• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A 45-μJ,10-kHz,burst-mode picosecond optical parametric oscillator synchronously pumped at a second harmonic cavity

    2022-08-31 09:57:10ChaoMa馬超KeLiu劉可YongBo薄勇ZhiMinWang王志敏DaFuCui崔大復(fù)andQinJunPeng彭欽軍
    Chinese Physics B 2022年8期
    關(guān)鍵詞:馬超

    Chao Ma(馬超) Ke Liu(劉可) Yong Bo(薄勇) Zhi-Min Wang(王志敏)Da-Fu Cui(崔大復(fù)) and Qin-Jun Peng(彭欽軍)

    1Key Laboratory of Solid-State Lasers,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    2Key Laboratory of Functional Crystal and Laser Technology,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    3Institute of Optical Physics and Engineering Technology,Qilu Zhongke,Jinan 250000,China

    4University of Chinese Academy of Sciences,Beijing 100190,China

    Keywords: ultrafast laser,synchronously pumped optical parametric oscillator,high energy

    1. Introduction

    High-energy ultrafast laser sources in different spectral regions demonstrate a wide range of applications in stimulated Raman scattering (SRS),[1]spectroscopy,[2]high harmonic generation (HHG),[3]laser remote sensing,[4]and coherent anti-Stokes Raman scattering (CARS).[5]Synchronously pumped optical parametric oscillator (SPOPO) presents advantages of high parametric light conversion efficiency, narrow spectral linewidth, high beam quality, and low pump power threshold. Therefore, this method can effectively to obtain ultrashort pulse parametric oscillations in femtosecond or picosecond range.[6,7]Notably,to achieve synchronous pumping, the length of the OPO oscillator was required to be precisely matched with the pump beam pulse repetition rate (PRR), ensuring that the two pulses are synchronized in time. Since the OPO cavity length cannot be extended indefinitely, many reports on ps SPOPO typically concentrate on the pump source with RPR of tens or hundreds of MHz, corresponding to the SPOPO cavity length of several meters, resulting in the pulse energy of parametric light only at the nano joule level.[8,9]For instance, a ps SPOPO based on CdSiP2was operated at a repetition rate of 80 MHz and a cavity length of~3.77 m; however, the produced signal pulse energy was lower than 0.55 nJ.[8]Based on MgO:PPLN,a similar ps SPOPO produced maximum signal power of 2.4 W at 79.4 MHz;but,the pulse energy was only around 30 nJ.[9]

    Using methods, such as imaging relays[10]and fiber coupling,[11]to increase the cavity length allows the SPOPO to operate at repetition rates of around 7 MHz and output pulse energies up to several hundreds of nanojoules. Alternative approaches for scaling up the pulse energy, include burst-mode pumping,[12]high-harmonic cavity,[13]and cavity dumping.[14]However, the pulse energy generated by these methods still fails to exceed a few microjoules. Recently,our research team demonstrated the use of a regenerative amplifier(RA)to achieve intracavity SPOPO.[15]It outputs a maximum pulse energy of up to 30.5 μJ at 1.5 μm with a pulse duration of 7 ps, and operate at 10 kHz. This was the breakthrough record-high pulse energy from a ps SPOPO. However, most aforementioned SPOPOs were pumped by 1 μm laser, providing spectrum regions in the near (>1 μm) and mid-infrared. In order to expand the spectral coverage, the green-pumped OPOs were performed,and widely tunable signal spanning from visble 600 nm to near-infrared 1000 nm can be achieved.[16]For example, in the ps range, a PPKTPSPOPO designed by a fan-out grating pumped by a ps 532-nm laser was reported. However the signal pulse energy was only 7.3 nJ.[17]In the femtosecond range, a 532-nm femtosecond fiber laser achieves synchronous pumping of OPO based on MgO:PPLN.Unfortunately,the signal pulse energy was lower than 1.0 nJ.[18]

    In this letter, we propose a novel green pumped ps SPOPO concept with multi-tens of microjoule of burst energy at the tens of kHz. Here, an OPO was synchronously pumped internal in a second harmonic(SH)cavity, the green SH pulse was produced by a ps 1-μm laser. The primary idea of this scheme is to confine the pump beam in the SH cavity by changing the wavelength of the pump beam. The obstacle of strictly matching the length of the OPO oscillator with the repetition rate of the pump beam can be overcome with this method. Instead,synchronous pumping can be achieved simply by making the resonators of OPO and SH to have the same optical length. This scenario presents the advantage of realizing a low-repetition rate OPO without the need for a long cavity length to meet the condition of synchronicity. A lowrepetition rate OPO has the advantage that high pulse energies can be achieved which is beneficial for biology,medicine and HHG applications.In a proof-of principle experiment,a ps 10-kHz 1064-nm laser with a maximum pulse energy of 300 μJ was used as the fundamental pump source,a 15-mm LBO was employed for second harmonic generation (SHG) and a 30-mm LBO for OPO, providing a record high burst energy of 45 μJ at signal beam of 900 nm. So far, this study is the first report on multiple tens of microjoule energy ps SPOPO pumped by green,and lowest repetition rate for green pumped OPO in the ps regime.

    2. Experimental setup

    Figure 1 shows the diagram of the experimental setup for a synchronously pumping OPO in the SH cavity. It consists of a ps 1064-nm fundamental laser, an SH resonator and a signal single resonant (SSR) OPO placed in the SH resonator.The fundamental ps laser was a 1064-nm Nd:YVO4regenerative amplifier (RGA), providing 300-μJ pulse energy with a pulse width of 86 ps and operates at 10 kHz. A combination of half-wave plate(HWP1)and thin film polarizer(TFP)was utilized to control the pump energy. The pump laser was shaped using a lens(L)with a focal length of 400 mm,providing a beam radius of around 320μm. The shaped fundamental pump beam was coupled with the SH resonator through mirrors M1 and M2. The M1 and M2 plane mirrors were coated with an angle of 45?highly reflective (HR) film at 1064 nm.A second HWP2 was used to control the beam polarization for optimum SH phase matching. The ps green radiation was obtained by SHG in a 15-mm long LBO-1 crystal under noncritical type-I phase matching(θ=90?,?=10?)at a temperature of 50.7?C. The LBO-1 crystal was placed in an oven with a temperature control accuracy of 0.1?C. Crystal end faces were coated with antireflection(AR)for high transmission at 532 nm and 1064 nm(T>99.5%). The green beam generated was used as the pump source of the OPO. The SH resonator was a standing-wave cavity composed of three plane mirrors(i.e.,M3,M5,and M6)and one concave reflective mirrors M4.The surface of M3 was coated with 1064-nm AR and 532-nm HR films. The concave mirror M4 presents a radius of curvature of 500 mm, and its surface was coated with 1064-nm AR and 532-nm HR films. M5 was AR-coated for the signal at 900 nm,and HR at 532 nm. The surface of M6 was coated with HR film at 532 nm and 900 nm. The geometric length of the SH oscillator design was 453 mm.

    Fig. 1. Diagram of experimental setup for synchronously pumping OPO in SH resonator.

    The SSR OPO was coupled into the SH resonator through the dichroic mirror M5. A type-I (θ=90?,?=0?) LBO-2 crystal with size of 4 mm×4 mm×30 mm was used as the nonlinear crystal for the OPO and placed near M6.The LBO-2 crystal was mounted in a temperature-controlled oven, and the temperature was maintained within the range of 135?C±0.2?C.Both end faces of the crystal were coated with 532 nm and 900 nm to 1100-nm AR films.Both the green pump and OPO signal parametric pulses can pass through the LBO-2 crystal given that SH and OPO cavities contain common optical elements(i.e.,M5,LBO-2 crystal,and M6). The OPO was a V-shaped folded cavity composed of mirror M6,concave reflective mirror M7 and planar output coupler(OC).M7 exhibited a radius of curvature of 500 mm and was coated for high reflection at 900 nm. The OC had a transmittance of 28%at around 900 nm. The design of SH cavity with two internal foci results in a green SH beam radius of 0.22 mm in both LBO-1 as well as LBO-2 crystal. In order to obtain good mode matching between OPO signal and green SH beams in the LBO-2 crystal to improve the conversion efficiency in the process of frequency conversion. We designed the fundamental mode radius of the 900 nm signal in the LBO-2 crystal to be about 0.22 mm according to the ABCD matrix method.The distance between M6 and M7 was approximately 250 mm,the spacing between M7 and OC was 213 mm,and the total geometric length of the OPO oscillator design was 463 mm. Considering the difference of refractive index and physical length between the two crystals, the OC was placed on a precise translation stage to fine-tune the length of the OPO cavity for synchronous pumping conditions.

    3. Experimental results

    We first investigated the SHG pulse energy and the SH conversion efficiency before introducing the LBO-2 crystal and M6 in the cavity. Figure 2 shows the singlepass SH energy and efficiency as a function of the fundamental pump energy. The SH energy progressively increases with the increasing fundamental energy. A maximum SH output energy of 210μJ was obtained,and the corresponding conversion efficiency is up to 70%when the fundamental energy was 300μJ.

    Fig.2. Dependence of the measured SHG energy and the corresponding conversion efficiency on the incident fundamental energy.

    Fig.3. Pulse waveform of OPO signal: (a)pulse sequence of the OPO signal over a 1-ms time span and(b)expanded pulse profile.

    When the LBO-2 crystal and M6 were inserted into the OPO cavity, the stable SPOPO operation was realized. The proposed scheme in this paper is different from the traditional synchronously pumped OPO. The green beam generated by the SHG will oscillate many times in the SH cavity, in the OPO process. Each time green beam pulse passes through the LBO-2 crystal, it will convert part of the energy to the OPO signal pulse and output part of the energy through OC until a single green beam pulse was exhausted. Based on the above process, the final output pulse of SPOPO operate in burst mode. The OPO signal pulse output from the OC was monitored with a photodetector(ALPHALAS GMBH,UPD-40-UVIR-P, rise time of<40 ps) and recorded using an 8-GHz digital oscilloscope (Agilent, DSO 80804B). The pulse train of the OPO signal over a 1-ms time span is shown in Fig. 3(a), which indicates that the OPO works at an RPR of 10 kHz. Figure 3(b)displays an expanded OPO pulse profiles.As shown in Fig. 3(b), the OPO operates in burst mode with six individual ps pulses with an approximate spacing of about 3 ns apart within the nanosecond envelope. The duration of each burst was about 15 ns. The repetition rate of the pulse trains in each burst was 324 MHz, which corresponds to the OPO cavity length. The pulse amplitude of the OPO signal in the envelope gradually increases,reaches a maximum value at the third pulse,and then gradually decreases.

    Figure 4 shows the burst energy of the OPO signal as a function of the fundamental pump energy. As the incident pump energy increases,the output burst energy increases monotonically and no saturation effect was observed. The maximum output burst energy of the OPO signal was 45 μJ at a fixed temperature of 135?C and a pump energy of 300μJ.The slope efficiency of the burst signal energy extracted from the pump beam was about~16%. The photon conversion efficiency from 1-μm fundamental pump to 900-nm OPO signal beam was 12.7%, and the optical-to-optical conversion efficiency was 15%. It is found in Fig. 3(b) that the individual main pulse accounts for about 40% of the burst energy, corresponding the single pulse energy of about 18 μJ, which is more than three orders of magnitude higher than the optimal result obtained in a previous study.[19]

    In the burst pulse, the pulse width of a single OPO signal pulse was measured by an autocorrelator. Figure 5 shows the normalized intensity autocorrelation trace of a single OPO signal pulse at full energy output. The pulse width of a single OPO signal pulse was estimated to be approximately 46.8 ps through Gaussian fitting. This value is significantly narrower than that of the pump pulse due to the time gain narrowing effect

    Fig. 4. Evolution of output signal burst energy with fundamental pump energy.

    Fig.5.Measurement of the autocorrelation trace of a single OPO signal pulse and its Gaussian fit.

    Using the spectrum analyzer (Ocean Optics,HR2000+CG UV-NIR, 1-nm resolution), we measured the wavelength of the signal beam of OPO from the beam leaked from mirror M7,as shown in Fig.6. It was found from Fig.6 that the central wavelength of the OPO signal beam is 900 nm.The illustration in Fig. 6 shows the detailed profile of the spectrum with a spectrum width of 1.09 nm.

    Fig.6. Measurement of the spectrum of the 900-nm signal beam generated by OPO.Illustration is shown in spectrum diagram in detail.

    Using the beam analyzer (Spiricon M2-200s), we measured the beam quality of OPO signal beam. Figure 7 shows the beam quality of OPO with an output burst energy of 45μJ.The beam quality was measured asM2x=1.44 andM2y=1.40 in the orthogonal directions, and the corresponding average beam quality wasM2=1.42.The two-dimensional(2D)beam intensity distribution at the beam waist is shown in the inset of Fig.7, where it can be seen that the intensity is nearly Gaussian profile.

    Fig. 7. Beam quality factor M2 of the 900-nm OPO signal beam measured under an output burst energy of 45μJ.Illustration shows the 2D beam intensity distribution.

    The long-term energy stability of the SHG beam shown in Fig. 8(a) confirmed that the energy stability is better than 0.4% rms over 1 hour. Furthermore, we characterized the output stability of OPO by measuring long-term average energy fluctuations.Figure 8(b)shows the signal energy stability recorded over one hour. The signal exhibits energy stability better than 1.2% rms over 1 hour under free running conditions. However,compared with the green SH beam,the signal energy still exhibits three times larger fluctuation. The decrease in energy stability of the output signal was mainly due to the temperature fluctuation of the oven when operating OPO at a high temperature (~135?C) much higher than the laboratory temperature (~28?C). Temperature fluctuation will change the refractive index of the crystal, which makes OPO fluctuate around the phase matching state,resulting in unstable output energy.

    Fig.8. Energy stability of the(a)SHG and(b)signal beams.

    4. Conclusion

    In summary,we designed a novel method to realize high energy ps SPOPO in SH resonator. The proposed method can overcome the obstacle of strictly matching the length of the OPO cavity with the repetition rate of the pump beam. Under the pump energy of 300μJ,the maximum output burst energy of the OPO signal was 45 μJ at repetition rate of 10 kHz. In the burst pulse,the pulse duration of a single OPO signal pulse was measured to be approximately 46.8 ps at 900-nm signal.The beam quality was measured asM2x=1.44 andM2y=1.40 in the orthogonal directions.As far as we know,this study was the first report on multi-tens of microjoule energy ps SPOPO pumped by green,and lowest repetition rate for green pumped OPO in the ps regime,which is also the shortest cavity length in any ultrafast SPOPO.The experimental results showed that the proposed method can obtain higher energy ps pulses on a compact setup compared with the traditional synchronously pumped optical parametric oscillator. Moreover, the second harmonic generated by different fundamental frequencies can also realize the SPOPO in a wider spectrum range. We believe that further optimization of the OPO scheme can obtain highenergy ultrafast laser sources in different spectrum regions,which will play an important role in biology, medicine, and automobile fields.

    Acknowledgment

    Project supported by Youth Innovation Promotion Association,Chinese Academy of Sciences(CAS).

    猜你喜歡
    馬超
    鐵騎犁波聯(lián)合制勝
    京劇《戰(zhàn)馬超》中馬超的角色分析
    戲劇之家(2023年5期)2023-03-22 03:03:13
    High-energy picosecond single-pass multi-stage optical parametric generator and amplifier
    馬超尊順劉備
    我國鄉(xiāng)土題材電視劇現(xiàn)代化道路的影像嬗變
    電影評介(2021年24期)2021-05-01 21:51:05
    “疫”中大街上,那奔跑的“菜籃子”
    分憂(2020年6期)2020-06-11 00:34:32
    中國農(nóng)大高俊平和馬超教授團隊揭示月季花瓣脫落的分子機制
    園林科技(2020年3期)2020-02-18 11:02:08
    一部弘揚傳統(tǒng)文化的精品力作
    飛天(2019年9期)2019-10-30 03:52:55
    讓馬超識規(guī)矩
    那年那月的兄弟:昧下20萬救的這條命
    精品国产三级普通话版| 亚洲人成伊人成综合网2020| 不卡av一区二区三区| 久久久久性生活片| 国产精品九九99| 悠悠久久av| 人妻夜夜爽99麻豆av| 最新美女视频免费是黄的| 亚洲精华国产精华精| 88av欧美| 国产三级中文精品| 一本精品99久久精品77| 欧美黑人巨大hd| 99re在线观看精品视频| 一级毛片高清免费大全| 又爽又黄无遮挡网站| 中文字幕人妻丝袜一区二区| 好男人电影高清在线观看| 网址你懂的国产日韩在线| 欧美中文日本在线观看视频| 免费看美女性在线毛片视频| 欧美在线黄色| 国产亚洲av高清不卡| 在线播放国产精品三级| 亚洲国产色片| 午夜亚洲福利在线播放| 男人舔奶头视频| 国内精品一区二区在线观看| 91麻豆av在线| 美女cb高潮喷水在线观看 | 在线观看日韩欧美| 美女高潮喷水抽搐中文字幕| 免费无遮挡裸体视频| 真人一进一出gif抽搐免费| av欧美777| 窝窝影院91人妻| 色精品久久人妻99蜜桃| 午夜福利18| 黑人操中国人逼视频| 老司机午夜十八禁免费视频| 亚洲欧美一区二区三区黑人| 午夜福利欧美成人| 99视频精品全部免费 在线 | 日韩高清综合在线| 热99在线观看视频| 一个人看的www免费观看视频| 一卡2卡三卡四卡精品乱码亚洲| 宅男免费午夜| 男女那种视频在线观看| 欧美激情在线99| 中文字幕人妻丝袜一区二区| 亚洲自拍偷在线| 亚洲va日本ⅴa欧美va伊人久久| 非洲黑人性xxxx精品又粗又长| 99国产综合亚洲精品| 一区福利在线观看| 搡老熟女国产l中国老女人| 欧美黄色淫秽网站| 91在线精品国自产拍蜜月 | av欧美777| 97碰自拍视频| 国产亚洲av高清不卡| e午夜精品久久久久久久| 99在线视频只有这里精品首页| 国产成年人精品一区二区| 午夜福利在线在线| 麻豆成人av在线观看| 久久人妻av系列| www.www免费av| 久久久久久国产a免费观看| 一进一出好大好爽视频| 男女午夜视频在线观看| 韩国av一区二区三区四区| av黄色大香蕉| 狂野欧美激情性xxxx| 在线看三级毛片| 久久中文字幕一级| 亚洲18禁久久av| 午夜福利欧美成人| 黄色 视频免费看| 国产精品一区二区三区四区免费观看 | 久久久国产成人免费| 两个人视频免费观看高清| 丝袜人妻中文字幕| 精品熟女少妇八av免费久了| 欧洲精品卡2卡3卡4卡5卡区| 久久国产精品人妻蜜桃| 韩国av一区二区三区四区| 亚洲av成人一区二区三| 亚洲成av人片在线播放无| 99久久99久久久精品蜜桃| 亚洲专区字幕在线| 麻豆成人av在线观看| 一进一出抽搐gif免费好疼| 亚洲精品在线美女| www.自偷自拍.com| 五月伊人婷婷丁香| av欧美777| 国产精品,欧美在线| 国产黄a三级三级三级人| 淫秽高清视频在线观看| 日日干狠狠操夜夜爽| 国产成人影院久久av| 18禁黄网站禁片午夜丰满| 人妻久久中文字幕网| 最新在线观看一区二区三区| 亚洲天堂国产精品一区在线| 亚洲av成人一区二区三| 亚洲中文字幕一区二区三区有码在线看 | 日本黄色视频三级网站网址| 黄色 视频免费看| 人人妻人人澡欧美一区二区| 日韩 欧美 亚洲 中文字幕| 中文字幕人妻丝袜一区二区| 欧美性猛交╳xxx乱大交人| av视频在线观看入口| 日日干狠狠操夜夜爽| 一本久久中文字幕| 一本一本综合久久| 婷婷丁香在线五月| 91老司机精品| 日日夜夜操网爽| 亚洲va日本ⅴa欧美va伊人久久| 国产成+人综合+亚洲专区| 变态另类成人亚洲欧美熟女| 国产极品精品免费视频能看的| 国产精品99久久99久久久不卡| 熟女电影av网| 18禁观看日本| 久久精品夜夜夜夜夜久久蜜豆| 美女黄网站色视频| 在线观看美女被高潮喷水网站 | 两人在一起打扑克的视频| 人妻久久中文字幕网| 亚洲在线自拍视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产乱人伦免费视频| 国产99白浆流出| 欧美日本亚洲视频在线播放| 18禁国产床啪视频网站| 色综合站精品国产| 亚洲aⅴ乱码一区二区在线播放| 欧美在线一区亚洲| 午夜精品久久久久久毛片777| 欧美丝袜亚洲另类 | 在线观看免费午夜福利视频| 国产69精品久久久久777片 | 麻豆久久精品国产亚洲av| 欧美丝袜亚洲另类 | 欧美另类亚洲清纯唯美| 国产 一区 欧美 日韩| 欧美绝顶高潮抽搐喷水| 小说图片视频综合网站| 国产精品影院久久| 日韩成人在线观看一区二区三区| 欧美乱码精品一区二区三区| 精品午夜福利视频在线观看一区| 又大又爽又粗| 黄色视频,在线免费观看| 1024香蕉在线观看| 久久人人精品亚洲av| 一级黄色大片毛片| 亚洲欧美日韩东京热| 国产精品电影一区二区三区| 精品一区二区三区四区五区乱码| 免费大片18禁| 99在线人妻在线中文字幕| 国产又色又爽无遮挡免费看| 亚洲 国产 在线| 国产成年人精品一区二区| 制服丝袜大香蕉在线| 男人的好看免费观看在线视频| 亚洲国产色片| 欧美成人免费av一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 国产成人精品久久二区二区免费| 国产伦在线观看视频一区| 精品国产亚洲在线| 欧美在线黄色| 日韩三级视频一区二区三区| 男女视频在线观看网站免费| 最近最新免费中文字幕在线| 99久久精品国产亚洲精品| 成人精品一区二区免费| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av成人一区二区三| 三级国产精品欧美在线观看 | 男人和女人高潮做爰伦理| 老司机福利观看| 中文资源天堂在线| 精品电影一区二区在线| 岛国视频午夜一区免费看| 成人午夜高清在线视频| 国产日本99.免费观看| 国产成人av激情在线播放| 一本综合久久免费| 久久欧美精品欧美久久欧美| 香蕉av资源在线| 男女视频在线观看网站免费| 色视频www国产| 中文字幕久久专区| 亚洲成人免费电影在线观看| 97人妻精品一区二区三区麻豆| 国产精品,欧美在线| 色精品久久人妻99蜜桃| 国产v大片淫在线免费观看| 搞女人的毛片| 免费av不卡在线播放| avwww免费| 99国产综合亚洲精品| 麻豆成人午夜福利视频| 国产人伦9x9x在线观看| 天天一区二区日本电影三级| 国产亚洲精品综合一区在线观看| svipshipincom国产片| 日韩欧美在线二视频| 久久久久国产一级毛片高清牌| 高清毛片免费观看视频网站| а√天堂www在线а√下载| 亚洲无线在线观看| 19禁男女啪啪无遮挡网站| 国产精品,欧美在线| 亚洲激情在线av| 一a级毛片在线观看| 日本与韩国留学比较| 国产精品影院久久| 国产三级在线视频| av天堂在线播放| 欧美日本亚洲视频在线播放| 成人国产一区最新在线观看| 久久精品人妻少妇| 亚洲一区二区三区色噜噜| 老汉色∧v一级毛片| 国产高清视频在线播放一区| 久久精品人妻少妇| 久久久久久九九精品二区国产| 欧美不卡视频在线免费观看| 熟妇人妻久久中文字幕3abv| 日本免费一区二区三区高清不卡| 亚洲片人在线观看| 叶爱在线成人免费视频播放| 嫁个100分男人电影在线观看| 国产成人影院久久av| 香蕉丝袜av| 午夜两性在线视频| 99在线视频只有这里精品首页| 久久久久免费精品人妻一区二区| 成在线人永久免费视频| 国产精品自产拍在线观看55亚洲| 久久久精品欧美日韩精品| 99riav亚洲国产免费| 亚洲国产精品久久男人天堂| 久久精品亚洲精品国产色婷小说| 国产精品亚洲一级av第二区| 美女午夜性视频免费| 叶爱在线成人免费视频播放| 久久这里只有精品19| 真人做人爱边吃奶动态| 国产爱豆传媒在线观看| 一二三四社区在线视频社区8| 亚洲av第一区精品v没综合| 国产69精品久久久久777片 | 欧美在线黄色| 日本a在线网址| 少妇的丰满在线观看| 成人永久免费在线观看视频| 午夜免费成人在线视频| 99热只有精品国产| a在线观看视频网站| 天堂影院成人在线观看| 三级男女做爰猛烈吃奶摸视频| www日本黄色视频网| 俄罗斯特黄特色一大片| 国产成人欧美在线观看| 婷婷亚洲欧美| 国产精品久久久久久精品电影| 琪琪午夜伦伦电影理论片6080| 99久久精品一区二区三区| 在线观看免费视频日本深夜| 99热只有精品国产| 国产成人aa在线观看| 波多野结衣巨乳人妻| 18禁观看日本| 欧美日韩中文字幕国产精品一区二区三区| 在线观看午夜福利视频| 欧洲精品卡2卡3卡4卡5卡区| 黄色成人免费大全| 1024香蕉在线观看| 桃红色精品国产亚洲av| 一级毛片女人18水好多| 久久久久久人人人人人| 久久精品综合一区二区三区| 午夜激情福利司机影院| 中文字幕av在线有码专区| 午夜影院日韩av| 一夜夜www| 真人一进一出gif抽搐免费| 国产又黄又爽又无遮挡在线| 日本黄色视频三级网站网址| 免费电影在线观看免费观看| 中国美女看黄片| 久久人妻av系列| 欧美一区二区精品小视频在线| 久久中文看片网| 18美女黄网站色大片免费观看| 夜夜爽天天搞| 欧美色视频一区免费| 热99re8久久精品国产| 久久草成人影院| 天堂影院成人在线观看| 波多野结衣巨乳人妻| 成人高潮视频无遮挡免费网站| 国产激情偷乱视频一区二区| 欧美一级毛片孕妇| 脱女人内裤的视频| 老司机深夜福利视频在线观看| 一个人看视频在线观看www免费 | 欧美色视频一区免费| 亚洲成人久久爱视频| 婷婷丁香在线五月| 久久久精品大字幕| 精品福利观看| 97超视频在线观看视频| 成人性生交大片免费视频hd| 国产亚洲精品综合一区在线观看| 亚洲人成网站在线播放欧美日韩| 国产精品香港三级国产av潘金莲| 精品国产乱码久久久久久男人| 国产美女午夜福利| 又黄又粗又硬又大视频| 少妇丰满av| 午夜免费激情av| 男女那种视频在线观看| 久久国产精品影院| 日本精品一区二区三区蜜桃| 亚洲欧美日韩高清专用| 啦啦啦观看免费观看视频高清| 国产精品一区二区精品视频观看| 欧美av亚洲av综合av国产av| av视频在线观看入口| 国产aⅴ精品一区二区三区波| 国产精品久久久久久久电影 | 日韩欧美一区二区三区在线观看| 日日干狠狠操夜夜爽| 久久国产精品人妻蜜桃| 日韩人妻高清精品专区| 搡老妇女老女人老熟妇| 婷婷丁香在线五月| 网址你懂的国产日韩在线| 国产欧美日韩精品亚洲av| xxxwww97欧美| 激情在线观看视频在线高清| 97人妻精品一区二区三区麻豆| 成人午夜高清在线视频| 精品国内亚洲2022精品成人| 午夜福利在线在线| 国产成人精品无人区| 日韩大尺度精品在线看网址| 婷婷精品国产亚洲av在线| cao死你这个sao货| 国产aⅴ精品一区二区三区波| 一二三四在线观看免费中文在| 男女下面进入的视频免费午夜| 久久天躁狠狠躁夜夜2o2o| 精品一区二区三区av网在线观看| 一进一出抽搐gif免费好疼| 国产精品av久久久久免费| 熟女少妇亚洲综合色aaa.| 亚洲成人免费电影在线观看| 国产一区二区激情短视频| x7x7x7水蜜桃| 少妇熟女aⅴ在线视频| 宅男免费午夜| 国产美女午夜福利| 少妇熟女aⅴ在线视频| 老汉色av国产亚洲站长工具| 少妇的丰满在线观看| 麻豆成人av在线观看| 综合色av麻豆| 99热这里只有精品一区 | 欧美+亚洲+日韩+国产| 男女之事视频高清在线观看| 成人18禁在线播放| 大型黄色视频在线免费观看| 久久久久久久精品吃奶| 日韩大尺度精品在线看网址| 丁香欧美五月| 亚洲成av人片免费观看| 国产亚洲精品一区二区www| 99久久精品热视频| 很黄的视频免费| 天天一区二区日本电影三级| 99精品欧美一区二区三区四区| 男人和女人高潮做爰伦理| 亚洲无线观看免费| 久久精品国产清高在天天线| 女警被强在线播放| 国产精品一区二区三区四区免费观看 | 国产精品av久久久久免费| 精品午夜福利视频在线观看一区| 老司机在亚洲福利影院| 国产午夜精品久久久久久| 亚洲一区高清亚洲精品| 日韩中文字幕欧美一区二区| 久久天躁狠狠躁夜夜2o2o| 中文在线观看免费www的网站| 欧美日韩综合久久久久久 | 两个人的视频大全免费| 亚洲九九香蕉| 国产高清videossex| 国产爱豆传媒在线观看| 日韩av在线大香蕉| 99热精品在线国产| 五月伊人婷婷丁香| 后天国语完整版免费观看| 国产成+人综合+亚洲专区| 美女高潮喷水抽搐中文字幕| 最新在线观看一区二区三区| 在线观看免费视频日本深夜| 90打野战视频偷拍视频| 久久伊人香网站| 亚洲乱码一区二区免费版| 99在线视频只有这里精品首页| 天堂网av新在线| 欧美三级亚洲精品| 国产一区二区三区在线臀色熟女| 少妇的丰满在线观看| 国产精品亚洲一级av第二区| 国产精品精品国产色婷婷| xxx96com| 在线视频色国产色| 后天国语完整版免费观看| 757午夜福利合集在线观看| 亚洲国产欧洲综合997久久,| 中出人妻视频一区二区| ponron亚洲| 亚洲国产欧美一区二区综合| 免费一级毛片在线播放高清视频| 久久久久亚洲av毛片大全| 久久性视频一级片| 成人高潮视频无遮挡免费网站| 亚洲18禁久久av| 日韩欧美在线二视频| 亚洲真实伦在线观看| av女优亚洲男人天堂 | 国产av不卡久久| 91麻豆av在线| 每晚都被弄得嗷嗷叫到高潮| 欧美成人一区二区免费高清观看 | 日韩欧美一区二区三区在线观看| 免费搜索国产男女视频| 看片在线看免费视频| 国产精品免费一区二区三区在线| 亚洲成a人片在线一区二区| 亚洲一区二区三区色噜噜| 亚洲欧美精品综合久久99| 日韩精品中文字幕看吧| 99在线人妻在线中文字幕| 欧美3d第一页| 1000部很黄的大片| 又大又爽又粗| 一本精品99久久精品77| 91av网一区二区| 两人在一起打扑克的视频| 变态另类成人亚洲欧美熟女| 噜噜噜噜噜久久久久久91| 久久久久久久久免费视频了| 草草在线视频免费看| 在线观看午夜福利视频| 国产伦在线观看视频一区| 波多野结衣高清作品| 级片在线观看| 五月伊人婷婷丁香| 久久久色成人| 欧美日韩综合久久久久久 | 精品人妻1区二区| 成人无遮挡网站| 不卡av一区二区三区| 亚洲国产欧美人成| 久久久久精品国产欧美久久久| 午夜免费成人在线视频| 最近在线观看免费完整版| 九九在线视频观看精品| 国产黄色小视频在线观看| netflix在线观看网站| 国产精品久久久人人做人人爽| 99久久国产精品久久久| 少妇熟女aⅴ在线视频| 舔av片在线| 日日摸夜夜添夜夜添小说| 国产高清视频在线观看网站| 一本精品99久久精品77| 少妇丰满av| 国产69精品久久久久777片 | 成人无遮挡网站| 国产亚洲精品一区二区www| 亚洲国产欧洲综合997久久,| 国产高清videossex| 亚洲国产看品久久| 久久久久性生活片| 老汉色∧v一级毛片| 日本一二三区视频观看| 国产精品98久久久久久宅男小说| 丰满的人妻完整版| 欧美日韩亚洲国产一区二区在线观看| 一区二区三区激情视频| 色播亚洲综合网| 在线十欧美十亚洲十日本专区| 长腿黑丝高跟| 国产在线精品亚洲第一网站| 亚洲国产看品久久| 又爽又黄无遮挡网站| 欧美又色又爽又黄视频| 久99久视频精品免费| 欧美三级亚洲精品| 嫩草影院入口| 国产精品98久久久久久宅男小说| 视频区欧美日本亚洲| 一级毛片精品| 欧美黄色片欧美黄色片| 制服人妻中文乱码| 久久精品国产亚洲av香蕉五月| 欧美中文日本在线观看视频| 亚洲乱码一区二区免费版| 18禁黄网站禁片午夜丰满| 国产高潮美女av| 亚洲成人久久爱视频| 999久久久国产精品视频| 一级作爱视频免费观看| 国产精品亚洲一级av第二区| 夜夜爽天天搞| 白带黄色成豆腐渣| 欧美激情在线99| 99久久精品一区二区三区| 亚洲欧美日韩无卡精品| 国产69精品久久久久777片 | 欧美黑人巨大hd| 亚洲午夜精品一区,二区,三区| 丰满的人妻完整版| x7x7x7水蜜桃| 神马国产精品三级电影在线观看| 偷拍熟女少妇极品色| 久久人妻av系列| 五月玫瑰六月丁香| 国产成人av激情在线播放| 99热只有精品国产| 一本精品99久久精品77| 国产精品,欧美在线| 亚洲av成人av| 天堂av国产一区二区熟女人妻| 久久久成人免费电影| 国产精品永久免费网站| 久久精品aⅴ一区二区三区四区| 首页视频小说图片口味搜索| 日本五十路高清| 18禁黄网站禁片午夜丰满| 国内精品美女久久久久久| 最近在线观看免费完整版| 欧美日韩黄片免| 午夜精品久久久久久毛片777| 国语自产精品视频在线第100页| 在线观看美女被高潮喷水网站 | 成人国产一区最新在线观看| 在线观看免费午夜福利视频| 亚洲成人久久性| 99精品久久久久人妻精品| 999久久久国产精品视频| 一进一出抽搐动态| 国内少妇人妻偷人精品xxx网站 | 黄色日韩在线| a在线观看视频网站| 夜夜看夜夜爽夜夜摸| 国产精品av久久久久免费| 9191精品国产免费久久| 波多野结衣高清作品| 成人欧美大片| 露出奶头的视频| 在线观看舔阴道视频| 国产精品爽爽va在线观看网站| 怎么达到女性高潮| 国产欧美日韩精品亚洲av| 啦啦啦韩国在线观看视频| 成年女人永久免费观看视频| 亚洲国产欧美网| 午夜亚洲福利在线播放| 老熟妇乱子伦视频在线观看| 这个男人来自地球电影免费观看| 久久久久免费精品人妻一区二区| 淫秽高清视频在线观看| 欧美乱码精品一区二区三区| 九九热线精品视视频播放| 韩国av一区二区三区四区| 午夜亚洲福利在线播放| 曰老女人黄片| 日韩高清综合在线| 成人av一区二区三区在线看| 操出白浆在线播放| 成人国产一区最新在线观看| 首页视频小说图片口味搜索| 色噜噜av男人的天堂激情| 日韩欧美国产在线观看| 男女做爰动态图高潮gif福利片| 欧美成人免费av一区二区三区| 日韩成人在线观看一区二区三区| 精品熟女少妇八av免费久了| 日韩欧美 国产精品| 午夜激情欧美在线| 亚洲成人精品中文字幕电影| 国产激情久久老熟女| 99久久精品热视频| 久久久久久久久免费视频了| 色综合站精品国产| 国产精品99久久久久久久久| 免费人成视频x8x8入口观看| 欧美日韩黄片免|