• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anomalous anisotropic magnetoresistance in single-crystalline Co/SrTiO3(001)heterostructures?

    2021-12-22 06:43:20ShuangLongYang楊雙龍DeZhengYang楊德政YuMiao繆宇CunXuGao高存緒andDeShengXue薛德勝
    Chinese Physics B 2021年12期
    關(guān)鍵詞:德政雙龍

    Shuang-Long Yang(楊雙龍), De-Zheng Yang(楊德政), Yu Miao(繆宇),Cun-Xu Gao(高存緒), and De-Sheng Xue(薛德勝)

    Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education,Lanzhou University,Lanzhou 730000,China

    Keywords: single crystalline,anisotropic magnetoresistance,heterostructure

    1. Introduction

    The anisotropic magnetoresistance (AMR) effect, discovered in ferromagnetic metals by Thomson in 1857,[1]is one of the most fundamental characteristics involving magnetic and transport properties[2]and has many practical applications in magnetic recording and sensors.[3]This phenomenon is attributed to spin–orbit coupling which mixes spin-up state with spin-down state,[4–6]and is usually studied in magnetic materials (MMs). While the combined MM with some nonmagnetic materials can form bilayers or multilayers, and thus lots of novel magnetoresistance (MR) phenomena are discovered,such as giant MR in Fe/Cr/Fe,[7]tunneling MR in Fe/MgO/Fe,[8]spin Hall MR(SMR)[9]in ferromagnetic insulator[10,11]or metal,[12]unidirectional SMR[13]in Co/Pt and Co/Ta, Hanle MR in Pt/YIG,[14]anisotropic interface MR in Pt/Co/Pt,[15–17]Rashba–Edelstein MR in Bi/Ag/CoFeB,[18]and spin–orbit MR in Cu[Pt]/Y3Fe5O12.[19]Although the above MR phenomena originate from different physical essences, they are dependent on spin–orbit coupling and heavily correlated with the nonmagnetic materials or interface.

    Interestingly,nonmagnetic oxide SrTiO3(STO)substrate also has a strong influence on transport properties of a thin film deposited on it. In LaAlO3/STO heterostructures, interfacial Rashba MR,[20]fourfold oscillation AMR and planar Hall effect,[21]as well as giant crystalline AMR[22]were reported.[23–25]Besides these outstanding studies devoted to single crystalline oxides, a few fantastic phenomena in metals/STO heterostructures were realized. In nonmagnetic metallic Al/STO heterostructures, two-dimensional electron gas was formed at room temperature[26]and a very large inverse Edelstein effect[27]was reported. In half-metallic Fe4N/STO heterostructures, the AMR becomes positive,[28]which is opposed to its natural negative AMR on Si substrate.[29]In addition, more and more studies on AMR have been conducted based on single-crystal magnetic thin films recently,for it can exhibit strong dependence on the current orientation,[30–38]additional four-fold symmetry,[31,34–38]and asymmetric behaviors.[33]However, the signs of above AMR are always positive,and the negative AMR(a fingerprint for half-metallicity[39,40]has never been realized in metallic films. It is interesting to explore whether the single-crystal MM/STO heterostructures show different AMR properties.

    In this paper,we study the AMR in the single-crystalline face-centered-cubic (FCC) Co(6 nm)/STO(001) heterostructure as a function of temperature and current direction. The AMR with the current along Co[100] (Co[110]) direction shows anomalous negative (positive) longitudinal MR and positive (negative) transverse MR below 100 K. The anomalous temperature-dependence of the AMR can be well understood by a phenomenological model and attributed to the interplay between the non-crystalline component from the traditional AMR and the crossed AMR component from a mixture of current and crystalline direction related contributions.

    2. Experimental details

    Co/STO(001)heterostructures were prepared by molecular beam epitaxy in an ultrahigh vacuum chamber with a base pressure better than 4.5×10?10Torr (1 Torr = 1.33322×102Pa). The (001)-oriented Co layers were deposited on STO(001) by using thermal evaporator with a substrate temperature held at 400?C. The Co crystallinity was monitored byin situreflection high-energy electron diffraction(RHEED)during deposition,and further improved byin situannealed at 400?C for 15 min after deposition. Finally, the heterostructures were covered by a 3-nm-thick Al capping layer to prevent the Co film from oxidizing.High resolution x-ray diffraction (HRXRD) was used to characterize the structure. Magnetic properties were measured with Verslab (Quantum Design). Using standard lithography and Ar-ion etching,the heterostructures were patterned into two Hall bars along Co[100]and Co[110] crystalline directions. The transport properties were performed by using a standard four-probe method with a constant DC currentIin a physical property measurement system(quantum design)equipped with a rotatable sample stage.To exclude contributions from the possible misalignment, we did the measurements with both positive and negative field directions.

    3. Results and discussion

    Figure 1(a) shows the RHEED patterns of Co films and STO substrate with the electron beam along the STO[100]and STO[110] directions, respectively. The elongated stripes of both Co[100]and Co[110]patterns show the formation of an FCC (001) surface. Theθ–2θx-ray diffraction of the 6-nmthick Co film shown in Fig.1(b)is consistent with that of the FCC structure. The in-plane lattice parameter calculated from the Co(002) peak is about 3.542 ?A. The lattice mismatch between Co and STO[100] (3.905 ?A) is 9.3%, which is almost the same as previous result.[41]

    Figure 1(c)shows the hysteresis loops measured at room temperature with an in-plane external magnetic field along the Co[100] and Co[110] directions, respectively. The [110] direction as the easy axis(EA)can be clearly seen from the FCC Co film. For the hard-axis loop (H ‖Co[100]), by applying separate linear fits to the saturated high field and the region between 20 mT and 0 mT, we extract the in-plane magnetocrystalline anisotropy[42,43]of 42.4 mT between the[100]axis and[110]axis. The temperature-dependent zero-field resistivities are depicted in Fig. 1(d) for these two crystalline directions. The resistivities in the two directions decreases clearly with temperature decreasing, as usual. However, the resistivity ofI ‖Co[100] is larger (smaller) than that ofI ‖Co[110]when the temperature is above(below)150 K.The crystalline direction-dependent resistivity indicates that the MR can be different in the Co[100] direction from in the Co[110] direction.

    Fig.1. Characterization results of Co/STO(001)films. (a)RHEED patterns with incident electrons along STO[100]and STO[110]directions. (b)X-ray diffractions (θ–2θ scan). (c) Magnetic hysteresis loop measured at 300 K with magnetic field applied along Co[100] and Co[110] directions. (d) Resistivity ρxx measured for I‖Co[100]and I‖Co[110]. The inset shows the sketch of measurement geometry. The unit a.u. is short for arb. units.

    The longitudinal resistivityρxxmeasured as a function of magnetic field applied to the film plane forI ‖Co[100]andI ‖Co[110] are shown in Fig. 2, where the field parallel and perpendicular to the current. Each of Figs. 2(a) and 2(b)indicates that the field-dependentρxxis almost linear andρxx(H‖I)>ρxx(H⊥I) for two current directions when the magnetization is saturated at 300 K. However, the results at 5 K shown in Figs. 2(c) and 2(d) display a nonlinear field dependence[42]ofρxx,ρxx(H‖I)<ρxx(H⊥I)forI‖Co[100]andρxx(H‖I)>ρxx(H⊥I) forI ‖Co[110]. Generally, the resistivity of the current parallel to the magnetization case is larger (smaller) than that of the current perpendicular to the magnetization case,which is defined as the positive(negative)AMR.[2]Hence, the AMRs of two directions are positive, as usual at 300 K, but that at 5 K are negative forI ‖Co[100]and positive forI ‖Co[110]. Moreover, the positive or negative AMR is magnetic field-independent after the magnetization has been saturated. In order to clarify the characteristics of AMR,which are heavily dependent on the current direction and temperature,we study the angulardependent AMR further.

    Fig.2. In-plane MR(MR)curves measured at 300 K and 5 K with H‖I and H⊥I,with current direction being along[(a),(c)]Co[100]direction and[(b),(d)]Co[110]direction.

    Figures 3(a)–3(d)show the AMR curves of Co[100]and Co[110] Hall bars at various temperatures, where ?ρxx=ρxx ?ρav, ?ρxy=ρxy,ρavis the averagedρxxover 360?in plane, and?is the angle between the external magnetic field and current directions. The field is of constant magnitude 6 T,which is sufficient to saturate the magnetization in plane.Hence,the magnetization is expected to be parallel to the field.The longitudinal AMR curves with current along Co[100]and Co[110]are shown in Figs.3(a)and 3(b). It is found that the angles where the maximum values located are shifted gradually from?=0?and 180?at 300 K to nearly?=90?and 270?at 5 K for the Co[100]Hall bar. However,the AMR observed in Co[110]Hall bar always shows a maximum at?=0?and 180?.The sign of AMR changes from positive at 300 K to negative at 5 K for Co[100]Hall bar but it is always positive for the Co[110]Hall bar. These results are different from those of the polycrystalline Co,[2,45,46]as well as the single crystalline FCC Co/LaAlO3(001),[30]where the AMR is positive along different directions. Moreover, the current-direction related AMRs reported in FCC Ni/MgO(001),[31]Fe/GaAs,[32,33]and CoxFe1?x/MgO[34]show an unchanged sign except the symmetry of AMR changing with temperature decreasing. These results demonstrate that the current direction and temperature significantly influence the longitudinal AMR of Co/STO(001)heterostructure.

    Furthermore, the transverse AMR is measured and the results are shown in Figs. 3(c) and 3(d). As is well known,the physical origin of traditional longitudinal and transverse AMR[2]are the same,hence,the transverse AMR should have the same corresponding trace as the longitudinal AMR.However, the sign of transverse AMR is changed from positive at 300 K to negative at 5 K for the Co[110] Hall bar, but the transverse AMR is always positive for the Co[100] Hall bar.These results of the transverse AMR never appear in Co,[47,48]Fe/GaAs,[33]or CoxFe1?x/MgO,[34]which only show the positive behaviors.The different temperature-dependent behaviors of the longitudinal and transverse AMR for two Hall bars enlighten us to consider the contribution of crystal symmetries.

    Phenomenologically, a model presented by Rushforthet al.[35]according to symmetry,[49]by extending the model of D¨oring[50]to systems with cubic plus uniaxial anisotropy can be used. As described in this model,[36–38]the longitudinal and transverse AMR both as a function of the angle?between magnetizationMand the in-plane currentI,and the angleψbetweenMand the[110]crystalline direction is written as

    where the coefficientsCIandCICrepresent the non-crystalline term and the crossed term,CUandCCdenote the lowest order uniaxial crystalline term and cubic crystalline term, respectively. ForI ‖Co[100],?=ψ ?45?, and forI ‖Co[110],?=ψ. As shown in Fig.3,the experimental data can be well fitted by the corresponding equations.

    Combing Eqs. (1) and (2), the coefficientsCI,CIC,CU,andCCobtained by fitting the longitudinal and transverse AMR ofI ‖Co[110] orI ‖Co[100] are shown in Fig. 4(a).It can be seen that bothCIandCICare larger thanCU, andCU>CC≈0. As shown in Eqs. (1) and (2) (CI?CIC)terms determine the twofold-symmetry of both the longitudinal AMR inI ‖Co[100](ψ=45?) and transverse AMR inI ‖Co[110](ψ=0?).CICICforT ≥100 K, and the AMR signs change with temperature decreasing, which are corresponding to Figs. 3(a) and 3(d). Meanwhile, theCUterm shifts the longitudinal AMR ofI ‖Co[100]. Similarly, the positive AMRxxofI ‖Co[110]and AMRxyofI‖Co[100]can also be explained. Clearly,the non-crystalline termCIand the crossed termCICare the dominant twofold-symmetric terms, which gives rise to the sign of the AMR, and the twofold-symmetric crystalline termCUslightly change the maximum angle of the AMR curves.

    In addition,the strong temperature-dependent AMR amplitudes for the two current directions can be quantitatively elucidated. We plot ?AMRxx= AMRxx(?=0?)?AMRxx(?= 90?) and ?AMRxy= AMRxy(?=45?)?AMRxy(?=135?)versustemperature in Fig.4(b). ?AMRxx(?AMRxy) is small (large) forI ‖Co[100], and ?AMRxx(?AMRxy) is large (small) forI ‖Co[110]. In addition,?AMRxxinI ‖Co[100] is almost equal to ?AMRxyinI ‖Co[110], andvice versa. The unambiguously reciprocal relations of AMR amplitudes between the two current directions are coincident with the phenomenological expansions based on symmetry from Eqs. (1) and (2). Furthermore, the ratio?AMR[100]xy/?AMR[110]xyhas a drastic change with temperature and reaches a maximum 29 at 100 K as shown in Fig. 4(c),which is much larger than the other results 1–5.[30–33]Meanwhile, ?AMR[110]xx/?AMR[100]xxhas the same dependence on temperature. The large anisotropic dependence on temperature for AMR[37]means that larger AMRxxor AMRxycan be chosen for designing magnetic sensor or magnetic memory devices with the fixed current direction.

    Fig. 3. Curves of in-plane longitudinal and transverse AMR versus ? for current along [(a), (c)] Co[100] direction and [(b), (d)] Co[110]direction,with solid linedenoting the experimental data by using Eqs.(1)and(2).

    Fig.4. (a)Curves of fitting coefficients CI,CU,CC, and CIC versus temperatures. (b)?AMRxx and ?AMRxy for I‖Co[100]and I‖Co[110]with decreasing temperature. (c)Amplitude ratio ?AMR[110]xx /?AMR[100]xx (red)and ?AMR[100]xy /?AMR[110]xy (blue)versus temperatures.

    Furthermore, the AMR under a non-saturated magnetic field is measured, where the magnetization direction is determined by the competition between the applied field and the magnetic anisotropy.[51–54]With 100-mT field, longitudinal AMR ofI ‖Co[110] and transverse AMR ofI ‖Co[100]are obtained in Fig. A1 (Appendix A: Supplementary materials). The fitted cubic (uniaxial) anisotropy fieldHK(HU),and the angleθK(θU) between the current direction and the easy axis (EA) of cubic (uniaxial) anisotropy field at 300 K are listed in Table 1. The value ofHKis close to 42.4 mT obtained from hysteresis loop in Fig. 1(c). A smallerHUis along the Co[110]direction,which can be attributed to the inplane strain induced by the unavoidable miscut on the STO substrate. A similar anisotropy fieldHKobtained from magnetic and AMR measurement demonstrates that the AMR may be related to the symmetry of magnetic anisotropy rather than crystalline symmetry.

    Table 1. Fitted HK,HU,θK,θU from Fig.A1 at 300 K.

    Theoretically, the non-crystalline termCIdepends only on the relative angle between current and magnetization direction. The influence of another dominant term, crossed termCIC,on AMR is studied by varying the thickness of Co. Here,Co(2 nm)/STO and Co(2 nm)/STO heterostructure are measured in a way similar to previous way, and the results are shown in Fig.A2(Appendix A:Supplementary materials). It is found that the crossed termCICis larger(smaller)than noncrystallineCIfor Co(2 nm in thickness)(Co(20 nm in thickness))film. Experimentally, the values of relatively largeCIChave been observed for(Ga,Mn)(As,Sb)films,[37]for which the possible reason is the large strain or bulk spin–orbit coupling due to the incorporation of Sb. Further studies indicate thatCICdepends on the magnitude (rather than direction) of interfacial spin–orbit field(SOF)[22]as well,while the interfacial SOF induced by the reduced structural symmetry at surfaces and interfaces will be relatively weaken[32]at large thickness. Hence, the anomalous AMR of the Co(6 nm in thickness)/STO heterostructure is closely related to the interface.

    4. Conclusion

    In this work,the anomalous AMR behaviors in the singlecrystalline FCC Co/STO(001)heterostructures are observed.Both the magnitude and the sign of the longitudinal ARM and transverse AMR are dependent on the temperature and the current direction. It is shown that these effects are attributed mainly to the interplay between the non-crystalline component and crossed component. The nature of the anomalous AMR is closely related to the symmetry of magnetic anisotropy and the interface SOF.Our research highlights the significant properties of the Co/STO (001) heterostructures,but more investigations are still required to further clarify the microscopic mechanism behind the magneto-transport behavior in MM/STO system.

    Appendix A:Supplementary materials

    A1 Magnetic anisotropies determined by magnetoresistance measurements

    For the single domain approximation of a singlecrystalline film, using the coherent rotation model, the free energy density of the system can be written as[52,53]

    whereμ0is the vacuum permeability,Msis the saturation magnetization,?H(?M)is the field(magnetization)angle the current direction,Ku(Kc) is the uniaxial (cubic) anisotropy constant,θKu(θKc) is the angle between uniaxial (cubic)anisotropy and the current direction.α=?H ??Mcan be obtained by(?E)/(?α)=0 with small angle approximation

    whereh1=H/Hk,h2=Hu/Hk,HkandHuare the effective cubic and uniaxial anisotropy fields. TheφMcan be determined by the angledependent magnetoresistance measurement. Hence, combining Eq. (A2) with Eq. (1) or Eq. (2) in the main text,Hk,Hu,θk,θucan be quantified by fitting the magnetoresistance curve.

    Fig. A1. (a) Longitudinal magnetoresistance for I ‖Co[110] and fitted by combining Eq. (A2) with Eq. (1). (b) Transverse magnetoresistance for I‖Co[100]and fitted by combining Eq.(A2)with Eq.(2).

    Figures A1(a) and A1(b) show longitudinal magnetoresistance forI‖Co[110]and transverse magnetoresistance forI‖Co[100]withH=100 mT at 300 K.The fitted results are shown in Table 1 of the main text.

    A2 Magnetoresistance in Co(2 nm)/STO(001) and Co(20 nm)/STO(001)

    Co(2 nm)/STO(001) and Co(20 nm)/STO(001) films are prepared and measured in a way similarto previous way and the coefficients fitted with the above phenomenological model are shown in Fig.A2.The non-crystalline term and the crossed term are the dominant terms similar to the Co(6 nm)/STO,but non-crystalline term is clearly smaller(larger)than the crossed term over the whole temperature range in Co(2 nm)/STO(001)(Co(20 nm)/STO(001)).

    Fig.A2. Curves of fitted AMR coefficients CI,CU,CC,and CIC versus temperature of(a)Co(2 nm)and(b)Co(20 nm),respectively.

    猜你喜歡
    德政雙龍
    Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
    金華遠(yuǎn)方·雙龍賓館
    雙龍集團(tuán)有限公司
    中國核電(2017年2期)2017-08-11 08:01:17
    中國傳統(tǒng)行政理念的內(nèi)蘊與現(xiàn)代啟示*
    依法治國方略對傳統(tǒng)儒家思想精粹的融合與借鑒
    四驅(qū)雪舞 三菱歐藍(lán)德VS.北京(BJ)40VS.雙龍柯蘭多
    越玩越野(2015年2期)2015-08-29 01:04:46
    五德終始說與《兩都賦》
    孔子德政思想的借鑒意義
    對歷史人物呂后的評價研究
    考試周刊(2014年66期)2014-10-08 13:06:31
    国产亚洲精品久久久com| 亚洲精品乱码久久久v下载方式| 久久精品夜色国产| 狠狠精品人妻久久久久久综合| tube8黄色片| 免费大片黄手机在线观看| 两个人的视频大全免费| 国产欧美另类精品又又久久亚洲欧美| 日韩成人av中文字幕在线观看| 2021少妇久久久久久久久久久| 欧美亚洲日本最大视频资源| 精品视频人人做人人爽| 男的添女的下面高潮视频| 日本av免费视频播放| av又黄又爽大尺度在线免费看| 一级a做视频免费观看| 男女国产视频网站| 久久热精品热| 亚洲欧美一区二区三区黑人 | 日韩欧美精品免费久久| 国产精品99久久99久久久不卡 | av专区在线播放| a级片在线免费高清观看视频| 在线精品无人区一区二区三| 国产精品 国内视频| 久久久久精品久久久久真实原创| 多毛熟女@视频| 国产精品久久久久久av不卡| 亚洲欧美中文字幕日韩二区| 国产一区有黄有色的免费视频| 国产精品国产av在线观看| 午夜福利网站1000一区二区三区| 国产精品偷伦视频观看了| 色婷婷av一区二区三区视频| 国产高清有码在线观看视频| 亚洲四区av| 亚洲五月色婷婷综合| 亚洲人成网站在线播| 国产日韩欧美在线精品| 色5月婷婷丁香| 插逼视频在线观看| 九九久久精品国产亚洲av麻豆| 多毛熟女@视频| 久久国内精品自在自线图片| 欧美成人精品欧美一级黄| 国产视频内射| 夜夜骑夜夜射夜夜干| 午夜福利,免费看| 免费黄网站久久成人精品| 亚洲欧美一区二区三区国产| 久久久久精品性色| 午夜福利视频精品| 国产亚洲精品久久久com| 成人无遮挡网站| 观看美女的网站| 少妇的逼好多水| 国国产精品蜜臀av免费| 国产精品免费大片| 日韩不卡一区二区三区视频在线| 观看av在线不卡| av在线观看视频网站免费| 午夜福利网站1000一区二区三区| 欧美+日韩+精品| 蜜桃在线观看..| 欧美变态另类bdsm刘玥| 国产精品不卡视频一区二区| 91成人精品电影| 18禁观看日本| 新久久久久国产一级毛片| videos熟女内射| 国产亚洲av片在线观看秒播厂| 欧美xxxx性猛交bbbb| 国产毛片在线视频| 亚洲精品久久成人aⅴ小说 | 夜夜看夜夜爽夜夜摸| av有码第一页| 国产不卡av网站在线观看| 一区二区日韩欧美中文字幕 | 成人免费观看视频高清| 国产免费现黄频在线看| 久久人妻熟女aⅴ| 国产男女超爽视频在线观看| 日韩,欧美,国产一区二区三区| 色网站视频免费| h视频一区二区三区| 国产精品人妻久久久久久| 国产毛片在线视频| 午夜福利,免费看| 国产av精品麻豆| 熟女电影av网| 熟女av电影| 亚洲精品久久成人aⅴ小说 | 亚洲精品日韩av片在线观看| 欧美日韩一区二区视频在线观看视频在线| 99精国产麻豆久久婷婷| 欧美xxⅹ黑人| 亚洲精品自拍成人| 观看av在线不卡| 七月丁香在线播放| 五月玫瑰六月丁香| 国产精品欧美亚洲77777| 国产日韩一区二区三区精品不卡 | 极品人妻少妇av视频| 亚洲精品日韩av片在线观看| 各种免费的搞黄视频| 国产精品久久久久久av不卡| 自线自在国产av| 国产一区二区三区综合在线观看 | 午夜福利网站1000一区二区三区| 久久精品久久久久久噜噜老黄| 成人漫画全彩无遮挡| 亚洲欧美一区二区三区国产| 久久精品国产鲁丝片午夜精品| 91精品一卡2卡3卡4卡| 亚洲av欧美aⅴ国产| 大码成人一级视频| 一本久久精品| 亚洲欧美色中文字幕在线| 老司机影院毛片| 草草在线视频免费看| 中国国产av一级| 国产精品国产三级国产专区5o| av在线老鸭窝| 国产av码专区亚洲av| 视频区图区小说| 国产免费视频播放在线视频| a级毛色黄片| 日本91视频免费播放| 亚洲经典国产精华液单| 婷婷色综合大香蕉| 校园人妻丝袜中文字幕| 欧美丝袜亚洲另类| 伦理电影大哥的女人| 国产精品一国产av| 99热网站在线观看| a级毛片免费高清观看在线播放| 久久国产亚洲av麻豆专区| 韩国高清视频一区二区三区| 免费大片黄手机在线观看| 成人黄色视频免费在线看| 国产亚洲午夜精品一区二区久久| 日韩免费高清中文字幕av| 丝瓜视频免费看黄片| 国产成人精品福利久久| 亚洲国产精品专区欧美| 国产无遮挡羞羞视频在线观看| av线在线观看网站| 日韩一区二区视频免费看| 免费高清在线观看日韩| 啦啦啦在线观看免费高清www| 日韩免费高清中文字幕av| 久热这里只有精品99| 亚洲精品,欧美精品| 国产精品久久久久久av不卡| 精品久久久噜噜| 成人毛片60女人毛片免费| 制服人妻中文乱码| 精品人妻一区二区三区麻豆| 久久久午夜欧美精品| 欧美日韩视频高清一区二区三区二| 女的被弄到高潮叫床怎么办| 日本-黄色视频高清免费观看| 国产亚洲欧美精品永久| 超碰97精品在线观看| 亚洲成色77777| av免费在线看不卡| 丰满饥渴人妻一区二区三| videosex国产| 我的女老师完整版在线观看| 亚洲高清免费不卡视频| 一级爰片在线观看| 汤姆久久久久久久影院中文字幕| 国产精品欧美亚洲77777| 在线免费观看不下载黄p国产| 国产深夜福利视频在线观看| 我的老师免费观看完整版| 午夜久久久在线观看| 99久国产av精品国产电影| 日韩视频在线欧美| 免费高清在线观看视频在线观看| 成人国语在线视频| 成年人午夜在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品美女久久av网站| 日韩中字成人| 成人影院久久| 麻豆精品久久久久久蜜桃| av女优亚洲男人天堂| 欧美日韩亚洲高清精品| 亚洲av二区三区四区| 国产午夜精品久久久久久一区二区三区| 国国产精品蜜臀av免费| 欧美xxxx性猛交bbbb| 蜜桃在线观看..| 久久久午夜欧美精品| 欧美国产精品一级二级三级| 欧美成人精品欧美一级黄| 国产免费现黄频在线看| 精品久久国产蜜桃| 最近的中文字幕免费完整| 亚洲性久久影院| 街头女战士在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91| 插阴视频在线观看视频| 午夜免费观看性视频| 精品人妻偷拍中文字幕| 激情五月婷婷亚洲| 国产精品蜜桃在线观看| 午夜福利,免费看| 国产极品粉嫩免费观看在线 | 久久久久久久大尺度免费视频| 国产探花极品一区二区| av播播在线观看一区| 精品少妇久久久久久888优播| 在线观看www视频免费| 免费看光身美女| 午夜av观看不卡| 久久青草综合色| 久久精品国产a三级三级三级| 性高湖久久久久久久久免费观看| 草草在线视频免费看| 国模一区二区三区四区视频| 日日啪夜夜爽| 91久久精品电影网| 日韩av免费高清视频| 国产视频内射| 热99久久久久精品小说推荐| 菩萨蛮人人尽说江南好唐韦庄| 国产色婷婷99| 在线播放无遮挡| 中文欧美无线码| 日日爽夜夜爽网站| 日韩电影二区| 国产黄频视频在线观看| 一本大道久久a久久精品| 久久这里有精品视频免费| 中文天堂在线官网| 中国国产av一级| 熟妇人妻不卡中文字幕| 伊人久久精品亚洲午夜| 成人国产麻豆网| 最后的刺客免费高清国语| 亚洲av成人精品一区久久| 成人毛片60女人毛片免费| 欧美性感艳星| 国产深夜福利视频在线观看| 国产永久视频网站| 久久久久久久精品精品| 国产日韩欧美在线精品| 五月伊人婷婷丁香| 欧美日韩av久久| 另类亚洲欧美激情| 日韩精品有码人妻一区| 最近手机中文字幕大全| 少妇被粗大的猛进出69影院 | 免费看光身美女| 亚洲美女视频黄频| 99热全是精品| 高清午夜精品一区二区三区| 日韩中文字幕视频在线看片| 久久久久网色| 亚洲精品美女久久av网站| 色吧在线观看| 水蜜桃什么品种好| 亚洲性久久影院| 亚洲欧洲国产日韩| 欧美精品亚洲一区二区| 日韩,欧美,国产一区二区三区| 视频区图区小说| av不卡在线播放| 国产不卡av网站在线观看| 又大又黄又爽视频免费| 亚洲精品成人av观看孕妇| 黄色一级大片看看| 日韩大片免费观看网站| 亚洲av综合色区一区| 99国产综合亚洲精品| 丰满乱子伦码专区| 国产深夜福利视频在线观看| 国产黄色免费在线视频| 美女内射精品一级片tv| 80岁老熟妇乱子伦牲交| 亚洲怡红院男人天堂| 日韩亚洲欧美综合| kizo精华| 色婷婷av一区二区三区视频| 三级国产精品片| 久久女婷五月综合色啪小说| 91国产中文字幕| av电影中文网址| 国产精品人妻久久久久久| 成人手机av| videossex国产| 日韩精品免费视频一区二区三区 | 亚洲第一av免费看| 这个男人来自地球电影免费观看 | 久久精品国产亚洲av天美| 欧美激情 高清一区二区三区| 久久久亚洲精品成人影院| 午夜福利影视在线免费观看| videosex国产| 少妇猛男粗大的猛烈进出视频| 成人午夜精彩视频在线观看| 男女边吃奶边做爰视频| 少妇精品久久久久久久| 中国三级夫妇交换| 国产亚洲精品第一综合不卡 | 男女高潮啪啪啪动态图| 国产色婷婷99| 亚洲精品乱久久久久久| 在线观看人妻少妇| 成人国产av品久久久| 男女边摸边吃奶| 99久国产av精品国产电影| 色网站视频免费| 国产免费视频播放在线视频| 成人免费观看视频高清| 免费观看性生交大片5| 国产精品不卡视频一区二区| 黑人猛操日本美女一级片| 久久国产精品男人的天堂亚洲 | av卡一久久| 亚洲国产日韩一区二区| 日本av手机在线免费观看| 日韩成人伦理影院| 美女xxoo啪啪120秒动态图| 欧美97在线视频| 我的女老师完整版在线观看| 中文字幕亚洲精品专区| 少妇丰满av| 日本黄色片子视频| 亚洲激情五月婷婷啪啪| 久久精品夜色国产| 汤姆久久久久久久影院中文字幕| 女性被躁到高潮视频| 插逼视频在线观看| 我要看黄色一级片免费的| 大陆偷拍与自拍| 嫩草影院入口| 国产欧美亚洲国产| 91精品伊人久久大香线蕉| 黄色一级大片看看| 91在线精品国自产拍蜜月| 97超碰精品成人国产| 亚洲欧洲日产国产| 赤兔流量卡办理| 亚洲综合色网址| 国产成人精品一,二区| 亚洲一级一片aⅴ在线观看| 中文字幕免费在线视频6| 成人手机av| 99热这里只有是精品在线观看| 三级国产精品欧美在线观看| 日韩免费高清中文字幕av| 欧美日韩综合久久久久久| 王馨瑶露胸无遮挡在线观看| 熟女电影av网| 国产精品熟女久久久久浪| 永久网站在线| 国产亚洲精品久久久com| 免费高清在线观看日韩| 国产在视频线精品| 日本免费在线观看一区| 色婷婷久久久亚洲欧美| 国产精品 国内视频| 国产成人aa在线观看| 国产精品 国内视频| 水蜜桃什么品种好| 91午夜精品亚洲一区二区三区| 免费日韩欧美在线观看| 国产永久视频网站| 国产黄色视频一区二区在线观看| 久久免费观看电影| 亚洲精品第二区| 久久久久久久久久久久大奶| 51国产日韩欧美| 久久99一区二区三区| 大香蕉97超碰在线| 在线看a的网站| 国内精品宾馆在线| 美女脱内裤让男人舔精品视频| 热re99久久国产66热| 国产精品一区二区在线观看99| 久久青草综合色| 欧美激情极品国产一区二区三区 | 国产精品久久久久久精品古装| 久久久午夜欧美精品| 亚洲人与动物交配视频| 汤姆久久久久久久影院中文字幕| 麻豆精品久久久久久蜜桃| 男女边摸边吃奶| 久久精品国产亚洲网站| 久久久午夜欧美精品| 狂野欧美白嫩少妇大欣赏| 日韩人妻高清精品专区| 国产精品99久久99久久久不卡 | 久久99热6这里只有精品| 亚洲激情五月婷婷啪啪| 啦啦啦啦在线视频资源| 亚洲美女黄色视频免费看| 婷婷色av中文字幕| 亚洲欧洲国产日韩| 国产高清三级在线| 国产成人精品婷婷| 午夜视频国产福利| 国产亚洲最大av| 国产成人午夜福利电影在线观看| 国产高清国产精品国产三级| 伊人久久精品亚洲午夜| 国产免费视频播放在线视频| 国产高清不卡午夜福利| 一级毛片我不卡| 中文字幕人妻丝袜制服| 久久久久精品性色| 久久99蜜桃精品久久| 亚洲成人一二三区av| 美女主播在线视频| 亚洲精品一区蜜桃| 最近最新中文字幕免费大全7| 老女人水多毛片| 色婷婷av一区二区三区视频| 一级爰片在线观看| 亚洲精品国产色婷婷电影| a级片在线免费高清观看视频| 久久午夜综合久久蜜桃| 五月开心婷婷网| 一级毛片我不卡| 亚洲av日韩在线播放| 下体分泌物呈黄色| 国产黄频视频在线观看| 欧美成人午夜免费资源| 777米奇影视久久| 午夜视频国产福利| 黑人欧美特级aaaaaa片| 成人亚洲精品一区在线观看| 老司机亚洲免费影院| 日韩av在线免费看完整版不卡| 51国产日韩欧美| 国产精品国产三级专区第一集| 国产亚洲一区二区精品| 成人国产麻豆网| 99热这里只有精品一区| 亚洲怡红院男人天堂| 一级毛片电影观看| 高清视频免费观看一区二区| 18禁在线无遮挡免费观看视频| 久久久久久久久久人人人人人人| 人妻人人澡人人爽人人| 男女啪啪激烈高潮av片| 欧美3d第一页| 婷婷色综合大香蕉| 亚洲精品一区蜜桃| 有码 亚洲区| 午夜免费男女啪啪视频观看| 校园人妻丝袜中文字幕| 亚洲av二区三区四区| 性色avwww在线观看| 欧美日韩一区二区视频在线观看视频在线| 精品一区二区三区视频在线| 日韩av不卡免费在线播放| 18在线观看网站| 狂野欧美激情性bbbbbb| 美女大奶头黄色视频| 春色校园在线视频观看| 久久鲁丝午夜福利片| 91午夜精品亚洲一区二区三区| 亚洲欧美精品自产自拍| 国产免费视频播放在线视频| 男女无遮挡免费网站观看| 天天躁夜夜躁狠狠久久av| 精品少妇久久久久久888优播| 精品一区二区三卡| 色婷婷av一区二区三区视频| 女的被弄到高潮叫床怎么办| 成人毛片a级毛片在线播放| 日本爱情动作片www.在线观看| 亚洲丝袜综合中文字幕| 国产成人91sexporn| 久久久久久久国产电影| 蜜臀久久99精品久久宅男| 免费日韩欧美在线观看| 免费大片黄手机在线观看| 黑人欧美特级aaaaaa片| 久热这里只有精品99| 一本色道久久久久久精品综合| 99久国产av精品国产电影| 日本黄色日本黄色录像| 亚洲欧洲日产国产| 老女人水多毛片| 亚洲精品,欧美精品| 黄色视频在线播放观看不卡| 国产有黄有色有爽视频| 国产综合精华液| 欧美一级a爱片免费观看看| 成人手机av| 成年人午夜在线观看视频| 国产成人精品在线电影| 一级二级三级毛片免费看| 久热这里只有精品99| 精品久久蜜臀av无| av线在线观看网站| 91国产中文字幕| 亚洲欧美一区二区三区国产| 国产免费福利视频在线观看| 国产在视频线精品| 老司机影院毛片| 精品少妇久久久久久888优播| 日韩视频在线欧美| 亚州av有码| 男人爽女人下面视频在线观看| 国产午夜精品一二区理论片| 亚洲欧洲日产国产| 亚洲在久久综合| 亚洲高清免费不卡视频| 亚洲av日韩在线播放| 久久精品夜色国产| av福利片在线| 日日啪夜夜爽| √禁漫天堂资源中文www| 高清视频免费观看一区二区| 精品久久久精品久久久| 边亲边吃奶的免费视频| 免费看av在线观看网站| 久久精品久久久久久噜噜老黄| 狠狠精品人妻久久久久久综合| 一级毛片 在线播放| 久久这里有精品视频免费| av天堂久久9| 十八禁网站网址无遮挡| 一本久久精品| 欧美亚洲 丝袜 人妻 在线| 香蕉精品网在线| av免费在线看不卡| 91精品一卡2卡3卡4卡| 久久国产亚洲av麻豆专区| 天堂中文最新版在线下载| 丰满饥渴人妻一区二区三| 69精品国产乱码久久久| 丝瓜视频免费看黄片| 又粗又硬又长又爽又黄的视频| 国产不卡av网站在线观看| 免费观看无遮挡的男女| 国产成人精品久久久久久| 青春草国产在线视频| av福利片在线| 午夜影院在线不卡| 丰满迷人的少妇在线观看| 国产精品.久久久| 国内精品宾馆在线| 亚洲av中文av极速乱| 欧美亚洲日本最大视频资源| 七月丁香在线播放| 中国美白少妇内射xxxbb| 国产综合精华液| 亚洲成人av在线免费| 国产黄色视频一区二区在线观看| av在线观看视频网站免费| 国产亚洲一区二区精品| 美女主播在线视频| 国产淫语在线视频| 91在线精品国自产拍蜜月| 久久精品人人爽人人爽视色| 色婷婷久久久亚洲欧美| 亚洲色图 男人天堂 中文字幕 | 黑人巨大精品欧美一区二区蜜桃 | 国内精品宾馆在线| 只有这里有精品99| 乱码一卡2卡4卡精品| 男女高潮啪啪啪动态图| 99视频精品全部免费 在线| 亚洲欧美一区二区三区国产| 国产成人91sexporn| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 如日韩欧美国产精品一区二区三区 | 极品少妇高潮喷水抽搐| 欧美少妇被猛烈插入视频| 女人久久www免费人成看片| 欧美精品亚洲一区二区| 日日撸夜夜添| 国产精品人妻久久久久久| 99久久综合免费| 视频在线观看一区二区三区| 丝袜喷水一区| 久久精品久久精品一区二区三区| 亚洲av日韩在线播放| 欧美成人午夜免费资源| 制服人妻中文乱码| 成年美女黄网站色视频大全免费 | 亚洲欧洲国产日韩| 久久精品国产亚洲av天美| 免费不卡的大黄色大毛片视频在线观看| 亚洲无线观看免费| 久久国内精品自在自线图片| 国产精品一国产av| 久久久精品免费免费高清| 国模一区二区三区四区视频| 免费高清在线观看视频在线观看| videos熟女内射| 啦啦啦中文免费视频观看日本| 亚洲精品aⅴ在线观看| 国产乱人偷精品视频| 黑人欧美特级aaaaaa片| 人成视频在线观看免费观看| 伊人久久国产一区二区| 久久久久久久精品精品| 亚洲激情五月婷婷啪啪| 亚洲国产毛片av蜜桃av| 亚洲,一卡二卡三卡| 这个男人来自地球电影免费观看 | 激情五月婷婷亚洲| 日本-黄色视频高清免费观看| 丝袜在线中文字幕| 国产亚洲最大av| 久久99一区二区三区| 久久久久久久久久久丰满|