• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic phase diagram of single-layer CrBr3?

    2021-12-22 06:50:22WeiJiang江偉YueFeiHou侯躍飛ShujingLi李淑靜ZhenGuoFu付振國(guó)andPingZhang張平
    Chinese Physics B 2021年12期
    關(guān)鍵詞:張平振國(guó)

    Wei Jiang(江偉) Yue-Fei Hou(侯躍飛) Shujing Li(李淑靜) Zhen-Guo Fu(付振國(guó)) and Ping Zhang(張平)

    1Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    2Beijing University of Chemical Technology,Beijing 100029,China

    3School of Physics and Physical Engineering,Qufu Normal University,Qufu 273165,China

    Keywords: magnetic anisotropy,single-layer CrBr3,N′eel-antiferromagnetic phase

    1. Introduction

    Since the discovery of graphene,[1,2]the two-dimensional(2D)materials have attracted a lot of interests during the past two decades. 2D materials become very important in modern condensed matter physics and introduce many novel ideas to our communities. The electronic and optical properties have been studied explosively in graphene, silicene, and transition metal dichalcogenides,[3–5]etc., but the 2D magnet is still a part to be further studied. The reason may be, differing from the bulk materials, that the long-range magnetic order in 2D materials is prohibited[6–8]by Mermin–Wagner theorem at finite temperature.[9]However, more and more studies reveal that magnetic anisotropy, which originates mainly from spinorbit coupling,[10]can overcome this restriction and thus becomes an important parameter for 2D magnets.

    In recent years,many intrinsic ferromagnetisms in atomically thin magnets have been widely studied in various van der Waals materials, including rare-earth chalcohalides REChX(RE=rare earth; Ch=O, S, Se, Te;X=F, Cl, Br, I),[11]metallic Fe3GeTe2,[12–14]semiconducting Cr2Ge2Te6[15,16]and insulating CrI3.[17–19,23–29]Among them, single-layer CrBr3(SL-CrBr3) gradually attracted the attention of scientists. For example, recently, Zhanget al.have experimentally demonstrated the intrinsic ferromagnetism in SLCrBr3and reported the spontaneous magnetization persistence with a Curie temperature of 34 K.[30]The magnon-assisted tunneling and the magnetic proximity effects in van der Waals heterostructures based on CrBr3have also been widely studied.[31–34]For example, the charge-state dependency of the magnetic proximity effects in MoSe2/CrBr3van der Waals heterostructures has been studied via low-temperature magneto-optical spectroscopy experiments,which conformed with that the valley polarization of the MoSe2trion state may be remarkably related to the local CrBr3magnetization,while the neutral exciton state remains insensitive to the ferromagnet.[32]These discoveries provide us sufficient opportunities for both fundamental studies and spintronics applications.

    Compared with the vigorous development of experimental research,the theoretical research on the magnetism of SLCrX3is somewhat lacking. In-depth understanding and control of the magnetic properties of SL-CrX3will help the development of low-dimensional spintronic devices based on SLCrX3. Strain engineering and charge doping are two widely used methods to introduce new phases and effectively tune magnetic properties of the 2D structures.[19–22,35–39]For instances,on one hand,in strain engineering,Lucaset al.have reported the strain-tunable magnetic anisotropy energy(MAE)in 2D SL-CrX3(withX=Cl, Br, and I),[36]and on the other hand,charge doping is applied to tune the magnetic properties of SL-CrI3.[19]

    To our knowledge,up to now,the influences of strain and charge doping on the magnetic properties of SL-CrBr3have not been discussed in detail in the present literatures. However, a detailed understanding on fundamental properties of SL-CrBr3plays an important role in realizing its potential applications in spin-base technologies. Owing to the interest and importance from the perspectives of both basis physics and potential applications of SL-CrBr3in the fields of spintronics, it is timely to provide a theoretical analysis of the magnetic phases of SL-CrBr3tuned by strain effect and charge doping. Therefore, in this work, by employing systematical first-principals calculations and Heisenberg model simulations, we theoretically investigate the magnetic phase transitions in SL-CrBr3induced by reasonable strains and charge doping. Three different magnetic ground states,including offplane ferromagnetic (FM), in-plane FM and in-plane N′eelantiferromagnetic(N′eel-AFM)phases,are found in our calculations. Furthermore,a Heisenberg Hamiltionan,which takes into account the third-nearest-neighbor Heisenberg exchange parameter and next-nearest-neighbor anisotropy exchange parameter,is used to accurately explain the magnetic phase transition in SL-CrBr3. The Curie temperature we obtained is aboutTC=38.4 K, which is in good agreement with the experimental result 34 K.[30]

    2. Calculation details

    Our density functional theory (DFT)[40,41]calculations are performed by using the Viennaab initiosimulation package.[42]The exchange–correlation functional is subjected to the generalized gradient approximation (GGA) in Perdew, Burke, and Ernzerhof (PBE) form.[43]Core electrons are treated with the projected augmented wave (PAW)method[44–46]and the valence electrons are calculated on a plane wave basis with a cut-off energy of 350 eV. The vacuum space is chosen as 15 ?A,which is large enough to avoid the layered interactions. A 9×9×1 Monkhorstk-point mesh is set for Brillouin zone integrations. All structures are optimized until the total energy is converged to be with 10?8eV and the Hellmann–Feynman force on each atom is smaller than 0.001 eV/?A. To characterize the stability of SL-CrBr3,we also calculate the elastic constant by employing AELAS code.[47]To extract both Heisenberg exchange parameters and anisotropy exchange parameters, a three-neighborXXZHeisenberg model Hamiltonian[19]is employed to fit the total energies in our DFT calculations for different spin configurations on a honeycomb lattice. In addition, the Curie temperature is estimated by using SpinW[48]simulations in which a 100×100×1 honeycomb lattice is used. The SpinW simulations involve 104Monte–Carlo(MC)steps per site in order to accurately obtain thermal equilibrium for each temperature.In the following text, the level of doped carriers per Cr atom is expressed asδn=n?n0(in units ofe/Cr), where the intrinsic valence electron number of each Cr atom,and positive and negative values represent electron doped (e-doped) and hole doped (h-doped) states, respectively. For strained SL-CrBr3,the quantity of strain is defined asε=(a?a0)/a0, whereaanda0are the horizontal lattice constants of the strained and the intrinsic SL-CrBr3,respectively.

    3. Results and discussion

    The optimized atomic structure of SL-CrBr3is shown in Figs.1(a)and 1(b).For the intrinsic structure,Cr atoms share a honeycomb lattice with a lattice constanta0=6.44 ?A.Six Br atoms constitute a slightly distorted octahedron around each Cr atom. Here,we consider four spin configurations to realize the FM, N′eel-AFM, stripy-antiferromagnetic (stripy-AFM),zigzag-antiferromagnetic (zigzag-AFM) orders, as plotted in Figs. 1(c)–1(f). Both off-plane and in-plane orientations of magnetic moment of Cr are calculated to analyze the magnetic phase and MAE.In order to systematically study the magnetic states of SL-CrBr3, the calculations on strain and charge effects are performed. In the following calculations, the strain strengthεchanges from?10%to 15%,and the doped carriersδnchanges from?0.25 to 0.25.

    Fig.1. Top(a)and side(b)views of SL-CrBr3 atomic structure. The blue parallelogram in (a) shows the unit cell. FM, Neel-AFM, stripy-AFM and zigzag-AFM orders are shown in(c)–(f),respectively,where the red arrows represent the spin orientations.

    Before discussing the magnetic orders of SL-CrBr3,which are tuned by strain and charge doping,it is necessary to clarify whether the structure of SL-CrBr3is stable under external strain. Our DFT calculations show that the 2D Young’s modulus of SL-CrBr3is 27 N/m, which is nearly an order smaller than that of graphene (340 N/m)[49]and SL-MoS2(180 N/m).[50]This means that SL-CrBr3is much softer comparing with other typical 2D magnets. Therefore,it is possible for us to explore the magnetic phase diagram of SL-CrBr3in a large range of strain and charge doping. In addition, the stability of SL-CrBr3under strain and charge modulations are also carefully checked by phonon dispersion calculations by using the phonopy code.[51]The phonon results, which are not shown for briefness, show that the structure of SL-CrBr3is stable in the strain and doping regimes we considered in this work. The stability of SL-CrBr3may make it a promising candidate for the potential application in the low-dimensional spintronics.

    Fig.2.Total energy differences ?E(in meV/Cr)of SL-CrBr3 in zigzag-AFM(black squares),stripy-AFM(red dots),and N′eel-AFM(blue triangles)orders relative to the off-plane FM order as functions of strain strength ε.

    Since the origin of long-range intrinsic ferromagnetism originates from magnetic anisotropy,[30]the modulation of strain effect on the MAE is also quantitatively analyzed in this work. The corresponding results are represented in Fig.3. We can see that the magnetic anisotropies for each magnetic order are similar to each other. For SL-CrBr3with normal lattice constant,the magnitude of MAE is about~220μeV/Cr,which is smaller than that in SL-CrI3(800μeV/Cr).[19]This is possibly due to the stronger spin–orbital coupling (SOC) effect in I atom than that in Br atom. When SL-CrBr3is biaxially compressed (i.e.,ε< 0), MAE turns smaller. In the N′eel-AFM phase,MAE of SL-CrBr3is negative,which means that the spin orientation is in-plane, and thus the stable magnetic phase is in-plane N′eel-AFM.If the stretching strain is applied,the MAE slowly increases at first and then gradually decreases with the increase of the strain intensity. Whenε=9%, the MAE reaches the maximum value. Here,MAE is always positive, which indicates that the spin orientation for FM order is off-plane. Therefore, the stable magnetic phase should be off-plane FM when SL-CrBr3is stretched.

    Fig.3. Magnetic anisotropy energies EAM (in units ofμeV/Cr)for FM(red dots),and N′eel-AFM(black squares)of SL-CrBr3 as functions of strain strength ε.

    To explore the physical mechanism of magnetic properties of SL-CrBr3under strain (ε/= 0) without charge doping (δn= 0), a three-neighborXXZHeisenberg model Hamiltonian[19]is employed. Explicitly, the effective magnetic energy terms in different magnetic phases considered in this work are expressed as

    where the first-, second-, and third-nearest-neighbor Heisenberg exchange parametersJn(n=1,2,3), as well as the first and second anisotropy exchange parametersλn(n=1,2) are considered,Si=1,2denote the spin of Cr. Here,J2andJ3are needed to accurately analyze the magnetic phase and estimate the curie temperature in turn.λ1is good enough to explain the magnetic anisotropy at zero strain but it is necessary to takeλ2into consideration under large compressive or tensile strain.In our calculations, the magnetic moment of Cr atoms is about 3.0μB. Compared with the non-doped and unstrained cases,DFT calculations show that the magnetic moment of Cr atoms varies less than±5%with the strain intensity and doping concentration. Therefore, in the fitting of the Heisenberg model parameters,the dependence of the magnetic moment on strain and charge doping is ignored.

    The fitted Heisenberg exchange parameters are shown in Fig. 4(a). It is obvious thatJ1has the largest magnitude and dominates the magnetic states in SL-CrBr3. In briefness,J1is negative when system is in FM phase while positive when system is in AFM phase. This can be easily understood sinceJ1represents the exchange interaction between the nearestneighbor Cr atoms. With increasing the strain from?8% to 15%,the second-nearest and third-nearest neighboring effects become weaker so thatJ2andJ3become smaller in magnitude,which could be obviously seen from Fig. 4(a). Since CrBr3honeycomb lattice presents two sub-lattices,J2acts within each sub-lattice andJ3acts between the two sub-lattices. In SL-CrBr3,J2is always negative andJ3is always positive. The negative sign ofJ2indicates that the atoms within one sublattices favor to align ferromagnetically,while the positive sign ofJ3indicates that two sub-lattice favor to align antiferromagnetically.

    Fig. 4. (a) Fitted Heisenberg exchange parameters Jn (n=1,2,3), and(b) anisotropy exchange parameters λn (n=1,2) as functions of strain strength ε in SL-CrBr3 without charge doping (δn = 0). The curves of λ1?2λ2 (blue curve)and λ1+2λ2 (green curve)are also plotted in(b).

    The fitted anisotropy exchange parameters are shown in Fig.4(b).λ1is always negative and has larger magnitude.λ2is negative whenε>?6%and becomes positive when SL-CrBr3is heavily compressed. We know from Fig. 1(a) that each Cr atom has three nearest Cr atoms and six second-neighbor Cr atoms, and thus the MAE should be proportional toλ1+2λ2(λ1?2λ2) for FM (AFM) order. It is clearly shown by the green cure in Fig. 4(b) that whenε>?4.2%,λ1+2λ2is always negative,and thereby the orientation for FM order is always off-plane in our strain range. Similarly,λ1?2λ2is negative whenε

    Based on our calculations,Jn(n=1,2,3)are much larger thanλn(n=1,2), andJ1is the largest in magnitude. As depicted in Fig.2,the relative stable AFM phase at the intrinsic structure is zigzag-AFM. We adopt the Hamiltonian of FM and zigzag-AFM order to estimate Curie temperature for the intrinsic SL-CrBr3with a lattice constanta0. The result of our SpinW simulations isTC=38.4 K,which is well consistent with the experimental result 34 K.[30]We also perform calculations only considering the nearest neighbor Heisenberg exchange parameterJ1and first anisotropy exchange parameterλ1. The corresponding Curie temperature is estimated asTC=40.1 K,which becomes worse comparing with the experimental result. Therefore, we believe that our three-neighborXXZHeisenberg model Hamiltonian is more accurate since it can contain more magnetic orders.

    All above analysis are for the strain effect on the magnetic order transitions in SL-CrBr3. In the absence of charge doping,external strain induces a magnetic phase transition between off-plane FM order and in-plane N′eel-AFM order in SL-CrBr3,which is different from the case of SL-CrI3.[19]Following the same way,one could investigate the effect of charge doping with and/or without strain on the magnetic order transitions in SL-CrBr3. Here, for briefness, we will not discuss the case that only charge doping effect is taken into account.Therefore, we explore the magnetic phase diagram via strain engineering and charge doping. The result is shown in Fig.5.From Fig. 5, we can clearly see that in the strain and charge doping regimes we studied,there are three different magnetic phases in SL-CrBr3, which are off-plane FM (green region),in-plane FM (yellow region) and in-plane N′eel-AFM (cyan region). There are at least four points need to be noticed in Fig.5: (i)Consistent with the aboe discussions,for the intrinsic SL-CrBr3(ε=0 andδn=0), the magnetic ground state should be off-plane FM order. (ii)If there is no charge doping(δn=0)in the system but with certain strain(i.e.,εchanges from?10%to 15%),SL-CrBr3will undergo a magnetic phase transition from the in-plane N′eel-AFM to the off-plane FM.The corresponding phase transition point is aboutε=?4.2%,which is also in agreement with above analysis. (iii) Conversely,if strain is not applied on the system(ε=0)but there exists charge doping (δn/=0), Fig. 5 shows that as the doping concentration increases from negative value to positive value, the magnetic ground state will be modulated from the off-plane FM into the in-plane FM.The phase transition point is at the doping concentration ofδn=0.06e/Cr(see point A marked in Fig.5),(iv)The magnetic phase of the system could be simultaneously modulated by charge doping and external strain. Through detailed calculations, the phase boundaries among three different magnetic phases are obtained (see the black curves in Fig.5). The intersection of the three magnetic phases is approximately atε=?4.2% andδn=0.07e/Cr(see point B marked in Fig.5). In detail, the phase boundary between in-plane N′eel-AFM and in-plane FM is localized atε=?4.2%. In other words, whenδn>0.07e/Cr, the phase transition between in-plane N′eel-AFM and in-plane FM responds significantly to the strain effect. In this case,when the strain is slightly greater (less) than?4.2%, the system will come into in-plane FM (N′eel-AFM) order. When the charge doping is less than 0.07e/Cr, with the compressive biaxial strain increasing,the system tends to transform from off-plane FM to in-plane N′eel-AFM.

    Fig.5. Magnetic phase diagram of SL-CrBr3 in the strain and charge doping regimes. Point A represents the phase transition at intrinsic structure with a normal lattice constant a0. Point B indicates the intersection of three magnetic phases.

    4. Conclusion

    In summary, we applied DFT calculations and model Hamiltonian simulations to investigate the magnetic properties of the recently discovered 2D ferromagnet, SL-CrBr3.The ground state is confirmed to be FM, which is consistent with the previous experiment. CrBr3exhibits strong magnetic anisotropy(215μeV/Cr)with an off-plane easy axis.We studied the effect of strain engineering and charge doping on SLCrBr3,and provided a magnetic phase diagram with rich tunable physics. The magnetic properties are remarkably dominated by strain,which have extensive impact on local spin and thus dominate the phase transition between the FM and AFM phases.Under particular strain,charge doping(especially hole doping)can also modulate the spin orientation and in turn manipulate magnetic states. Based on our fitted Heisenberg exchange parameters and anisotropy exchange parameters, we systematically analyzed the magnetic properties and estimated Curie temperature as 38.4 K.We also found that phase transition from the FM order to the N′eel-AFM order is dominated by the nearest-neighbor exchange parameterJ1, while the phase transition from the off-plane FM to the in-plane FM is influenced by MAE. The rich tunable magnetic properties make SL-CrBr3a reliable and promising candidate for potential application in spintronics.

    猜你喜歡
    張平振國(guó)
    Topological properties of Sb(111)surface: A first-principles study
    嘰嘰喳喳的小喜鵲
    愛(ài)在拉薩
    這是你爺倆
    金秋(2020年16期)2020-12-09 01:41:50
    我和繼父13年
    我和繼父13年
    文苑·感悟(2019年12期)2019-12-23 07:24:46
    我和繼父13 年
    文苑(2019年23期)2019-12-05 06:50:22
    Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases?
    我和繼父的13年
    37°女人(2019年6期)2019-06-10 08:48:11
    張平書法作品選
    欧美日本中文国产一区发布| 国产日韩欧美亚洲二区| 亚洲在线自拍视频| av天堂久久9| svipshipincom国产片| 大片电影免费在线观看免费| 久久热在线av| 国产一区二区三区视频了| 免费看a级黄色片| 亚洲精品粉嫩美女一区| 99久久国产精品久久久| 中文字幕av电影在线播放| 午夜两性在线视频| 一本一本久久a久久精品综合妖精| 欧美日本中文国产一区发布| 99久久国产精品久久久| 美国免费a级毛片| 99久久人妻综合| 久久香蕉国产精品| 亚洲五月天丁香| 欧美另类亚洲清纯唯美| 手机成人av网站| 亚洲欧美激情在线| 亚洲男人天堂网一区| 1024视频免费在线观看| 9色porny在线观看| 美女视频免费永久观看网站| 久久国产精品影院| 在线视频色国产色| 亚洲av熟女| 久久这里只有精品19| 三级毛片av免费| 脱女人内裤的视频| 亚洲av成人不卡在线观看播放网| 国内毛片毛片毛片毛片毛片| 久久草成人影院| 一本综合久久免费| 国产不卡一卡二| 免费高清在线观看日韩| 国产精品亚洲av一区麻豆| 91在线观看av| 国产一区在线观看成人免费| 午夜福利在线观看吧| 国产精品免费大片| 午夜两性在线视频| 99re在线观看精品视频| 欧美黑人欧美精品刺激| av有码第一页| а√天堂www在线а√下载 | 国产熟女午夜一区二区三区| 亚洲精华国产精华精| 中国美女看黄片| tocl精华| 精品无人区乱码1区二区| 怎么达到女性高潮| 国产深夜福利视频在线观看| 黄频高清免费视频| 国内久久婷婷六月综合欲色啪| 午夜激情av网站| 久久亚洲精品不卡| 久久精品亚洲av国产电影网| 久久午夜综合久久蜜桃| 精品国产超薄肉色丝袜足j| 精品乱码久久久久久99久播| 91国产中文字幕| 最近最新中文字幕大全电影3 | 精品免费久久久久久久清纯 | 99热只有精品国产| 亚洲五月婷婷丁香| 久久 成人 亚洲| 久久久久久久国产电影| 欧美激情高清一区二区三区| 午夜成年电影在线免费观看| 不卡一级毛片| 国产一区二区激情短视频| 人人妻人人澡人人看| 亚洲国产欧美网| 免费看a级黄色片| 免费女性裸体啪啪无遮挡网站| 最新在线观看一区二区三区| 午夜激情av网站| 另类亚洲欧美激情| 欧美人与性动交α欧美精品济南到| 99精品在免费线老司机午夜| 亚洲美女黄片视频| 日韩人妻精品一区2区三区| 伦理电影免费视频| 亚洲欧美激情在线| 女人久久www免费人成看片| 国产欧美日韩综合在线一区二区| 亚洲国产欧美网| 午夜福利视频在线观看免费| a级毛片在线看网站| 国产高清videossex| 亚洲欧美日韩另类电影网站| 日本黄色日本黄色录像| e午夜精品久久久久久久| 一本综合久久免费| 亚洲国产看品久久| 亚洲av成人av| 日韩视频一区二区在线观看| 一夜夜www| 人人妻人人澡人人看| 中文字幕av电影在线播放| 国产精品影院久久| 99国产精品一区二区蜜桃av | 国产av一区二区精品久久| 亚洲精品美女久久久久99蜜臀| 大香蕉久久网| 精品福利永久在线观看| 久9热在线精品视频| 国产麻豆69| e午夜精品久久久久久久| 欧美精品av麻豆av| 色综合婷婷激情| 免费日韩欧美在线观看| 亚洲国产精品sss在线观看 | 在线天堂中文资源库| 视频区图区小说| 国产成人精品久久二区二区免费| 一边摸一边做爽爽视频免费| 99久久人妻综合| 国产91精品成人一区二区三区| 国产不卡av网站在线观看| 精品久久久久久久毛片微露脸| 欧美日韩视频精品一区| 99国产精品99久久久久| av欧美777| 最新的欧美精品一区二区| 我的亚洲天堂| 色在线成人网| 免费看十八禁软件| 亚洲国产欧美网| 国产xxxxx性猛交| 免费看十八禁软件| 欧美乱码精品一区二区三区| 国产又色又爽无遮挡免费看| 久9热在线精品视频| 在线观看舔阴道视频| 精品一区二区三卡| 99香蕉大伊视频| 在线观看舔阴道视频| 日韩精品免费视频一区二区三区| 一级作爱视频免费观看| 午夜激情av网站| 国产精品二区激情视频| 精品午夜福利视频在线观看一区| 身体一侧抽搐| 亚洲av日韩在线播放| 成人18禁高潮啪啪吃奶动态图| 久久久久久人人人人人| 男女下面插进去视频免费观看| 国产av精品麻豆| 人妻久久中文字幕网| 国产视频一区二区在线看| 欧美日本中文国产一区发布| 免费久久久久久久精品成人欧美视频| www.自偷自拍.com| 亚洲国产精品一区二区三区在线| 日日夜夜操网爽| 亚洲国产毛片av蜜桃av| 久久性视频一级片| 色婷婷久久久亚洲欧美| 国产亚洲欧美在线一区二区| 大片电影免费在线观看免费| 伊人久久大香线蕉亚洲五| 亚洲一码二码三码区别大吗| 亚洲 欧美一区二区三区| 91成人精品电影| a级毛片在线看网站| 一级毛片精品| 久久久精品免费免费高清| 亚洲熟女精品中文字幕| 老熟妇乱子伦视频在线观看| 精品久久久久久久毛片微露脸| 午夜久久久在线观看| 欧美亚洲日本最大视频资源| 男女下面插进去视频免费观看| 91老司机精品| 精品一品国产午夜福利视频| 国产精品秋霞免费鲁丝片| 激情在线观看视频在线高清 | 亚洲午夜理论影院| 国产蜜桃级精品一区二区三区 | 搡老岳熟女国产| 亚洲国产欧美一区二区综合| 99久久精品国产亚洲精品| av国产精品久久久久影院| 色婷婷久久久亚洲欧美| 亚洲国产精品sss在线观看 | av中文乱码字幕在线| 国产精品免费一区二区三区在线 | 久久草成人影院| 又紧又爽又黄一区二区| 大陆偷拍与自拍| 国产人伦9x9x在线观看| 日本欧美视频一区| 无人区码免费观看不卡| 热re99久久精品国产66热6| 久久人妻福利社区极品人妻图片| 精品国内亚洲2022精品成人 | 亚洲人成77777在线视频| 久久精品亚洲av国产电影网| 校园春色视频在线观看| 高潮久久久久久久久久久不卡| 欧美成人午夜精品| 一进一出好大好爽视频| 亚洲成国产人片在线观看| 亚洲三区欧美一区| 极品教师在线免费播放| 高清在线国产一区| 国产精品久久久av美女十八| 日本一区二区免费在线视频| 在线观看www视频免费| 国产有黄有色有爽视频| 亚洲色图综合在线观看| 1024香蕉在线观看| 美女扒开内裤让男人捅视频| 中文字幕制服av| 亚洲aⅴ乱码一区二区在线播放 | 男女午夜视频在线观看| 免费观看a级毛片全部| 欧美日韩瑟瑟在线播放| 亚洲性夜色夜夜综合| 丰满迷人的少妇在线观看| 涩涩av久久男人的天堂| 国产av又大| 两性午夜刺激爽爽歪歪视频在线观看 | 精品亚洲成a人片在线观看| 午夜福利在线观看吧| 韩国av一区二区三区四区| 黄片小视频在线播放| 亚洲一区高清亚洲精品| 黑人巨大精品欧美一区二区蜜桃| 这个男人来自地球电影免费观看| a级毛片黄视频| 久久久国产精品麻豆| 搡老乐熟女国产| 色在线成人网| 精品无人区乱码1区二区| 国产亚洲精品久久久久久毛片 | 变态另类成人亚洲欧美熟女 | 深夜精品福利| 午夜久久久在线观看| 乱人伦中国视频| 黄片大片在线免费观看| 国产乱人伦免费视频| 国产免费现黄频在线看| xxx96com| 在线永久观看黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 飞空精品影院首页| 国产成人影院久久av| 亚洲自偷自拍图片 自拍| 国产一区二区三区综合在线观看| av天堂久久9| 搡老岳熟女国产| 欧美日韩福利视频一区二区| 亚洲精品国产区一区二| 男人的好看免费观看在线视频 | 黄色女人牲交| 777米奇影视久久| ponron亚洲| 中亚洲国语对白在线视频| 在线观看舔阴道视频| 亚洲精品美女久久久久99蜜臀| √禁漫天堂资源中文www| 日本五十路高清| 午夜精品在线福利| 女同久久另类99精品国产91| 欧美日韩乱码在线| 两人在一起打扑克的视频| 久久精品亚洲精品国产色婷小说| 无遮挡黄片免费观看| 午夜亚洲福利在线播放| 欧洲精品卡2卡3卡4卡5卡区| 高清欧美精品videossex| 黄色 视频免费看| 91精品三级在线观看| 日本一区二区免费在线视频| 日日摸夜夜添夜夜添小说| 久久香蕉精品热| 亚洲久久久国产精品| 视频区图区小说| 女人爽到高潮嗷嗷叫在线视频| 亚洲少妇的诱惑av| 天堂中文最新版在线下载| 成熟少妇高潮喷水视频| av中文乱码字幕在线| 久久久国产成人免费| 一边摸一边做爽爽视频免费| 免费看十八禁软件| 色老头精品视频在线观看| 人人妻人人澡人人爽人人夜夜| 50天的宝宝边吃奶边哭怎么回事| 99热只有精品国产| 国产日韩一区二区三区精品不卡| 国产一卡二卡三卡精品| 国产片内射在线| 啦啦啦免费观看视频1| 老司机午夜十八禁免费视频| 久久精品国产a三级三级三级| 国产av又大| 一边摸一边做爽爽视频免费| 又大又爽又粗| 黄色成人免费大全| 亚洲精品自拍成人| 97人妻天天添夜夜摸| 免费女性裸体啪啪无遮挡网站| 色综合婷婷激情| 日韩三级视频一区二区三区| 亚洲色图综合在线观看| 岛国毛片在线播放| 丁香六月欧美| 亚洲av日韩精品久久久久久密| 一级毛片女人18水好多| 亚洲av成人av| 国产精品电影一区二区三区 | 亚洲在线自拍视频| 亚洲成人国产一区在线观看| 中文字幕最新亚洲高清| 久久精品国产亚洲av香蕉五月 | 亚洲精品美女久久久久99蜜臀| av一本久久久久| av在线播放免费不卡| 老司机午夜福利在线观看视频| 极品少妇高潮喷水抽搐| 十分钟在线观看高清视频www| 日韩制服丝袜自拍偷拍| 18禁黄网站禁片午夜丰满| 欧美 日韩 精品 国产| 两性夫妻黄色片| 久久国产精品影院| 免费看十八禁软件| 变态另类成人亚洲欧美熟女 | 国产免费现黄频在线看| 亚洲国产欧美网| 日韩熟女老妇一区二区性免费视频| 精品少妇久久久久久888优播| 欧美黄色片欧美黄色片| 精品国产乱子伦一区二区三区| 久久天堂一区二区三区四区| 91大片在线观看| 精品视频人人做人人爽| 午夜成年电影在线免费观看| 久久精品国产亚洲av香蕉五月 | 亚洲精品美女久久av网站| www.熟女人妻精品国产| 午夜免费观看网址| 国产精品一区二区在线不卡| 久热这里只有精品99| 在线观看免费午夜福利视频| 咕卡用的链子| 久久亚洲精品不卡| 成人黄色视频免费在线看| 搡老熟女国产l中国老女人| 国产一区在线观看成人免费| 久久精品成人免费网站| 欧美最黄视频在线播放免费 | 国产精品1区2区在线观看. | a级毛片黄视频| 男女免费视频国产| 成年版毛片免费区| 国产精品久久视频播放| 亚洲成人免费电影在线观看| 亚洲熟女精品中文字幕| 999久久久国产精品视频| 国产精品美女特级片免费视频播放器 | 久久亚洲真实| 欧美久久黑人一区二区| 涩涩av久久男人的天堂| 中亚洲国语对白在线视频| 久久国产亚洲av麻豆专区| avwww免费| 久99久视频精品免费| 身体一侧抽搐| 无人区码免费观看不卡| 精品亚洲成国产av| 狂野欧美激情性xxxx| 天天影视国产精品| 国产精品免费大片| 亚洲精品一二三| 国产aⅴ精品一区二区三区波| 久久中文看片网| 91老司机精品| 欧美日韩中文字幕国产精品一区二区三区 | 国产成人精品在线电影| 久久精品亚洲精品国产色婷小说| 满18在线观看网站| 麻豆成人av在线观看| 超色免费av| 亚洲精品在线美女| 18禁黄网站禁片午夜丰满| 亚洲av成人不卡在线观看播放网| 亚洲精品乱久久久久久| 一区二区日韩欧美中文字幕| 亚洲情色 制服丝袜| 天堂动漫精品| 午夜日韩欧美国产| 午夜亚洲福利在线播放| 欧美日韩av久久| a级毛片在线看网站| 国产亚洲av高清不卡| 十八禁人妻一区二区| 精品一区二区三区视频在线观看免费 | av网站免费在线观看视频| 一二三四在线观看免费中文在| 18在线观看网站| 精品一区二区三区视频在线观看免费 | 亚洲av欧美aⅴ国产| 欧美日韩av久久| 久久久久国内视频| 亚洲国产欧美日韩在线播放| 日本撒尿小便嘘嘘汇集6| 欧美av亚洲av综合av国产av| 国产精品欧美亚洲77777| 国产精品免费一区二区三区在线 | 在线永久观看黄色视频| 午夜免费鲁丝| 亚洲性夜色夜夜综合| 欧美性长视频在线观看| 最近最新免费中文字幕在线| 精品国产超薄肉色丝袜足j| 99香蕉大伊视频| 99久久人妻综合| 国产成人欧美在线观看 | 精品国内亚洲2022精品成人 | 免费在线观看日本一区| 大陆偷拍与自拍| 免费日韩欧美在线观看| 又大又爽又粗| 午夜精品国产一区二区电影| 首页视频小说图片口味搜索| 久热这里只有精品99| 久久人妻av系列| 一二三四社区在线视频社区8| 高潮久久久久久久久久久不卡| 成人免费观看视频高清| 免费日韩欧美在线观看| 高清毛片免费观看视频网站 | 啦啦啦免费观看视频1| svipshipincom国产片| 亚洲男人天堂网一区| 日日摸夜夜添夜夜添小说| 久久中文字幕人妻熟女| 777久久人妻少妇嫩草av网站| 桃红色精品国产亚洲av| 嫩草影视91久久| 国产单亲对白刺激| 在线永久观看黄色视频| 啦啦啦在线免费观看视频4| 99精国产麻豆久久婷婷| 手机成人av网站| 国产精品成人在线| 亚洲伊人色综图| 婷婷丁香在线五月| 久久精品国产清高在天天线| 日日摸夜夜添夜夜添小说| 香蕉丝袜av| 97人妻天天添夜夜摸| 69av精品久久久久久| 美国免费a级毛片| 黄色视频不卡| 淫妇啪啪啪对白视频| 国产精品国产av在线观看| 成年女人毛片免费观看观看9 | 99国产综合亚洲精品| 免费不卡黄色视频| 亚洲全国av大片| 99riav亚洲国产免费| 在线观看66精品国产| 亚洲av熟女| 国产精品久久久久成人av| 性色av乱码一区二区三区2| 丝袜美足系列| 欧美精品av麻豆av| 人人妻,人人澡人人爽秒播| 午夜精品久久久久久毛片777| 日韩中文字幕欧美一区二区| 夜夜爽天天搞| 12—13女人毛片做爰片一| 99热国产这里只有精品6| 久久国产乱子伦精品免费另类| 熟女少妇亚洲综合色aaa.| 99精品欧美一区二区三区四区| 美女福利国产在线| 男女免费视频国产| 国产一区二区三区视频了| 亚洲成a人片在线一区二区| 久久精品aⅴ一区二区三区四区| 久久人人爽av亚洲精品天堂| 国产精品自产拍在线观看55亚洲 | 欧美成狂野欧美在线观看| 丝瓜视频免费看黄片| 亚洲avbb在线观看| 99精品欧美一区二区三区四区| 在线观看舔阴道视频| 一级片免费观看大全| 身体一侧抽搐| 中出人妻视频一区二区| 男女床上黄色一级片免费看| 亚洲专区字幕在线| 在线观看免费日韩欧美大片| 男女午夜视频在线观看| 国产精品一区二区在线不卡| 久久国产精品大桥未久av| 下体分泌物呈黄色| 别揉我奶头~嗯~啊~动态视频| 国产一区有黄有色的免费视频| 最近最新中文字幕大全电影3 | 久久青草综合色| 久久人妻福利社区极品人妻图片| 亚洲三区欧美一区| 亚洲免费av在线视频| 宅男免费午夜| 香蕉久久夜色| 在线观看免费日韩欧美大片| 亚洲美女黄片视频| 亚洲情色 制服丝袜| 丝袜美腿诱惑在线| 丰满饥渴人妻一区二区三| 午夜老司机福利片| 久久亚洲精品不卡| 美女福利国产在线| 亚洲一区二区三区欧美精品| 久久精品国产a三级三级三级| 黑人猛操日本美女一级片| 成人免费观看视频高清| 亚洲精品一卡2卡三卡4卡5卡| 99久久国产精品久久久| 黄色女人牲交| 黑人操中国人逼视频| 亚洲精品自拍成人| av中文乱码字幕在线| av天堂久久9| 久久中文字幕人妻熟女| 久久久精品区二区三区| 可以免费在线观看a视频的电影网站| 人人妻人人爽人人添夜夜欢视频| 国产精品久久久久成人av| 成年人黄色毛片网站| 欧美精品高潮呻吟av久久| 我的亚洲天堂| 狠狠狠狠99中文字幕| 女人被躁到高潮嗷嗷叫费观| 美女扒开内裤让男人捅视频| 欧美日韩中文字幕国产精品一区二区三区 | 夜夜爽天天搞| 一边摸一边做爽爽视频免费| 亚洲五月婷婷丁香| 不卡一级毛片| 操出白浆在线播放| 伊人久久大香线蕉亚洲五| 国产成人一区二区三区免费视频网站| 日韩欧美国产一区二区入口| 国产成人一区二区三区免费视频网站| 自线自在国产av| 三级毛片av免费| 午夜影院日韩av| 精品欧美一区二区三区在线| 成年动漫av网址| 搡老乐熟女国产| 天堂动漫精品| 看片在线看免费视频| 国产av精品麻豆| 亚洲国产精品合色在线| av超薄肉色丝袜交足视频| 黄网站色视频无遮挡免费观看| 久久久国产成人免费| 婷婷精品国产亚洲av在线 | 国产野战对白在线观看| 少妇的丰满在线观看| 日韩成人在线观看一区二区三区| 婷婷丁香在线五月| 午夜福利一区二区在线看| 欧美大码av| 中文字幕人妻丝袜一区二区| 脱女人内裤的视频| 91成年电影在线观看| av电影中文网址| 国产成人精品无人区| 在线观看66精品国产| 欧美色视频一区免费| 黑人巨大精品欧美一区二区蜜桃| 亚洲成国产人片在线观看| 80岁老熟妇乱子伦牲交| 国产成人av激情在线播放| 成人亚洲精品一区在线观看| 欧美性长视频在线观看| 麻豆av在线久日| 亚洲伊人色综图| 国产成人av激情在线播放| 交换朋友夫妻互换小说| 精品人妻1区二区| 夜夜躁狠狠躁天天躁| 69av精品久久久久久| 婷婷精品国产亚洲av在线 | 久久中文字幕一级| 免费在线观看影片大全网站| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美免费精品| 12—13女人毛片做爰片一| 在线播放国产精品三级| 男女之事视频高清在线观看| 亚洲专区中文字幕在线| 国产aⅴ精品一区二区三区波| 久久精品国产亚洲av高清一级| 日韩制服丝袜自拍偷拍| 亚洲精品国产色婷婷电影| 久久久国产精品麻豆| 岛国在线观看网站| 午夜福利在线观看吧| 国产免费男女视频| 久久国产精品男人的天堂亚洲| 正在播放国产对白刺激|