• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A 45-μJ,10-kHz,burst-mode picosecond optical parametric oscillator synchronously pumped at a second harmonic cavity

    2022-08-31 09:57:10ChaoMa馬超KeLiu劉可YongBo薄勇ZhiMinWang王志敏DaFuCui崔大復(fù)andQinJunPeng彭欽軍
    Chinese Physics B 2022年8期
    關(guān)鍵詞:馬超

    Chao Ma(馬超) Ke Liu(劉可) Yong Bo(薄勇) Zhi-Min Wang(王志敏)Da-Fu Cui(崔大復(fù)) and Qin-Jun Peng(彭欽軍)

    1Key Laboratory of Solid-State Lasers,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    2Key Laboratory of Functional Crystal and Laser Technology,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    3Institute of Optical Physics and Engineering Technology,Qilu Zhongke,Jinan 250000,China

    4University of Chinese Academy of Sciences,Beijing 100190,China

    Keywords: ultrafast laser,synchronously pumped optical parametric oscillator,high energy

    1. Introduction

    High-energy ultrafast laser sources in different spectral regions demonstrate a wide range of applications in stimulated Raman scattering (SRS),[1]spectroscopy,[2]high harmonic generation (HHG),[3]laser remote sensing,[4]and coherent anti-Stokes Raman scattering (CARS).[5]Synchronously pumped optical parametric oscillator (SPOPO) presents advantages of high parametric light conversion efficiency, narrow spectral linewidth, high beam quality, and low pump power threshold. Therefore, this method can effectively to obtain ultrashort pulse parametric oscillations in femtosecond or picosecond range.[6,7]Notably,to achieve synchronous pumping, the length of the OPO oscillator was required to be precisely matched with the pump beam pulse repetition rate (PRR), ensuring that the two pulses are synchronized in time. Since the OPO cavity length cannot be extended indefinitely, many reports on ps SPOPO typically concentrate on the pump source with RPR of tens or hundreds of MHz, corresponding to the SPOPO cavity length of several meters, resulting in the pulse energy of parametric light only at the nano joule level.[8,9]For instance, a ps SPOPO based on CdSiP2was operated at a repetition rate of 80 MHz and a cavity length of~3.77 m; however, the produced signal pulse energy was lower than 0.55 nJ.[8]Based on MgO:PPLN,a similar ps SPOPO produced maximum signal power of 2.4 W at 79.4 MHz;but,the pulse energy was only around 30 nJ.[9]

    Using methods, such as imaging relays[10]and fiber coupling,[11]to increase the cavity length allows the SPOPO to operate at repetition rates of around 7 MHz and output pulse energies up to several hundreds of nanojoules. Alternative approaches for scaling up the pulse energy, include burst-mode pumping,[12]high-harmonic cavity,[13]and cavity dumping.[14]However, the pulse energy generated by these methods still fails to exceed a few microjoules. Recently,our research team demonstrated the use of a regenerative amplifier(RA)to achieve intracavity SPOPO.[15]It outputs a maximum pulse energy of up to 30.5 μJ at 1.5 μm with a pulse duration of 7 ps, and operate at 10 kHz. This was the breakthrough record-high pulse energy from a ps SPOPO. However, most aforementioned SPOPOs were pumped by 1 μm laser, providing spectrum regions in the near (>1 μm) and mid-infrared. In order to expand the spectral coverage, the green-pumped OPOs were performed,and widely tunable signal spanning from visble 600 nm to near-infrared 1000 nm can be achieved.[16]For example, in the ps range, a PPKTPSPOPO designed by a fan-out grating pumped by a ps 532-nm laser was reported. However the signal pulse energy was only 7.3 nJ.[17]In the femtosecond range, a 532-nm femtosecond fiber laser achieves synchronous pumping of OPO based on MgO:PPLN.Unfortunately,the signal pulse energy was lower than 1.0 nJ.[18]

    In this letter, we propose a novel green pumped ps SPOPO concept with multi-tens of microjoule of burst energy at the tens of kHz. Here, an OPO was synchronously pumped internal in a second harmonic(SH)cavity, the green SH pulse was produced by a ps 1-μm laser. The primary idea of this scheme is to confine the pump beam in the SH cavity by changing the wavelength of the pump beam. The obstacle of strictly matching the length of the OPO oscillator with the repetition rate of the pump beam can be overcome with this method. Instead,synchronous pumping can be achieved simply by making the resonators of OPO and SH to have the same optical length. This scenario presents the advantage of realizing a low-repetition rate OPO without the need for a long cavity length to meet the condition of synchronicity. A lowrepetition rate OPO has the advantage that high pulse energies can be achieved which is beneficial for biology,medicine and HHG applications.In a proof-of principle experiment,a ps 10-kHz 1064-nm laser with a maximum pulse energy of 300 μJ was used as the fundamental pump source,a 15-mm LBO was employed for second harmonic generation (SHG) and a 30-mm LBO for OPO, providing a record high burst energy of 45 μJ at signal beam of 900 nm. So far, this study is the first report on multiple tens of microjoule energy ps SPOPO pumped by green,and lowest repetition rate for green pumped OPO in the ps regime.

    2. Experimental setup

    Figure 1 shows the diagram of the experimental setup for a synchronously pumping OPO in the SH cavity. It consists of a ps 1064-nm fundamental laser, an SH resonator and a signal single resonant (SSR) OPO placed in the SH resonator.The fundamental ps laser was a 1064-nm Nd:YVO4regenerative amplifier (RGA), providing 300-μJ pulse energy with a pulse width of 86 ps and operates at 10 kHz. A combination of half-wave plate(HWP1)and thin film polarizer(TFP)was utilized to control the pump energy. The pump laser was shaped using a lens(L)with a focal length of 400 mm,providing a beam radius of around 320μm. The shaped fundamental pump beam was coupled with the SH resonator through mirrors M1 and M2. The M1 and M2 plane mirrors were coated with an angle of 45?highly reflective (HR) film at 1064 nm.A second HWP2 was used to control the beam polarization for optimum SH phase matching. The ps green radiation was obtained by SHG in a 15-mm long LBO-1 crystal under noncritical type-I phase matching(θ=90?,?=10?)at a temperature of 50.7?C. The LBO-1 crystal was placed in an oven with a temperature control accuracy of 0.1?C. Crystal end faces were coated with antireflection(AR)for high transmission at 532 nm and 1064 nm(T>99.5%). The green beam generated was used as the pump source of the OPO. The SH resonator was a standing-wave cavity composed of three plane mirrors(i.e.,M3,M5,and M6)and one concave reflective mirrors M4.The surface of M3 was coated with 1064-nm AR and 532-nm HR films. The concave mirror M4 presents a radius of curvature of 500 mm, and its surface was coated with 1064-nm AR and 532-nm HR films. M5 was AR-coated for the signal at 900 nm,and HR at 532 nm. The surface of M6 was coated with HR film at 532 nm and 900 nm. The geometric length of the SH oscillator design was 453 mm.

    Fig. 1. Diagram of experimental setup for synchronously pumping OPO in SH resonator.

    The SSR OPO was coupled into the SH resonator through the dichroic mirror M5. A type-I (θ=90?,?=0?) LBO-2 crystal with size of 4 mm×4 mm×30 mm was used as the nonlinear crystal for the OPO and placed near M6.The LBO-2 crystal was mounted in a temperature-controlled oven, and the temperature was maintained within the range of 135?C±0.2?C.Both end faces of the crystal were coated with 532 nm and 900 nm to 1100-nm AR films.Both the green pump and OPO signal parametric pulses can pass through the LBO-2 crystal given that SH and OPO cavities contain common optical elements(i.e.,M5,LBO-2 crystal,and M6). The OPO was a V-shaped folded cavity composed of mirror M6,concave reflective mirror M7 and planar output coupler(OC).M7 exhibited a radius of curvature of 500 mm and was coated for high reflection at 900 nm. The OC had a transmittance of 28%at around 900 nm. The design of SH cavity with two internal foci results in a green SH beam radius of 0.22 mm in both LBO-1 as well as LBO-2 crystal. In order to obtain good mode matching between OPO signal and green SH beams in the LBO-2 crystal to improve the conversion efficiency in the process of frequency conversion. We designed the fundamental mode radius of the 900 nm signal in the LBO-2 crystal to be about 0.22 mm according to the ABCD matrix method.The distance between M6 and M7 was approximately 250 mm,the spacing between M7 and OC was 213 mm,and the total geometric length of the OPO oscillator design was 463 mm. Considering the difference of refractive index and physical length between the two crystals, the OC was placed on a precise translation stage to fine-tune the length of the OPO cavity for synchronous pumping conditions.

    3. Experimental results

    We first investigated the SHG pulse energy and the SH conversion efficiency before introducing the LBO-2 crystal and M6 in the cavity. Figure 2 shows the singlepass SH energy and efficiency as a function of the fundamental pump energy. The SH energy progressively increases with the increasing fundamental energy. A maximum SH output energy of 210μJ was obtained,and the corresponding conversion efficiency is up to 70%when the fundamental energy was 300μJ.

    Fig.2. Dependence of the measured SHG energy and the corresponding conversion efficiency on the incident fundamental energy.

    Fig.3. Pulse waveform of OPO signal: (a)pulse sequence of the OPO signal over a 1-ms time span and(b)expanded pulse profile.

    When the LBO-2 crystal and M6 were inserted into the OPO cavity, the stable SPOPO operation was realized. The proposed scheme in this paper is different from the traditional synchronously pumped OPO. The green beam generated by the SHG will oscillate many times in the SH cavity, in the OPO process. Each time green beam pulse passes through the LBO-2 crystal, it will convert part of the energy to the OPO signal pulse and output part of the energy through OC until a single green beam pulse was exhausted. Based on the above process, the final output pulse of SPOPO operate in burst mode. The OPO signal pulse output from the OC was monitored with a photodetector(ALPHALAS GMBH,UPD-40-UVIR-P, rise time of<40 ps) and recorded using an 8-GHz digital oscilloscope (Agilent, DSO 80804B). The pulse train of the OPO signal over a 1-ms time span is shown in Fig. 3(a), which indicates that the OPO works at an RPR of 10 kHz. Figure 3(b)displays an expanded OPO pulse profiles.As shown in Fig. 3(b), the OPO operates in burst mode with six individual ps pulses with an approximate spacing of about 3 ns apart within the nanosecond envelope. The duration of each burst was about 15 ns. The repetition rate of the pulse trains in each burst was 324 MHz, which corresponds to the OPO cavity length. The pulse amplitude of the OPO signal in the envelope gradually increases,reaches a maximum value at the third pulse,and then gradually decreases.

    Figure 4 shows the burst energy of the OPO signal as a function of the fundamental pump energy. As the incident pump energy increases,the output burst energy increases monotonically and no saturation effect was observed. The maximum output burst energy of the OPO signal was 45 μJ at a fixed temperature of 135?C and a pump energy of 300μJ.The slope efficiency of the burst signal energy extracted from the pump beam was about~16%. The photon conversion efficiency from 1-μm fundamental pump to 900-nm OPO signal beam was 12.7%, and the optical-to-optical conversion efficiency was 15%. It is found in Fig. 3(b) that the individual main pulse accounts for about 40% of the burst energy, corresponding the single pulse energy of about 18 μJ, which is more than three orders of magnitude higher than the optimal result obtained in a previous study.[19]

    In the burst pulse, the pulse width of a single OPO signal pulse was measured by an autocorrelator. Figure 5 shows the normalized intensity autocorrelation trace of a single OPO signal pulse at full energy output. The pulse width of a single OPO signal pulse was estimated to be approximately 46.8 ps through Gaussian fitting. This value is significantly narrower than that of the pump pulse due to the time gain narrowing effect

    Fig. 4. Evolution of output signal burst energy with fundamental pump energy.

    Fig.5.Measurement of the autocorrelation trace of a single OPO signal pulse and its Gaussian fit.

    Using the spectrum analyzer (Ocean Optics,HR2000+CG UV-NIR, 1-nm resolution), we measured the wavelength of the signal beam of OPO from the beam leaked from mirror M7,as shown in Fig.6. It was found from Fig.6 that the central wavelength of the OPO signal beam is 900 nm.The illustration in Fig. 6 shows the detailed profile of the spectrum with a spectrum width of 1.09 nm.

    Fig.6. Measurement of the spectrum of the 900-nm signal beam generated by OPO.Illustration is shown in spectrum diagram in detail.

    Using the beam analyzer (Spiricon M2-200s), we measured the beam quality of OPO signal beam. Figure 7 shows the beam quality of OPO with an output burst energy of 45μJ.The beam quality was measured asM2x=1.44 andM2y=1.40 in the orthogonal directions, and the corresponding average beam quality wasM2=1.42.The two-dimensional(2D)beam intensity distribution at the beam waist is shown in the inset of Fig.7, where it can be seen that the intensity is nearly Gaussian profile.

    Fig. 7. Beam quality factor M2 of the 900-nm OPO signal beam measured under an output burst energy of 45μJ.Illustration shows the 2D beam intensity distribution.

    The long-term energy stability of the SHG beam shown in Fig. 8(a) confirmed that the energy stability is better than 0.4% rms over 1 hour. Furthermore, we characterized the output stability of OPO by measuring long-term average energy fluctuations.Figure 8(b)shows the signal energy stability recorded over one hour. The signal exhibits energy stability better than 1.2% rms over 1 hour under free running conditions. However,compared with the green SH beam,the signal energy still exhibits three times larger fluctuation. The decrease in energy stability of the output signal was mainly due to the temperature fluctuation of the oven when operating OPO at a high temperature (~135?C) much higher than the laboratory temperature (~28?C). Temperature fluctuation will change the refractive index of the crystal, which makes OPO fluctuate around the phase matching state,resulting in unstable output energy.

    Fig.8. Energy stability of the(a)SHG and(b)signal beams.

    4. Conclusion

    In summary,we designed a novel method to realize high energy ps SPOPO in SH resonator. The proposed method can overcome the obstacle of strictly matching the length of the OPO cavity with the repetition rate of the pump beam. Under the pump energy of 300μJ,the maximum output burst energy of the OPO signal was 45 μJ at repetition rate of 10 kHz. In the burst pulse,the pulse duration of a single OPO signal pulse was measured to be approximately 46.8 ps at 900-nm signal.The beam quality was measured asM2x=1.44 andM2y=1.40 in the orthogonal directions.As far as we know,this study was the first report on multi-tens of microjoule energy ps SPOPO pumped by green,and lowest repetition rate for green pumped OPO in the ps regime,which is also the shortest cavity length in any ultrafast SPOPO.The experimental results showed that the proposed method can obtain higher energy ps pulses on a compact setup compared with the traditional synchronously pumped optical parametric oscillator. Moreover, the second harmonic generated by different fundamental frequencies can also realize the SPOPO in a wider spectrum range. We believe that further optimization of the OPO scheme can obtain highenergy ultrafast laser sources in different spectrum regions,which will play an important role in biology, medicine, and automobile fields.

    Acknowledgment

    Project supported by Youth Innovation Promotion Association,Chinese Academy of Sciences(CAS).

    猜你喜歡
    馬超
    鐵騎犁波聯(lián)合制勝
    京劇《戰(zhàn)馬超》中馬超的角色分析
    戲劇之家(2023年5期)2023-03-22 03:03:13
    High-energy picosecond single-pass multi-stage optical parametric generator and amplifier
    馬超尊順劉備
    我國鄉(xiāng)土題材電視劇現(xiàn)代化道路的影像嬗變
    電影評介(2021年24期)2021-05-01 21:51:05
    “疫”中大街上,那奔跑的“菜籃子”
    分憂(2020年6期)2020-06-11 00:34:32
    中國農(nóng)大高俊平和馬超教授團隊揭示月季花瓣脫落的分子機制
    園林科技(2020年3期)2020-02-18 11:02:08
    一部弘揚傳統(tǒng)文化的精品力作
    飛天(2019年9期)2019-10-30 03:52:55
    讓馬超識規(guī)矩
    那年那月的兄弟:昧下20萬救的這條命
    99久久精品热视频| 国产亚洲精品一区二区www| 国产97色在线日韩免费| 欧美在线一区亚洲| 91麻豆精品激情在线观看国产| 国产又色又爽无遮挡免费看| 9191精品国产免费久久| 看免费av毛片| 欧美一级毛片孕妇| 很黄的视频免费| 99久久国产精品久久久| 国产三级黄色录像| 免费电影在线观看免费观看| 国产在线观看jvid| 亚洲 国产 在线| 国产伦在线观看视频一区| 99精品久久久久人妻精品| 亚洲av美国av| 国内揄拍国产精品人妻在线| 2021天堂中文幕一二区在线观| 免费一级毛片在线播放高清视频| 精品久久蜜臀av无| 一本久久中文字幕| 亚洲av电影在线进入| 91大片在线观看| 国产欧美日韩一区二区精品| 午夜精品在线福利| 亚洲五月婷婷丁香| 国产av不卡久久| 在线免费观看的www视频| 97碰自拍视频| 人妻夜夜爽99麻豆av| 亚洲电影在线观看av| 国产精品亚洲美女久久久| 久久久国产成人精品二区| 大型av网站在线播放| 女生性感内裤真人,穿戴方法视频| 亚洲男人天堂网一区| 亚洲真实伦在线观看| 国产成人精品久久二区二区免费| 人妻久久中文字幕网| 狂野欧美激情性xxxx| 亚洲色图 男人天堂 中文字幕| 男女下面进入的视频免费午夜| 午夜久久久久精精品| 久久人妻av系列| 亚洲av电影不卡..在线观看| 给我免费播放毛片高清在线观看| 日本免费a在线| 欧美黄色片欧美黄色片| 午夜福利欧美成人| 国产不卡一卡二| 国产亚洲精品久久久久久毛片| 精品久久久久久久人妻蜜臀av| 欧美中文综合在线视频| 午夜成年电影在线免费观看| 精品日产1卡2卡| 在线观看美女被高潮喷水网站 | 亚洲av熟女| 床上黄色一级片| 18禁黄网站禁片免费观看直播| 国产伦在线观看视频一区| 日韩国内少妇激情av| 国产成人精品久久二区二区免费| 国产aⅴ精品一区二区三区波| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美在线二视频| 欧洲精品卡2卡3卡4卡5卡区| svipshipincom国产片| 别揉我奶头~嗯~啊~动态视频| 男女视频在线观看网站免费 | 午夜日韩欧美国产| 大型av网站在线播放| 九九热线精品视视频播放| 亚洲熟妇中文字幕五十中出| 色噜噜av男人的天堂激情| 男女下面进入的视频免费午夜| 国产欧美日韩一区二区三| 久久精品亚洲精品国产色婷小说| 欧美极品一区二区三区四区| 日韩中文字幕欧美一区二区| 欧洲精品卡2卡3卡4卡5卡区| a在线观看视频网站| 中国美女看黄片| 搡老妇女老女人老熟妇| 哪里可以看免费的av片| 在线观看一区二区三区| 亚洲美女视频黄频| 亚洲精品在线观看二区| 日本免费一区二区三区高清不卡| 男人舔女人的私密视频| 国产精品久久久久久久电影 | 50天的宝宝边吃奶边哭怎么回事| 国产久久久一区二区三区| 欧美国产日韩亚洲一区| √禁漫天堂资源中文www| 又爽又黄无遮挡网站| 免费在线观看成人毛片| 国产成人影院久久av| 色播亚洲综合网| 日韩大码丰满熟妇| 麻豆成人午夜福利视频| 两个人视频免费观看高清| 亚洲狠狠婷婷综合久久图片| 99久久精品热视频| 他把我摸到了高潮在线观看| 在线永久观看黄色视频| 久久精品国产亚洲av香蕉五月| 亚洲美女黄片视频| 亚洲全国av大片| 欧美日韩黄片免| 91字幕亚洲| 一进一出抽搐gif免费好疼| 亚洲成人久久性| 老熟妇仑乱视频hdxx| 少妇人妻一区二区三区视频| 97碰自拍视频| 97碰自拍视频| 成人国产一区最新在线观看| 午夜免费成人在线视频| 动漫黄色视频在线观看| 日本黄大片高清| 曰老女人黄片| 99国产精品99久久久久| 免费看日本二区| 女人被狂操c到高潮| 国产成人aa在线观看| 欧美色欧美亚洲另类二区| 国内精品久久久久久久电影| a在线观看视频网站| 色播亚洲综合网| 日韩av在线大香蕉| 色播亚洲综合网| 亚洲五月婷婷丁香| 国产精华一区二区三区| 午夜免费激情av| 亚洲黑人精品在线| 男人的好看免费观看在线视频 | 美女黄网站色视频| 女生性感内裤真人,穿戴方法视频| 久久久久久国产a免费观看| 女生性感内裤真人,穿戴方法视频| 亚洲 欧美 日韩 在线 免费| 淫妇啪啪啪对白视频| 久久伊人香网站| 日韩大尺度精品在线看网址| 欧美日本视频| 9191精品国产免费久久| 又黄又粗又硬又大视频| 一本大道久久a久久精品| 亚洲最大成人中文| 最近最新中文字幕大全电影3| 免费一级毛片在线播放高清视频| 一本综合久久免费| 亚洲精品av麻豆狂野| 国产av一区在线观看免费| 50天的宝宝边吃奶边哭怎么回事| 亚洲 欧美一区二区三区| 亚洲欧美日韩高清在线视频| netflix在线观看网站| 欧美zozozo另类| 久久九九热精品免费| 99热6这里只有精品| 午夜老司机福利片| 男人的好看免费观看在线视频 | 亚洲黑人精品在线| 亚洲五月天丁香| 欧美黄色片欧美黄色片| 日韩欧美三级三区| 国产精品一区二区三区四区久久| av国产免费在线观看| 国产精品一及| 国产av不卡久久| 亚洲欧美日韩东京热| 午夜日韩欧美国产| 精品一区二区三区视频在线观看免费| 午夜日韩欧美国产| 久久热在线av| 色综合婷婷激情| 久久精品亚洲精品国产色婷小说| 超碰成人久久| 国产精品亚洲av一区麻豆| 亚洲av中文字字幕乱码综合| 国内精品久久久久久久电影| 精品一区二区三区四区五区乱码| 欧美极品一区二区三区四区| 国产又黄又爽又无遮挡在线| 观看免费一级毛片| 怎么达到女性高潮| 国产午夜精品论理片| 脱女人内裤的视频| 国产真实乱freesex| 欧美日韩福利视频一区二区| 欧美在线一区亚洲| 久久天躁狠狠躁夜夜2o2o| 一本久久中文字幕| 国产成人影院久久av| 欧美日韩福利视频一区二区| 欧美成人一区二区免费高清观看 | 亚洲精品中文字幕一二三四区| 亚洲精品中文字幕一二三四区| 欧美在线一区亚洲| 可以在线观看的亚洲视频| 欧美国产日韩亚洲一区| 免费观看精品视频网站| 一本大道久久a久久精品| 日韩欧美 国产精品| 999精品在线视频| 男女午夜视频在线观看| 草草在线视频免费看| 久久久国产欧美日韩av| 国产午夜精品久久久久久| 免费观看人在逋| 欧美黑人巨大hd| 欧美中文日本在线观看视频| 别揉我奶头~嗯~啊~动态视频| 禁无遮挡网站| 免费在线观看成人毛片| 国产精品一区二区免费欧美| 亚洲一区二区三区不卡视频| 国内精品一区二区在线观看| 国产99白浆流出| 久久人人精品亚洲av| 亚洲人成网站在线播放欧美日韩| 亚洲全国av大片| 国产精品精品国产色婷婷| 首页视频小说图片口味搜索| 又黄又粗又硬又大视频| 18禁黄网站禁片免费观看直播| 国产高清有码在线观看视频 | 久久 成人 亚洲| 亚洲专区中文字幕在线| 国产三级黄色录像| 99久久精品国产亚洲精品| 黑人操中国人逼视频| 12—13女人毛片做爰片一| 精品国产超薄肉色丝袜足j| 国产精品久久久久久亚洲av鲁大| 在线免费观看的www视频| 90打野战视频偷拍视频| 日日干狠狠操夜夜爽| 啪啪无遮挡十八禁网站| 午夜福利视频1000在线观看| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久成人av| 91大片在线观看| 亚洲午夜精品一区,二区,三区| 18禁观看日本| 日韩精品中文字幕看吧| 变态另类成人亚洲欧美熟女| 香蕉久久夜色| 欧美日韩黄片免| 国产亚洲精品第一综合不卡| 国产精品,欧美在线| 久久久久久国产a免费观看| 国产精品免费视频内射| 精品高清国产在线一区| 日本撒尿小便嘘嘘汇集6| 国产成人影院久久av| 精品国产乱子伦一区二区三区| netflix在线观看网站| 97碰自拍视频| 国产私拍福利视频在线观看| 长腿黑丝高跟| 亚洲精品国产精品久久久不卡| 国产精品久久久久久人妻精品电影| 99国产精品一区二区蜜桃av| 国产区一区二久久| 脱女人内裤的视频| 国产成人精品久久二区二区免费| 熟妇人妻久久中文字幕3abv| 亚洲成人免费电影在线观看| 久久精品aⅴ一区二区三区四区| 女生性感内裤真人,穿戴方法视频| 在线观看免费日韩欧美大片| 母亲3免费完整高清在线观看| 精品久久蜜臀av无| 男男h啪啪无遮挡| 午夜两性在线视频| 亚洲精品在线观看二区| 99在线人妻在线中文字幕| 免费看美女性在线毛片视频| 中亚洲国语对白在线视频| 精品欧美国产一区二区三| www.精华液| 亚洲一区二区三区不卡视频| 亚洲专区字幕在线| 两个人的视频大全免费| 黄片小视频在线播放| 51午夜福利影视在线观看| 在线观看免费午夜福利视频| 97超级碰碰碰精品色视频在线观看| 亚洲欧美日韩高清在线视频| 国产激情欧美一区二区| 天天一区二区日本电影三级| 成人国产一区最新在线观看| 美女高潮喷水抽搐中文字幕| 国产一区二区三区在线臀色熟女| 久久久水蜜桃国产精品网| 老鸭窝网址在线观看| 亚洲人与动物交配视频| 亚洲人成电影免费在线| 日韩欧美国产在线观看| 国产精品一区二区精品视频观看| 日本 av在线| 欧美一区二区国产精品久久精品 | 欧美精品亚洲一区二区| 午夜福利高清视频| 女人高潮潮喷娇喘18禁视频| 黄色视频不卡| 亚洲欧美日韩高清专用| 国产精品永久免费网站| 欧美日韩瑟瑟在线播放| 亚洲成人中文字幕在线播放| 一个人免费在线观看的高清视频| 久久久久亚洲av毛片大全| 国产亚洲精品第一综合不卡| 国产av不卡久久| 中国美女看黄片| 亚洲av电影不卡..在线观看| 国产成人av激情在线播放| 免费无遮挡裸体视频| 男女午夜视频在线观看| 亚洲,欧美精品.| 啦啦啦韩国在线观看视频| 国内精品久久久久精免费| 99久久99久久久精品蜜桃| www日本在线高清视频| 黑人巨大精品欧美一区二区mp4| 人人妻,人人澡人人爽秒播| 99精品欧美一区二区三区四区| 国产精品爽爽va在线观看网站| 久久久久国内视频| svipshipincom国产片| 亚洲精品在线美女| 久久久久久亚洲精品国产蜜桃av| 1024手机看黄色片| 国产探花在线观看一区二区| 亚洲成人免费电影在线观看| 亚洲精品国产精品久久久不卡| 桃色一区二区三区在线观看| 久久久久国产精品人妻aⅴ院| 国产亚洲欧美在线一区二区| 一级毛片高清免费大全| 99国产精品一区二区三区| av国产免费在线观看| 给我免费播放毛片高清在线观看| 国产亚洲av嫩草精品影院| av视频在线观看入口| 在线观看免费视频日本深夜| videosex国产| 97超级碰碰碰精品色视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 男女做爰动态图高潮gif福利片| 非洲黑人性xxxx精品又粗又长| 日本黄色视频三级网站网址| 欧美性猛交黑人性爽| 无人区码免费观看不卡| 精品高清国产在线一区| 亚洲专区中文字幕在线| 69av精品久久久久久| 久久久久久久久中文| 少妇被粗大的猛进出69影院| 精品无人区乱码1区二区| 在线观看舔阴道视频| 人妻夜夜爽99麻豆av| 最近最新中文字幕大全免费视频| 成人欧美大片| 午夜福利欧美成人| 久9热在线精品视频| 日日爽夜夜爽网站| 天天躁夜夜躁狠狠躁躁| 夜夜爽天天搞| 久久久久久久久免费视频了| 国产爱豆传媒在线观看 | 日本撒尿小便嘘嘘汇集6| 在线观看www视频免费| 欧美黄色片欧美黄色片| 成年人黄色毛片网站| 一区二区三区国产精品乱码| 久久久久亚洲av毛片大全| 欧美在线一区亚洲| 精品久久久久久久久久久久久| 成人av一区二区三区在线看| 香蕉丝袜av| 91麻豆av在线| 国产精品免费视频内射| 最近最新中文字幕大全免费视频| 啦啦啦观看免费观看视频高清| 亚洲自拍偷在线| 亚洲精品久久国产高清桃花| 在线国产一区二区在线| av天堂在线播放| 成在线人永久免费视频| 欧美成人免费av一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 1024香蕉在线观看| 女人被狂操c到高潮| 三级国产精品欧美在线观看 | 十八禁网站免费在线| e午夜精品久久久久久久| 国产爱豆传媒在线观看 | 午夜激情av网站| 精品乱码久久久久久99久播| 黄片大片在线免费观看| 亚洲中文日韩欧美视频| 国产91精品成人一区二区三区| 无人区码免费观看不卡| 亚洲专区国产一区二区| 91成年电影在线观看| 老司机福利观看| 人妻夜夜爽99麻豆av| 国产伦人伦偷精品视频| 看免费av毛片| 国内揄拍国产精品人妻在线| 国产熟女午夜一区二区三区| 黑人操中国人逼视频| 少妇粗大呻吟视频| 少妇裸体淫交视频免费看高清 | 老司机在亚洲福利影院| 啦啦啦免费观看视频1| 日韩av在线大香蕉| 久久热在线av| 黄色成人免费大全| 久久精品综合一区二区三区| 亚洲avbb在线观看| 国产av在哪里看| 青草久久国产| 在线观看舔阴道视频| 波多野结衣高清作品| 欧美另类亚洲清纯唯美| 可以在线观看的亚洲视频| 国产成人精品久久二区二区91| 亚洲国产精品999在线| 国产精品久久久久久久电影 | 动漫黄色视频在线观看| 欧美黑人巨大hd| 国产精品一区二区三区四区免费观看 | 久久久久国产精品人妻aⅴ院| 亚洲av成人av| 50天的宝宝边吃奶边哭怎么回事| 草草在线视频免费看| 特大巨黑吊av在线直播| www日本黄色视频网| 色综合欧美亚洲国产小说| 日韩欧美国产一区二区入口| 女警被强在线播放| 999久久久精品免费观看国产| 国产精品久久久久久人妻精品电影| 欧美日韩国产亚洲二区| 欧美一区二区国产精品久久精品 | 国产一级毛片七仙女欲春2| 日韩av在线大香蕉| 亚洲av中文字字幕乱码综合| 国产精品,欧美在线| 一卡2卡三卡四卡精品乱码亚洲| 午夜视频精品福利| 日本一二三区视频观看| 国语自产精品视频在线第100页| 精品国产乱码久久久久久男人| 精品久久久久久久久久免费视频| 亚洲一区二区三区不卡视频| 亚洲av美国av| 老熟妇仑乱视频hdxx| 久久久久国内视频| 又黄又爽又免费观看的视频| 听说在线观看完整版免费高清| 亚洲av成人精品一区久久| 丰满的人妻完整版| 狂野欧美激情性xxxx| 91字幕亚洲| 一级作爱视频免费观看| 欧美日韩黄片免| 在线观看免费午夜福利视频| 亚洲欧美日韩无卡精品| 日本在线视频免费播放| 天堂√8在线中文| 欧美高清成人免费视频www| 亚洲七黄色美女视频| 婷婷亚洲欧美| 午夜福利视频1000在线观看| 欧美又色又爽又黄视频| 欧美极品一区二区三区四区| 宅男免费午夜| 99精品在免费线老司机午夜| 欧美日韩乱码在线| 亚洲人成网站在线播放欧美日韩| 亚洲人与动物交配视频| 美女午夜性视频免费| 国产又黄又爽又无遮挡在线| 色综合站精品国产| 欧美精品啪啪一区二区三区| 老鸭窝网址在线观看| 999精品在线视频| 国产视频内射| 国产精品久久久久久精品电影| 啦啦啦韩国在线观看视频| 亚洲九九香蕉| 手机成人av网站| a级毛片在线看网站| 一区二区三区激情视频| 欧美色欧美亚洲另类二区| 欧美在线黄色| 午夜精品一区二区三区免费看| 亚洲性夜色夜夜综合| 777久久人妻少妇嫩草av网站| 色精品久久人妻99蜜桃| 国产高清视频在线播放一区| 热99re8久久精品国产| 国产一区二区在线观看日韩 | 国产精品爽爽va在线观看网站| 欧美日韩瑟瑟在线播放| 男人的好看免费观看在线视频 | 在线看三级毛片| 欧美黑人精品巨大| 久久国产精品人妻蜜桃| or卡值多少钱| 免费无遮挡裸体视频| 1024手机看黄色片| 村上凉子中文字幕在线| 白带黄色成豆腐渣| 色播亚洲综合网| 99久久久亚洲精品蜜臀av| 国产成人欧美在线观看| 久久久久久久久久黄片| 9191精品国产免费久久| 免费看十八禁软件| 男人舔女人的私密视频| 色av中文字幕| 床上黄色一级片| 成人高潮视频无遮挡免费网站| 久久九九热精品免费| 欧美日本亚洲视频在线播放| 成人18禁在线播放| 视频区欧美日本亚洲| 免费无遮挡裸体视频| 欧美日韩一级在线毛片| avwww免费| 窝窝影院91人妻| 国产黄色小视频在线观看| 精品国产亚洲在线| 成人国语在线视频| 一进一出好大好爽视频| 9191精品国产免费久久| 久久久久久久精品吃奶| 免费无遮挡裸体视频| 国模一区二区三区四区视频 | 国产精品九九99| 一区二区三区国产精品乱码| 天天添夜夜摸| 国产伦一二天堂av在线观看| videosex国产| 国产成人影院久久av| 动漫黄色视频在线观看| 欧美人与性动交α欧美精品济南到| 婷婷精品国产亚洲av在线| 欧美一级毛片孕妇| 国产91精品成人一区二区三区| 日日夜夜操网爽| 久久久精品欧美日韩精品| 亚洲国产精品合色在线| 高清毛片免费观看视频网站| 老汉色∧v一级毛片| 日本一区二区免费在线视频| 日韩精品青青久久久久久| 免费看日本二区| 一区福利在线观看| 国产又黄又爽又无遮挡在线| 国产精品一区二区三区四区久久| 久久久久久久久中文| 狠狠狠狠99中文字幕| 麻豆成人av在线观看| 可以在线观看的亚洲视频| 人人妻人人澡欧美一区二区| 99久久综合精品五月天人人| 一a级毛片在线观看| 国产aⅴ精品一区二区三区波| 久久精品综合一区二区三区| www日本在线高清视频| 高清毛片免费观看视频网站| 日本免费一区二区三区高清不卡| 午夜激情福利司机影院| 免费看a级黄色片| 国产精品 欧美亚洲| 久久精品影院6| 欧美性长视频在线观看| 日韩高清综合在线| 久久久久久九九精品二区国产 | 亚洲精品一卡2卡三卡4卡5卡| www.www免费av| 在线观看免费视频日本深夜| 香蕉国产在线看| 亚洲av成人不卡在线观看播放网| 午夜亚洲福利在线播放| 51午夜福利影视在线观看| 国产精品一区二区三区四区免费观看 | 成人午夜高清在线视频| 亚洲电影在线观看av| 在线观看日韩欧美| 人人妻,人人澡人人爽秒播| 国产精品亚洲av一区麻豆| 男人舔女人下体高潮全视频| 国产久久久一区二区三区| 亚洲男人天堂网一区| 真人做人爱边吃奶动态| 香蕉丝袜av| 成年版毛片免费区| 黄片大片在线免费观看| 好男人电影高清在线观看| 宅男免费午夜| 久久久国产成人精品二区| 一区福利在线观看| 亚洲在线自拍视频| 国产精品日韩av在线免费观看| 搞女人的毛片|