• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic phase diagram of single-layer CrBr3?

    2021-12-22 06:50:22WeiJiang江偉YueFeiHou侯躍飛ShujingLi李淑靜ZhenGuoFu付振國(guó)andPingZhang張平
    Chinese Physics B 2021年12期
    關(guān)鍵詞:張平振國(guó)

    Wei Jiang(江偉) Yue-Fei Hou(侯躍飛) Shujing Li(李淑靜) Zhen-Guo Fu(付振國(guó)) and Ping Zhang(張平)

    1Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    2Beijing University of Chemical Technology,Beijing 100029,China

    3School of Physics and Physical Engineering,Qufu Normal University,Qufu 273165,China

    Keywords: magnetic anisotropy,single-layer CrBr3,N′eel-antiferromagnetic phase

    1. Introduction

    Since the discovery of graphene,[1,2]the two-dimensional(2D)materials have attracted a lot of interests during the past two decades. 2D materials become very important in modern condensed matter physics and introduce many novel ideas to our communities. The electronic and optical properties have been studied explosively in graphene, silicene, and transition metal dichalcogenides,[3–5]etc., but the 2D magnet is still a part to be further studied. The reason may be, differing from the bulk materials, that the long-range magnetic order in 2D materials is prohibited[6–8]by Mermin–Wagner theorem at finite temperature.[9]However, more and more studies reveal that magnetic anisotropy, which originates mainly from spinorbit coupling,[10]can overcome this restriction and thus becomes an important parameter for 2D magnets.

    In recent years,many intrinsic ferromagnetisms in atomically thin magnets have been widely studied in various van der Waals materials, including rare-earth chalcohalides REChX(RE=rare earth; Ch=O, S, Se, Te;X=F, Cl, Br, I),[11]metallic Fe3GeTe2,[12–14]semiconducting Cr2Ge2Te6[15,16]and insulating CrI3.[17–19,23–29]Among them, single-layer CrBr3(SL-CrBr3) gradually attracted the attention of scientists. For example, recently, Zhanget al.have experimentally demonstrated the intrinsic ferromagnetism in SLCrBr3and reported the spontaneous magnetization persistence with a Curie temperature of 34 K.[30]The magnon-assisted tunneling and the magnetic proximity effects in van der Waals heterostructures based on CrBr3have also been widely studied.[31–34]For example, the charge-state dependency of the magnetic proximity effects in MoSe2/CrBr3van der Waals heterostructures has been studied via low-temperature magneto-optical spectroscopy experiments,which conformed with that the valley polarization of the MoSe2trion state may be remarkably related to the local CrBr3magnetization,while the neutral exciton state remains insensitive to the ferromagnet.[32]These discoveries provide us sufficient opportunities for both fundamental studies and spintronics applications.

    Compared with the vigorous development of experimental research,the theoretical research on the magnetism of SLCrX3is somewhat lacking. In-depth understanding and control of the magnetic properties of SL-CrX3will help the development of low-dimensional spintronic devices based on SLCrX3. Strain engineering and charge doping are two widely used methods to introduce new phases and effectively tune magnetic properties of the 2D structures.[19–22,35–39]For instances,on one hand,in strain engineering,Lucaset al.have reported the strain-tunable magnetic anisotropy energy(MAE)in 2D SL-CrX3(withX=Cl, Br, and I),[36]and on the other hand,charge doping is applied to tune the magnetic properties of SL-CrI3.[19]

    To our knowledge,up to now,the influences of strain and charge doping on the magnetic properties of SL-CrBr3have not been discussed in detail in the present literatures. However, a detailed understanding on fundamental properties of SL-CrBr3plays an important role in realizing its potential applications in spin-base technologies. Owing to the interest and importance from the perspectives of both basis physics and potential applications of SL-CrBr3in the fields of spintronics, it is timely to provide a theoretical analysis of the magnetic phases of SL-CrBr3tuned by strain effect and charge doping. Therefore, in this work, by employing systematical first-principals calculations and Heisenberg model simulations, we theoretically investigate the magnetic phase transitions in SL-CrBr3induced by reasonable strains and charge doping. Three different magnetic ground states,including offplane ferromagnetic (FM), in-plane FM and in-plane N′eelantiferromagnetic(N′eel-AFM)phases,are found in our calculations. Furthermore,a Heisenberg Hamiltionan,which takes into account the third-nearest-neighbor Heisenberg exchange parameter and next-nearest-neighbor anisotropy exchange parameter,is used to accurately explain the magnetic phase transition in SL-CrBr3. The Curie temperature we obtained is aboutTC=38.4 K, which is in good agreement with the experimental result 34 K.[30]

    2. Calculation details

    Our density functional theory (DFT)[40,41]calculations are performed by using the Viennaab initiosimulation package.[42]The exchange–correlation functional is subjected to the generalized gradient approximation (GGA) in Perdew, Burke, and Ernzerhof (PBE) form.[43]Core electrons are treated with the projected augmented wave (PAW)method[44–46]and the valence electrons are calculated on a plane wave basis with a cut-off energy of 350 eV. The vacuum space is chosen as 15 ?A,which is large enough to avoid the layered interactions. A 9×9×1 Monkhorstk-point mesh is set for Brillouin zone integrations. All structures are optimized until the total energy is converged to be with 10?8eV and the Hellmann–Feynman force on each atom is smaller than 0.001 eV/?A. To characterize the stability of SL-CrBr3,we also calculate the elastic constant by employing AELAS code.[47]To extract both Heisenberg exchange parameters and anisotropy exchange parameters, a three-neighborXXZHeisenberg model Hamiltonian[19]is employed to fit the total energies in our DFT calculations for different spin configurations on a honeycomb lattice. In addition, the Curie temperature is estimated by using SpinW[48]simulations in which a 100×100×1 honeycomb lattice is used. The SpinW simulations involve 104Monte–Carlo(MC)steps per site in order to accurately obtain thermal equilibrium for each temperature.In the following text, the level of doped carriers per Cr atom is expressed asδn=n?n0(in units ofe/Cr), where the intrinsic valence electron number of each Cr atom,and positive and negative values represent electron doped (e-doped) and hole doped (h-doped) states, respectively. For strained SL-CrBr3,the quantity of strain is defined asε=(a?a0)/a0, whereaanda0are the horizontal lattice constants of the strained and the intrinsic SL-CrBr3,respectively.

    3. Results and discussion

    The optimized atomic structure of SL-CrBr3is shown in Figs.1(a)and 1(b).For the intrinsic structure,Cr atoms share a honeycomb lattice with a lattice constanta0=6.44 ?A.Six Br atoms constitute a slightly distorted octahedron around each Cr atom. Here,we consider four spin configurations to realize the FM, N′eel-AFM, stripy-antiferromagnetic (stripy-AFM),zigzag-antiferromagnetic (zigzag-AFM) orders, as plotted in Figs. 1(c)–1(f). Both off-plane and in-plane orientations of magnetic moment of Cr are calculated to analyze the magnetic phase and MAE.In order to systematically study the magnetic states of SL-CrBr3, the calculations on strain and charge effects are performed. In the following calculations, the strain strengthεchanges from?10%to 15%,and the doped carriersδnchanges from?0.25 to 0.25.

    Fig.1. Top(a)and side(b)views of SL-CrBr3 atomic structure. The blue parallelogram in (a) shows the unit cell. FM, Neel-AFM, stripy-AFM and zigzag-AFM orders are shown in(c)–(f),respectively,where the red arrows represent the spin orientations.

    Before discussing the magnetic orders of SL-CrBr3,which are tuned by strain and charge doping,it is necessary to clarify whether the structure of SL-CrBr3is stable under external strain. Our DFT calculations show that the 2D Young’s modulus of SL-CrBr3is 27 N/m, which is nearly an order smaller than that of graphene (340 N/m)[49]and SL-MoS2(180 N/m).[50]This means that SL-CrBr3is much softer comparing with other typical 2D magnets. Therefore,it is possible for us to explore the magnetic phase diagram of SL-CrBr3in a large range of strain and charge doping. In addition, the stability of SL-CrBr3under strain and charge modulations are also carefully checked by phonon dispersion calculations by using the phonopy code.[51]The phonon results, which are not shown for briefness, show that the structure of SL-CrBr3is stable in the strain and doping regimes we considered in this work. The stability of SL-CrBr3may make it a promising candidate for the potential application in the low-dimensional spintronics.

    Fig.2.Total energy differences ?E(in meV/Cr)of SL-CrBr3 in zigzag-AFM(black squares),stripy-AFM(red dots),and N′eel-AFM(blue triangles)orders relative to the off-plane FM order as functions of strain strength ε.

    Since the origin of long-range intrinsic ferromagnetism originates from magnetic anisotropy,[30]the modulation of strain effect on the MAE is also quantitatively analyzed in this work. The corresponding results are represented in Fig.3. We can see that the magnetic anisotropies for each magnetic order are similar to each other. For SL-CrBr3with normal lattice constant,the magnitude of MAE is about~220μeV/Cr,which is smaller than that in SL-CrI3(800μeV/Cr).[19]This is possibly due to the stronger spin–orbital coupling (SOC) effect in I atom than that in Br atom. When SL-CrBr3is biaxially compressed (i.e.,ε< 0), MAE turns smaller. In the N′eel-AFM phase,MAE of SL-CrBr3is negative,which means that the spin orientation is in-plane, and thus the stable magnetic phase is in-plane N′eel-AFM.If the stretching strain is applied,the MAE slowly increases at first and then gradually decreases with the increase of the strain intensity. Whenε=9%, the MAE reaches the maximum value. Here,MAE is always positive, which indicates that the spin orientation for FM order is off-plane. Therefore, the stable magnetic phase should be off-plane FM when SL-CrBr3is stretched.

    Fig.3. Magnetic anisotropy energies EAM (in units ofμeV/Cr)for FM(red dots),and N′eel-AFM(black squares)of SL-CrBr3 as functions of strain strength ε.

    To explore the physical mechanism of magnetic properties of SL-CrBr3under strain (ε/= 0) without charge doping (δn= 0), a three-neighborXXZHeisenberg model Hamiltonian[19]is employed. Explicitly, the effective magnetic energy terms in different magnetic phases considered in this work are expressed as

    where the first-, second-, and third-nearest-neighbor Heisenberg exchange parametersJn(n=1,2,3), as well as the first and second anisotropy exchange parametersλn(n=1,2) are considered,Si=1,2denote the spin of Cr. Here,J2andJ3are needed to accurately analyze the magnetic phase and estimate the curie temperature in turn.λ1is good enough to explain the magnetic anisotropy at zero strain but it is necessary to takeλ2into consideration under large compressive or tensile strain.In our calculations, the magnetic moment of Cr atoms is about 3.0μB. Compared with the non-doped and unstrained cases,DFT calculations show that the magnetic moment of Cr atoms varies less than±5%with the strain intensity and doping concentration. Therefore, in the fitting of the Heisenberg model parameters,the dependence of the magnetic moment on strain and charge doping is ignored.

    The fitted Heisenberg exchange parameters are shown in Fig. 4(a). It is obvious thatJ1has the largest magnitude and dominates the magnetic states in SL-CrBr3. In briefness,J1is negative when system is in FM phase while positive when system is in AFM phase. This can be easily understood sinceJ1represents the exchange interaction between the nearestneighbor Cr atoms. With increasing the strain from?8% to 15%,the second-nearest and third-nearest neighboring effects become weaker so thatJ2andJ3become smaller in magnitude,which could be obviously seen from Fig. 4(a). Since CrBr3honeycomb lattice presents two sub-lattices,J2acts within each sub-lattice andJ3acts between the two sub-lattices. In SL-CrBr3,J2is always negative andJ3is always positive. The negative sign ofJ2indicates that the atoms within one sublattices favor to align ferromagnetically,while the positive sign ofJ3indicates that two sub-lattice favor to align antiferromagnetically.

    Fig. 4. (a) Fitted Heisenberg exchange parameters Jn (n=1,2,3), and(b) anisotropy exchange parameters λn (n=1,2) as functions of strain strength ε in SL-CrBr3 without charge doping (δn = 0). The curves of λ1?2λ2 (blue curve)and λ1+2λ2 (green curve)are also plotted in(b).

    The fitted anisotropy exchange parameters are shown in Fig.4(b).λ1is always negative and has larger magnitude.λ2is negative whenε>?6%and becomes positive when SL-CrBr3is heavily compressed. We know from Fig. 1(a) that each Cr atom has three nearest Cr atoms and six second-neighbor Cr atoms, and thus the MAE should be proportional toλ1+2λ2(λ1?2λ2) for FM (AFM) order. It is clearly shown by the green cure in Fig. 4(b) that whenε>?4.2%,λ1+2λ2is always negative,and thereby the orientation for FM order is always off-plane in our strain range. Similarly,λ1?2λ2is negative whenε

    Based on our calculations,Jn(n=1,2,3)are much larger thanλn(n=1,2), andJ1is the largest in magnitude. As depicted in Fig.2,the relative stable AFM phase at the intrinsic structure is zigzag-AFM. We adopt the Hamiltonian of FM and zigzag-AFM order to estimate Curie temperature for the intrinsic SL-CrBr3with a lattice constanta0. The result of our SpinW simulations isTC=38.4 K,which is well consistent with the experimental result 34 K.[30]We also perform calculations only considering the nearest neighbor Heisenberg exchange parameterJ1and first anisotropy exchange parameterλ1. The corresponding Curie temperature is estimated asTC=40.1 K,which becomes worse comparing with the experimental result. Therefore, we believe that our three-neighborXXZHeisenberg model Hamiltonian is more accurate since it can contain more magnetic orders.

    All above analysis are for the strain effect on the magnetic order transitions in SL-CrBr3. In the absence of charge doping,external strain induces a magnetic phase transition between off-plane FM order and in-plane N′eel-AFM order in SL-CrBr3,which is different from the case of SL-CrI3.[19]Following the same way,one could investigate the effect of charge doping with and/or without strain on the magnetic order transitions in SL-CrBr3. Here, for briefness, we will not discuss the case that only charge doping effect is taken into account.Therefore, we explore the magnetic phase diagram via strain engineering and charge doping. The result is shown in Fig.5.From Fig. 5, we can clearly see that in the strain and charge doping regimes we studied,there are three different magnetic phases in SL-CrBr3, which are off-plane FM (green region),in-plane FM (yellow region) and in-plane N′eel-AFM (cyan region). There are at least four points need to be noticed in Fig.5: (i)Consistent with the aboe discussions,for the intrinsic SL-CrBr3(ε=0 andδn=0), the magnetic ground state should be off-plane FM order. (ii)If there is no charge doping(δn=0)in the system but with certain strain(i.e.,εchanges from?10%to 15%),SL-CrBr3will undergo a magnetic phase transition from the in-plane N′eel-AFM to the off-plane FM.The corresponding phase transition point is aboutε=?4.2%,which is also in agreement with above analysis. (iii) Conversely,if strain is not applied on the system(ε=0)but there exists charge doping (δn/=0), Fig. 5 shows that as the doping concentration increases from negative value to positive value, the magnetic ground state will be modulated from the off-plane FM into the in-plane FM.The phase transition point is at the doping concentration ofδn=0.06e/Cr(see point A marked in Fig.5),(iv)The magnetic phase of the system could be simultaneously modulated by charge doping and external strain. Through detailed calculations, the phase boundaries among three different magnetic phases are obtained (see the black curves in Fig.5). The intersection of the three magnetic phases is approximately atε=?4.2% andδn=0.07e/Cr(see point B marked in Fig.5). In detail, the phase boundary between in-plane N′eel-AFM and in-plane FM is localized atε=?4.2%. In other words, whenδn>0.07e/Cr, the phase transition between in-plane N′eel-AFM and in-plane FM responds significantly to the strain effect. In this case,when the strain is slightly greater (less) than?4.2%, the system will come into in-plane FM (N′eel-AFM) order. When the charge doping is less than 0.07e/Cr, with the compressive biaxial strain increasing,the system tends to transform from off-plane FM to in-plane N′eel-AFM.

    Fig.5. Magnetic phase diagram of SL-CrBr3 in the strain and charge doping regimes. Point A represents the phase transition at intrinsic structure with a normal lattice constant a0. Point B indicates the intersection of three magnetic phases.

    4. Conclusion

    In summary, we applied DFT calculations and model Hamiltonian simulations to investigate the magnetic properties of the recently discovered 2D ferromagnet, SL-CrBr3.The ground state is confirmed to be FM, which is consistent with the previous experiment. CrBr3exhibits strong magnetic anisotropy(215μeV/Cr)with an off-plane easy axis.We studied the effect of strain engineering and charge doping on SLCrBr3,and provided a magnetic phase diagram with rich tunable physics. The magnetic properties are remarkably dominated by strain,which have extensive impact on local spin and thus dominate the phase transition between the FM and AFM phases.Under particular strain,charge doping(especially hole doping)can also modulate the spin orientation and in turn manipulate magnetic states. Based on our fitted Heisenberg exchange parameters and anisotropy exchange parameters, we systematically analyzed the magnetic properties and estimated Curie temperature as 38.4 K.We also found that phase transition from the FM order to the N′eel-AFM order is dominated by the nearest-neighbor exchange parameterJ1, while the phase transition from the off-plane FM to the in-plane FM is influenced by MAE. The rich tunable magnetic properties make SL-CrBr3a reliable and promising candidate for potential application in spintronics.

    猜你喜歡
    張平振國(guó)
    Topological properties of Sb(111)surface: A first-principles study
    嘰嘰喳喳的小喜鵲
    愛(ài)在拉薩
    這是你爺倆
    金秋(2020年16期)2020-12-09 01:41:50
    我和繼父13年
    我和繼父13年
    文苑·感悟(2019年12期)2019-12-23 07:24:46
    我和繼父13 年
    文苑(2019年23期)2019-12-05 06:50:22
    Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases?
    我和繼父的13年
    37°女人(2019年6期)2019-06-10 08:48:11
    張平書法作品選
    色哟哟·www| 国产白丝娇喘喷水9色精品| 少妇的逼水好多| av在线老鸭窝| 亚洲丝袜综合中文字幕| 秋霞伦理黄片| 亚洲国产精品999| 大香蕉久久网| 精品人妻偷拍中文字幕| 搡女人真爽免费视频火全软件| 中国三级夫妇交换| 日韩三级伦理在线观看| 亚洲av男天堂| 国产黄a三级三级三级人| 街头女战士在线观看网站| 亚洲精品日韩av片在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产精品成人在线| 日日撸夜夜添| 精品一区在线观看国产| 午夜免费鲁丝| 最近中文字幕高清免费大全6| 日本av手机在线免费观看| 激情五月婷婷亚洲| 免费观看性生交大片5| 国产免费一区二区三区四区乱码| 久久午夜福利片| 日韩亚洲欧美综合| 欧美xxxx性猛交bbbb| 国产视频内射| 内地一区二区视频在线| 国产色婷婷99| 男人添女人高潮全过程视频| 亚洲精品一二三| 五月开心婷婷网| 亚洲电影在线观看av| 婷婷色麻豆天堂久久| 精品久久久久久久久av| 国产美女午夜福利| 亚洲国产精品999| 亚洲真实伦在线观看| 噜噜噜噜噜久久久久久91| 少妇人妻精品综合一区二区| 伦精品一区二区三区| 亚洲精品久久久久久婷婷小说| 欧美国产精品一级二级三级 | 免费av毛片视频| 嫩草影院入口| 亚洲av成人精品一区久久| 亚洲成色77777| 一区二区av电影网| 日本一二三区视频观看| 精品久久久久久久人妻蜜臀av| 91久久精品电影网| 久久久久久久午夜电影| 免费在线观看成人毛片| 成人美女网站在线观看视频| 国产永久视频网站| 久久人人爽av亚洲精品天堂 | 亚洲国产精品999| 亚洲精品乱码久久久久久按摩| 最新中文字幕久久久久| 一级a做视频免费观看| 好男人视频免费观看在线| 成人二区视频| 少妇的逼水好多| 欧美激情国产日韩精品一区| 五月开心婷婷网| 午夜福利在线在线| 亚洲精品色激情综合| av一本久久久久| 亚洲自偷自拍三级| 欧美xxxx黑人xx丫x性爽| 一级二级三级毛片免费看| 久久久久九九精品影院| 国产亚洲一区二区精品| 中文在线观看免费www的网站| 人人妻人人爽人人添夜夜欢视频 | 少妇猛男粗大的猛烈进出视频 | 男女边摸边吃奶| 少妇人妻 视频| 亚洲最大成人av| 18禁裸乳无遮挡免费网站照片| 久久人人爽人人片av| 久久久久久久久久久丰满| 国产午夜精品一二区理论片| 一个人看的www免费观看视频| 久久精品人妻少妇| www.色视频.com| av在线播放精品| 97精品久久久久久久久久精品| 免费黄频网站在线观看国产| 伦理电影大哥的女人| 婷婷色综合大香蕉| 亚洲精品国产av成人精品| 国产成人a区在线观看| 我的老师免费观看完整版| 精品久久久久久久久av| 欧美 日韩 精品 国产| 久久久久久久久久久免费av| 亚州av有码| 中文乱码字字幕精品一区二区三区| 成人一区二区视频在线观看| 精华霜和精华液先用哪个| 欧美另类一区| 久久久色成人| 蜜桃久久精品国产亚洲av| 成年女人在线观看亚洲视频 | 综合色av麻豆| 亚洲四区av| 亚洲人成网站在线播| 免费人成在线观看视频色| 最近中文字幕2019免费版| 亚洲真实伦在线观看| 国产亚洲91精品色在线| 色视频在线一区二区三区| 国产人妻一区二区三区在| 国产久久久一区二区三区| 国产精品国产av在线观看| 国产精品久久久久久久电影| 国产精品无大码| 一级片'在线观看视频| 狂野欧美白嫩少妇大欣赏| 国产毛片在线视频| 国产成人91sexporn| 2021少妇久久久久久久久久久| 成人综合一区亚洲| 日韩欧美精品v在线| 久久韩国三级中文字幕| 免费黄频网站在线观看国产| 亚洲精品乱码久久久久久按摩| 综合色丁香网| av线在线观看网站| 久久热精品热| 视频中文字幕在线观看| 在线观看人妻少妇| 亚洲欧美精品专区久久| 丰满少妇做爰视频| 免费看不卡的av| 久久精品国产自在天天线| 亚洲欧美清纯卡通| 久热这里只有精品99| 亚洲av欧美aⅴ国产| 偷拍熟女少妇极品色| 成年av动漫网址| 欧美日韩一区二区视频在线观看视频在线 | 大码成人一级视频| 嘟嘟电影网在线观看| 少妇高潮的动态图| 午夜激情久久久久久久| 晚上一个人看的免费电影| 国产老妇女一区| 国产黄a三级三级三级人| 性色av一级| 三级经典国产精品| 久久ye,这里只有精品| 如何舔出高潮| 边亲边吃奶的免费视频| 一个人观看的视频www高清免费观看| 亚洲人成网站高清观看| 欧美日韩视频精品一区| 国产亚洲精品久久久com| 免费av观看视频| 亚洲欧洲国产日韩| 免费黄色在线免费观看| 色网站视频免费| 日韩av免费高清视频| 国产精品一二三区在线看| 白带黄色成豆腐渣| 国产高清国产精品国产三级 | av福利片在线观看| 欧美性猛交╳xxx乱大交人| 久久精品国产亚洲av天美| 国产免费福利视频在线观看| 久久综合国产亚洲精品| 亚洲av在线观看美女高潮| 亚洲精品aⅴ在线观看| 亚洲av一区综合| 日日啪夜夜爽| 久久99蜜桃精品久久| 精品久久久久久久末码| 国产精品精品国产色婷婷| 色视频www国产| 人人妻人人澡人人爽人人夜夜| 啦啦啦在线观看免费高清www| 亚洲人与动物交配视频| 欧美一级a爱片免费观看看| 亚洲无线观看免费| 欧美日韩视频精品一区| 免费观看性生交大片5| 国产精品久久久久久精品古装| 国产精品一区二区三区四区免费观看| 综合色av麻豆| 国产亚洲av片在线观看秒播厂| 日韩av在线免费看完整版不卡| 一区二区三区四区激情视频| 又黄又爽又刺激的免费视频.| 国产亚洲5aaaaa淫片| 美女内射精品一级片tv| 欧美人与善性xxx| 18禁裸乳无遮挡动漫免费视频 | 国产精品秋霞免费鲁丝片| 热99国产精品久久久久久7| 看黄色毛片网站| 精品国产三级普通话版| 久久99热6这里只有精品| 国产av码专区亚洲av| 狂野欧美激情性xxxx在线观看| 国产久久久一区二区三区| 久久久亚洲精品成人影院| 91精品伊人久久大香线蕉| 久久精品熟女亚洲av麻豆精品| 日本午夜av视频| 99久国产av精品国产电影| 精品少妇黑人巨大在线播放| 国产欧美另类精品又又久久亚洲欧美| 国产精品伦人一区二区| 中文天堂在线官网| 欧美zozozo另类| 99久久精品一区二区三区| 久久久久精品久久久久真实原创| 国产精品一二三区在线看| 全区人妻精品视频| 91久久精品国产一区二区成人| 国产探花在线观看一区二区| av免费观看日本| 精品一区二区三区视频在线| 国产高清不卡午夜福利| 国精品久久久久久国模美| 亚洲丝袜综合中文字幕| 免费av毛片视频| 国产亚洲一区二区精品| 中文字幕av成人在线电影| 午夜福利视频精品| 国产探花极品一区二区| 一级毛片电影观看| 乱码一卡2卡4卡精品| 免费高清在线观看视频在线观看| 成年人午夜在线观看视频| 人妻制服诱惑在线中文字幕| 听说在线观看完整版免费高清| 极品少妇高潮喷水抽搐| 97人妻精品一区二区三区麻豆| 热99国产精品久久久久久7| 成人高潮视频无遮挡免费网站| 麻豆国产97在线/欧美| 国产久久久一区二区三区| 免费高清在线观看视频在线观看| 久久久久九九精品影院| 国产精品一区二区在线观看99| 国产视频首页在线观看| 国产探花在线观看一区二区| 97超视频在线观看视频| 高清在线视频一区二区三区| 久久国产乱子免费精品| 亚洲国产精品成人久久小说| 精品熟女少妇av免费看| 亚洲婷婷狠狠爱综合网| 国产成人一区二区在线| 亚洲国产欧美人成| 久久精品国产鲁丝片午夜精品| 国产精品偷伦视频观看了| 在现免费观看毛片| 你懂的网址亚洲精品在线观看| 日本av手机在线免费观看| av专区在线播放| 色吧在线观看| 国产爽快片一区二区三区| 蜜臀久久99精品久久宅男| 日本欧美国产在线视频| 99视频精品全部免费 在线| 深爱激情五月婷婷| 欧美老熟妇乱子伦牲交| 国产精品人妻久久久影院| 国产爽快片一区二区三区| 只有这里有精品99| 乱系列少妇在线播放| 亚洲经典国产精华液单| 69av精品久久久久久| 国产精品人妻久久久久久| 亚洲国产欧美在线一区| 国产亚洲av片在线观看秒播厂| av国产免费在线观看| 一级黄片播放器| av在线蜜桃| 一区二区三区免费毛片| 亚洲av二区三区四区| 天美传媒精品一区二区| 中国美白少妇内射xxxbb| 欧美精品国产亚洲| av在线老鸭窝| 97超视频在线观看视频| 国产综合懂色| 欧美bdsm另类| 18禁动态无遮挡网站| 久久99精品国语久久久| 少妇熟女欧美另类| 亚洲一区二区三区欧美精品 | 国产精品偷伦视频观看了| 亚洲国产精品成人久久小说| 人妻夜夜爽99麻豆av| 最后的刺客免费高清国语| www.av在线官网国产| 中国国产av一级| 午夜免费观看性视频| 国产成年人精品一区二区| 直男gayav资源| 国产真实伦视频高清在线观看| 乱系列少妇在线播放| 亚洲欧美精品自产自拍| 18禁在线无遮挡免费观看视频| 亚洲欧美成人精品一区二区| 我要看日韩黄色一级片| 国产午夜精品一二区理论片| 亚洲精品国产成人久久av| 青春草视频在线免费观看| 中国三级夫妇交换| 日本一本二区三区精品| 九九久久精品国产亚洲av麻豆| 欧美成人精品欧美一级黄| av在线观看视频网站免费| 狂野欧美激情性bbbbbb| 国产乱人视频| 欧美xxxx性猛交bbbb| 国产免费一级a男人的天堂| 日韩免费高清中文字幕av| 夫妻性生交免费视频一级片| 好男人视频免费观看在线| 国产成人精品福利久久| 啦啦啦中文免费视频观看日本| 中国美白少妇内射xxxbb| av一本久久久久| a级一级毛片免费在线观看| 久久久国产一区二区| 在线观看一区二区三区激情| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲美女搞黄在线观看| 男女下面进入的视频免费午夜| 晚上一个人看的免费电影| 亚洲欧美日韩无卡精品| 婷婷色av中文字幕| 免费观看a级毛片全部| 建设人人有责人人尽责人人享有的 | 大陆偷拍与自拍| 亚洲aⅴ乱码一区二区在线播放| 免费看光身美女| 国产综合精华液| 91狼人影院| 激情 狠狠 欧美| 小蜜桃在线观看免费完整版高清| 欧美另类一区| 欧美老熟妇乱子伦牲交| 精品久久久久久电影网| 又爽又黄a免费视频| 99久久精品热视频| 尤物成人国产欧美一区二区三区| 日本wwww免费看| 亚洲精品国产av蜜桃| 成人黄色视频免费在线看| 性色av一级| 黄片无遮挡物在线观看| 一级黄片播放器| 国产免费一级a男人的天堂| 日本av手机在线免费观看| 久久精品熟女亚洲av麻豆精品| 自拍欧美九色日韩亚洲蝌蚪91 | 王馨瑶露胸无遮挡在线观看| 99视频精品全部免费 在线| 午夜老司机福利剧场| 免费av不卡在线播放| 亚洲婷婷狠狠爱综合网| 国产精品久久久久久久电影| 中文乱码字字幕精品一区二区三区| 在线看a的网站| 亚洲精品日本国产第一区| 国产女主播在线喷水免费视频网站| 国产老妇伦熟女老妇高清| 制服丝袜香蕉在线| 亚洲欧美一区二区三区国产| 亚洲真实伦在线观看| 国产69精品久久久久777片| 国产极品天堂在线| 亚洲精品中文字幕在线视频 | 久久鲁丝午夜福利片| 嫩草影院新地址| 国产成人freesex在线| 亚洲,一卡二卡三卡| 国产精品一区二区三区四区免费观看| 好男人视频免费观看在线| 99精国产麻豆久久婷婷| 好男人在线观看高清免费视频| 亚洲精品aⅴ在线观看| 乱码一卡2卡4卡精品| 日韩大片免费观看网站| 黄色欧美视频在线观看| 激情五月婷婷亚洲| 在线精品无人区一区二区三 | 国产欧美日韩一区二区三区在线 | 久热这里只有精品99| 男女国产视频网站| 精品少妇黑人巨大在线播放| 嫩草影院入口| 免费观看av网站的网址| 久久久久精品性色| 一区二区三区精品91| 亚洲成人一二三区av| 欧美日韩精品成人综合77777| 在线亚洲精品国产二区图片欧美 | 久热这里只有精品99| 91久久精品国产一区二区三区| 熟女av电影| 久久综合国产亚洲精品| 亚洲色图av天堂| 亚洲婷婷狠狠爱综合网| 日本黄大片高清| 国产成人aa在线观看| 国产亚洲5aaaaa淫片| 蜜桃亚洲精品一区二区三区| www.色视频.com| 真实男女啪啪啪动态图| 男女边吃奶边做爰视频| 搞女人的毛片| 好男人视频免费观看在线| av.在线天堂| 精品一区二区三区视频在线| 一区二区三区精品91| 欧美日韩亚洲高清精品| 亚洲伊人久久精品综合| 国产探花在线观看一区二区| 欧美性猛交╳xxx乱大交人| 日韩,欧美,国产一区二区三区| av卡一久久| 亚洲国产高清在线一区二区三| 国产片特级美女逼逼视频| 亚洲av国产av综合av卡| 嘟嘟电影网在线观看| 亚洲怡红院男人天堂| 中文字幕免费在线视频6| 国产成人免费观看mmmm| 99久久精品一区二区三区| 欧美一区二区亚洲| av天堂中文字幕网| 亚洲国产色片| 2021天堂中文幕一二区在线观| 国产v大片淫在线免费观看| 久久99热这里只有精品18| 一级爰片在线观看| 国产亚洲最大av| 亚洲在久久综合| 色播亚洲综合网| 99视频精品全部免费 在线| 国产淫片久久久久久久久| 亚洲av中文av极速乱| 国产精品蜜桃在线观看| 亚洲av.av天堂| 成年女人在线观看亚洲视频 | 九九在线视频观看精品| 国产精品一及| av在线老鸭窝| 成人特级av手机在线观看| 不卡视频在线观看欧美| 18禁在线无遮挡免费观看视频| 亚洲av日韩在线播放| 亚洲精品成人av观看孕妇| 免费观看a级毛片全部| 日日啪夜夜爽| 少妇的逼好多水| 高清视频免费观看一区二区| 国产精品久久久久久av不卡| 国产成人精品久久久久久| 韩国av在线不卡| 又大又黄又爽视频免费| 国产成人a区在线观看| 噜噜噜噜噜久久久久久91| 精品酒店卫生间| 国内精品宾馆在线| freevideosex欧美| 国产欧美日韩一区二区三区在线 | 尾随美女入室| 六月丁香七月| 日韩欧美 国产精品| 欧美3d第一页| 亚洲国产精品专区欧美| 亚洲三级黄色毛片| 青春草亚洲视频在线观看| www.av在线官网国产| 大香蕉97超碰在线| 男人舔奶头视频| 18禁动态无遮挡网站| 日韩三级伦理在线观看| 欧美高清成人免费视频www| 少妇猛男粗大的猛烈进出视频 | 免费看av在线观看网站| 免费av毛片视频| 午夜视频国产福利| 欧美zozozo另类| 日本黄大片高清| 久久精品久久久久久久性| 亚洲综合色惰| 亚洲av中文字字幕乱码综合| 亚洲,一卡二卡三卡| 亚洲欧美一区二区三区黑人 | 最近2019中文字幕mv第一页| 日韩中字成人| 精品久久久噜噜| 少妇裸体淫交视频免费看高清| 99视频精品全部免费 在线| 在线免费观看不下载黄p国产| 精华霜和精华液先用哪个| 国产成人a区在线观看| 欧美一区二区亚洲| 99视频精品全部免费 在线| 亚洲欧美日韩另类电影网站 | 精品久久久久久久久av| 亚洲国产日韩一区二区| 男人和女人高潮做爰伦理| 日产精品乱码卡一卡2卡三| 国产久久久一区二区三区| 色哟哟·www| 日韩,欧美,国产一区二区三区| 99久国产av精品国产电影| 国产精品福利在线免费观看| 国产亚洲av片在线观看秒播厂| 嫩草影院精品99| 99精国产麻豆久久婷婷| 久久精品国产亚洲网站| 亚洲综合色惰| 在线播放无遮挡| 18禁在线无遮挡免费观看视频| 久久久亚洲精品成人影院| 免费黄网站久久成人精品| 一边亲一边摸免费视频| 成人欧美大片| 成人特级av手机在线观看| 欧美高清性xxxxhd video| 色综合色国产| 少妇人妻一区二区三区视频| 在线免费十八禁| 成人毛片a级毛片在线播放| 水蜜桃什么品种好| 国产黄色免费在线视频| 啦啦啦啦在线视频资源| 精华霜和精华液先用哪个| 嘟嘟电影网在线观看| eeuss影院久久| 九九爱精品视频在线观看| 丰满人妻一区二区三区视频av| tube8黄色片| 有码 亚洲区| 亚洲性久久影院| 女人十人毛片免费观看3o分钟| 国产精品一区二区在线观看99| 午夜老司机福利剧场| 欧美区成人在线视频| 久久久久网色| 亚洲真实伦在线观看| 久久久久久久国产电影| 免费不卡的大黄色大毛片视频在线观看| 男女那种视频在线观看| 夫妻午夜视频| 亚洲无线观看免费| 国产免费视频播放在线视频| 精品国产一区二区三区久久久樱花 | 欧美最新免费一区二区三区| 日韩免费高清中文字幕av| av.在线天堂| 99热全是精品| 国产一区二区在线观看日韩| 最近最新中文字幕大全电影3| 丰满人妻一区二区三区视频av| 欧美潮喷喷水| 国产精品女同一区二区软件| 岛国毛片在线播放| 性色avwww在线观看| 中文天堂在线官网| 又爽又黄无遮挡网站| 亚洲欧美成人综合另类久久久| 丝袜喷水一区| 国产视频首页在线观看| 成年版毛片免费区| 好男人视频免费观看在线| 男的添女的下面高潮视频| 又爽又黄无遮挡网站| 色吧在线观看| kizo精华| av国产久精品久网站免费入址| 国产成人精品久久久久久| 少妇熟女欧美另类| 又大又黄又爽视频免费| 一级爰片在线观看| 搡老乐熟女国产| 成人免费观看视频高清| 在现免费观看毛片| 国产精品偷伦视频观看了| 欧美成人午夜免费资源| 国产黄a三级三级三级人| 免费看光身美女| 高清欧美精品videossex| 男女啪啪激烈高潮av片| 国产欧美日韩一区二区三区在线 | 亚洲四区av| 免费高清在线观看视频在线观看| 久久久久久久大尺度免费视频| 免费不卡的大黄色大毛片视频在线观看| 久久久精品免费免费高清| 丝袜美腿在线中文| 寂寞人妻少妇视频99o| 美女高潮的动态| 亚洲欧美成人综合另类久久久| 男女无遮挡免费网站观看| 日本av手机在线免费观看| 欧美三级亚洲精品| 久久精品久久久久久久性| 国产成人91sexporn| 夜夜爽夜夜爽视频|