• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anomalous anisotropic magnetoresistance in single-crystalline Co/SrTiO3(001)heterostructures?

    2021-12-22 06:43:20ShuangLongYang楊雙龍DeZhengYang楊德政YuMiao繆宇CunXuGao高存緒andDeShengXue薛德勝
    Chinese Physics B 2021年12期
    關(guān)鍵詞:德政雙龍

    Shuang-Long Yang(楊雙龍), De-Zheng Yang(楊德政), Yu Miao(繆宇),Cun-Xu Gao(高存緒), and De-Sheng Xue(薛德勝)

    Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education,Lanzhou University,Lanzhou 730000,China

    Keywords: single crystalline,anisotropic magnetoresistance,heterostructure

    1. Introduction

    The anisotropic magnetoresistance (AMR) effect, discovered in ferromagnetic metals by Thomson in 1857,[1]is one of the most fundamental characteristics involving magnetic and transport properties[2]and has many practical applications in magnetic recording and sensors.[3]This phenomenon is attributed to spin–orbit coupling which mixes spin-up state with spin-down state,[4–6]and is usually studied in magnetic materials (MMs). While the combined MM with some nonmagnetic materials can form bilayers or multilayers, and thus lots of novel magnetoresistance (MR) phenomena are discovered,such as giant MR in Fe/Cr/Fe,[7]tunneling MR in Fe/MgO/Fe,[8]spin Hall MR(SMR)[9]in ferromagnetic insulator[10,11]or metal,[12]unidirectional SMR[13]in Co/Pt and Co/Ta, Hanle MR in Pt/YIG,[14]anisotropic interface MR in Pt/Co/Pt,[15–17]Rashba–Edelstein MR in Bi/Ag/CoFeB,[18]and spin–orbit MR in Cu[Pt]/Y3Fe5O12.[19]Although the above MR phenomena originate from different physical essences, they are dependent on spin–orbit coupling and heavily correlated with the nonmagnetic materials or interface.

    Interestingly,nonmagnetic oxide SrTiO3(STO)substrate also has a strong influence on transport properties of a thin film deposited on it. In LaAlO3/STO heterostructures, interfacial Rashba MR,[20]fourfold oscillation AMR and planar Hall effect,[21]as well as giant crystalline AMR[22]were reported.[23–25]Besides these outstanding studies devoted to single crystalline oxides, a few fantastic phenomena in metals/STO heterostructures were realized. In nonmagnetic metallic Al/STO heterostructures, two-dimensional electron gas was formed at room temperature[26]and a very large inverse Edelstein effect[27]was reported. In half-metallic Fe4N/STO heterostructures, the AMR becomes positive,[28]which is opposed to its natural negative AMR on Si substrate.[29]In addition, more and more studies on AMR have been conducted based on single-crystal magnetic thin films recently,for it can exhibit strong dependence on the current orientation,[30–38]additional four-fold symmetry,[31,34–38]and asymmetric behaviors.[33]However, the signs of above AMR are always positive,and the negative AMR(a fingerprint for half-metallicity[39,40]has never been realized in metallic films. It is interesting to explore whether the single-crystal MM/STO heterostructures show different AMR properties.

    In this paper,we study the AMR in the single-crystalline face-centered-cubic (FCC) Co(6 nm)/STO(001) heterostructure as a function of temperature and current direction. The AMR with the current along Co[100] (Co[110]) direction shows anomalous negative (positive) longitudinal MR and positive (negative) transverse MR below 100 K. The anomalous temperature-dependence of the AMR can be well understood by a phenomenological model and attributed to the interplay between the non-crystalline component from the traditional AMR and the crossed AMR component from a mixture of current and crystalline direction related contributions.

    2. Experimental details

    Co/STO(001)heterostructures were prepared by molecular beam epitaxy in an ultrahigh vacuum chamber with a base pressure better than 4.5×10?10Torr (1 Torr = 1.33322×102Pa). The (001)-oriented Co layers were deposited on STO(001) by using thermal evaporator with a substrate temperature held at 400?C. The Co crystallinity was monitored byin situreflection high-energy electron diffraction(RHEED)during deposition,and further improved byin situannealed at 400?C for 15 min after deposition. Finally, the heterostructures were covered by a 3-nm-thick Al capping layer to prevent the Co film from oxidizing.High resolution x-ray diffraction (HRXRD) was used to characterize the structure. Magnetic properties were measured with Verslab (Quantum Design). Using standard lithography and Ar-ion etching,the heterostructures were patterned into two Hall bars along Co[100]and Co[110] crystalline directions. The transport properties were performed by using a standard four-probe method with a constant DC currentIin a physical property measurement system(quantum design)equipped with a rotatable sample stage.To exclude contributions from the possible misalignment, we did the measurements with both positive and negative field directions.

    3. Results and discussion

    Figure 1(a) shows the RHEED patterns of Co films and STO substrate with the electron beam along the STO[100]and STO[110] directions, respectively. The elongated stripes of both Co[100]and Co[110]patterns show the formation of an FCC (001) surface. Theθ–2θx-ray diffraction of the 6-nmthick Co film shown in Fig.1(b)is consistent with that of the FCC structure. The in-plane lattice parameter calculated from the Co(002) peak is about 3.542 ?A. The lattice mismatch between Co and STO[100] (3.905 ?A) is 9.3%, which is almost the same as previous result.[41]

    Figure 1(c)shows the hysteresis loops measured at room temperature with an in-plane external magnetic field along the Co[100] and Co[110] directions, respectively. The [110] direction as the easy axis(EA)can be clearly seen from the FCC Co film. For the hard-axis loop (H ‖Co[100]), by applying separate linear fits to the saturated high field and the region between 20 mT and 0 mT, we extract the in-plane magnetocrystalline anisotropy[42,43]of 42.4 mT between the[100]axis and[110]axis. The temperature-dependent zero-field resistivities are depicted in Fig. 1(d) for these two crystalline directions. The resistivities in the two directions decreases clearly with temperature decreasing, as usual. However, the resistivity ofI ‖Co[100] is larger (smaller) than that ofI ‖Co[110]when the temperature is above(below)150 K.The crystalline direction-dependent resistivity indicates that the MR can be different in the Co[100] direction from in the Co[110] direction.

    Fig.1. Characterization results of Co/STO(001)films. (a)RHEED patterns with incident electrons along STO[100]and STO[110]directions. (b)X-ray diffractions (θ–2θ scan). (c) Magnetic hysteresis loop measured at 300 K with magnetic field applied along Co[100] and Co[110] directions. (d) Resistivity ρxx measured for I‖Co[100]and I‖Co[110]. The inset shows the sketch of measurement geometry. The unit a.u. is short for arb. units.

    The longitudinal resistivityρxxmeasured as a function of magnetic field applied to the film plane forI ‖Co[100]andI ‖Co[110] are shown in Fig. 2, where the field parallel and perpendicular to the current. Each of Figs. 2(a) and 2(b)indicates that the field-dependentρxxis almost linear andρxx(H‖I)>ρxx(H⊥I) for two current directions when the magnetization is saturated at 300 K. However, the results at 5 K shown in Figs. 2(c) and 2(d) display a nonlinear field dependence[42]ofρxx,ρxx(H‖I)<ρxx(H⊥I)forI‖Co[100]andρxx(H‖I)>ρxx(H⊥I) forI ‖Co[110]. Generally, the resistivity of the current parallel to the magnetization case is larger (smaller) than that of the current perpendicular to the magnetization case,which is defined as the positive(negative)AMR.[2]Hence, the AMRs of two directions are positive, as usual at 300 K, but that at 5 K are negative forI ‖Co[100]and positive forI ‖Co[110]. Moreover, the positive or negative AMR is magnetic field-independent after the magnetization has been saturated. In order to clarify the characteristics of AMR,which are heavily dependent on the current direction and temperature,we study the angulardependent AMR further.

    Fig.2. In-plane MR(MR)curves measured at 300 K and 5 K with H‖I and H⊥I,with current direction being along[(a),(c)]Co[100]direction and[(b),(d)]Co[110]direction.

    Figures 3(a)–3(d)show the AMR curves of Co[100]and Co[110] Hall bars at various temperatures, where ?ρxx=ρxx ?ρav, ?ρxy=ρxy,ρavis the averagedρxxover 360?in plane, and?is the angle between the external magnetic field and current directions. The field is of constant magnitude 6 T,which is sufficient to saturate the magnetization in plane.Hence,the magnetization is expected to be parallel to the field.The longitudinal AMR curves with current along Co[100]and Co[110]are shown in Figs.3(a)and 3(b). It is found that the angles where the maximum values located are shifted gradually from?=0?and 180?at 300 K to nearly?=90?and 270?at 5 K for the Co[100]Hall bar. However,the AMR observed in Co[110]Hall bar always shows a maximum at?=0?and 180?.The sign of AMR changes from positive at 300 K to negative at 5 K for Co[100]Hall bar but it is always positive for the Co[110]Hall bar. These results are different from those of the polycrystalline Co,[2,45,46]as well as the single crystalline FCC Co/LaAlO3(001),[30]where the AMR is positive along different directions. Moreover, the current-direction related AMRs reported in FCC Ni/MgO(001),[31]Fe/GaAs,[32,33]and CoxFe1?x/MgO[34]show an unchanged sign except the symmetry of AMR changing with temperature decreasing. These results demonstrate that the current direction and temperature significantly influence the longitudinal AMR of Co/STO(001)heterostructure.

    Furthermore, the transverse AMR is measured and the results are shown in Figs. 3(c) and 3(d). As is well known,the physical origin of traditional longitudinal and transverse AMR[2]are the same,hence,the transverse AMR should have the same corresponding trace as the longitudinal AMR.However, the sign of transverse AMR is changed from positive at 300 K to negative at 5 K for the Co[110] Hall bar, but the transverse AMR is always positive for the Co[100] Hall bar.These results of the transverse AMR never appear in Co,[47,48]Fe/GaAs,[33]or CoxFe1?x/MgO,[34]which only show the positive behaviors.The different temperature-dependent behaviors of the longitudinal and transverse AMR for two Hall bars enlighten us to consider the contribution of crystal symmetries.

    Phenomenologically, a model presented by Rushforthet al.[35]according to symmetry,[49]by extending the model of D¨oring[50]to systems with cubic plus uniaxial anisotropy can be used. As described in this model,[36–38]the longitudinal and transverse AMR both as a function of the angle?between magnetizationMand the in-plane currentI,and the angleψbetweenMand the[110]crystalline direction is written as

    where the coefficientsCIandCICrepresent the non-crystalline term and the crossed term,CUandCCdenote the lowest order uniaxial crystalline term and cubic crystalline term, respectively. ForI ‖Co[100],?=ψ ?45?, and forI ‖Co[110],?=ψ. As shown in Fig.3,the experimental data can be well fitted by the corresponding equations.

    Combing Eqs. (1) and (2), the coefficientsCI,CIC,CU,andCCobtained by fitting the longitudinal and transverse AMR ofI ‖Co[110] orI ‖Co[100] are shown in Fig. 4(a).It can be seen that bothCIandCICare larger thanCU, andCU>CC≈0. As shown in Eqs. (1) and (2) (CI?CIC)terms determine the twofold-symmetry of both the longitudinal AMR inI ‖Co[100](ψ=45?) and transverse AMR inI ‖Co[110](ψ=0?).CICICforT ≥100 K, and the AMR signs change with temperature decreasing, which are corresponding to Figs. 3(a) and 3(d). Meanwhile, theCUterm shifts the longitudinal AMR ofI ‖Co[100]. Similarly, the positive AMRxxofI ‖Co[110]and AMRxyofI‖Co[100]can also be explained. Clearly,the non-crystalline termCIand the crossed termCICare the dominant twofold-symmetric terms, which gives rise to the sign of the AMR, and the twofold-symmetric crystalline termCUslightly change the maximum angle of the AMR curves.

    In addition,the strong temperature-dependent AMR amplitudes for the two current directions can be quantitatively elucidated. We plot ?AMRxx= AMRxx(?=0?)?AMRxx(?= 90?) and ?AMRxy= AMRxy(?=45?)?AMRxy(?=135?)versustemperature in Fig.4(b). ?AMRxx(?AMRxy) is small (large) forI ‖Co[100], and ?AMRxx(?AMRxy) is large (small) forI ‖Co[110]. In addition,?AMRxxinI ‖Co[100] is almost equal to ?AMRxyinI ‖Co[110], andvice versa. The unambiguously reciprocal relations of AMR amplitudes between the two current directions are coincident with the phenomenological expansions based on symmetry from Eqs. (1) and (2). Furthermore, the ratio?AMR[100]xy/?AMR[110]xyhas a drastic change with temperature and reaches a maximum 29 at 100 K as shown in Fig. 4(c),which is much larger than the other results 1–5.[30–33]Meanwhile, ?AMR[110]xx/?AMR[100]xxhas the same dependence on temperature. The large anisotropic dependence on temperature for AMR[37]means that larger AMRxxor AMRxycan be chosen for designing magnetic sensor or magnetic memory devices with the fixed current direction.

    Fig. 3. Curves of in-plane longitudinal and transverse AMR versus ? for current along [(a), (c)] Co[100] direction and [(b), (d)] Co[110]direction,with solid linedenoting the experimental data by using Eqs.(1)and(2).

    Fig.4. (a)Curves of fitting coefficients CI,CU,CC, and CIC versus temperatures. (b)?AMRxx and ?AMRxy for I‖Co[100]and I‖Co[110]with decreasing temperature. (c)Amplitude ratio ?AMR[110]xx /?AMR[100]xx (red)and ?AMR[100]xy /?AMR[110]xy (blue)versus temperatures.

    Furthermore, the AMR under a non-saturated magnetic field is measured, where the magnetization direction is determined by the competition between the applied field and the magnetic anisotropy.[51–54]With 100-mT field, longitudinal AMR ofI ‖Co[110] and transverse AMR ofI ‖Co[100]are obtained in Fig. A1 (Appendix A: Supplementary materials). The fitted cubic (uniaxial) anisotropy fieldHK(HU),and the angleθK(θU) between the current direction and the easy axis (EA) of cubic (uniaxial) anisotropy field at 300 K are listed in Table 1. The value ofHKis close to 42.4 mT obtained from hysteresis loop in Fig. 1(c). A smallerHUis along the Co[110]direction,which can be attributed to the inplane strain induced by the unavoidable miscut on the STO substrate. A similar anisotropy fieldHKobtained from magnetic and AMR measurement demonstrates that the AMR may be related to the symmetry of magnetic anisotropy rather than crystalline symmetry.

    Table 1. Fitted HK,HU,θK,θU from Fig.A1 at 300 K.

    Theoretically, the non-crystalline termCIdepends only on the relative angle between current and magnetization direction. The influence of another dominant term, crossed termCIC,on AMR is studied by varying the thickness of Co. Here,Co(2 nm)/STO and Co(2 nm)/STO heterostructure are measured in a way similar to previous way, and the results are shown in Fig.A2(Appendix A:Supplementary materials). It is found that the crossed termCICis larger(smaller)than noncrystallineCIfor Co(2 nm in thickness)(Co(20 nm in thickness))film. Experimentally, the values of relatively largeCIChave been observed for(Ga,Mn)(As,Sb)films,[37]for which the possible reason is the large strain or bulk spin–orbit coupling due to the incorporation of Sb. Further studies indicate thatCICdepends on the magnitude (rather than direction) of interfacial spin–orbit field(SOF)[22]as well,while the interfacial SOF induced by the reduced structural symmetry at surfaces and interfaces will be relatively weaken[32]at large thickness. Hence, the anomalous AMR of the Co(6 nm in thickness)/STO heterostructure is closely related to the interface.

    4. Conclusion

    In this work,the anomalous AMR behaviors in the singlecrystalline FCC Co/STO(001)heterostructures are observed.Both the magnitude and the sign of the longitudinal ARM and transverse AMR are dependent on the temperature and the current direction. It is shown that these effects are attributed mainly to the interplay between the non-crystalline component and crossed component. The nature of the anomalous AMR is closely related to the symmetry of magnetic anisotropy and the interface SOF.Our research highlights the significant properties of the Co/STO (001) heterostructures,but more investigations are still required to further clarify the microscopic mechanism behind the magneto-transport behavior in MM/STO system.

    Appendix A:Supplementary materials

    A1 Magnetic anisotropies determined by magnetoresistance measurements

    For the single domain approximation of a singlecrystalline film, using the coherent rotation model, the free energy density of the system can be written as[52,53]

    whereμ0is the vacuum permeability,Msis the saturation magnetization,?H(?M)is the field(magnetization)angle the current direction,Ku(Kc) is the uniaxial (cubic) anisotropy constant,θKu(θKc) is the angle between uniaxial (cubic)anisotropy and the current direction.α=?H ??Mcan be obtained by(?E)/(?α)=0 with small angle approximation

    whereh1=H/Hk,h2=Hu/Hk,HkandHuare the effective cubic and uniaxial anisotropy fields. TheφMcan be determined by the angledependent magnetoresistance measurement. Hence, combining Eq. (A2) with Eq. (1) or Eq. (2) in the main text,Hk,Hu,θk,θucan be quantified by fitting the magnetoresistance curve.

    Fig. A1. (a) Longitudinal magnetoresistance for I ‖Co[110] and fitted by combining Eq. (A2) with Eq. (1). (b) Transverse magnetoresistance for I‖Co[100]and fitted by combining Eq.(A2)with Eq.(2).

    Figures A1(a) and A1(b) show longitudinal magnetoresistance forI‖Co[110]and transverse magnetoresistance forI‖Co[100]withH=100 mT at 300 K.The fitted results are shown in Table 1 of the main text.

    A2 Magnetoresistance in Co(2 nm)/STO(001) and Co(20 nm)/STO(001)

    Co(2 nm)/STO(001) and Co(20 nm)/STO(001) films are prepared and measured in a way similarto previous way and the coefficients fitted with the above phenomenological model are shown in Fig.A2.The non-crystalline term and the crossed term are the dominant terms similar to the Co(6 nm)/STO,but non-crystalline term is clearly smaller(larger)than the crossed term over the whole temperature range in Co(2 nm)/STO(001)(Co(20 nm)/STO(001)).

    Fig.A2. Curves of fitted AMR coefficients CI,CU,CC,and CIC versus temperature of(a)Co(2 nm)and(b)Co(20 nm),respectively.

    猜你喜歡
    德政雙龍
    Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
    金華遠(yuǎn)方·雙龍賓館
    雙龍集團(tuán)有限公司
    中國核電(2017年2期)2017-08-11 08:01:17
    中國傳統(tǒng)行政理念的內(nèi)蘊與現(xiàn)代啟示*
    依法治國方略對傳統(tǒng)儒家思想精粹的融合與借鑒
    四驅(qū)雪舞 三菱歐藍(lán)德VS.北京(BJ)40VS.雙龍柯蘭多
    越玩越野(2015年2期)2015-08-29 01:04:46
    五德終始說與《兩都賦》
    孔子德政思想的借鑒意義
    對歷史人物呂后的評價研究
    考試周刊(2014年66期)2014-10-08 13:06:31
    亚洲av欧美aⅴ国产| 国产精品.久久久| 久久久精品区二区三区| 十八禁网站网址无遮挡| 人人妻人人澡人人看| 中国美白少妇内射xxxbb| 国产乱人偷精品视频| videossex国产| 丰满乱子伦码专区| 亚洲av电影在线进入| 欧美精品高潮呻吟av久久| 亚洲精品中文字幕在线视频| 少妇的逼好多水| a级片在线免费高清观看视频| 美女视频免费永久观看网站| 久久97久久精品| 免费在线观看黄色视频的| 精品国产露脸久久av麻豆| 秋霞伦理黄片| 韩国高清视频一区二区三区| 日本av手机在线免费观看| www.色视频.com| 男的添女的下面高潮视频| 在线精品无人区一区二区三| 国产深夜福利视频在线观看| 天堂俺去俺来也www色官网| 免费不卡的大黄色大毛片视频在线观看| 精品国产露脸久久av麻豆| 亚洲国产日韩一区二区| 国产精品国产av在线观看| 亚洲欧美一区二区三区国产| 伦理电影免费视频| 国产欧美日韩综合在线一区二区| av在线观看视频网站免费| 日韩一本色道免费dvd| 久久av网站| 又黄又爽又刺激的免费视频.| 国产乱人偷精品视频| 久久久久久人人人人人| 精品国产国语对白av| 观看av在线不卡| 久久久久久久久久人人人人人人| 欧美人与善性xxx| 免费看不卡的av| 少妇精品久久久久久久| 欧美少妇被猛烈插入视频| 最新的欧美精品一区二区| 亚洲成av片中文字幕在线观看 | 亚洲一码二码三码区别大吗| 熟女av电影| 高清毛片免费看| 三级国产精品片| 最近中文字幕高清免费大全6| 美女xxoo啪啪120秒动态图| 激情五月婷婷亚洲| 免费人成在线观看视频色| 久久国产亚洲av麻豆专区| 国产一区亚洲一区在线观看| 亚洲人成77777在线视频| 乱码一卡2卡4卡精品| 97人妻天天添夜夜摸| 午夜91福利影院| 成人影院久久| av免费在线看不卡| 久久久久精品久久久久真实原创| 纵有疾风起免费观看全集完整版| 90打野战视频偷拍视频| 精品视频人人做人人爽| 天天躁夜夜躁狠狠躁躁| 少妇人妻精品综合一区二区| 国产成人av激情在线播放| 国产精品国产三级国产av玫瑰| 在线观看免费日韩欧美大片| 中文字幕另类日韩欧美亚洲嫩草| 国产伦理片在线播放av一区| 国产一区有黄有色的免费视频| 美女视频免费永久观看网站| 男女边吃奶边做爰视频| 午夜av观看不卡| 美女大奶头黄色视频| 老司机影院毛片| 久久精品夜色国产| 国产国拍精品亚洲av在线观看| 欧美精品国产亚洲| 国产精品三级大全| 亚洲国产av新网站| 91aial.com中文字幕在线观看| 婷婷色麻豆天堂久久| 国产高清三级在线| 三上悠亚av全集在线观看| 9热在线视频观看99| 日韩一本色道免费dvd| 国产精品久久久久久久电影| 日本黄色日本黄色录像| 九草在线视频观看| 色94色欧美一区二区| 一边摸一边做爽爽视频免费| 亚洲成国产人片在线观看| 久久久亚洲精品成人影院| 一区在线观看完整版| 国产一区亚洲一区在线观看| 免费观看无遮挡的男女| 国产精品99久久99久久久不卡 | 亚洲av福利一区| 亚洲 欧美一区二区三区| 下体分泌物呈黄色| 久久精品国产a三级三级三级| 97超碰精品成人国产| 天堂中文最新版在线下载| 视频区图区小说| 久久热在线av| 51国产日韩欧美| 亚洲图色成人| 大陆偷拍与自拍| 黑人高潮一二区| 久久久久精品性色| 捣出白浆h1v1| 国产精品人妻久久久影院| 精品一区二区三区视频在线| 伦精品一区二区三区| 久久久久精品久久久久真实原创| 欧美人与性动交α欧美软件 | 观看美女的网站| 亚洲国产成人一精品久久久| 欧美日韩一区二区视频在线观看视频在线| 国产精品欧美亚洲77777| 国产精品一二三区在线看| 久久精品国产亚洲av涩爱| 国产麻豆69| 久久国内精品自在自线图片| 午夜福利,免费看| 国产熟女午夜一区二区三区| 国产精品久久久久久av不卡| 久热这里只有精品99| 国产黄频视频在线观看| 国产精品久久久久久av不卡| 考比视频在线观看| 99香蕉大伊视频| 国语对白做爰xxxⅹ性视频网站| 男人添女人高潮全过程视频| 日本色播在线视频| 亚洲av免费高清在线观看| 人妻 亚洲 视频| 两性夫妻黄色片 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 69精品国产乱码久久久| 女性被躁到高潮视频| 亚洲精华国产精华液的使用体验| 最新中文字幕久久久久| 久久精品夜色国产| 波野结衣二区三区在线| 狂野欧美激情性xxxx在线观看| 纯流量卡能插随身wifi吗| 最近中文字幕2019免费版| 亚洲内射少妇av| 国产69精品久久久久777片| 精品酒店卫生间| 黑人高潮一二区| 日韩一区二区三区影片| 肉色欧美久久久久久久蜜桃| 国产精品欧美亚洲77777| 欧美丝袜亚洲另类| 高清黄色对白视频在线免费看| 亚洲国产精品一区三区| 国产精品麻豆人妻色哟哟久久| 亚洲精品视频女| 看免费av毛片| 亚洲国产看品久久| 精品国产乱码久久久久久小说| 一区二区三区乱码不卡18| 考比视频在线观看| 色婷婷av一区二区三区视频| 国产亚洲一区二区精品| 肉色欧美久久久久久久蜜桃| 一区二区三区四区激情视频| 男女无遮挡免费网站观看| 亚洲美女黄色视频免费看| 欧美精品人与动牲交sv欧美| 亚洲国产精品专区欧美| 人妻系列 视频| 90打野战视频偷拍视频| 久久午夜综合久久蜜桃| 亚洲少妇的诱惑av| 国产精品 国内视频| 国产av国产精品国产| 天天影视国产精品| 久久久久精品久久久久真实原创| 亚洲国产色片| 久久国产精品大桥未久av| 欧美另类一区| 久久久a久久爽久久v久久| 丝袜人妻中文字幕| 中文字幕精品免费在线观看视频 | 午夜福利视频精品| 蜜桃在线观看..| 视频区图区小说| 国产成人aa在线观看| av有码第一页| 久久ye,这里只有精品| 熟妇人妻不卡中文字幕| 视频在线观看一区二区三区| 日韩免费高清中文字幕av| 热99久久久久精品小说推荐| 精品久久久久久电影网| 亚洲精品456在线播放app| 插逼视频在线观看| av在线播放精品| 青春草视频在线免费观看| 美女主播在线视频| 欧美xxxx性猛交bbbb| 九草在线视频观看| 成人影院久久| 国产xxxxx性猛交| 五月伊人婷婷丁香| 一二三四在线观看免费中文在 | 天美传媒精品一区二区| 久久这里有精品视频免费| 免费播放大片免费观看视频在线观看| 久久99热6这里只有精品| 全区人妻精品视频| 美女福利国产在线| 秋霞伦理黄片| 日韩精品有码人妻一区| 热re99久久精品国产66热6| 国产精品久久久久久久电影| 美女福利国产在线| 赤兔流量卡办理| 亚洲国产av新网站| 欧美成人精品欧美一级黄| 男女免费视频国产| 最后的刺客免费高清国语| 日韩在线高清观看一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 香蕉精品网在线| 国产免费一级a男人的天堂| 久久 成人 亚洲| 考比视频在线观看| 爱豆传媒免费全集在线观看| 亚洲伊人色综图| 亚洲一区二区三区欧美精品| 最近手机中文字幕大全| 日韩一区二区视频免费看| 欧美人与性动交α欧美精品济南到 | 男的添女的下面高潮视频| 国产免费视频播放在线视频| 两个人免费观看高清视频| 国产一区二区在线观看av| 欧美成人午夜精品| 中文天堂在线官网| 中文字幕精品免费在线观看视频 | 我要看黄色一级片免费的| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品久久国产蜜桃| 国产精品久久久av美女十八| 亚洲国产精品专区欧美| 天天躁夜夜躁狠狠躁躁| 91国产中文字幕| 精品一区二区三区视频在线| 久久人妻熟女aⅴ| 日日爽夜夜爽网站| 国产成人一区二区在线| 欧美精品av麻豆av| 精品人妻在线不人妻| 亚洲综合色惰| 亚洲精品成人av观看孕妇| av.在线天堂| 免费观看无遮挡的男女| 久久久久精品人妻al黑| 天堂8中文在线网| 男女无遮挡免费网站观看| 精品久久久久久电影网| 免费黄网站久久成人精品| 亚洲av国产av综合av卡| 国产 精品1| 大陆偷拍与自拍| 亚洲精品久久午夜乱码| 亚洲性久久影院| 色哟哟·www| 亚洲少妇的诱惑av| 亚洲国产av新网站| 丝瓜视频免费看黄片| 免费高清在线观看视频在线观看| 亚洲人与动物交配视频| 母亲3免费完整高清在线观看 | 国产成人aa在线观看| 欧美日韩一区二区视频在线观看视频在线| 精品国产国语对白av| 免费看光身美女| 国产片内射在线| 国产免费又黄又爽又色| 十分钟在线观看高清视频www| 久久久久久人人人人人| 波多野结衣一区麻豆| 侵犯人妻中文字幕一二三四区| 国产av精品麻豆| 久久 成人 亚洲| 国产成人一区二区在线| 黑人欧美特级aaaaaa片| 国产伦理片在线播放av一区| 久久久久人妻精品一区果冻| 国产不卡av网站在线观看| 国产亚洲欧美精品永久| 国产免费又黄又爽又色| 在线观看三级黄色| 久久久国产欧美日韩av| 久久这里只有精品19| 欧美成人精品欧美一级黄| 久久99精品国语久久久| 日韩 亚洲 欧美在线| 狠狠婷婷综合久久久久久88av| 高清不卡的av网站| 捣出白浆h1v1| av国产精品久久久久影院| 亚洲,欧美精品.| 夫妻午夜视频| 80岁老熟妇乱子伦牲交| 黑人猛操日本美女一级片| 亚洲第一av免费看| 爱豆传媒免费全集在线观看| 久久久久久久亚洲中文字幕| 少妇的丰满在线观看| 日韩制服丝袜自拍偷拍| 亚洲国产av影院在线观看| 中文字幕制服av| 香蕉国产在线看| 少妇熟女欧美另类| 2022亚洲国产成人精品| 久久久久国产精品人妻一区二区| 亚洲激情五月婷婷啪啪| 亚洲人与动物交配视频| 国产黄色免费在线视频| 最近2019中文字幕mv第一页| 亚洲一区二区三区欧美精品| 欧美成人午夜精品| 只有这里有精品99| 国产无遮挡羞羞视频在线观看| 日产精品乱码卡一卡2卡三| 欧美xxxx性猛交bbbb| 天天操日日干夜夜撸| 欧美人与性动交α欧美软件 | 免费黄色在线免费观看| 18在线观看网站| 国产精品一区www在线观看| 精品熟女少妇av免费看| 大香蕉97超碰在线| 大话2 男鬼变身卡| 免费日韩欧美在线观看| 久久99一区二区三区| 我要看黄色一级片免费的| 美女脱内裤让男人舔精品视频| 18禁在线无遮挡免费观看视频| 欧美激情极品国产一区二区三区 | 国产av码专区亚洲av| 亚洲婷婷狠狠爱综合网| 大陆偷拍与自拍| 9191精品国产免费久久| 国产欧美另类精品又又久久亚洲欧美| 国产在线一区二区三区精| 亚洲美女视频黄频| 涩涩av久久男人的天堂| 日韩中文字幕视频在线看片| 国产淫语在线视频| 激情五月婷婷亚洲| 免费在线观看完整版高清| 精品第一国产精品| 国产在线视频一区二区| 久久国产亚洲av麻豆专区| 岛国毛片在线播放| 亚洲欧美日韩卡通动漫| 免费av不卡在线播放| 国产免费一区二区三区四区乱码| 全区人妻精品视频| 色婷婷久久久亚洲欧美| 大话2 男鬼变身卡| 亚洲欧美一区二区三区国产| 只有这里有精品99| 国产精品久久久久久久久免| 少妇被粗大猛烈的视频| 黑人巨大精品欧美一区二区蜜桃 | 成人综合一区亚洲| 亚洲综合色网址| 国产色婷婷99| 男女高潮啪啪啪动态图| 日韩在线高清观看一区二区三区| 欧美日韩视频高清一区二区三区二| 欧美激情 高清一区二区三区| 精品第一国产精品| 不卡视频在线观看欧美| 美女福利国产在线| 国产熟女欧美一区二区| 五月天丁香电影| 男女免费视频国产| 51国产日韩欧美| 18在线观看网站| 国产亚洲一区二区精品| 少妇被粗大猛烈的视频| 国产乱人偷精品视频| av免费在线看不卡| 青春草视频在线免费观看| 男女边吃奶边做爰视频| 色5月婷婷丁香| 日本av手机在线免费观看| 久久久久国产网址| 啦啦啦视频在线资源免费观看| 亚洲精品美女久久av网站| 免费观看无遮挡的男女| 精品国产露脸久久av麻豆| 99久久精品国产国产毛片| 日本-黄色视频高清免费观看| 老司机亚洲免费影院| 纵有疾风起免费观看全集完整版| 最近的中文字幕免费完整| 午夜日本视频在线| 黄色 视频免费看| 日韩不卡一区二区三区视频在线| 丝袜喷水一区| 一级a做视频免费观看| 热99久久久久精品小说推荐| 看免费av毛片| 99精国产麻豆久久婷婷| 亚洲国产精品成人久久小说| freevideosex欧美| 女人被躁到高潮嗷嗷叫费观| 七月丁香在线播放| 久久这里有精品视频免费| av天堂久久9| 欧美最新免费一区二区三区| av不卡在线播放| 永久免费av网站大全| 少妇人妻精品综合一区二区| av免费观看日本| 久久精品国产亚洲av天美| 久久久久久伊人网av| 巨乳人妻的诱惑在线观看| 国产精品欧美亚洲77777| a级片在线免费高清观看视频| 久久久久久久精品精品| 国产av精品麻豆| 国产老妇伦熟女老妇高清| 1024视频免费在线观看| 亚洲国产欧美日韩在线播放| 国产麻豆69| 一级爰片在线观看| 搡老乐熟女国产| 伦精品一区二区三区| 卡戴珊不雅视频在线播放| 寂寞人妻少妇视频99o| 亚洲成人手机| 国产福利在线免费观看视频| 99热全是精品| 最新中文字幕久久久久| 少妇精品久久久久久久| 伦理电影免费视频| 九草在线视频观看| 久久国内精品自在自线图片| 男的添女的下面高潮视频| 韩国高清视频一区二区三区| 国产一区二区在线观看av| 夜夜爽夜夜爽视频| 久久综合国产亚洲精品| 久久久久久久久久人人人人人人| 9热在线视频观看99| 国产精品成人在线| 久久精品国产a三级三级三级| 亚洲国产欧美在线一区| kizo精华| 99久久综合免费| 永久网站在线| 性色av一级| 国产精品秋霞免费鲁丝片| 国产精品久久久av美女十八| 国产日韩一区二区三区精品不卡| 日韩熟女老妇一区二区性免费视频| 国产精品久久久久成人av| 日韩av不卡免费在线播放| 国产成人欧美| 少妇的丰满在线观看| 免费看不卡的av| 高清不卡的av网站| 亚洲av日韩在线播放| 建设人人有责人人尽责人人享有的| 美女主播在线视频| 亚洲欧美色中文字幕在线| 伦理电影免费视频| 久久精品人人爽人人爽视色| 亚洲欧美中文字幕日韩二区| 成人黄色视频免费在线看| videos熟女内射| 男女国产视频网站| 岛国毛片在线播放| 中文乱码字字幕精品一区二区三区| 一区二区三区精品91| 内地一区二区视频在线| 国产男人的电影天堂91| 欧美+日韩+精品| 亚洲婷婷狠狠爱综合网| 一级,二级,三级黄色视频| 国产精品蜜桃在线观看| 中文精品一卡2卡3卡4更新| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 婷婷色综合www| 这个男人来自地球电影免费观看 | 热re99久久精品国产66热6| 亚洲伊人久久精品综合| 午夜视频国产福利| 国产精品久久久久久av不卡| 精品人妻偷拍中文字幕| 久久久久久人妻| 久久人人爽人人爽人人片va| 国产一区二区三区综合在线观看 | 国产黄频视频在线观看| 国产亚洲精品第一综合不卡 | 少妇高潮的动态图| 下体分泌物呈黄色| 99热国产这里只有精品6| 亚洲国产看品久久| av国产精品久久久久影院| 国产免费福利视频在线观看| 999精品在线视频| 我的女老师完整版在线观看| 欧美激情 高清一区二区三区| av国产久精品久网站免费入址| 交换朋友夫妻互换小说| 三上悠亚av全集在线观看| 大片电影免费在线观看免费| 不卡视频在线观看欧美| 女性被躁到高潮视频| av免费观看日本| 夜夜爽夜夜爽视频| 久久97久久精品| 男女下面插进去视频免费观看 | 国产一区亚洲一区在线观看| 久久精品国产亚洲av涩爱| 国内精品宾馆在线| 日本午夜av视频| 亚洲欧美色中文字幕在线| 欧美日韩视频高清一区二区三区二| 欧美日韩一区二区视频在线观看视频在线| 久久99热6这里只有精品| 色吧在线观看| 国产伦理片在线播放av一区| 欧美人与性动交α欧美软件 | 久久久国产欧美日韩av| 国产精品女同一区二区软件| 午夜福利在线观看免费完整高清在| 欧美丝袜亚洲另类| 大码成人一级视频| 看免费成人av毛片| 欧美日韩av久久| 久久精品久久久久久噜噜老黄| 亚洲丝袜综合中文字幕| av卡一久久| 日韩av在线免费看完整版不卡| 免费黄网站久久成人精品| 色哟哟·www| 亚洲成色77777| 亚洲精品成人av观看孕妇| 久久久久久伊人网av| 久久av网站| 国内精品宾馆在线| 日韩中字成人| 两个人免费观看高清视频| 一区二区三区四区激情视频| 欧美精品人与动牲交sv欧美| 国产在线一区二区三区精| 久久影院123| 全区人妻精品视频| 婷婷成人精品国产| 高清av免费在线| 国产免费现黄频在线看| 侵犯人妻中文字幕一二三四区| 美女国产视频在线观看| 国产成人一区二区在线| 在线 av 中文字幕| 日韩不卡一区二区三区视频在线| 亚洲精华国产精华液的使用体验| 最近手机中文字幕大全| 观看av在线不卡| 精品人妻在线不人妻| 成人无遮挡网站| 91aial.com中文字幕在线观看| 成人综合一区亚洲| 美女福利国产在线| 国产精品国产三级专区第一集| 少妇精品久久久久久久| 国产av国产精品国产| 亚洲激情五月婷婷啪啪| 免费黄频网站在线观看国产| 久久精品久久精品一区二区三区| 日韩人妻精品一区2区三区| 高清在线视频一区二区三区| 欧美日韩视频高清一区二区三区二| 永久免费av网站大全| 99久久人妻综合| 国产综合精华液| 欧美精品人与动牲交sv欧美| 极品少妇高潮喷水抽搐| 久久久久久久精品精品| 国产精品 国内视频| 涩涩av久久男人的天堂| 免费观看性生交大片5| 日韩av在线免费看完整版不卡| 久久久a久久爽久久v久久| 高清不卡的av网站| 汤姆久久久久久久影院中文字幕| 欧美精品高潮呻吟av久久| 国产免费视频播放在线视频| 一区二区三区精品91| 美女中出高潮动态图| 热re99久久国产66热| 久久99精品国语久久久| 男人添女人高潮全过程视频| videossex国产| 国产熟女午夜一区二区三区| 国产午夜精品一二区理论片|