• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Topological properties of Sb(111)surface: A first-principles study

    2022-04-12 03:47:28ShuangxiWang王雙喜andPingZhang張平
    Chinese Physics B 2022年4期
    關(guān)鍵詞:雙喜張平

    Shuangxi Wang(王雙喜) and Ping Zhang(張平)

    1Department of Materials Science and Engineering,China University of Petroleum,Beijing 102249,China

    2Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    3Center for Applied Physics and Technology,Peking University,Beijing 100871,China

    Keywords: first-principles study,antimony,topological states

    1. Introduction

    A new state of quantum matter, topological insulator(TI), has received amount of attention in condensed matter physics.[1,2]The realization of TI HgTe both from theoretical prediction and experimental observation,[3,4]opens up opportunities for its potential application in semiconductor spintronics. It is believed that the quantum spin Hall effect as well as the time-reversal symmetry plays an important role in the new material,protecting the system from being disturbed by small perturbation caused by defects. This urges people to desire for more other promising materials,such as the Bi-based alloy Bi1-xSbx,and layered compound Bi2X3(X=Se,Te).[5-8]Recently, due to its novel topological properties, the semimetallic antimony(Sb)has become the ideal proto-type system for studying TI,thus has been investigated both theoretically and experimentally.[9-15]

    Theoretically,it has been proposed that the spin-orbit interaction (SOI) gives rise to the inverted structures between the valance and conduction band, and hence nontrivial gapless edge states emerge on the surface of Tls.[3]These studies revealed that the SOI plays a dominant role in characterizing the surface states of Sb,[9]and the properties of surface states depend on the thickness of this kind of two-dimensional(2D) material.[14,15]Experimental researches identified that the spin-split surface bands of Sb within its bulk band gap are connected to the conduction band and valence band.[9,10]Moreover, the topologically nontrivial Sb thin films exhibit novel properties and provide a promising playground for spintronic applications in low dimensions, such as device design and integration.[11]

    Nevertheless,there exist still many unanswered questions about the electronic structures of Sb. For Sb(111) surface, it is desirable to identify the layer-dependence of the topological states of Sb thin film,and the modulating of the surface properties by impurities with or without magnetic moment.[16,17]Moreover,the understanding of properties of Sb(111)surface can greatly facilitate the research of interaction between adsorbates and Sb(111) surface.[12]Therefore, it would be instructive to explore the electronic structures of Sb to make a thorough comprehension about the topological properties.

    The density functional theory (DFT) calculations based on first-principles method have proved to be an effective approach for studying the structural and electronic properties of materials including TIs.[18-23]In the present work, we study the properties of Sb(111) surface by performing firstprinciples calculations. The bulk band structure of Sb is presented to reveal the domination of SOI for topological properties of Sb. For the stoichiometric Sb(111) surface, we investigate the layer-dependence of the surface states of Sb thin film.Moreover,we calculate the surface properties of Sb when impurities are introduced, including nonmagnetic Bi and 3d transition metal ion Mn. The reason why we choose Bi as the doped impurity is that bismuth-antimony alloy has been investigated as a topological insulator, and it has potential application in developing next-generation quantum computing devices.[24-26]If the impurity carries a magnetic moment,the time-reversal symmetry is explicitly broken, and a local energy gap will be opened up near the Dirac point.[17]Moreover, transition metal element Mn doped HgTe[27]has been theoretically predicted to show the quantum anomalous Hall(QAH)effect. Hence Mn exhibits unique magnetic properties involved in the TI materials. While up to now further relevant study about Mn doped TIs is still lacking, we choose Mn as the doped magnetic impurity to have a direct and intuitional sight into it.

    This paper is outlined as follows. Firstly,the calculation method employed in our works is briefly introduced. Secondly,we present and discuss our results for the surface properties of Sb(111). Finally,we provide a summary.

    2. Calculation method

    The calculations were performed by using the density functional theory,as implemented in the Viennaab-initiosimulation package (VASP).[28]The Perdew-Burke-Ernzerhof(PBE)[29]parametrization of the generalized gradient approximation(GGA)was used for the exchange-correlation energy,and the projector-augmented wave potentials[30]were employed to describe the electron-ion interaction. Here the Sb 5s and 5p electrons were treated as valence electrons. The planewave cutoff energy was set to be 400 eV, with a smearing parameter[31]of 0.1 eV.The SOI was also included throughout the calculations.

    Fig. 1. Atomic structure of bulk Sb and Sb(111) surface. The nonequivalent antimony atoms are represented by blue and red balls separatively: (a)primitive cell of bulk Sb,(b)hexagonal unit cell of bulk Sb and(c)slab model of Sb(111)surface.

    The crystal structure of Sb is rhombohedral with the space groupD53d(Rˉ3m),with two non-equivalent Sb atoms in the trigonal primitive cell (see Fig. 1(a)). We can also present it in terms of a hexagonally arranged layer structure, as shown in Fig. 1(b). The hexagonal unit cell can be regarded as three sets of bilayers,where each bilayer consists of two Sb atoms.Structurally,bilayers in Sb form a stable unit with strong intrabilayer bonds,while the interbilayer bonding is much weaker.To identify nonequivalent atoms in the slab structure,different layers of Sb are labeled with different colors in the hexagonal cell. The Sb(111) surface is modeled by a slab composing of several (1-6) bilayers (BLs) and a vacuum region of 20 °A as shown in Fig. 1(c). Integration over the Brillouin zone was done by using a 21×21×1 Monkhorst-Packk-point mesh[32]for thep(1×1)surface,in which each monolayer contains one Sb atom; for thep(3×3)surface, in which each monolayer contains nine Sb atoms, 7×7×1 grid points are used. The structures of slabs were fully optimized until the absolute value of the atomic force on each atom was below 0.02 eV/°A. The computed lattice constants of rhombohedral Sb area=4.39 °A andc=11.43 °A, which are in agreement with the experimental dataa=4.3007 °A andc=11.222 °A.[33]

    3. Results and discussion

    It has been proposed that Sb is a promising TI by calculating its Z2invariantν(=1)from the knowledge of the parity of the occupied Bloch wave function at the time-reversal invariantΓpoint in the Brillouin zone.[24]This means that the SOI dominates the electronic nature of Sb,and one can understand it from the band structure (see Fig. 2). It is clear that the band gap is very small without SOI. While as the SOI is taken into consideration,the band gap is enlarged up to about 0.24 eV. We notice that the GGA calculations generally tend to underestimate the band gap for nonmetals.[34]Nevertheless,previous study with standard DFT correctly described the band properties of TIs, such as Bi2Se3[5,35]and Bi2Te3.[6]Therefore, our calculations still yield physically reasonable results about the general properties of band energy of Sb. Moreover,because of its topological electronic nature,we can expect the existence of gapless surface states. Therefore, in the following we will focus our attention on the properties of Sb(111)surface.

    Fig. 2. Bulk band structure without SOI (a) and with SOI (b). The energy zero is set at the valence band maximum.

    Generally speaking,the surface topological properties are sensitive to the thickness of the TI thin film. For thinner film,the coupling between the top and bottom surfaces is strong enough to open up a whole insulating gap. With increasing thickness,the inter-surface coupling becomes weaker and the topological features will be recovered. This is the same case for Sb(111)surface. As illustrated in Fig.3,we show the evolution of band structure of Sb films with the thickness from the single BL to six BLs. In a single BL film,the Sb electronic states (mainly from 5p orbital) split into two parts forming a gap around the Fermi level.The gap is as large as about 0.9 eV,implying the strong coupling between two surfaces. In the case of two BLs films,the splitting of 5p states decrease with the decline of the coupling, leading to a semimetallic electronic structure. Obviously, the topological features start to appear in the three BLs case,where a non-trivial helical edge state(ν0=1)below the Fermi level atΓpoint can be identified. This helical state is consist of two surface states degenerated atΓpoint but separated in energy elsewhere by SOI.[11]Nevertheless,it is noticeable that for the case of four BLs and five BLs films,the gaps are opened up again atΓpoint. This can be attributed to the inverse asymmetry of the films with four and five BLs. While the topological states should be recovered when the number of BLs of the film is multiples of three, which conserves the inverse symmetry. As expected,it can be seen that the topological states are recovered for six BLs,which are consistent with the previous computational and experimental results.[15]The double degenerate Sb(111) surface states contain a single Dirac cone at theΓpoint,which is robust and topologically protected by time-reversal symmetry.The Dirac point is about 0.16 eV below the Fermi level,within the bulk band gap. Compared with the experimental value of 0.23 eV,[2]the difference may arise from the subsurface defects observed in the experiment.

    Fig. 3. Surface band structure with one to six bilayer thickness. The energy zero is set at the valence band maximum.

    Various impurities may have different impact on the degeneracy and topological properties of Sb energy bands,which will be illustrated in the following discussions based on the six BLs film. It has been shown that the alloy Bi1-xSbxis a 3D TI.[24,25,36]Here it would be interesting to investigate the surface state properties of reduced Sb(111) surface with the existence of Bi as a nonmagnetic impurity. Moreover, as a comparison,a magnetic impurity(Mn atom)is also taken into consideration. During the calculations, thep(3×3) surface is adopted,and impurities are symmetrically introduced on both sides of the slab.

    We found that the substitutional Bi or Mn atoms take the position of one subsurface Sb2 atoms, and the adsorbed Mn atoms are found to be energetically stable at the hcp sites above Sb(111) surfaces. As depicted in the upper panels of Fig.4,the introduced Bi is about 0.06 °A lower than the adjacent Sb2 atom,and causes only slightly distortion of surrounding atoms. The substitutional Mn atom is 0.56 °A lower than the adjecent Sb2 atom,and causes the move of the surface Sb1 atom (0.31 °A downwards). The adsorbed Mn atom is higher than the outmost surface by 0.56 °A, and causes only slightly move of the surface atoms.

    Fig. 4. Structures of Sb(111) surfaces with impurities (upper panels)and surface charge density distributions (lower panels, in e/°A3) at the height of 2.0 °A above the Sb(111) surface: (a) Bi-substitutional, (b)Mn-substitutional and(c)Mn-adsorbed. The Bi and Mn atoms are represented by purple and orange balls,respectively.

    To explore the bonding information between impurities and surface, we calculated the charge density distributions of Sb(111)surfaces with impurities. As shown in Fig.4,the localized three-fold symmetric features can be identified from all of the surfaces,especially for the Mn-doped ones. For the Bisubstitutional surface, only tiny difference exists between the region above the Bi atom and others,and this can be attributed to that Bi and Sb belong to the same chemical group and possess the same number of valence electrons. As a result, the Bi-doped Sb(111) surface may maintain the topological features,which will be illustrated later by the band structure. For the Mn-doped surfaces, however, more evident different features can be observed. It is noticeable that the charge distribution is strongly depleted at the position just above the substitutional Mn atom,while the adsorbed Mn atom can be identified clearly by the charge accumulation. Keeping in mind the magnetism of Mn atom,we will see that the magnetic impurity can have significant effect on the surface states of Sb(111)surface.

    The band structure of Bi-doped Sb(111) surface is presented in Fig. 5(b). For comparison, in Fig. 5 we show the Sb bulk band structure projected onto the surface Brillouin zone, and also in next series of surface band structures. The band structure of stoichiometricp(3×3) Sb(111) surface is also shown in Fig.5(a). It is clear that the topological surface state remains to be robust despite of the existence of Bi impurity, and the Dirac point of this reduced surface almost stays at the same position as that of the stoichiometric surface,i.e.,residing in the bulk valence band gap.This can be attributed to the following reasons. (1)The time-reversal symmetry stands against nonmagnetic impurities. (2) The energy bands of Bidoped system remain degenerate thus keep gapless.Moreover,from the PDOS of Bi we determined that the doped Bi atom contributes little to the band structure near the Fermi level and the Dirac point, thus the topological features of Sb keep robust,which also consists with the fact that the alloy Bi1-xSbxis a 3D TI inherited from Sb.[24]

    Fig.5. The band structure of clean(a)and Bi substitutional(b)Sb(111)surface. Blue shaded areas correspond to the Sb bulk band structure projected onto the surface Brillouin zone.

    For magnetic Mn-doped Sb(111) surface, we found that the magnetic impurities can obviously lift the degeneracy protected by the time-reversal symmetry. For clarity,here we plot the lifted band structures of Mn-substitutional and adsorbed Sb(111) surfaces dividedly in Figs. 6 and 7, labeled by spinup and spin-down,respectively. It can be seen that both of the magnetic impurities eliminate the Dirac point by opening up a gap atΓpoint, corresponding to the position of band gap of the bulk valence band. As depicted by the PDOS (Figs. 6(c)and 7(c)), compared with the doped Bi atom, the magnetic d orbital of Mn atom contributes much to the states near the Dirac point, hence clearly breaks the time-reversal symmetry. As expected,[17]a ferromagnetic ground state is formed on the TI surface by the introduced magnetic Mn impurity. As to the aforementioned QAH effect appearing in TIs, the Mndoped HgTe[27]and Cr(Fe)-doped Bi2Se3[37]exhibit insulating magnetic state, and QAH effect emerges. However, we can see from the PDOS that the metallic states are obtained for Mn-doped Sb(111)surface,similar to that for Ti(V)-doped Bi2Se3,[37]which is topologically trivial.

    Fig. 6. The band structure of Mn-substitutional Sb(111) surface: (a)spin-up, (b) spin-down and (c) the PDOS of the Mn atomic d-bands.Blue shaded areas correspond to the Sb bulk band structure projected onto the surface Brillouin zone.

    Fig. 7. The band structure of Mn-adsorbed Sb(111) surface: (a) spinup, (b) spin-down and (c) the PDOS of the Mn atomic d-bands. Blue shaded areas correspond to the Sb bulk band structure projected onto the surface Brillouin zone.

    4. Conclusion

    In summary,we used the first-principles method to study the topological properties of Sb(111) surface. We found that the stoichiometric Sb(111)surface possesses single Dirac point protected by the time-reversal symmetry and inverse symmetry. And the topological states are layer dependent and keep robust for six bilayers film. Moreover, we revealed that the non-trivial topological states stand for non-magnetic substitutional Bi, while the substitutional or adsorbed magnetic Mn atom can obviously destroy the topological states by eliminating the Dirac point. The present work may contribute to the further study in topological insulator.

    猜你喜歡
    雙喜張平
    嘰嘰喳喳的小喜鵲
    山中送別
    寶藏(2021年8期)2021-09-15 02:19:44
    High-pressure elastic anisotropy and superconductivity of hafnium:A first-principles calculation*
    羊跑羔
    小小說月刊(2021年2期)2021-03-11 02:07:07
    母親
    寶藏(2021年11期)2021-01-01 06:17:20
    這是你爺倆
    金秋(2020年16期)2020-12-09 01:41:50
    Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases?
    神韻真切 意境深邃——崔白《雙喜圖》欣賞
    老年教育(2018年12期)2018-12-29 12:43:16
    張平書法作品選
    Mechanical Behavior of Bistable Bump Surface for Morphing Inlet
    最近中文字幕2019免费版| a级毛片免费高清观看在线播放| 亚洲经典国产精华液单| 大又大粗又爽又黄少妇毛片口| 老师上课跳d突然被开到最大视频| 国产精品伦人一区二区| 黄色视频在线播放观看不卡| 久久国内精品自在自线图片| 最近中文字幕高清免费大全6| 视频中文字幕在线观看| 亚洲国产精品一区三区| 国产亚洲午夜精品一区二区久久| 国产伦精品一区二区三区视频9| 久久99蜜桃精品久久| 国产成人精品久久久久久| 波野结衣二区三区在线| 成年女人在线观看亚洲视频| 中文字幕免费在线视频6| 下体分泌物呈黄色| 亚洲成人手机| 高清不卡的av网站| 97在线视频观看| 久久久成人免费电影| 在线观看一区二区三区| 国产真实伦视频高清在线观看| 中文天堂在线官网| av网站免费在线观看视频| 天堂中文最新版在线下载| 99视频精品全部免费 在线| 你懂的网址亚洲精品在线观看| www.av在线官网国产| 久久国产精品大桥未久av | 国产成人精品一,二区| 亚洲人成网站高清观看| 亚洲精品乱码久久久v下载方式| 亚洲精品乱码久久久v下载方式| 中文字幕制服av| 久久久久性生活片| 三级国产精品片| 韩国高清视频一区二区三区| 欧美3d第一页| 日本黄色片子视频| 欧美3d第一页| 美女视频免费永久观看网站| a级毛色黄片| 亚洲精品456在线播放app| 中文字幕亚洲精品专区| 尤物成人国产欧美一区二区三区| 亚洲图色成人| 婷婷色av中文字幕| 久久精品久久久久久久性| 久久精品久久久久久久性| 一二三四中文在线观看免费高清| 欧美日韩视频高清一区二区三区二| 午夜福利视频精品| 午夜福利视频精品| 亚洲成人手机| 亚洲av免费高清在线观看| 男人爽女人下面视频在线观看| 少妇 在线观看| 欧美 日韩 精品 国产| 国产深夜福利视频在线观看| 老熟女久久久| 日韩电影二区| 日日摸夜夜添夜夜添av毛片| 亚洲在久久综合| 最近中文字幕2019免费版| 欧美精品一区二区大全| 在线观看免费日韩欧美大片 | 国产v大片淫在线免费观看| 美女高潮的动态| 午夜精品国产一区二区电影| 少妇精品久久久久久久| 成人午夜精彩视频在线观看| 亚洲欧美成人精品一区二区| 内射极品少妇av片p| 精品酒店卫生间| 成人亚洲欧美一区二区av| 久久人妻熟女aⅴ| 亚洲精品视频女| 精品人妻视频免费看| 亚洲美女黄色视频免费看| 亚洲天堂av无毛| 精品一区二区免费观看| 亚洲av福利一区| 少妇的逼好多水| av在线播放精品| 91精品伊人久久大香线蕉| 欧美日韩国产mv在线观看视频 | a级一级毛片免费在线观看| 精品亚洲成a人片在线观看 | a级毛片免费高清观看在线播放| 久久精品久久精品一区二区三区| 春色校园在线视频观看| 人妻少妇偷人精品九色| 成年av动漫网址| 久热这里只有精品99| 国产成人一区二区在线| 高清午夜精品一区二区三区| 亚洲av国产av综合av卡| 看非洲黑人一级黄片| 高清av免费在线| 国产黄片视频在线免费观看| 亚洲四区av| 久久久久国产精品人妻一区二区| 国产69精品久久久久777片| 亚洲av综合色区一区| 老师上课跳d突然被开到最大视频| 亚洲精品一二三| 久久国产精品大桥未久av | 亚洲精品亚洲一区二区| 哪个播放器可以免费观看大片| 久久久成人免费电影| 一级毛片电影观看| 在线观看国产h片| 美女福利国产在线 | 亚洲第一av免费看| 日韩成人伦理影院| .国产精品久久| 国产免费一级a男人的天堂| 美女主播在线视频| 日韩av免费高清视频| av国产精品久久久久影院| 2021少妇久久久久久久久久久| 亚洲av综合色区一区| 夜夜爽夜夜爽视频| 性高湖久久久久久久久免费观看| 全区人妻精品视频| 亚洲精品久久久久久婷婷小说| av国产免费在线观看| 99久久中文字幕三级久久日本| 伦理电影免费视频| 91久久精品国产一区二区成人| 国模一区二区三区四区视频| 日本黄色片子视频| 久久久a久久爽久久v久久| 欧美日本视频| 全区人妻精品视频| 深夜a级毛片| 色吧在线观看| 亚洲国产精品一区三区| 精品久久久久久久末码| 建设人人有责人人尽责人人享有的 | 少妇人妻 视频| 多毛熟女@视频| 18禁在线无遮挡免费观看视频| 下体分泌物呈黄色| 91精品国产九色| 久久毛片免费看一区二区三区| 亚洲成色77777| 亚洲精品久久久久久婷婷小说| 高清日韩中文字幕在线| 成人18禁高潮啪啪吃奶动态图 | 人妻制服诱惑在线中文字幕| 国产av一区二区精品久久 | 精华霜和精华液先用哪个| 18禁裸乳无遮挡动漫免费视频| 成人影院久久| 婷婷色综合www| 91精品国产九色| 成人午夜精彩视频在线观看| 美女脱内裤让男人舔精品视频| 2022亚洲国产成人精品| 亚洲精品色激情综合| 啦啦啦视频在线资源免费观看| 热99国产精品久久久久久7| 国产精品久久久久久久久免| 一级毛片aaaaaa免费看小| 伦理电影大哥的女人| 寂寞人妻少妇视频99o| 久久99热这里只有精品18| 伦理电影免费视频| 2021少妇久久久久久久久久久| 日韩 亚洲 欧美在线| av线在线观看网站| 尾随美女入室| 永久网站在线| 最新中文字幕久久久久| 日韩av免费高清视频| 一本久久精品| 久久久久久久大尺度免费视频| 国产成人a区在线观看| 亚洲在久久综合| 免费高清在线观看视频在线观看| 亚洲av.av天堂| 亚洲,一卡二卡三卡| 亚洲综合精品二区| 亚洲欧美清纯卡通| 日本黄色片子视频| 51国产日韩欧美| 中文字幕免费在线视频6| 欧美3d第一页| 亚洲第一av免费看| h日本视频在线播放| av播播在线观看一区| 九色成人免费人妻av| 高清不卡的av网站| 久久精品久久久久久久性| 在线观看免费视频网站a站| 看免费成人av毛片| 男女啪啪激烈高潮av片| 最近最新中文字幕免费大全7| 人人妻人人添人人爽欧美一区卜 | 中文字幕人妻熟人妻熟丝袜美| 欧美+日韩+精品| 男女免费视频国产| 精品久久久久久久久亚洲| 日韩强制内射视频| 精品一区二区三区视频在线| 久久精品国产a三级三级三级| 久久久欧美国产精品| 大话2 男鬼变身卡| 少妇人妻 视频| 久久99热这里只频精品6学生| 国产精品国产三级国产专区5o| 在线观看人妻少妇| 岛国毛片在线播放| 国产亚洲5aaaaa淫片| 2018国产大陆天天弄谢| 国产在视频线精品| 国产精品久久久久久久久免| 国产毛片在线视频| 人妻夜夜爽99麻豆av| 最近最新中文字幕免费大全7| 日韩成人av中文字幕在线观看| 男人和女人高潮做爰伦理| 高清在线视频一区二区三区| 欧美激情极品国产一区二区三区 | 91久久精品国产一区二区三区| 日韩 亚洲 欧美在线| 日本欧美视频一区| 免费观看在线日韩| 爱豆传媒免费全集在线观看| 国产免费一区二区三区四区乱码| videos熟女内射| 国产精品一区二区在线观看99| 亚洲精品,欧美精品| 青青草视频在线视频观看| 少妇人妻精品综合一区二区| 联通29元200g的流量卡| av.在线天堂| 爱豆传媒免费全集在线观看| 好男人视频免费观看在线| 国产69精品久久久久777片| 另类亚洲欧美激情| 人妻夜夜爽99麻豆av| 色婷婷av一区二区三区视频| 在线观看国产h片| 欧美精品亚洲一区二区| 国产色爽女视频免费观看| 三级经典国产精品| 少妇丰满av| 亚洲,一卡二卡三卡| 成人二区视频| 亚洲性久久影院| 国产精品偷伦视频观看了| 精品久久久久久久久av| 在现免费观看毛片| 国产日韩欧美在线精品| 身体一侧抽搐| 伦理电影免费视频| 99热全是精品| 国产探花极品一区二区| 五月伊人婷婷丁香| 亚洲色图综合在线观看| 狠狠精品人妻久久久久久综合| 国产黄片美女视频| 日本wwww免费看| 精品久久久精品久久久| av在线老鸭窝| 国产女主播在线喷水免费视频网站| 日本猛色少妇xxxxx猛交久久| 大又大粗又爽又黄少妇毛片口| 国产一区二区三区综合在线观看 | 欧美少妇被猛烈插入视频| 国产成人aa在线观看| 久热这里只有精品99| 日产精品乱码卡一卡2卡三| 偷拍熟女少妇极品色| 欧美丝袜亚洲另类| 国产 一区 欧美 日韩| 国产高潮美女av| 欧美少妇被猛烈插入视频| 麻豆精品久久久久久蜜桃| 亚洲国产精品999| 亚洲精品视频女| 舔av片在线| 国产v大片淫在线免费观看| 色综合色国产| 日本wwww免费看| 国产精品久久久久成人av| 久久婷婷青草| av在线观看视频网站免费| 欧美日韩视频高清一区二区三区二| 欧美日韩亚洲高清精品| 国产男女超爽视频在线观看| 国产精品人妻久久久影院| 在线免费观看不下载黄p国产| 午夜免费男女啪啪视频观看| 亚洲真实伦在线观看| 黄色怎么调成土黄色| 国产无遮挡羞羞视频在线观看| 九草在线视频观看| 亚洲av.av天堂| 毛片女人毛片| 日韩一区二区视频免费看| 男女边摸边吃奶| 91久久精品国产一区二区成人| 九九爱精品视频在线观看| 日本免费在线观看一区| 国产一区二区在线观看日韩| 国产成人a∨麻豆精品| 国产色婷婷99| 亚洲精品,欧美精品| 插阴视频在线观看视频| 美女中出高潮动态图| 国产黄色免费在线视频| 亚洲aⅴ乱码一区二区在线播放| 少妇精品久久久久久久| 亚洲精品aⅴ在线观看| 日本av手机在线免费观看| 精品亚洲乱码少妇综合久久| 大话2 男鬼变身卡| 99九九线精品视频在线观看视频| 国产无遮挡羞羞视频在线观看| 国产av码专区亚洲av| 一级a做视频免费观看| 久热久热在线精品观看| 国产精品久久久久久久电影| 久久人人爽人人爽人人片va| 妹子高潮喷水视频| 精品国产一区二区三区久久久樱花 | 少妇丰满av| 日本一二三区视频观看| av专区在线播放| 亚洲欧美精品专区久久| videossex国产| 久热这里只有精品99| 久久久久精品久久久久真实原创| 婷婷色综合www| 国产精品国产av在线观看| 亚洲熟女精品中文字幕| 日韩欧美精品免费久久| 亚洲三级黄色毛片| 哪个播放器可以免费观看大片| 一级毛片我不卡| 国产午夜精品一二区理论片| 国产一区二区在线观看日韩| 国产淫片久久久久久久久| 亚洲在久久综合| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品一区蜜桃| 亚洲精品乱码久久久久久按摩| 国产免费视频播放在线视频| a级一级毛片免费在线观看| 26uuu在线亚洲综合色| 男人爽女人下面视频在线观看| 亚洲在久久综合| 大码成人一级视频| 男人狂女人下面高潮的视频| 一级毛片黄色毛片免费观看视频| 综合色丁香网| 精品一区二区三卡| 一区二区av电影网| 久久久久国产精品人妻一区二区| h日本视频在线播放| 男女边吃奶边做爰视频| 国产乱人偷精品视频| 久久热精品热| 91久久精品国产一区二区成人| 免费人成在线观看视频色| 哪个播放器可以免费观看大片| 日本欧美国产在线视频| 亚洲最大成人中文| 九色成人免费人妻av| 中文字幕制服av| 久久久亚洲精品成人影院| 卡戴珊不雅视频在线播放| 欧美97在线视频| 久久精品久久久久久噜噜老黄| 国产亚洲精品久久久com| 在线精品无人区一区二区三 | 中文字幕人妻熟人妻熟丝袜美| 日韩欧美 国产精品| 欧美zozozo另类| 国产淫语在线视频| 久久精品久久久久久噜噜老黄| 一区二区三区乱码不卡18| 狠狠精品人妻久久久久久综合| 三级经典国产精品| 男女边吃奶边做爰视频| 熟妇人妻不卡中文字幕| 亚洲色图av天堂| 国产亚洲欧美精品永久| 有码 亚洲区| 在线免费观看不下载黄p国产| 日韩,欧美,国产一区二区三区| xxx大片免费视频| a 毛片基地| 精品酒店卫生间| 国产成人精品婷婷| 日韩 亚洲 欧美在线| 国产精品一区二区在线观看99| 亚洲综合色惰| 欧美3d第一页| 人妻夜夜爽99麻豆av| 99九九线精品视频在线观看视频| av在线app专区| 国产在线视频一区二区| 免费av中文字幕在线| 亚洲图色成人| 日本免费在线观看一区| 久久综合国产亚洲精品| 纯流量卡能插随身wifi吗| 1000部很黄的大片| 日本一二三区视频观看| 国产成人精品一,二区| 日本av免费视频播放| 91精品国产国语对白视频| 秋霞伦理黄片| 欧美精品一区二区免费开放| 99久国产av精品国产电影| 国产欧美日韩精品一区二区| 少妇被粗大猛烈的视频| 亚洲av免费高清在线观看| 99re6热这里在线精品视频| 欧美亚洲 丝袜 人妻 在线| 偷拍熟女少妇极品色| 精品久久久噜噜| av在线蜜桃| 91精品伊人久久大香线蕉| 久久久久久久亚洲中文字幕| 日本av免费视频播放| 亚洲精品久久午夜乱码| av专区在线播放| 又大又黄又爽视频免费| 毛片一级片免费看久久久久| 久久久久久久久大av| 亚洲va在线va天堂va国产| 日韩,欧美,国产一区二区三区| 国产伦精品一区二区三区视频9| 久久精品久久久久久久性| 人妻制服诱惑在线中文字幕| 国产亚洲午夜精品一区二区久久| 欧美xxxx性猛交bbbb| 色网站视频免费| 国产国拍精品亚洲av在线观看| 天堂俺去俺来也www色官网| 大陆偷拍与自拍| 日本爱情动作片www.在线观看| 妹子高潮喷水视频| 亚洲精品aⅴ在线观看| 在线观看美女被高潮喷水网站| 久久精品熟女亚洲av麻豆精品| 国产免费又黄又爽又色| 99热网站在线观看| 免费黄网站久久成人精品| 亚洲精品久久午夜乱码| 黄色欧美视频在线观看| 国产黄色免费在线视频| 成人影院久久| 国产日韩欧美在线精品| 免费人妻精品一区二区三区视频| 国产免费视频播放在线视频| 欧美极品一区二区三区四区| 亚洲精品亚洲一区二区| 综合色丁香网| 久久毛片免费看一区二区三区| 国产黄频视频在线观看| 成年人午夜在线观看视频| 高清视频免费观看一区二区| 国产亚洲欧美精品永久| 韩国高清视频一区二区三区| 精品熟女少妇av免费看| 一级毛片久久久久久久久女| 男女无遮挡免费网站观看| 亚洲美女黄色视频免费看| 黄色视频在线播放观看不卡| 麻豆成人av视频| 男女国产视频网站| 国产精品一二三区在线看| 欧美精品人与动牲交sv欧美| 一本久久精品| 国产精品人妻久久久久久| 大片电影免费在线观看免费| 晚上一个人看的免费电影| 日韩av在线免费看完整版不卡| 青春草亚洲视频在线观看| 久久久久久人妻| 日韩中字成人| 一级毛片我不卡| 波野结衣二区三区在线| 国产视频首页在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲国产高清在线一区二区三| 天天躁日日操中文字幕| 国产大屁股一区二区在线视频| 久久久久精品久久久久真实原创| 午夜福利视频精品| 亚洲,欧美,日韩| 色婷婷av一区二区三区视频| 纯流量卡能插随身wifi吗| .国产精品久久| 卡戴珊不雅视频在线播放| 国产av一区二区精品久久 | 美女主播在线视频| 国产成人a∨麻豆精品| 欧美激情国产日韩精品一区| 精品久久久久久电影网| 韩国高清视频一区二区三区| 一个人看的www免费观看视频| 91精品伊人久久大香线蕉| 欧美激情极品国产一区二区三区 | 亚洲久久久国产精品| 久久精品国产自在天天线| 久久精品久久久久久久性| 一级毛片黄色毛片免费观看视频| 成人无遮挡网站| 亚洲色图av天堂| 伦理电影免费视频| 国产伦精品一区二区三区四那| 欧美日韩综合久久久久久| 观看av在线不卡| 亚洲高清免费不卡视频| 狂野欧美白嫩少妇大欣赏| 麻豆精品久久久久久蜜桃| 狂野欧美激情性bbbbbb| 亚洲精品中文字幕在线视频 | 国产精品麻豆人妻色哟哟久久| 精品久久久久久久久亚洲| av卡一久久| 黑丝袜美女国产一区| 卡戴珊不雅视频在线播放| 久热这里只有精品99| 免费av中文字幕在线| 啦啦啦视频在线资源免费观看| 欧美激情极品国产一区二区三区 | 激情 狠狠 欧美| 欧美日本视频| 精品久久久久久电影网| 精品亚洲成国产av| 国产精品一及| 韩国高清视频一区二区三区| 国产精品福利在线免费观看| 亚洲欧美一区二区三区国产| 久久国产精品大桥未久av | 视频区图区小说| 国产精品嫩草影院av在线观看| 日本黄大片高清| 国产淫片久久久久久久久| 久久女婷五月综合色啪小说| 一级毛片我不卡| 亚洲欧美日韩东京热| 18禁裸乳无遮挡动漫免费视频| 女的被弄到高潮叫床怎么办| 在线播放无遮挡| 国产亚洲最大av| 亚洲性久久影院| 夫妻午夜视频| 国产伦理片在线播放av一区| 自拍欧美九色日韩亚洲蝌蚪91 | av又黄又爽大尺度在线免费看| 亚洲av成人精品一区久久| 亚洲av国产av综合av卡| av线在线观看网站| 噜噜噜噜噜久久久久久91| 夜夜爽夜夜爽视频| 亚洲aⅴ乱码一区二区在线播放| 国产乱人视频| av在线app专区| 日韩三级伦理在线观看| 国产欧美亚洲国产| 色婷婷久久久亚洲欧美| 成人高潮视频无遮挡免费网站| 18禁裸乳无遮挡免费网站照片| 日产精品乱码卡一卡2卡三| 新久久久久国产一级毛片| 黑人高潮一二区| 欧美激情极品国产一区二区三区 | 日本av手机在线免费观看| 波野结衣二区三区在线| 韩国高清视频一区二区三区| 观看av在线不卡| 久久久精品免费免费高清| 国产免费一区二区三区四区乱码| 看免费成人av毛片| 午夜福利影视在线免费观看| 男人舔奶头视频| 热re99久久精品国产66热6| 亚洲国产av新网站| 国产日韩欧美在线精品| 色吧在线观看| 免费大片黄手机在线观看| 精品人妻熟女av久视频| 只有这里有精品99| 精品一区二区三卡| 美女内射精品一级片tv| 久久人妻熟女aⅴ| 久久久久久人妻| 丰满迷人的少妇在线观看| 久久鲁丝午夜福利片| 少妇 在线观看| 久久久久视频综合| 观看免费一级毛片| 深爱激情五月婷婷| 中文天堂在线官网| 亚洲欧美清纯卡通| 在线观看一区二区三区| 欧美老熟妇乱子伦牲交| av不卡在线播放| 2022亚洲国产成人精品| av在线app专区| 国产av国产精品国产| 精品国产一区二区三区久久久樱花 | 99热网站在线观看|