obtain picosecond midinfrared laser sources,relying on well-established 1-μm pump laser technology to generate mid-IR radiation by nonlinear frequency conversion.

    Synchronously pumped optical parametric oscillator(SPOPO)[6]is the most commonly used technology to obtain ps mid-infrared sources,because of the ability of SPOPO to produce pulses with narrow line-width, high beam quality,and pulse duration of below 100 ps. The optical length of the SPOPO cavity must match strictly with the repetition rate of the pump source,ensuring that the pulse oscillating in the cavity is always pumped synchronously by the next pump pulse.There are many considerable reported works based on this method.[7-11]So far, many reports about SPOPO concentrate on tens or hundreds of MHz repetition rate of pump source,corresponding to several meters of SPOPO cavity length, resulting in the signal or idler pulse energy only in nano joule level.[7,8]Reducing the repetition rate of the pump laser is an effective way to increase the energy in an SPOPO,but causes an accompanying increase in the length of the SPOPO cavity. Especially, when the pump repetition rate is below MHz,SPOPO cavity length would be more than hundreds of meters,which is hard to be built in a laboratory. Adopting the extending cavity length method including imaging-relay[9]and fiber coupling,[10]the reported SPOPOs obtained single pulse energy up to hundreds of nano joules at repetition rate of around 7 MHz.Other reports are pursuing higher pulse energy instead of simply extending the SPOPO cavity length, such as cavity dumping,[12]a high-harmonic cavity,[13]burst-mode pumping,[14,15]but it is still difficult to generate high-energy single pulses in the kHz regime. Moreover, all of the abovementioned SPOPOs require precise cavity length matching and are complicated especially when reducing the repetition rate to obtain higher pulse energy.

    It is reachable to obtain a high-energy mid-infrared source at kHz regime applying optical parametric oscillator (OPO)in a short cavity,[16-19]benefited from the crystal of high effective nonlinearity and short cavity. A 1 mJ level OPO was demonstrated,operating at 500 Hz and 380 ps with 2800 nm,but providing the beam quality factorM2of 75×78.[16]Another OPO was reported,generating 270 ps,2 mJ mid-infrared radiation, tuning from 2990 to 3500 nm with the beam quality factorM2of 42×46.[17]A sub-300 ps OPO based on 8 mm cavity length provided 4.3 μJ pulses at 1-10 kHz with 6.15 μm.[18]A~250 ps OPO was demonstrated, generating~50μJ pulses at 1-10 kHz with~2.8μm.[19]The short cavity and large beam size in the cavity lead to large Fresnel numbers, and the radiation field modes arise to cause a decline in beam quality. So far, to the best of our knowledge, there has been no report on the conventional OPO generating highenergy pulses below 100 ps at 10 kHz.Recently,our group has demonstrated an intra-cavity SPOPO in a regenerative amplifier,which produced a record signal pulse energy of 30.5μJ at 1.5μm with 7.0 ps of the pulse-length,operating at the repetition rate of 10 kHz.[20]This is the highest pulse energy generated from an SPOPO but the method is relatively complex.

    Optical parametric generator (OPG) is a simple way to obtain ps mid-infrared source in low repetition rate but with low efficiency and poor beam quality. For higher pulse energy,the ps pulse generated from OPG was usually amplified by an optical parametric amplifier (OPA) with the separated pump beams.[21,22]For instance, a cascaded OPG and OPA system based on OP-GaAs crystal was pumped by a Tm fiber MOPA providing 1-MHz and 46 ps,generating 0.4μJ tunable mid-infrared radiation in 2552-2960 nm.[21]Here,the fundamental pump beam was split into two beams for pumping the OPG and OPA stages,separately,and the time delayer should be used,leading to the OPG and OPA system to be very complex.

    Very recently,a cascaded single-pass OPG-OPA structure was reported for the first time, which was based on MgOdoped periodically poled LiNbO3(MgO:PPLN), generating total pulse energy of 0.1 μJ with 11 ps pulse length, operating at the repetition rate of 80 MHz, tuning from 1902 nm to 2415 nm.[23]We notice that the single-pass OPG-OPA scheme provides available access to generate high-energy ps pulses and is much compact and simple. However, this single-pass OPG-OPA was only two stages and pumped at MHz regime and the gain medium was limited to the quasi-phase-matching(QPM)material.

    We demonstrate a new management of single-pass multistage OPG-OPA to obtain high-energy picosecond sources with high beam quality. The setup of single-pass multi-stage OPG-OPA can be considered as a compact module,which just requires matching the spatial pattern between the pump beam and the stable mode of the OPG-OPA. In a proof of principle by experiment, three walk-off compensated crystal pairs and two lenses were adopted. A record signal pulse energy of 50.2μJ at~1.77μm was achieved,operating at 10 kHz with a pulse length of~33 ps. To the best of our knowledge,it is the first picosecond single-pass multi-stage OPG-OPA pumped at kHz regime.

    2. Method and experimental setup

    The physical process of the new management single-pass multi-stage OPG-OPA is similar to the initial physical process in SPOPO.Figure 1(a)shows a typical OPO pumped by a laser with a suitable repetition rate. At the beginning of the SPOPO process, the signal and idler pulses are generated from optical parametric noise (OPN)[24,25]during the first pump pulse passing through the nonlinear crystal and then gradually amplified by the next passes. The beam qualities of the signal and idler pulses are gradually improved during the SPOPO oscillation. In Fig. 1(b), a pump pulse passes through multiple nonlinear crystals via the lenses,the physical process is equivalent to the initial physical process of OPO. The signal and idler pulses are still generated at the first crystal and amplified during passing next nonlinear crystals subsequently,similar to the round trips in an SPOPO cavity. Meanwhile, the signal and idler beams are gradually purified during the propagation,similar to Fig.1(a). The signal and idler pulse energy can be amplified to a considerable level with a finite number of pump pulses.[14]The high-energy picosecond optical parametric pulses can be obtained without many cavity round trips.It is necessary to compensate for the walk-off effect during the oscillation,which is common in nonlinear crystals. Therefore,the architecture in Fig. 1(b) can be improved by finite pairs of walk-off-compensating nonlinear crystals as Fig.1(c). The single-pass multi-stage OPG-OPA structure retains the process of optimizing beam quality by oscillations in the cavity and can output all energy of signal and idler light.

    Fig. 1. (a) Conventional OPO cavity, (b) single-pass multi-stage OPG-OPA, (c) single-pass multi-stage OPG-OPA, with walk-offcompensated crystal pairs.

    The experimental setup is shown in Fig. 2. A homemade ps pump source is a regenerative amplifier seeded by an SESAM passive mode-locked 1.064 μm Nd:YVO4laser.The measured output power scaling, the pulse train, and the normalized intensity autocorrelation trace of the pump source are plotted in Fig.3.The available average output power of the pump source is 4.9 W,operating at the repetition rate of 10 kHz and the central wavelength of 1064 nm. The pump pulse duration was estimated in Gaussian fit to be~86 ps based on the intensity autocorrelation trace. The beam quality factor ofM2~1.3 was measured by a knife-edge technique. A combination of HWP and TFP is used to systematically control the average power of the pump source. A convex lens(L)is used to focus the pump beam to a waist around 0.28 mm.

    Fig.2.(a)Experimental setup of the single-pass multi-stage OPG-OPA,pumped by a 10 kHz picosecond regenerative amplifier. M:mirrors;L:lens;HWP:half-wave plate;TFP:thin-film polarizer,F1 and F2: CaF2 lenses;DM1,DM2,DM3 and DM4: dichroic mirrors. (b)Layout of a walk-off-compensated KTP pair with the opposite y-axis.

    Fig.3. Output power of the pump source as a function of the absorbed LD power. Insets: (a)the pulse train of pump source in a time span of 1ms;(b)measured autocorrelation trace of pump source at 10 kHz and its Gaussian fit.

    The single-pass multi-stage OPG-OPA consisted of three walk-off-compensated KTP crystal pairs and two identical CaF2convex lenses with a focal length of 500 mm. Each crystal is the samex-cut type II(θ=61°,φ=0°)with the dimensions of 3 mm×3 mm×20 mm. Every crystal pair is placed in a walk-off compensated configuration with two oppositeyaxis crystals as shown in Fig. 2(b).[26]The pump beam is spolarized light, corresponding to they-axis of crystals. Both end surfaces of crystals were AR-coated for the pump,signal,and idler(AR@1.064μm&1.7μm&2.7μm). The OPO acceptance angle is calculated to be 2.59 mrad·cm. The three KTP crystal pairs were carefully adjusted to make sure the consistency of the gain bandwidth center. Two CaF2convex lenses(F1 and F2)were put between the KTP pairs.The lenses were also AR-coated for the pump, signal, and idler light(AR@1.064μm&1.4-1.7μm&2.7-4.3μm). The GVM between the pump and idler is estimated to be 193 fs/mm,in KTP crystal, resulting in a temporal walk-off length of 445 mm,longer than the 120 mm total length of all crystals.

    It is necessary to ensure an appropriate beam size mode matching during the propagation of the pump beam along the single-pass OPG-OPA. The beam propagation process in the single-pass multi-stage OPG-OPA is similar to the process in a cavity. Thus, the stable mode of the single-pass OPG-OPA can be calculated in an assuming cavity. While the interval between the CaF2lenses is optimized to be 80 mm,it is calculated by ABCD matrix that the beam waist of the single-pass OPG-OPA stable mode is~0.277 mm at the middle of KTP pairs,considering the refractive of KTP(~1.748 at 1064 nm)and the beam quality factor of the pump source(~1.3). Then the pump beam is focused to~0.28 mm at the middle of the first KTP pair to match the stable mode,the beam waist would repeatedly appear at the middle of every KTP pair and all the beam waist radius were about 0.28 mm,as shown in Fig.4.

    Fig. 4. Calculated beam radius of pump light along the single-pass OPG-OPA.

    3. Experimental results

    The first and second crystal pairs were failed to be characterized due to no enough output power to be measured owing to the limitation of the available instrument sensitivity at our disposal.The evolution of the average output power of the signal and idler waves as a function of the injected pump power in the three crystal pairs was measured and plotted in Fig.5. The maximum pump power of~3 W was used to avoid the damage of the nonlinear crystals.The threshold was observed to be~1.1 W.It is found that both the signal and idler output power increases linearly with the injected pump power. At the pump power of 3 W,a maximum signal average power of 502 mW at 1.77μm was obtained,corresponding to a signal pulse energy of 50.2 μJ. A signal slope efficiency of~28% and opticalto-optical conversion efficiency of~17% were created. The corresponding idler average power at 2.67μm is 276 mW with a slope efficiency of~13%and optical-to-optical conversion efficiency of 9%. Considering the total output power (signal and idler)of~778 mW under maximum injected pump power of 3 W,the nonlinear conversion efficiency is up to 26%.

    Fig. 5. Average output power of the signal at 1.77 μm (red squares),idler at 2.67μm(blue circles),and signal+idler(magenta triangles)as a function of the injected pump power.

    The spectrum of the signal light was measured by an optical spectrum analyzer(Ocean Insight NIRQuest512-2.5,900-2500 nm),and the result is shown in Fig.6. It can be seen that the signal wavelength is centered at~1.77 μm, corresponding to the idler wavelength of 2.67 μm. The signal spectral linewidth displayed is~17 nm. While the spectral linewidth of the signal light may be failed to represent the real linewidth due to the limit of the spectrometer resolution(6.3 nm,25μm slit), the measured spectrum can still indicate a large spectral linewidth of the signal light, which could be mainly attributed to the gain bandwidth in high-gain condition and the divergence of the generated signal and idler beams. Under the high-gain condition,the signal light obtains enough gain near perfect phase matching, resulting in larger spectral linewidth compared with the low-gain condition. The divergence of the generated signal and idler beams causes off-axis optical parametric amplification,also leads to larger spectral linewidth.

    Fig.6. Measured spectrum of the signal light.

    Owing to the limitation of our autocorrelator sensitivity,the pulse width of the signal and the idler beams are failed to be measured. Here, the pulse temporal shape was simulated by a numerical model taking into account pump depletion, crystal linear absorption, GVM, GVD, and the energy loss between crystal pairs,[27,28]and the spatial walk-off is ignored because of the adopted walk-off compensated configuration.The coupling equations are solved numerically in the frequency domain using the fourth-order Runge-Kutta method.The seeds of the signal and idler pulse are optical parametric noise generated by the pump pulse,[24]and the energies of the seeding signal and idler are assumed to be single photon energy, respectively. It is assumed that the pump light is a plane wave. The simulated result is shown in Fig. 7. The pump pulse is depleted partly in the center due to the downconversion. The pulse width of both the signal and idler pulse is simulated to be~33 ps, which is narrower than the pump pulse width,originating from the temporal gain narrowing effect. The simulated average output powers of signal and idler light are 531 mW and 356 mW,respectively, which are close to the experimental average powers of the signal and idler of 502 mW and 267 mW, respectively. The pulse centers of the signal and idler are slightly offset the coordinate zero point of the time axis due to the effect of GVM. The output power of the OPG-OPA in four crystal pairs was also simulated to be 443 mW for signal and 233 mW for idler,indicating a decline in the output energy at the four crystal pairs scheme.

    Fig. 7. Simulated pulse temporal shapes in the single-pass OPG-OPA of three crystal pairs.

    Fig. 8. Beam quality factor M2 measured after filtering out ~40%power. Inset: 2D spatial beam intensity profile.

    The beam quality and the intensity distribution of the signal beam at 1.77μm were measured by a beam profiling camera (Ophir Spiricon, PY-III-C-A) as shown in Fig. 8. At the maximum output power, the beam quality factor of the signal wave was measured to beM2x×M2y=2.62×4.58. Moreover, the beam quality factor can be improved toM2x×M2y=1.87×2.16 after filtering out about 40%signal power,adopting spatial filtering technology. The inset of Fig. 8 displays the corresponding two-dimensional (2D) spatial beam intensity profile,exhibiting a good beam quality with Gaussian profile,which is important for applications.

    4. Conclusion and perspectives

    In summary,we have demonstrated a new management of single-pass multi-stage OPG-OPA to obtain high-energy picosecond sources with high beam quality. The pump beam matches the stable mode of the OPG-OPA.At pump power of~3 W and repetition rate of 10 kHz,the record output powers of the signal and the idler light are 502 mW and 276 mW with pulse energy up to 50.2μJ and 27.6μJ,respectively. The signal wavelength was measured to be~1.77μm,corresponding to the idler wavelength of 2.67 μm. The signal-beam quality factor can be improved to beM2x×M2y=1.87×2.16 after filtering out about 40%signal power.

    Acknowledgements

    This work was supported by the National Science Foundation for Young Scientists of China (Grant No. 61805259),and Youth Innovation Promotion Association,CAS,and Chinese Academy of Sciences funding (Grant No. ZDRW-KT-2019-4-01).

    猜你喜歡
    劉釗馬超
    鐵騎犁波聯(lián)合制勝
    AA-stacked borophene–graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
    A 45-μJ,10-kHz,burst-mode picosecond optical parametric oscillator synchronously pumped at a second harmonic cavity
    聾人外賣(mài)小哥:在無(wú)聲的世界里用心奔跑
    華聲文萃(2022年8期)2022-07-04 11:50:21
    聾人外賣(mài)小哥:在無(wú)聲的世界里用心奔跑
    馬超尊順劉備
    再論“捉”的詞義及相關(guān)問(wèn)題*——答劉釗、張傳官先生
    讓馬超識(shí)規(guī)矩
    把最好的自己,留給對(duì)的人
    跨年夜
    a在线观看视频网站| 精品人妻偷拍中文字幕| 亚洲人成电影免费在线| 国产欧美日韩精品亚洲av| 国产免费一级a男人的天堂| 国产在线精品亚洲第一网站| 国产真实乱freesex| 亚洲精品粉嫩美女一区| 日韩欧美 国产精品| a级一级毛片免费在线观看| 国产视频内射| 性插视频无遮挡在线免费观看| 美女黄网站色视频| 亚洲中文字幕一区二区三区有码在线看| 免费人成在线观看视频色| 国产69精品久久久久777片| 亚洲欧美日韩卡通动漫| 久久久成人免费电影| 国产精品久久久久久久电影| 熟女电影av网| 三级男女做爰猛烈吃奶摸视频| 蜜桃久久精品国产亚洲av| 久久天躁狠狠躁夜夜2o2o| 亚洲精品色激情综合| 亚洲 国产 在线| 黄色配什么色好看| 日韩欧美国产在线观看| 国产精品嫩草影院av在线观看 | 中文字幕人妻熟人妻熟丝袜美| 日本一二三区视频观看| 亚洲国产欧美人成| 亚洲欧美日韩无卡精品| 欧美日韩综合久久久久久 | 桃红色精品国产亚洲av| 亚洲国产欧美人成| 久久亚洲精品不卡| av国产免费在线观看| 国产精品98久久久久久宅男小说| 中文资源天堂在线| 看片在线看免费视频| 直男gayav资源| 久久久久性生活片| 免费观看的影片在线观看| 天美传媒精品一区二区| 99在线人妻在线中文字幕| 中文字幕人成人乱码亚洲影| 成人毛片a级毛片在线播放| 婷婷精品国产亚洲av| 国产亚洲精品av在线| 精品久久久久久久久久免费视频| 极品教师在线视频| 日韩 亚洲 欧美在线| 一本久久中文字幕| av视频在线观看入口| 亚洲国产欧美人成| 国产成年人精品一区二区| 亚洲国产精品999在线| 亚洲成人久久性| 看十八女毛片水多多多| 韩国av一区二区三区四区| 亚洲人成网站高清观看| 欧美日韩亚洲国产一区二区在线观看| 精品国产亚洲在线| 国产精品亚洲美女久久久| 国产成人a区在线观看| 亚洲久久久久久中文字幕| 夜夜夜夜夜久久久久| 99精品久久久久人妻精品| 中亚洲国语对白在线视频| 一级毛片久久久久久久久女| 国产一区二区在线av高清观看| 他把我摸到了高潮在线观看| 97人妻精品一区二区三区麻豆| 大型黄色视频在线免费观看| 动漫黄色视频在线观看| 日本免费一区二区三区高清不卡| 精品午夜福利在线看| 男插女下体视频免费在线播放| 麻豆av噜噜一区二区三区| 窝窝影院91人妻| 三级男女做爰猛烈吃奶摸视频| 97人妻精品一区二区三区麻豆| 亚洲最大成人av| 久久久久国内视频| 日韩 亚洲 欧美在线| 免费在线观看日本一区| 在线a可以看的网站| 久久国产乱子伦精品免费另类| 欧美日本亚洲视频在线播放| 91av网一区二区| 亚洲精品粉嫩美女一区| 国产精品女同一区二区软件 | 精品乱码久久久久久99久播| 亚洲一区二区三区色噜噜| 99国产极品粉嫩在线观看| 成人国产一区最新在线观看| 成人三级黄色视频| 丰满的人妻完整版| 日韩欧美一区二区三区在线观看| 男女床上黄色一级片免费看| 男人舔女人下体高潮全视频| 亚洲av美国av| 免费高清视频大片| 噜噜噜噜噜久久久久久91| 亚洲av第一区精品v没综合| 成人无遮挡网站| 可以在线观看的亚洲视频| 久久九九热精品免费| 18禁黄网站禁片午夜丰满| 国产视频内射| 一本精品99久久精品77| 韩国av一区二区三区四区| 特级一级黄色大片| 亚洲人成伊人成综合网2020| 亚洲国产精品久久男人天堂| 真实男女啪啪啪动态图| 国产精品人妻久久久久久| 成人永久免费在线观看视频| 久9热在线精品视频| 国产日本99.免费观看| 欧美极品一区二区三区四区| 九色国产91popny在线| 亚洲中文日韩欧美视频| 欧美日韩国产亚洲二区| a级一级毛片免费在线观看| 国产av麻豆久久久久久久| 激情在线观看视频在线高清| 亚洲 欧美 日韩 在线 免费| 国产精品一区二区三区四区免费观看 | 国产精品嫩草影院av在线观看 | 性色av乱码一区二区三区2| 观看美女的网站| 亚洲av免费高清在线观看| 欧美中文日本在线观看视频| aaaaa片日本免费| 欧美丝袜亚洲另类 | 国内精品久久久久久久电影| 国产精品伦人一区二区| 久久久久久久久中文| 亚洲精品在线美女| 久久国产精品影院| h日本视频在线播放| 在线十欧美十亚洲十日本专区| 不卡一级毛片| eeuss影院久久| 久久这里只有精品中国| 久久久久久久午夜电影| a在线观看视频网站| 精品日产1卡2卡| 日韩国内少妇激情av| 网址你懂的国产日韩在线| 欧美精品啪啪一区二区三区| 国产精品国产高清国产av| 白带黄色成豆腐渣| 国产精品亚洲一级av第二区| 精品一区二区三区视频在线观看免费| 日本黄大片高清| 大型黄色视频在线免费观看| 2021天堂中文幕一二区在线观| 亚洲欧美日韩无卡精品| 亚洲无线观看免费| 日本三级黄在线观看| 精品人妻一区二区三区麻豆 | 国产免费一级a男人的天堂| 亚洲精品亚洲一区二区| 欧美日本亚洲视频在线播放| 婷婷色综合大香蕉| 亚洲av.av天堂| 欧美精品国产亚洲| 亚洲av日韩精品久久久久久密| 亚洲av电影在线进入| 我要看日韩黄色一级片| 超碰av人人做人人爽久久| 亚洲av熟女| 欧美xxxx黑人xx丫x性爽| a在线观看视频网站| 最近在线观看免费完整版| 欧美xxxx性猛交bbbb| 最新在线观看一区二区三区| 色av中文字幕| 国产在线精品亚洲第一网站| av专区在线播放| 91九色精品人成在线观看| 国产精品乱码一区二三区的特点| 亚洲专区国产一区二区| 999久久久精品免费观看国产| 日本免费一区二区三区高清不卡| 久久国产乱子伦精品免费另类| 午夜a级毛片| 草草在线视频免费看| 亚洲av美国av| 亚洲狠狠婷婷综合久久图片| 嫩草影院新地址| 最后的刺客免费高清国语| 精品一区二区三区视频在线| 桃色一区二区三区在线观看| 精品99又大又爽又粗少妇毛片 | 国产在线精品亚洲第一网站| 午夜免费男女啪啪视频观看 | 丝袜美腿在线中文| 给我免费播放毛片高清在线观看| 无人区码免费观看不卡| 国产精品久久久久久久久免 | 亚洲专区国产一区二区| 一进一出抽搐gif免费好疼| 精品人妻视频免费看| 色综合亚洲欧美另类图片| 国产黄a三级三级三级人| 国内毛片毛片毛片毛片毛片| 国产精品久久视频播放| 久久午夜亚洲精品久久| 国内精品久久久久久久电影| 国产精品久久电影中文字幕| 亚洲在线自拍视频| 亚洲国产日韩欧美精品在线观看| 一个人看的www免费观看视频| 一区二区三区激情视频| 此物有八面人人有两片| 男女做爰动态图高潮gif福利片| 有码 亚洲区| 日本a在线网址| 给我免费播放毛片高清在线观看| 国产视频内射| 亚洲天堂国产精品一区在线| 精品久久久久久久人妻蜜臀av| 成人国产综合亚洲| 我的老师免费观看完整版| 成人三级黄色视频| 亚洲激情在线av| 噜噜噜噜噜久久久久久91| 精品久久久久久久末码| 国产成人av教育| 99久久成人亚洲精品观看| 国产在线男女| 久久国产精品影院| 人人妻人人澡欧美一区二区| 国产精品久久久久久精品电影| a级毛片a级免费在线| 日本 欧美在线| 国产中年淑女户外野战色| 国产久久久一区二区三区| 日日夜夜操网爽| 看十八女毛片水多多多| 亚洲精品亚洲一区二区| 香蕉av资源在线| 国产精品精品国产色婷婷| 久久久久九九精品影院| 日本撒尿小便嘘嘘汇集6| 国产综合懂色| 亚洲,欧美,日韩| 精品一区二区三区人妻视频| 亚洲国产精品sss在线观看| 男女床上黄色一级片免费看| 51午夜福利影视在线观看| 国产亚洲精品久久久com| 久久久国产成人精品二区| 久久国产精品人妻蜜桃| 欧美绝顶高潮抽搐喷水| 国产一区二区三区视频了| 18禁黄网站禁片免费观看直播| 国产精品一区二区三区四区久久| 性色av乱码一区二区三区2| 午夜精品久久久久久毛片777| 久久伊人香网站| 国产伦一二天堂av在线观看| 国产色爽女视频免费观看| 高潮久久久久久久久久久不卡| 亚洲va日本ⅴa欧美va伊人久久| 成人av一区二区三区在线看| 一区福利在线观看| 乱人视频在线观看| 俺也久久电影网| 99热6这里只有精品| 亚洲天堂国产精品一区在线| 久久久久免费精品人妻一区二区| 国产老妇女一区| 最好的美女福利视频网| 欧美黄色片欧美黄色片| 18禁在线播放成人免费| 日本一二三区视频观看| 成年女人毛片免费观看观看9| av在线老鸭窝| 国产精品乱码一区二三区的特点| 每晚都被弄得嗷嗷叫到高潮| 97人妻精品一区二区三区麻豆| 一二三四社区在线视频社区8| 欧美成人性av电影在线观看| 在现免费观看毛片| 中文字幕免费在线视频6| 赤兔流量卡办理| 国产视频一区二区在线看| 亚洲精品一区av在线观看| 黄片小视频在线播放| 亚洲七黄色美女视频| 能在线免费观看的黄片| 99热这里只有精品一区| 在线播放无遮挡| 亚洲第一区二区三区不卡| 精华霜和精华液先用哪个| 欧美黑人欧美精品刺激| 69av精品久久久久久| 狂野欧美白嫩少妇大欣赏| 日本在线视频免费播放| 久久久久免费精品人妻一区二区| 一区二区三区激情视频| 日韩中字成人| 国产精品自产拍在线观看55亚洲| 男人的好看免费观看在线视频| 亚洲欧美精品综合久久99| av专区在线播放| 亚洲国产高清在线一区二区三| www日本黄色视频网| 亚洲av日韩精品久久久久久密| 欧美成人一区二区免费高清观看| 欧美丝袜亚洲另类 | 国产aⅴ精品一区二区三区波| 熟妇人妻久久中文字幕3abv| 国内少妇人妻偷人精品xxx网站| 久久久成人免费电影| 51午夜福利影视在线观看| 国产成人av教育| 18+在线观看网站| 午夜福利18| 长腿黑丝高跟| 性插视频无遮挡在线免费观看| 欧美黄色淫秽网站| 看片在线看免费视频| 久久精品91蜜桃| 男人舔女人下体高潮全视频| 中文字幕熟女人妻在线| 欧美成狂野欧美在线观看| 亚洲国产精品久久男人天堂| 欧美激情国产日韩精品一区| 嫩草影视91久久| 五月玫瑰六月丁香| 97热精品久久久久久| 成人亚洲精品av一区二区| 一本综合久久免费| 嫩草影视91久久| 欧美精品国产亚洲| 俺也久久电影网| 色尼玛亚洲综合影院| 亚洲国产精品合色在线| 亚洲真实伦在线观看| 麻豆国产97在线/欧美| 青草久久国产| 国产av一区在线观看免费| 久久久久国产精品人妻aⅴ院| 欧美日本亚洲视频在线播放| 毛片一级片免费看久久久久 | 国产精品三级大全| 一本一本综合久久| 国产色爽女视频免费观看| 免费av不卡在线播放| 在线观看一区二区三区| 欧美一区二区亚洲| 国产中年淑女户外野战色| av专区在线播放| 两个人的视频大全免费| 天堂动漫精品| 免费观看的影片在线观看| 午夜久久久久精精品| 在线观看66精品国产| 男女下面进入的视频免费午夜| 免费大片18禁| 成年免费大片在线观看| 赤兔流量卡办理| 中文字幕av成人在线电影| 亚洲精品粉嫩美女一区| 一级作爱视频免费观看| 看免费av毛片| 国产一区二区三区视频了| 日韩欧美三级三区| 国产精华一区二区三区| av在线老鸭窝| 精品一区二区三区人妻视频| 免费观看人在逋| 人妻久久中文字幕网| 757午夜福利合集在线观看| 欧美在线黄色| 免费搜索国产男女视频| 亚洲国产精品久久男人天堂| 波野结衣二区三区在线| 香蕉av资源在线| 午夜福利视频1000在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 老熟妇仑乱视频hdxx| 国产淫片久久久久久久久 | 小说图片视频综合网站| 久久精品国产清高在天天线| 欧美xxxx黑人xx丫x性爽| 国产在视频线在精品| 国产精品久久久久久久电影| 国产成年人精品一区二区| 1024手机看黄色片| 窝窝影院91人妻| 亚洲精品亚洲一区二区| 我要看日韩黄色一级片| 美女高潮的动态| 欧美绝顶高潮抽搐喷水| 少妇丰满av| 亚洲精品影视一区二区三区av| 丰满人妻熟妇乱又伦精品不卡| 亚洲专区国产一区二区| 久久中文看片网| 欧美xxxx性猛交bbbb| 一个人看视频在线观看www免费| 国产真实伦视频高清在线观看 | 极品教师在线免费播放| 国产精品伦人一区二区| 成年版毛片免费区| 亚洲av.av天堂| 好男人在线观看高清免费视频| 啦啦啦韩国在线观看视频| 97碰自拍视频| 欧美性猛交╳xxx乱大交人| 中出人妻视频一区二区| 精品福利观看| 国产私拍福利视频在线观看| 国产精华一区二区三区| 免费一级毛片在线播放高清视频| 精品人妻1区二区| 亚洲七黄色美女视频| 亚洲第一电影网av| 一区二区三区激情视频| 精品久久久久久久久av| 久久久久性生活片| 欧美精品啪啪一区二区三区| 99久久精品热视频| 好男人在线观看高清免费视频| 午夜免费男女啪啪视频观看 | 国产精品伦人一区二区| 波野结衣二区三区在线| 欧美黑人欧美精品刺激| 51国产日韩欧美| 免费看光身美女| 免费电影在线观看免费观看| 午夜精品久久久久久毛片777| 18+在线观看网站| 3wmmmm亚洲av在线观看| 亚洲一区二区三区不卡视频| 中文字幕av成人在线电影| 国产精品自产拍在线观看55亚洲| 极品教师在线视频| 久久精品91蜜桃| 99国产精品一区二区蜜桃av| 亚洲欧美日韩高清在线视频| 最好的美女福利视频网| 中亚洲国语对白在线视频| 美女被艹到高潮喷水动态| av国产免费在线观看| 日韩亚洲欧美综合| 一个人看视频在线观看www免费| 亚洲av美国av| 免费看日本二区| 亚洲中文字幕一区二区三区有码在线看| 美女xxoo啪啪120秒动态图 | 热99在线观看视频| 能在线免费观看的黄片| 看十八女毛片水多多多| 欧美日韩中文字幕国产精品一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 两个人的视频大全免费| 欧美在线一区亚洲| 小蜜桃在线观看免费完整版高清| 搡女人真爽免费视频火全软件 | 好看av亚洲va欧美ⅴa在| 在线免费观看的www视频| 久久99热6这里只有精品| 久久精品91蜜桃| 在线观看美女被高潮喷水网站 | 成年女人看的毛片在线观看| 欧美日韩乱码在线| 免费在线观看日本一区| 在线观看一区二区三区| 一进一出抽搐动态| av福利片在线观看| 俄罗斯特黄特色一大片| av在线老鸭窝| 18禁黄网站禁片免费观看直播| 日韩有码中文字幕| 国产乱人伦免费视频| 九九热线精品视视频播放| 中文字幕人妻熟人妻熟丝袜美| 亚洲乱码一区二区免费版| 嫁个100分男人电影在线观看| 日日摸夜夜添夜夜添av毛片 | 美女高潮喷水抽搐中文字幕| 欧美高清性xxxxhd video| 99国产极品粉嫩在线观看| 欧美成狂野欧美在线观看| 老熟妇乱子伦视频在线观看| 亚洲av电影在线进入| 精品久久久久久久久久免费视频| 日韩中字成人| 很黄的视频免费| 永久网站在线| 欧美成人a在线观看| 在线观看舔阴道视频| 天堂动漫精品| 日韩大尺度精品在线看网址| 色噜噜av男人的天堂激情| 97超级碰碰碰精品色视频在线观看| 1000部很黄的大片| www.www免费av| 日本熟妇午夜| 黄色视频,在线免费观看| 亚洲三级黄色毛片| 久久精品夜夜夜夜夜久久蜜豆| 99热6这里只有精品| 不卡一级毛片| 18禁黄网站禁片免费观看直播| 亚洲国产色片| 在线观看66精品国产| 69人妻影院| 中文资源天堂在线| 国产一区二区激情短视频| 国产色爽女视频免费观看| 国产高清激情床上av| 国产视频内射| 精品久久久久久久久亚洲 | 老司机午夜福利在线观看视频| 99国产极品粉嫩在线观看| 性欧美人与动物交配| 老熟妇仑乱视频hdxx| 久久午夜亚洲精品久久| 欧美激情久久久久久爽电影| 午夜亚洲福利在线播放| 亚洲,欧美,日韩| 欧美一区二区国产精品久久精品| 国产精品亚洲美女久久久| 亚洲五月天丁香| 波野结衣二区三区在线| 日本一二三区视频观看| 麻豆久久精品国产亚洲av| 麻豆成人午夜福利视频| 大型黄色视频在线免费观看| 亚洲欧美激情综合另类| 精品人妻偷拍中文字幕| aaaaa片日本免费| 少妇人妻一区二区三区视频| 午夜福利成人在线免费观看| 最新中文字幕久久久久| 特大巨黑吊av在线直播| 亚洲精品成人久久久久久| 一级黄片播放器| 人人妻人人澡欧美一区二区| 日本黄色片子视频| 精品一区二区免费观看| 久久久精品大字幕| 有码 亚洲区| 久久久久免费精品人妻一区二区| 99国产综合亚洲精品| 国内精品久久久久精免费| 最近视频中文字幕2019在线8| 757午夜福利合集在线观看| 色播亚洲综合网| 欧美最新免费一区二区三区 | 色综合欧美亚洲国产小说| 国产伦精品一区二区三区视频9| 亚洲三级黄色毛片| 国产高清激情床上av| 色尼玛亚洲综合影院| 久久中文看片网| 免费人成在线观看视频色| 偷拍熟女少妇极品色| 亚洲,欧美,日韩| 在线观看午夜福利视频| 国产免费一级a男人的天堂| 能在线免费观看的黄片| 国产精品影院久久| 三级毛片av免费| 久久国产乱子伦精品免费另类| 国产精品伦人一区二区| 美女免费视频网站| 久久草成人影院| www日本黄色视频网| 欧美极品一区二区三区四区| av欧美777| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美一区二区三区在线观看| 国内久久婷婷六月综合欲色啪| 搡女人真爽免费视频火全软件 | 在线天堂最新版资源| 男插女下体视频免费在线播放| 精品国产亚洲在线| 亚洲欧美日韩高清专用| 久久久久久九九精品二区国产| 国产麻豆成人av免费视频| 欧美又色又爽又黄视频| 色视频www国产| 婷婷色综合大香蕉| 国产久久久一区二区三区| 亚洲综合色惰| 最近最新中文字幕大全电影3| 国产成年人精品一区二区| 看免费av毛片| 久久精品综合一区二区三区| netflix在线观看网站| 最近视频中文字幕2019在线8| 91狼人影院| 嫩草影院新地址| 一个人看的www免费观看视频| 欧美成人一区二区免费高清观看| 亚洲成人免费电影在线观看| 国产亚洲av嫩草精品影院| 悠悠久久av| 国产中年淑女户外野战色| 国产野战对白在线观看| 91麻豆av在线| 99久久精品热视频| 亚洲在线观看片| 精品久久国产蜜桃| 91九色精品人成在线观看| 日本a在线网址|