• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-pressure elastic anisotropy and superconductivity of hafnium:A first-principles calculation*

    2021-05-24 02:27:26ChengBinZhang張成斌WeiDongLi李衛(wèi)東PingZhang張平andBaoTianWang王保田
    Chinese Physics B 2021年5期
    關鍵詞:張平衛(wèi)東

    Cheng-Bin Zhang(張成斌), Wei-Dong Li(李衛(wèi)東), Ping Zhang(張平), and Bao-Tian Wang(王保田)2,3,,?

    1Institute of Theoretical Physics and Department of Physics,and Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China

    2Institute of High Energy Physics,Chinese Academy of Sciences,Beijing 100049,China

    3Spallation Neutron Source Science Center,Dongguan 523803,China

    4LCP,Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    Keywords: first-principles,elastic anisotropy,superconductivity,hafnium

    1. Introduction

    Hafnium and its alloys have a narrow d-band. For these d-band materials, the d-electron orbital occupation and pressure-induced s–d electron transfer are crucial for the structural stability,electronic transitions,and superconducting properties.[1–6]Till now,phase transformation and mechanical properties of Hf have been reported in experiments[7–11]and calculations[2–4,11–15]widely. Also, the experimental results of superconducting transition temperature(Tc)upon crystallographic phases under pressure for Hf have been reported by Brshkin et al.[16]However,the theoretical investigations of its superconductivity are not sufficient.

    Under ambient conditions, Hf metal crystallizes in a hexagonal close packed (hcp) structure (α phase).[9,17,18]Upon compressing,the α phase transforms into a so-called ω phase (hexagonal, space group P6/mmm).[9,11,18]Under further compression,the ω phase transforms into a body centered cubic (bcc) phase (β phase).[9,10]In previous theoretical and experimental reports,the transition pressures of α →ω (ω →β) are in range of 13.9–50 (30.7–73.1) GPa.[3,9–11,14,15,18]Structure changes will inevitably lead to performance changes.For example,the experimental results have confirmed that Hf metal exhibits the superconducting properties,[7,16,19–21]and the values of Tcare directly associated with their pressureinduced phase transitions. Under normal conditions, for α phase, the value of Tcis 0.128 K.[7,19,20]The effects of pressure on Tcare positive for α and ω phases,which results in an increase of Tcunder compression.[16,21–23]The values of Tcare increasing until the ω phase transforms to the β phase.[16]This high-pressure superconductivity behavior has not been theoretically studied in literature.

    In our previous studies, the pressure-dependent behaviors, such as phase transition, elastic constants, elastic moduli,phonon spectra,and thermodynamic properties,have been systematically investigated for Hf.[3]In the present work, we would like to extend our study to investigate these behaviors of elastic anisotropy and superconductivity under pressure.

    2. Computational methods

    2.1. Computational details

    The pseudopotential plane-wave method[24]is used to calculate the electronic properties, lattice dynamics, and electron–phonon coupling (EPC) within the Perdew–Burke–Ernzerhof(PBE)generalized gradient approximation(GGA)[25]through the QUANTUM-ESPRESSO(QE)package.[26]The 5s25p65d26s2electrons are treated as valence electrons. A kinetic energy cutoff of 100 Ry is used for all three phases, as well as Gaussians width of 0.02 Ry. The kpoint meshes of 24×24×16, 16×16×24, and 32×32×32 are employed for α, ω, and β phases, respectively. The phonon spectra and phonon density of states (PhDOS) are computed using the density-functional perturbation theory (DFPT)[27]with 6×6×4, 4×4×6, and 8×8×8 q-point meshes for α, ω,and β phases,respectively.

    2.2. Superconductivity

    The superconducting transition temperature Tccan be obtained from the Allen–Dynes modified McMillan equation[28,29]

    3. Results and discussion

    3.1. Anisotropy of elastic moduli

    In our previous investigation,[3]Hf metal crystallizes in α phase under ambient conditions. The transition pressure of α →ω (ω →β)is 44.8(73.1)GPa, which is in good agreement with the experimental result of 38±8 (72±1) GPa reported by Xia et al.[9]The crystal structures for α, ω, and β phases are shown in Figs.1(a)–1(c), as well as the indices of crystal direction and plane for hexagonal and cubic structures in Figs. 1(d) and 1(e). The pressure-dependent behaviors of the elastic constants and elastic moduli for Hf element have been systematically reported, as well as the detailed data of elastic constants, which can be found in Ref. [3]. Based on the calculated elastic constants,we extend our study to investigate the behavior of elastic anisotropy. Many low symmetry crystals exhibit a high degree of elastic anisotropy, which is closely related to the possibility of inducing micro-cracks in materials. The elastic anisotropy can be described by the universal anisotropic index AU[30]and the percent anisotropy in compression and shear(Acompand Ashear).[31,32]AU,Acomp,and Ashearfor a crystal are given as follows:

    where BV(GV)and BR(GR)are the bulk modulus(shear modulus) in the Voigt–Reuss–Hill (VRH) approximations,[33–35]respectively. Please see the detailed computation scheme of the BV, BR, GV, and GRin Ref. [6]for the hexagonal crystal and in Ref.[37]for cubic structure. When a solid is isotropic,AU=0. The large deviation of AUfrom 0 indicates the large extent of single crystal anisotropy. Thus,AUrepresents a universal measure to quantify the elastic anisotropy.[30]The values of Acompand Ashearcan range from 0 to 1, where 0 (1)represents the isotropic(the maximum elastic anisotropy).[38]Additionally, the shear anisotropic factors A1, A2, and A3are also considered to describe the elastic anisotropy due to our investigated crystal systems including hexagonal and cubic crystal structures. A1,A2,and A3are defined as[32]

    Fig.1. Crystal structures of(a)α-Hf, (b)ω-Hf, and(c)β-Hf, as well as the indices of crystal direction and plane for (d) hexagonal and (e)cubic structures.

    Table 1. The calculated ratio of bulk modulus (BV/BR) and shear modulus (GV/GR), universal anisotropic index (AU), percent anisotropy(Acomp and Ashear),and shear anisotropic factors(A1,A2,and A2)of Hf.

    As a valid method to describe the elastic anisotropic behavior of a solid completely, the three-dimensional (3D) surface constructions of the directional dependence of reciprocal of Young’s modulus are also investigated by the following expressions:[40]

    for cubic system,where Sijis the usual elastic compliance constant,which is obtained from the inverse of the matrix of elastic constants;l1,l2,and l3are the direction cosines.The results of Young’s modulus for α,ω,and β phases are shown in panels(a)and(c)of Figs.2–4,as well as the corresponding shear modulus in panels(b)and(d)of Figs.2–4.The surface in each of graphs means the magnitude of E and G in different directions. For an isotropic system, the 3D surface construction is a spherical shape. The values of anisotropy coefficient are reflected by the deviation degree from the spherical shape.In addition,we calculate Young’s modulus in the three principal directions by E[100]=1/S11,E[010]=1/S22,and E[001]=1/S33.

    Fig.2. Directional dependences of Young’s modulus for α-Hf under(a)0 GPa and(c)40 GPa with the corresponding shear modulus in(b)and(d).

    Fig.3. Directional dependences of Young’s modulus for ω-Hf under(a)0 GPa and(c)60 GPa with the corresponding shear modulus in(b)and(d).

    Fig.4. Directional dependences of Young’s modulus for β-Hf under(a)73 GPa and(c)100 GPa with the corresponding shear modulus in(b)and(d).

    For the hexagonal α and ω phases,a large deviation in 3D surface constructions from the sphere indicates that Young’s modulus E and shear modulus G show a strong anisotropy(see Figs.2 and 3). Under compression,Young’s modulus and shear modulus have the increasing deviation in shape from the sphere. It is suggested that Young’s modulus and shear modulus show a increasing elastic anisotropy. For α phase,E[100]is equal to E[010]=185.18 GPa <E[001]=208.33 GPa at 0 GPa.E[100]is equal to E[010]=263.16 GPa <E[001]=333.33 GPa at 40 GPa. These indicate that Young’s modulus along [100]or[010]direction are more compressible than along[001]direction for α-Hf. Similarly, for ω phase, E[100]is equal to E[010]=163.93 GPa <E[001]=212.77 GPa(E[100]is equal to E[010]=294.12 GPa <E[001]=333.33 GPa) at 0 (60) GPa.For β phase,Young’s modulus in three principal-axial(E[100],E[010], and E[001]) directions are 263.16 (333.33) GPa at 73(100) GPa. Meanwhile, Young’s modulus in [110] and [111]directions by using the expressions introduced in the recent report[41]are 300.75(370.37)GPa and 500(555.56)GPa at 73(100)GPa.Therefore,one can conclude that Young’s modulus has a strong directional dependence. The difference values in the directional Young’s modulus between[111]and the principal axes direction are 199.25 GPa and 185.19 GPa for 73 GPa and 100 GPa,respectively,which indicates that Young’s modulus shows an anisotropic property and the anisotropy decreases upon compression. Although the difference values are on the decrease along with the pressure increasing from 73 to 100 GPa,Young’s modulus still shows a strong anisotropic property[see Figs.4(a)and 4(c)]. As shown in Figs.4(b)and 4(d),the largest value locates on the[100]direction while the smallest value exists on the[110]direction for shear modulus.According to these results, one can conclude that the β-Hf is much easier to stretch along the [100] direction than other directions and also easy to shear along the [110] direction.The results of 3D surface constructions also show that elastic anisotropies increase with increasing pressure for α and ω phases, while decrease upon compression for β phase. This result also supports our conclusion from the analysis of the universal elastic anisotropy indexes.

    3.2. Superconductive properties

    Hafnium has excellent performance for high-temperature superconductivity, especially the high-pressure β phase.[16]Now, we focus our attention on structures of the electronic,vibration modes,and the EPC in pressure range of 0–100 GPa to analyze the effect of pressure on superconductivity. The orbital-resolved band structures and the electronic DOS curves of α,ω,and β phases are plotted in Figs.5–7.

    Fig. 5. Orbital-resolved band structures for α-Hf under (a) 0, (c) 20,and (e) 40 GPa, respectively, with the total and orbital-resolved local electron DOS in(b),(d),and(f).

    Comparing the results at different pressures,one can see that the contribution of the bands around the Fermi energy level mainly comes from the Hf-d orbital, while the contribution from the p orbital is limited and from the s orbital is hardly seen. As the DOS curves shown in Fig. 5, for α phase, the values of total N(EF) are 0.715 states/(eV atom),0.701 states/(eV atom), and 0.688 states/(eV atom) at 0 GPa,20 GPa, and 40 GPa, respectively. The values of total N(EF)are decreasing with increasing pressure from 0 to 40 GPa.In addition, at 0 GPa, there is a peak (near 0.31 eV) and a valley (near ?0.10 eV) lying in two sides of the Fermi energy level, respectively. Upon compressing, both of them are shifted downwards in energy level. For ω phase(see Fig.6),there exist two different kinds of atoms: Hf1 in 1a and Hf2 in 2d sites. The N(EF) values of Hf1-d (Hf2-d) electrons are 0.500 (0.626) states/(eV atom), 0.544 (0.611) states/(eV atom),and 0.547(0.570)states/(eV atom)at 45 GPa,60 GPa,and 70 GPa,respectively. Along with increasing the pressure from 45 to 70 GPa, the occupied of Hf1-d electron will approach to Hf2-d electron occupation at the Fermi level. Although the d-electron occupation of Hf1 and Hf2 has an opposite evolution upon compressing around the Fermi level,the total N(EF)still increases within 45–70 GPa.

    Fig. 6. Orbital-resolved band structures for ω-Hf under (a) 0, (c) 40,and (e) 60 GPa, respectively, with the total and orbital-resolved local electron DOS in(b),(d),and(f).

    Fig. 7. Orbital-resolved band structures for β-Hf under (a) 70, (c) 80,and(e)100 GPa, respectively, with the total and orbital-resolved local electron DOS in(b),(d),and(f).

    Moreover, there also have a peak (near 0.21 eV) and a valley (near ?0.07 eV) at the conduction band and valence band, respectively, and both of them are shifted downwards in energy level upon compression. For β phase (see Fig. 7),different from the α and ω phases,although the peak and the valley also lie at nearly 0.24 eV and ?0.18 eV, respectively,both of them are shifted upwards in energy level with pressure increasing. From 75 GPa to 100 GPa,the total N(EF)presents a trend of decrease from 1.436 to 1.097 states/(eV atom).

    Next, we want to discuss the vibrational properties, the EPC, and the PhDOS of Hf metal, as well as the Eliashberg spectral function α2F(ω). The results are plotted in Fig.8 for α phase at 0 GPa, 20 GPa, and 40 GPa, Fig. 9 for ω phase at 45 GPa, 60 GPa, and 70 GPa, and Fig. 10 for β phase at 75 GPa,80 GPa,and 100 GPa,respectively. In fact,no imaginary modes are observed, which clearly indicates that α, ω and β phases are dynamically stable at given pressure domain.In addition,one can see that pressure will enhance the phonon energies. These results turn out to be the same as our recent result.[3]The phonon vibrations can be divided into two forms:in-plane vibrations Hfxyand out-of-plane vibrations Hfz. For α and β phases, the Hfxyand Hfzphonon vibrations are visible in the full BZ.Different from the α and β phases, for ω phase,the in-plane vibrations(Hf1xyand Hf2xy)are visible in the full BZ while the out-of-plane vibrations of the Hf1z(Hf2z)occupy the frequencies region above(below)100 cm?1.

    We also calculate the phonon dispersions weighted by the magnitude of the EPC λqv, the PhDOS, the Eliashberg electron-phonon spectral function α2F(ω), and the cumulative frequency-dependent of EPC λ(ω) and plot them in Figs.8–10 for α,ω,and β phases,respectively. The λqv,here,according to the Migdal–Eliashberg theroy,[42]can be written as

    The cumulative frequency dependence of EPC λ(ω) and the α2F(ω) can be obtained from Eqs. (3) and (4), respectively.For α-Hf (see Fig. 8), at 0 GPa, according to our calculated λ(ω),one can see that the total EPC λ is equal to 0.511,and the vibrations, in the frequency below ~76 cm?1, contribute 0.205 (40.1%). The phonons, in the frequency region of 76–112 cm?1,contribute 0.170(33.3%)of the total EPC,and the remaining 0.136 (26.6%) contribution comes from phonons in frequencies above 112 cm?1. Increasing the pressure to 40 GPa, the total EPC λ increases to 0.605, and almost half the λ comes from the contribution of phonons in frequencies below ~93 cm?1. In the frequency region 0–93 cm?1, the large values of the λqvhere lead to the large EPC strength,which has resulted in a peak of the PhDOS and the α2F(ω).As shown in Fig. 9, for ω phase, at 45 GPa, the total EPC λ =0.582. In frequencies below ~65 cm?1, the λ accounts for 15.3%(0.089)of the total EPC,and the large values of the EPC strength λqvhere result in a peak on the α2F(ω). Most of the total λ, about 75.0%, come from the contribution of phonons in frequency region of 65–187 cm?1. At 70 GPa,the total EPC λ increases to 0.727,and the phonons’contribution in frequencies below ~65 cm?1increases to 21.2%(0.154)of the total EPC. However, the contribution of phonons, in the frequency region of 65–187 cm?1, decreases to 59.9%. For β phase (see Fig. 10), at 75 GPa, the total EPC λ =1.624.The phonons,in frequency region of 0–45(45–70)cm?1,contribute 30.0% (15.0%) of the total λ. Obviously, the large values of λqvalong the Γ–A direction in the frequency range 0–50 cm?1are mainly due to the lowest transverse-acoustics(TA1)soft mode,which results in a peak on the α2F(ω). Increasing the pressure to 100 GPa, the total EPC λ decreases to 0.941. In addition, the soft mode of the TA1 branch will gradually fade away by increasing pressure, which results in the decrease of λ. Similar results can be found in our previous work of β Zr.[43]

    The superconducting transition temperatures Tchave been calculated from Eq.(1)with a typical value μ*=0.1 is used,and plotted in Fig.11 for these there phases. Clearly,the different phenomena are observed in the pressure dependence.The pressure coefficient of the Tcin the α and ω phases is a positive value,while the β-Hf shows a negative pressure coefficient. In addition, although our predicted values of Tcare larger than the experimental values, the pressure-dependent behaviors accord well with the experimental results.[16]According to the McMilan equation [Eq. (1)], one can see that the Tcis determined by ωlog, λ, and N(EF). Thus, we have calculated the ωlogand the λ in the pressure range 0–100 GPa and plotted them in Fig. 12. The results show that the values of the λ for α and ω phases increase with the increasing pressure, as well as the values of the ωlogfor α phase.However, the ωlogchange is not evident under compression for ω phase. In our previous discussion, the total N(EF) of α phase decreases with pressure. These results support this conclusion that the increase of Tcfor α phase under pressure mainly originates from the increase of λ and ωlog, as well as the decrease of N(EF) by increasing pressure. For ω phase,although the total N(EF) of α phase increases with pressure,the N(EF) of Hf2 decreases with pressure. Moreover, Fig. 9 shows that the Hf2 phonons’vibrations contribute most of the total λ. Therefore,one can conclude that the increase of Tcfor ω phase mainly originates from the increase of λ. However,for β phase,almost opposite evolutions appear on ωlogand λ curves in the pressure range 75–100 GPa. The increasing rate of ωlogis smaller than the decreasing rate of λ. Thus the decrease of Tcfor β phase mainly originates from the decrease of λ in 75–100 GPa pressure domain. In addition,the lowest TA1 soft mode for β phase can lead a significant electronphonon contribution, which has been discussed in the above paragraph.With the increasing pressure,soft vibrational mode gradually fades away. Thus,the decrease of Tcunder pressure mainly originates from the fading of soft vibrational modes induced by increasing pressure. Actually, for Zr metal, similar pressure-dependent behaviors are also observed in Tc, which has been reported in experiments by Akahama et al.[44]and calculations by Wang et al.[43]Akahama et al. believe that the effect of pressure on the Tchas relation with the s–d electronic transformation. For transition metals, the dTc/dP is governed by the shape of the d-band, expressed by the quantity dN(EF)/dZd.[45]Zdis valence electron numbers. Compression affects the Tcin the same way as filling the d-band by adding atoms of higher valency.[44]As a same group element,the s–d transition is also a feature of Hf under pressure.Therefore,we surmise that the effect of pressure on the Tcalso has relation with the s–d electronic transformation for Hf metal.Future investigations are needed to verify our speculation.

    Fig.11. Calculated superconducting transition temperature Tc versus pressure for α,ω,and β phases. The experimental values of Tc from Ref.[16]are also presented.The half right circle is an indication of a two-phase ω+β state of the sample under these conditions.[16]

    Fig.12. Pressure dependences of logarithmic average of the vibrational frequencies ωlog and EPC constants λ.

    4. Conclusion

    In summary, the first-principles calculations are employed to investigate the elastic anisotropy and superconductive properties of hafnium metal. Hafnium is an elastic anisotropic crystal. Its elastic moduli are strongly dependent on different directions. From the anisotropic parameters and the 3D surface constructions of the E and G,one can conclude that the elastic anisotropy increases with increasing pressure for α and ω phases, while decreases under compression for β phase. In addition, our calculated Tcagrees well with experiments. Upon compression, the increase (decrease) of Tcmainly originates from the corresponding increase(decrease)behavior of the EPC constant λ.

    Acknowledgment

    The calculations were performed at Supercomputer Center in China Spallation Neutron Source.

    Appendix A: Convergence test of electron–phonon coupling constant

    It is difficult to obtain convergent λ, directly. In practical EPC matrix element calculation, the δ function can be replaced by the smearing function with a broadening width σ.[46]We are interested in the limit that σ →0 and the number of k points →∞. In order to obtain convergent EPC constant λ,we have extensively tested the number of k and q points for α-Hf at 0 GPa. These results are shown in Fig.A1. As shown in Fig.A1,for α-Hf at 0 GPa,with increasing the number of k or q points, the values of λ decrease. When the k and q points increase to a certain extent,the differences of λ values are small,meanwhile there is an emergence of a small separation near σ =0.02 eV in the overlapping results. According to the results,we can say that the calculated EPC constant λ is convergent for a k-point,e.g.,24×24×16,and a q-point,e.g.,6×6×4. In addition,the corresponding σ is 0.02 eV.

    Fig.A1. Convergence test of EPC constant versus smearing parameter σ in α-Hf at 0 GPa with different k and q points.

    猜你喜歡
    張平衛(wèi)東
    Nanosecond laser preheating effect on ablation morphology and plasma emission in collinear dual-pulse laser-induced breakdown spectroscopy
    Topological properties of Sb(111)surface: A first-principles study
    嘰嘰喳喳的小喜鵲
    這是你爺倆
    金秋(2020年16期)2020-12-09 01:41:50
    Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases?
    祝衛(wèi)東
    愛打噴嚏的小河馬
    張平書法作品選
    Mechanical Behavior of Bistable Bump Surface for Morphing Inlet
    種心情
    亚洲免费av在线视频| 国内久久婷婷六月综合欲色啪| 久久伊人香网站| 久久久久久久久中文| 又紧又爽又黄一区二区| 97人妻精品一区二区三区麻豆 | 涩涩av久久男人的天堂| 美女高潮到喷水免费观看| 亚洲成av人片免费观看| 亚洲avbb在线观看| 老司机在亚洲福利影院| 色综合亚洲欧美另类图片| 狠狠狠狠99中文字幕| 非洲黑人性xxxx精品又粗又长| 国内精品久久久久精免费| 在线观看免费视频日本深夜| 午夜福利,免费看| 一级片免费观看大全| 精品久久蜜臀av无| 麻豆一二三区av精品| 悠悠久久av| 18禁国产床啪视频网站| 午夜福利视频1000在线观看 | 日本精品一区二区三区蜜桃| 真人一进一出gif抽搐免费| 亚洲国产中文字幕在线视频| 在线十欧美十亚洲十日本专区| 男女午夜视频在线观看| 免费女性裸体啪啪无遮挡网站| 国产麻豆69| 亚洲色图综合在线观看| 黑人巨大精品欧美一区二区蜜桃| 天天添夜夜摸| 欧美中文日本在线观看视频| 色老头精品视频在线观看| 久久国产乱子伦精品免费另类| 国产精品自产拍在线观看55亚洲| 成人国语在线视频| 天天一区二区日本电影三级 | 午夜久久久久精精品| 老熟妇乱子伦视频在线观看| 丰满的人妻完整版| 麻豆av在线久日| 欧美另类亚洲清纯唯美| 老熟妇乱子伦视频在线观看| av视频免费观看在线观看| av网站免费在线观看视频| 成熟少妇高潮喷水视频| 欧美日韩精品网址| 一进一出好大好爽视频| 青草久久国产| 中文字幕av电影在线播放| 亚洲精品中文字幕在线视频| www.999成人在线观看| 十八禁人妻一区二区| 校园春色视频在线观看| 女性被躁到高潮视频| 亚洲国产精品sss在线观看| 久久人妻福利社区极品人妻图片| 桃色一区二区三区在线观看| 又黄又粗又硬又大视频| 国产av一区二区精品久久| av超薄肉色丝袜交足视频| 精品久久久久久成人av| 又黄又爽又免费观看的视频| 男人舔女人下体高潮全视频| 一级片免费观看大全| 高清在线国产一区| 麻豆久久精品国产亚洲av| 日韩欧美三级三区| 午夜精品久久久久久毛片777| 亚洲欧美日韩高清在线视频| 日韩精品青青久久久久久| 女生性感内裤真人,穿戴方法视频| 国产欧美日韩一区二区精品| 亚洲av成人一区二区三| 久久久国产欧美日韩av| 亚洲国产精品成人综合色| 大码成人一级视频| 在线十欧美十亚洲十日本专区| 欧美日韩一级在线毛片| 啦啦啦观看免费观看视频高清 | 亚洲免费av在线视频| 成人永久免费在线观看视频| 国产在线观看jvid| 一级,二级,三级黄色视频| 国产片内射在线| 99国产精品一区二区三区| 国产真人三级小视频在线观看| 一夜夜www| 91国产中文字幕| 人人澡人人妻人| 999久久久精品免费观看国产| 99精品欧美一区二区三区四区| 给我免费播放毛片高清在线观看| 在线国产一区二区在线| 国产高清激情床上av| 国产精品 国内视频| 制服人妻中文乱码| 成人国产一区最新在线观看| 久久中文字幕一级| 国产成人欧美在线观看| 在线观看66精品国产| 91麻豆精品激情在线观看国产| 久久久久九九精品影院| 高潮久久久久久久久久久不卡| 国产高清视频在线播放一区| 亚洲av电影在线进入| 两人在一起打扑克的视频| 欧美乱色亚洲激情| 巨乳人妻的诱惑在线观看| 一夜夜www| 国产精品 欧美亚洲| 亚洲成人免费电影在线观看| 淫秽高清视频在线观看| 欧美一级毛片孕妇| 一区二区三区激情视频| 91成年电影在线观看| 97超级碰碰碰精品色视频在线观看| 成人永久免费在线观看视频| 18禁国产床啪视频网站| 99久久精品国产亚洲精品| 免费在线观看视频国产中文字幕亚洲| 国产精品久久久人人做人人爽| 一区二区三区精品91| 中文字幕av电影在线播放| 人人妻人人澡欧美一区二区 | 亚洲精品在线美女| 亚洲av电影在线进入| 精品欧美一区二区三区在线| 身体一侧抽搐| 免费观看人在逋| 亚洲avbb在线观看| 日本免费一区二区三区高清不卡 | 女同久久另类99精品国产91| 久久久久久大精品| 丰满人妻熟妇乱又伦精品不卡| 一区二区三区激情视频| 91av网站免费观看| xxx96com| 久久国产乱子伦精品免费另类| 电影成人av| 亚洲欧美日韩高清在线视频| 日本欧美视频一区| 久久久久国内视频| 少妇的丰满在线观看| 最近最新中文字幕大全电影3 | 精品卡一卡二卡四卡免费| 亚洲一区中文字幕在线| 麻豆久久精品国产亚洲av| 大型黄色视频在线免费观看| 国产主播在线观看一区二区| 啦啦啦 在线观看视频| 亚洲人成电影观看| 欧美中文日本在线观看视频| 法律面前人人平等表现在哪些方面| 级片在线观看| 久久人人爽av亚洲精品天堂| 又紧又爽又黄一区二区| 9热在线视频观看99| 国产精品久久久久久亚洲av鲁大| 亚洲自拍偷在线| 国产三级黄色录像| 久久久久国内视频| 精品午夜福利视频在线观看一区| 欧美日韩亚洲国产一区二区在线观看| 日本三级黄在线观看| svipshipincom国产片| 日日爽夜夜爽网站| 又紧又爽又黄一区二区| 神马国产精品三级电影在线观看 | 久久久久久久久中文| 在线观看免费视频日本深夜| 99国产极品粉嫩在线观看| 午夜免费观看网址| 俄罗斯特黄特色一大片| 欧美日韩一级在线毛片| 亚洲国产精品久久男人天堂| 亚洲自偷自拍图片 自拍| 欧美亚洲日本最大视频资源| 久久亚洲精品不卡| 欧美激情高清一区二区三区| 欧美日韩福利视频一区二区| 欧美大码av| 免费在线观看视频国产中文字幕亚洲| 午夜两性在线视频| 国产免费av片在线观看野外av| 久久人妻熟女aⅴ| 在线观看免费午夜福利视频| 午夜久久久久精精品| 国产精品亚洲美女久久久| 久久国产精品影院| 亚洲av日韩精品久久久久久密| 成人国语在线视频| 三级毛片av免费| 宅男免费午夜| 日本免费a在线| 日本撒尿小便嘘嘘汇集6| 亚洲av成人一区二区三| 国产野战对白在线观看| 老鸭窝网址在线观看| 人人澡人人妻人| 亚洲精品在线观看二区| 俄罗斯特黄特色一大片| 老司机午夜福利在线观看视频| 18美女黄网站色大片免费观看| 国产精华一区二区三区| 欧美久久黑人一区二区| 欧美亚洲日本最大视频资源| 长腿黑丝高跟| 久久久国产成人免费| 欧洲精品卡2卡3卡4卡5卡区| 久久久久国产精品人妻aⅴ院| 欧美+亚洲+日韩+国产| 亚洲中文av在线| 欧美人与性动交α欧美精品济南到| 淫妇啪啪啪对白视频| 激情在线观看视频在线高清| 亚洲自拍偷在线| 久久久久久大精品| 国产麻豆69| netflix在线观看网站| 大型黄色视频在线免费观看| 国产一区二区在线av高清观看| 久久精品成人免费网站| 欧美成人免费av一区二区三区| 男男h啪啪无遮挡| 老汉色∧v一级毛片| 啦啦啦 在线观看视频| 午夜精品久久久久久毛片777| 色老头精品视频在线观看| 国产黄a三级三级三级人| 国产激情久久老熟女| 成人国产一区最新在线观看| 视频在线观看一区二区三区| 欧美性长视频在线观看| 露出奶头的视频| 国产精品永久免费网站| 自线自在国产av| 亚洲精华国产精华精| netflix在线观看网站| 在线观看免费视频网站a站| 性色av乱码一区二区三区2| 制服人妻中文乱码| 久久欧美精品欧美久久欧美| 成人亚洲精品一区在线观看| 久久人人爽av亚洲精品天堂| 国产欧美日韩一区二区三| 很黄的视频免费| 亚洲三区欧美一区| а√天堂www在线а√下载| 亚洲天堂国产精品一区在线| 久久国产精品男人的天堂亚洲| 午夜精品久久久久久毛片777| 九色亚洲精品在线播放| av视频在线观看入口| 91老司机精品| 精品一品国产午夜福利视频| 十分钟在线观看高清视频www| 亚洲一区二区三区色噜噜| 一个人观看的视频www高清免费观看 | 日日摸夜夜添夜夜添小说| 在线观看免费视频网站a站| 亚洲人成伊人成综合网2020| 一级黄色大片毛片| 啪啪无遮挡十八禁网站| netflix在线观看网站| 亚洲熟妇中文字幕五十中出| svipshipincom国产片| 久久人人精品亚洲av| 成年人黄色毛片网站| 国产乱人伦免费视频| 久久久久久久午夜电影| 两个人看的免费小视频| 两个人免费观看高清视频| 欧美色欧美亚洲另类二区 | 免费在线观看亚洲国产| 亚洲全国av大片| 18禁裸乳无遮挡免费网站照片 | 在线观看www视频免费| 亚洲一码二码三码区别大吗| 波多野结衣巨乳人妻| 欧美黑人欧美精品刺激| 国产激情久久老熟女| 久久人人精品亚洲av| 99精品久久久久人妻精品| 又紧又爽又黄一区二区| 一个人观看的视频www高清免费观看 | 巨乳人妻的诱惑在线观看| 精品无人区乱码1区二区| 精品国产超薄肉色丝袜足j| 久久久久久久久久久久大奶| 老熟妇乱子伦视频在线观看| 国产成人精品久久二区二区91| 国产1区2区3区精品| 亚洲av美国av| svipshipincom国产片| 日本欧美视频一区| 中出人妻视频一区二区| 亚洲第一av免费看| 首页视频小说图片口味搜索| 国产精品影院久久| 国内精品久久久久久久电影| 日本免费一区二区三区高清不卡 | 欧美日本亚洲视频在线播放| av片东京热男人的天堂| 久久欧美精品欧美久久欧美| 久久久精品国产亚洲av高清涩受| 韩国精品一区二区三区| 美女 人体艺术 gogo| 免费在线观看影片大全网站| 两性夫妻黄色片| 黑人巨大精品欧美一区二区mp4| av视频在线观看入口| 韩国av一区二区三区四区| 一二三四社区在线视频社区8| 亚洲天堂国产精品一区在线| 国产一卡二卡三卡精品| 国产精品一区二区在线不卡| 国产成人系列免费观看| 性欧美人与动物交配| av中文乱码字幕在线| 欧美日韩一级在线毛片| 男人舔女人的私密视频| 久久久精品国产亚洲av高清涩受| 97碰自拍视频| 国内精品久久久久久久电影| 国产男靠女视频免费网站| 热99re8久久精品国产| 久久久久久人人人人人| 麻豆国产av国片精品| 久久香蕉精品热| 久久久久久久久久久久大奶| 在线观看66精品国产| 夜夜爽天天搞| 亚洲欧美精品综合一区二区三区| 久久久久久久久久久久大奶| 黄色成人免费大全| 日韩高清综合在线| 黑人巨大精品欧美一区二区mp4| 国产精品 国内视频| 国产精品国产高清国产av| 亚洲精品中文字幕一二三四区| 久久精品国产综合久久久| 女性生殖器流出的白浆| 亚洲国产欧美网| 亚洲精品粉嫩美女一区| 亚洲精品av麻豆狂野| 亚洲av成人av| 我的亚洲天堂| 欧美激情极品国产一区二区三区| 夜夜躁狠狠躁天天躁| 91麻豆精品激情在线观看国产| 成人18禁在线播放| 黄色女人牲交| 久久热在线av| 天堂√8在线中文| 夜夜躁狠狠躁天天躁| 欧美黑人欧美精品刺激| 啦啦啦韩国在线观看视频| www.999成人在线观看| 精品国产乱子伦一区二区三区| 欧美黑人欧美精品刺激| 窝窝影院91人妻| www.999成人在线观看| 欧美一级a爱片免费观看看 | 中文字幕人成人乱码亚洲影| 午夜久久久在线观看| 波多野结衣高清无吗| 可以在线观看的亚洲视频| 老汉色∧v一级毛片| 国产欧美日韩一区二区精品| 亚洲全国av大片| 人人妻人人澡人人看| 欧美一区二区精品小视频在线| 精品熟女少妇八av免费久了| 亚洲专区中文字幕在线| 夜夜夜夜夜久久久久| 91成人精品电影| 国产精品美女特级片免费视频播放器 | 中亚洲国语对白在线视频| 美女国产高潮福利片在线看| av超薄肉色丝袜交足视频| 久热爱精品视频在线9| 久久久久久久久久久久大奶| 中文亚洲av片在线观看爽| 午夜福利视频1000在线观看 | 亚洲一区高清亚洲精品| 国产三级在线视频| 欧美日韩亚洲国产一区二区在线观看| av视频免费观看在线观看| 伦理电影免费视频| 十八禁网站免费在线| 国产精品电影一区二区三区| 国产一区二区在线av高清观看| 99国产精品99久久久久| 欧美激情高清一区二区三区| 亚洲色图av天堂| 啪啪无遮挡十八禁网站| 黄网站色视频无遮挡免费观看| 午夜精品在线福利| 欧美+亚洲+日韩+国产| 99久久精品国产亚洲精品| 村上凉子中文字幕在线| 99久久综合精品五月天人人| 亚洲精品久久成人aⅴ小说| 在线播放国产精品三级| 亚洲av美国av| 一区二区三区国产精品乱码| 免费看美女性在线毛片视频| 老司机在亚洲福利影院| 午夜免费激情av| 动漫黄色视频在线观看| av福利片在线| 久久人人精品亚洲av| 亚洲欧美精品综合久久99| 午夜福利欧美成人| 在线播放国产精品三级| АⅤ资源中文在线天堂| 黑人操中国人逼视频| 国产伦人伦偷精品视频| 在线观看66精品国产| 给我免费播放毛片高清在线观看| 伊人久久大香线蕉亚洲五| 久久这里只有精品19| 日韩精品青青久久久久久| 在线av久久热| 午夜福利一区二区在线看| 成人18禁高潮啪啪吃奶动态图| 欧美老熟妇乱子伦牲交| 成人欧美大片| 日本免费a在线| 97人妻天天添夜夜摸| 国产成+人综合+亚洲专区| 91成年电影在线观看| 亚洲专区字幕在线| 夜夜爽天天搞| 国产午夜福利久久久久久| 可以在线观看的亚洲视频| 免费看a级黄色片| 狂野欧美激情性xxxx| 午夜a级毛片| 黄色丝袜av网址大全| 十八禁网站免费在线| 久久久久久久久中文| 免费女性裸体啪啪无遮挡网站| 777久久人妻少妇嫩草av网站| 黄片大片在线免费观看| ponron亚洲| 欧美丝袜亚洲另类 | 黄片播放在线免费| 国产精品日韩av在线免费观看 | 久久久久九九精品影院| 好男人电影高清在线观看| 国产成人欧美在线观看| 91麻豆精品激情在线观看国产| 日韩大尺度精品在线看网址 | 成年版毛片免费区| 亚洲色图 男人天堂 中文字幕| 大型黄色视频在线免费观看| 91麻豆av在线| 免费av毛片视频| 国内精品久久久久精免费| 日韩视频一区二区在线观看| 又黄又爽又免费观看的视频| 成人手机av| 神马国产精品三级电影在线观看 | 亚洲成a人片在线一区二区| 成人三级黄色视频| 成人18禁高潮啪啪吃奶动态图| 国产一区二区激情短视频| 亚洲一区二区三区不卡视频| 日本 欧美在线| 亚洲成人久久性| 首页视频小说图片口味搜索| 亚洲视频免费观看视频| 精品高清国产在线一区| 人成视频在线观看免费观看| 黄色 视频免费看| 久久久久久亚洲精品国产蜜桃av| 他把我摸到了高潮在线观看| 一区二区三区国产精品乱码| 欧美在线一区亚洲| 动漫黄色视频在线观看| e午夜精品久久久久久久| 婷婷六月久久综合丁香| 脱女人内裤的视频| 51午夜福利影视在线观看| 变态另类成人亚洲欧美熟女 | 成人三级黄色视频| 精品第一国产精品| 天天添夜夜摸| 又紧又爽又黄一区二区| 美女 人体艺术 gogo| 日韩精品免费视频一区二区三区| 中文字幕久久专区| 一夜夜www| 亚洲电影在线观看av| 日韩一卡2卡3卡4卡2021年| 男人舔女人下体高潮全视频| 免费观看精品视频网站| 亚洲七黄色美女视频| 精品国产超薄肉色丝袜足j| 免费不卡黄色视频| 亚洲激情在线av| 午夜日韩欧美国产| 国产精品久久视频播放| 嫩草影视91久久| www.精华液| 久久香蕉国产精品| 9热在线视频观看99| 午夜精品久久久久久毛片777| 久久国产乱子伦精品免费另类| 欧美大码av| 亚洲性夜色夜夜综合| 曰老女人黄片| 欧美日韩一级在线毛片| 日韩精品免费视频一区二区三区| 可以在线观看毛片的网站| 国产伦人伦偷精品视频| 亚洲精品国产区一区二| 亚洲成国产人片在线观看| 欧美午夜高清在线| 在线国产一区二区在线| 18美女黄网站色大片免费观看| 自线自在国产av| 日本在线视频免费播放| 国产成人精品在线电影| 亚洲色图av天堂| 日本一区二区免费在线视频| 久久精品aⅴ一区二区三区四区| 国内精品久久久久精免费| 51午夜福利影视在线观看| 国产一区二区三区视频了| 中文字幕色久视频| 欧美黄色片欧美黄色片| 欧美 亚洲 国产 日韩一| 高清毛片免费观看视频网站| 久久久久久人人人人人| www.精华液| 久久久久久大精品| 精品少妇一区二区三区视频日本电影| 一进一出抽搐动态| 成人三级黄色视频| 啦啦啦观看免费观看视频高清 | 亚洲中文字幕一区二区三区有码在线看 | 少妇粗大呻吟视频| 亚洲精品国产一区二区精华液| 久久香蕉国产精品| 国产精品免费视频内射| 午夜老司机福利片| 少妇被粗大的猛进出69影院| 国产成人精品久久二区二区免费| 在线观看午夜福利视频| 91成人精品电影| 黄色a级毛片大全视频| 制服丝袜大香蕉在线| 日本黄色视频三级网站网址| 久久草成人影院| 久久久水蜜桃国产精品网| 9热在线视频观看99| 精品国产一区二区久久| 国产蜜桃级精品一区二区三区| 亚洲午夜理论影院| 91国产中文字幕| 美女免费视频网站| 啦啦啦观看免费观看视频高清 | 在线av久久热| 长腿黑丝高跟| 97人妻天天添夜夜摸| 亚洲人成伊人成综合网2020| 亚洲,欧美精品.| 国产成+人综合+亚洲专区| 亚洲色图 男人天堂 中文字幕| 精品国产一区二区三区四区第35| 一区二区三区国产精品乱码| 18禁裸乳无遮挡免费网站照片 | 深夜精品福利| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日本中文国产一区发布| 一边摸一边抽搐一进一出视频| 国产成人av教育| 久久中文看片网| 无限看片的www在线观看| 欧美成狂野欧美在线观看| 中文字幕人成人乱码亚洲影| 成人精品一区二区免费| 久久久久九九精品影院| 久久国产精品男人的天堂亚洲| 国产成人免费无遮挡视频| 日韩大码丰满熟妇| 亚洲成人精品中文字幕电影| 窝窝影院91人妻| 人成视频在线观看免费观看| 欧美+亚洲+日韩+国产| 久久热在线av| 69av精品久久久久久| av天堂在线播放| 9色porny在线观看| 亚洲国产精品成人综合色| www.自偷自拍.com| 久久久久久久久免费视频了| 国产精品久久久久久人妻精品电影| 亚洲av成人不卡在线观看播放网| 黑人欧美特级aaaaaa片| 日日干狠狠操夜夜爽| 神马国产精品三级电影在线观看 | 久久久久精品国产欧美久久久| 亚洲性夜色夜夜综合| 亚洲国产欧美日韩在线播放| 亚洲国产中文字幕在线视频| 久久中文字幕一级| ponron亚洲| 最近最新中文字幕大全电影3 | 如日韩欧美国产精品一区二区三区|