• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Computational ghost imaging with deep compressed sensing?

    2021-12-22 06:42:56HaoZhang張浩YunjieXia夏云杰andDeyangDuan段德洋
    Chinese Physics B 2021年12期
    關(guān)鍵詞:張浩

    Hao Zhang(張浩) Yunjie Xia(夏云杰) and Deyang Duan(段德洋)

    1School of Physics and Physical Engineering,Qufu Normal University,Qufu 273165,China

    2Shandong Provincial Key Laboratory of Laser Polarization and Information Technology,Research Institute of Laser,Qufu Normal University,Qufu 273165,China

    Keywords: computational ghost imaging, compressed sensing, deep convolution generative adversarial network

    1. Introduction

    Ghost imaging (GI) uses the spatial correlation of the light field to indirectly obtain the object’s information.[1–3]In the GI setup, the light source is divided into two spatially related light beams: the reference beam and the object beam. The reference beam, which never interacts with the object, is measured by a multipixel detector with a spatial resolution (e.g., a charge-coupled device), and the object beam after illuminating the object is collected by a bucket detector without spatial resolution. By correlating the photocurrents from the above two detectors, the image of the object can be retrieved. GI has attracted considerable attention from researchers because it has many peculiar features,such as turbulence-free,[4,5]medical imaging,[6–8]and night vision.[9,10]

    However, the two optical paths of the conventional GI limit its application. In 2008,Shapiro creatively proposed the computational ghost imaging(CGI)that simplified the original light paths.[11]In the scheme of CGI,the spatial distribution of the light field is modulated by a spatial light modulator(SLM).The distribution of the light field in the object plane can be calculated according to the diffraction theory.Thus,the reference light path is omitted.Because of the simple light path and high quality,[12]CGI is the most potential imaging scheme for the applications of radar[13,14]and remote sensing.[15,16]

    After more than ten years,the theory and experiments of CGI have become mature. However, a crucial disadvantage hinders the application of CGI, i.e., CGI needs to process a large quantity of data to obtain a high-quality reconstructed image. Compressed sensing (CS) provides an elegant framework to improve the performance of CGI, but its application has been restricted by the strong assumption of sparsity and costly reconstruction process.[17–20]Recently, deep learning(DL) has removed the constraint of sparsity, but reconstruction remains slow.[21–24]

    In this article, we propose a novel CGI scheme with a deep compressed sensing (DCS) framework to improve the imaging quality. Compared with the conventional DL algorithm,neural networks in the DCS can be trained from scratch for both measuring and online reconstruction.[25]Here, we choose a CS based on a deep convolution generative adversarial network(DCGAN)to illustrate this method. Furthermore,we show a useful phenomenon in which background-noisefree images can be obtained by our method.

    2. Theory

    We depict the scheme of computational ghost imaging with deep compression sensing in Fig.1. In the setup,a quasimonochromatic laser is modulated by an SLM and then an objectT(ρ)is illuminated,and the reflected light carrying the object information is modulated by a spatial light modulator.A bucket detector collects the modulated lightEdi(ρ,t). Correspondingly,the calculated lightEci(ρ′,t)can be obtained by diffraction theory. By calculating the second-order correlation between the signal output by the bucket detector and the calculated signal, the object’s image can be reconstructed,[26,27]i.e.,

    where〈·〉denotes an ensemble average. The subscripti=1,2,...,ndenotes theith measurement,andndenotes the total number of measurements. For simplicity, the object functionT(ρ)is contained inEdi(ρ,t).

    Fig. 1. Setup of the computational ghost imaging system with a deep compressed sensing network.SLM:spatial light modulator,BD:bucket detector.

    The flowchart of the DCS is shown in Fig.2. The model consists of four parts: (i) a CS program to compress the data collected by the CGI device,(ii)a conventional CGI algorithm,(iii)a generator G of DCGAN converts random data into sample images through continuous training;and(iv)a discriminator D of DCGAN distinguishes sample images from the real images.

    Fig. 2. Network structure of the DCS. z represents random data; G(z)represents sample images; x represents real images, and the dotted arrows represent the iterative optimization process for the generator G and the discriminator D.

    In the conventional CGI setup,a bucket detector collects a set of data(n). Correspondingly,the distribution of the idle light field in the object plane can be calculated according to the diffraction theory. Here, we can obtainn200×200 data points,and each data point can be divided into 20×20 blocks without overlapping. Under the CS theory,[17–19]the random Gaussian matrix is used to process the 20×20 data blocks,and a 400-dimensional column vector is obtained. In our scheme,the measurement rate is MR=0.25,so the size of the measurement matrix is 100×400. The process of CS can be expressed as

    whereφ ∈RM×N(M ?N) is the measurement basis matrix,x ∈RNrepresents the vectorized image block, andy ∈RMis the measurement vector.N/Mrepresents the measurement rate. Finally, we can obtain a 100-dimensional measurement vectorz.

    By processing the above data with a conventional CGI algorithm,a new set of data(n)is obtained. Then,we train the data through a generator G of DCGAN. The network structure of generator G is shown in Fig. 3. The input is a 100-dimensional random vectorz. The first layer is the fully connected layer, and it turnszinto a 4×4×512-dimensional vector. The 2–5 layers are transposed convolution layers,and the number of channels is gradually reduced through the upsampling operation of transposed convolutions. In the second layer (a transposed convolution layer), 512×5×5 convolution kernels are used to generate 256×8×8 feature maps.The third network layer (a transposed convolution layer) is connected to the second layer, and 256×5×5 convolution kernels are used to generate128×16×16 characteristic graphs.The third layer of the network is connected to the fourth layer(a transposed convolution layer),and 128×5×5 convolution kernels are used to generate 64 32×32 feature maps.

    Fig.3.Network structure of the generator G.FC:fully connected layer;TCONV:transposed convolution layer;512×5×5,represents the number and size of the convolution kernel; s represents stride(s); and pr represents pruning.

    All the above processes are performed by batch normalization and the activation function is a ReLU(rectified linear unit) function. The fifth network layer (a transposed convolution layer) is connected to the fourth layer, and 64×5×5 convolution kernels are used to generate 3×64×64 feature maps. The activation function of the fifth layer is a tanh function. Finally,the sample images are output.

    The sample images(3×64×64)obtained by the generator are used as input to the first layer. Then, the images go through a 50% dropout process to prevent overfitting so that the size of the image remains unchanged. The 3–7 layers are convolution layers. Figure 4 shows the discriminator network structure. In the third layer (a convolution layer), 3×5×5 convolution kernels are used to generate 64×32×32 feature maps. The third network layer is connected to the fourth layer(a convolution layer), and 64×5×5 convolution kernels are used to generate 128×16×16 feature maps.The fifth network layer(a convolution layer)is connected to the fourth layer,and 64×5×5 convolution kernels are used to generate 256×8×8 feature maps. The sixth network layer(a convolution layer)is connected to the fifth layer, and 256×5×5 convolution kernels are used to generate 512×4×4 feature maps. All the above processes are performed by batch normalization, and the activation function is a leaky ReLU function. The seventh network layer (a convolution layer) is connected to the sixth layer,and 512×5×5 convolution kernels are used to generate 1 scalar value.In this article, we choose TensorFlow as the learning framework and train the DCS model based on the TensorFlow learning framework. The learning rate is set to 0.0002,and the number of epochs is 500. The cyclic process can be described as follows: firstly, generatorGgenerates the sample images,then discriminatorDdiscriminates, and the loss is calculated by the output of generatorGand discriminatorD. Therefore,the loss function can be expressed as

    Fig.4.Network structure of discriminator D.CONV:convolution layer;3×5×5 represent the number and size of the convolution kernel;s represents stride(s); pa represents padding.

    whereDrepresents discriminatorD,Grepresents generatorG,xis the input to the model,G(x)represents the sample images andD(x) represents the probability thatxcomes from a real sample and does not come from a sample. Finally, the back-propagation algorithm is used to optimize the weight parameters, and then the next cycle is started. The test images are output every 25 epochs.

    3. Results

    The experimental setup is schematically shown in Fig.1.A standard monochromatic laser(30 mW,Changchun New Industries Optoelectronics Technology Co.,Ltd. MGL-III-532)with wavelengthλ= 532 nm illuminates a cube. A twodimensional amplitude-only ferroelectric liquid crystal spatial light modulator(Meadowlark Optics A512-450-850)with 512×512 addressable 15μm×15μm pixels through the lens collects the reflected light from the object. A bucket detector collects the modulated light. Correspondingly, the reference signal can be obtained through MATLAB software. The ghost image is reconstructed by the DCS. In this experiment, the sampling rate is MR=0.25 and the number of frames is 100.

    Figure 5 shows a series of reconstructed images. Figure 5(a) is the object. Figures 5(b)–5(e) represent reconstructed ghost images with different numbers of frames. The experimental results obviously show that the reconstructed image quality is improved significantly with the increase in frames. The high-quality reconstructed ghost images are comparable to those of classical optical imaging with very little sample data.

    Fig.5. The ghost image reconstructed by computational ghost imaging with compressed sensing based on a deep convolution generative adversarial network (DCS). (a) Real image. The numbers of frames in the reconstructed ghost images are(b)20,(c)40,(d)60,(e)80.

    Fig. 6. Detailed comparison between reconstructed ghost images using the conventional compressed sensing (CS) algorithm, deep learning(DL)algorithm and deep compressed sensing algorithm(DCS).The numbers of frames in the reconstructed ghost images are(a)20,(b)40,(c)60,and(d)80.

    We compare the conventional CS, DL, and DCS algorithms based on the same experimental data. The conventional CS algorithm and DCS algorithm have the same sampling rate,i.e.,MR=0.25. The DL algorithm and DCS algorithm set the same training times, i.e., 100 times. Figure 6 shows that the reconstructed images obtained by our scheme have the best quality under the same number of frames. Figure 6 clearly shows that the background noise can be eliminated by the DCS scheme, which is better than the CS and DL methods.In the generated network, the background noise is eliminated by full convolution. After each convolution, the noise information is reduced, and the details of the image will be lost accordingly. However, the transposed convolution layers in generatorGcompensate for the detailed information. Moreover, because of the existence of a discriminatorDthat can distinguish the “true” image, this causes the generatorGto constantly adjust the parameters to produce images with high reconstruction quality and low background noise.[28]

    The peak signal-to-noise ratio(PSNR)and structural similarity index(SSIM)are used as evaluation indexes to quantitatively analyse the reconstructed image quality. The quantitative results(Fig.7)show that the PSNR of CGI with DCS is on average 57.69%higher than that of CGI with DL under the same reconstructed frame number, SSIM increased by 125%on average. More important, the image quality reconstructed by this method is much higher than that of the other two methods.

    Fig.7. The(a)PSNR and(b)SSIM curves of reconstructed images of CS,DL and DCS with different numbers of frames,respectively.

    4. Summary

    Computational ghost imaging with deep compressed sensing is demonstrated in this article. We show that the imaging quality of CGI can be significantly improved by our approach. More important, this method can eliminate background noise very well,which is difficult for CS and conventional DL methods. The effect is more obvious, especially when the number of samples is small. Consequently, our scheme is more suitable for application in some special cases.For example, for fast-moving objects, we cannot collect a lot of data in a very short time.

    猜你喜歡
    張浩
    峽谷中的小鎮(zhèn)
    Effect of rotating liquid samples on dynamic propagation and aqueous activation of a helium plasma jet
    海綿拖鞋的因果律
    小小說月刊(2022年6期)2022-06-14 10:08:29
    燃燒吧,少年
    Numerical simulations of partial elements excitation for hemispherical high-intensity focused ultrasound phased transducer*
    守護(hù)平安守護(hù)你
    參花(上)(2020年11期)2020-11-02 02:21:12
    瑕疵女友自殺墜亡,“氣死她”也擔(dān)責(zé)?
    商量
    張浩關(guān)注原因
    中國畫畫刊(2017年3期)2017-03-23 07:49:20
    淘出來的好運(yùn)
    故事林(2014年9期)2014-05-08 05:15:10
    国产免费福利视频在线观看| 一本色道久久久久久精品综合| 一区二区三区精品91| 乱码一卡2卡4卡精品| 嘟嘟电影网在线观看| 99热这里只有是精品在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产av国产精品国产| 久久 成人 亚洲| 毛片一级片免费看久久久久| 免费观看性生交大片5| 免费观看无遮挡的男女| 伦理电影免费视频| 最黄视频免费看| 深夜a级毛片| 中文天堂在线官网| 欧美三级亚洲精品| 国产av码专区亚洲av| 老司机影院毛片| 99精国产麻豆久久婷婷| 亚洲av在线观看美女高潮| 国产精品久久久久久久久免| 国产视频内射| 午夜福利视频精品| 国产亚洲最大av| 日韩一本色道免费dvd| 日韩一本色道免费dvd| 国产爱豆传媒在线观看| 男的添女的下面高潮视频| 1000部很黄的大片| 亚洲精品亚洲一区二区| 亚洲精品乱码久久久久久按摩| 久久久亚洲精品成人影院| 边亲边吃奶的免费视频| 中文天堂在线官网| 久久久久久九九精品二区国产| 亚洲电影在线观看av| 欧美最新免费一区二区三区| 一级毛片黄色毛片免费观看视频| 午夜福利在线观看免费完整高清在| 精品熟女少妇av免费看| 国产精品一区二区性色av| 中文天堂在线官网| 亚洲精品乱码久久久久久按摩| 亚洲精品乱码久久久久久按摩| 午夜福利在线在线| av黄色大香蕉| 晚上一个人看的免费电影| 亚洲av不卡在线观看| 亚洲精品乱码久久久v下载方式| 精品亚洲乱码少妇综合久久| 老师上课跳d突然被开到最大视频| 乱码一卡2卡4卡精品| 夜夜爽夜夜爽视频| 日韩电影二区| av专区在线播放| 亚洲性久久影院| 五月开心婷婷网| 国产有黄有色有爽视频| 高清午夜精品一区二区三区| 天堂中文最新版在线下载| 欧美xxⅹ黑人| 边亲边吃奶的免费视频| 免费高清在线观看视频在线观看| 国产真实伦视频高清在线观看| av播播在线观看一区| 看非洲黑人一级黄片| 免费播放大片免费观看视频在线观看| 99热网站在线观看| 亚洲精品乱久久久久久| 麻豆国产97在线/欧美| 免费av中文字幕在线| 成人影院久久| av在线播放精品| 日本av手机在线免费观看| 精品少妇久久久久久888优播| 午夜免费鲁丝| 欧美成人一区二区免费高清观看| 插阴视频在线观看视频| 亚洲欧美一区二区三区国产| 男人狂女人下面高潮的视频| 一级爰片在线观看| 日韩在线高清观看一区二区三区| 色综合色国产| 国产男女超爽视频在线观看| 久久久亚洲精品成人影院| 日韩中字成人| 亚洲av.av天堂| 色哟哟·www| 青青草视频在线视频观看| 王馨瑶露胸无遮挡在线观看| 99久久精品国产国产毛片| 国产黄色视频一区二区在线观看| 三级国产精品片| 久久精品国产a三级三级三级| 高清毛片免费看| 97在线人人人人妻| 成人综合一区亚洲| 中文资源天堂在线| 亚洲色图av天堂| 永久网站在线| 日韩av在线免费看完整版不卡| 国产精品成人在线| 国产成人91sexporn| 国产亚洲91精品色在线| 少妇裸体淫交视频免费看高清| 国产免费视频播放在线视频| 亚洲va在线va天堂va国产| 国产精品久久久久成人av| 男人爽女人下面视频在线观看| 卡戴珊不雅视频在线播放| 精品久久久久久久末码| 国产人妻一区二区三区在| 国产一级毛片在线| 日韩电影二区| 中文资源天堂在线| 成人亚洲精品一区在线观看 | 精品酒店卫生间| 夜夜看夜夜爽夜夜摸| 亚洲一区二区三区欧美精品| 日韩不卡一区二区三区视频在线| 久久久国产一区二区| 黄色怎么调成土黄色| 一本一本综合久久| 欧美丝袜亚洲另类| 美女视频免费永久观看网站| 在线观看人妻少妇| 高清视频免费观看一区二区| 黄色日韩在线| 日韩一本色道免费dvd| 最新中文字幕久久久久| 国产成人精品婷婷| 国产免费视频播放在线视频| 日韩 亚洲 欧美在线| 精品99又大又爽又粗少妇毛片| 免费少妇av软件| 九草在线视频观看| 亚洲激情五月婷婷啪啪| 亚洲美女视频黄频| 亚洲内射少妇av| 一区二区三区四区激情视频| 国产人妻一区二区三区在| 晚上一个人看的免费电影| 男人添女人高潮全过程视频| 国产一区二区三区综合在线观看 | 午夜福利在线在线| 一级毛片 在线播放| 我要看日韩黄色一级片| 一区二区三区乱码不卡18| 人妻系列 视频| 精品亚洲成国产av| 久久午夜福利片| 下体分泌物呈黄色| 久久精品国产亚洲av天美| 久久毛片免费看一区二区三区| 性高湖久久久久久久久免费观看| 国产有黄有色有爽视频| 一区二区三区精品91| 五月玫瑰六月丁香| 一二三四中文在线观看免费高清| 最近2019中文字幕mv第一页| 中文字幕亚洲精品专区| 男人添女人高潮全过程视频| 日韩国内少妇激情av| 久久人妻熟女aⅴ| 最新中文字幕久久久久| 一级毛片电影观看| 亚洲精品国产av成人精品| 三级国产精品片| 亚洲丝袜综合中文字幕| 你懂的网址亚洲精品在线观看| 免费人妻精品一区二区三区视频| 成人国产av品久久久| 欧美三级亚洲精品| 国产真实伦视频高清在线观看| 麻豆国产97在线/欧美| 午夜福利视频精品| 青春草国产在线视频| 少妇精品久久久久久久| 亚洲国产日韩一区二区| 22中文网久久字幕| 亚洲精品乱久久久久久| av卡一久久| 韩国av在线不卡| 一级毛片aaaaaa免费看小| h日本视频在线播放| av在线观看视频网站免费| 国产欧美另类精品又又久久亚洲欧美| 嫩草影院新地址| 最近的中文字幕免费完整| 乱码一卡2卡4卡精品| 人妻制服诱惑在线中文字幕| 久久热精品热| 搡女人真爽免费视频火全软件| 午夜免费鲁丝| 久久人人爽人人片av| 在线观看一区二区三区激情| 黄色一级大片看看| 国产精品成人在线| 国国产精品蜜臀av免费| 97热精品久久久久久| 美女视频免费永久观看网站| 国产淫语在线视频| 最近中文字幕2019免费版| 又大又黄又爽视频免费| 青青草视频在线视频观看| 国产老妇伦熟女老妇高清| 精品99又大又爽又粗少妇毛片| 免费看不卡的av| 亚洲第一区二区三区不卡| 亚洲伊人久久精品综合| 久久国产亚洲av麻豆专区| 久久精品国产亚洲网站| 午夜视频国产福利| 我的老师免费观看完整版| 丰满人妻一区二区三区视频av| 亚洲av成人精品一区久久| 熟女人妻精品中文字幕| av线在线观看网站| 老熟女久久久| kizo精华| 久久久亚洲精品成人影院| 黑人高潮一二区| 毛片女人毛片| 老熟女久久久| 一级毛片黄色毛片免费观看视频| 久久99热这里只有精品18| 免费观看无遮挡的男女| 男人狂女人下面高潮的视频| 国产伦在线观看视频一区| 日韩人妻高清精品专区| 一边亲一边摸免费视频| 丰满少妇做爰视频| 欧美高清性xxxxhd video| 国产成人freesex在线| 男女啪啪激烈高潮av片| 麻豆国产97在线/欧美| 精品一区二区三区视频在线| 欧美xxⅹ黑人| 91午夜精品亚洲一区二区三区| 啦啦啦在线观看免费高清www| 美女cb高潮喷水在线观看| 99久久人妻综合| 欧美最新免费一区二区三区| 3wmmmm亚洲av在线观看| av在线播放精品| 91精品国产九色| 少妇高潮的动态图| 少妇被粗大猛烈的视频| 一级二级三级毛片免费看| 国产亚洲一区二区精品| 久久久欧美国产精品| 91午夜精品亚洲一区二区三区| 亚洲国产欧美人成| 在线免费观看不下载黄p国产| 一级毛片aaaaaa免费看小| 天天躁夜夜躁狠狠久久av| 丰满乱子伦码专区| 国产精品一区www在线观看| 又粗又硬又长又爽又黄的视频| 毛片一级片免费看久久久久| 如何舔出高潮| 亚洲最大成人中文| 日韩伦理黄色片| 天天躁日日操中文字幕| 亚洲精品乱码久久久v下载方式| 伦理电影大哥的女人| 亚洲综合色惰| 亚洲av免费高清在线观看| 美女中出高潮动态图| 久久精品人妻少妇| 亚洲欧洲日产国产| 亚洲国产色片| 赤兔流量卡办理| 午夜日本视频在线| 多毛熟女@视频| 欧美xxxx性猛交bbbb| 人妻 亚洲 视频| 久久久久久九九精品二区国产| 高清av免费在线| 亚洲欧美日韩另类电影网站 | av福利片在线观看| 最新中文字幕久久久久| av国产久精品久网站免费入址| 日日啪夜夜爽| .国产精品久久| 亚州av有码| 国产精品久久久久久精品电影小说 | 亚洲av综合色区一区| 欧美激情国产日韩精品一区| 国产精品国产三级专区第一集| 精品久久国产蜜桃| 亚洲精品第二区| 人人妻人人爽人人添夜夜欢视频 | 亚洲三级黄色毛片| 欧美亚洲 丝袜 人妻 在线| 一区二区三区四区激情视频| 极品少妇高潮喷水抽搐| 亚洲成人av在线免费| av又黄又爽大尺度在线免费看| 熟女人妻精品中文字幕| 人妻 亚洲 视频| av在线观看视频网站免费| 在线观看国产h片| 日本黄色片子视频| 看免费成人av毛片| 搡女人真爽免费视频火全软件| 性色avwww在线观看| 免费人成在线观看视频色| 午夜福利高清视频| 爱豆传媒免费全集在线观看| 女性被躁到高潮视频| 欧美变态另类bdsm刘玥| 日产精品乱码卡一卡2卡三| 最近中文字幕高清免费大全6| 精品99又大又爽又粗少妇毛片| 99视频精品全部免费 在线| 久久久久久伊人网av| 日本一二三区视频观看| 极品少妇高潮喷水抽搐| 三级国产精品欧美在线观看| 成人影院久久| 内地一区二区视频在线| 五月开心婷婷网| 国产一区亚洲一区在线观看| 97精品久久久久久久久久精品| 亚洲,欧美,日韩| 一区二区av电影网| 国产精品熟女久久久久浪| 国产午夜精品一二区理论片| 久久国产乱子免费精品| 久久韩国三级中文字幕| 国产日韩欧美在线精品| 亚洲精品自拍成人| 一级毛片久久久久久久久女| 日本欧美国产在线视频| 在线观看人妻少妇| 亚洲经典国产精华液单| 街头女战士在线观看网站| 久久综合国产亚洲精品| 亚洲不卡免费看| 日韩欧美 国产精品| 亚洲色图综合在线观看| 秋霞伦理黄片| 高清午夜精品一区二区三区| 97在线视频观看| 97精品久久久久久久久久精品| 成人高潮视频无遮挡免费网站| 99久久中文字幕三级久久日本| 国产人妻一区二区三区在| 国产毛片在线视频| www.色视频.com| 免费黄色在线免费观看| 国产毛片在线视频| 久久久成人免费电影| 成年人午夜在线观看视频| 99re6热这里在线精品视频| 亚洲国产精品专区欧美| 国产老妇伦熟女老妇高清| 在线播放无遮挡| 亚洲综合色惰| a 毛片基地| 欧美日韩综合久久久久久| 国产精品欧美亚洲77777| 97在线人人人人妻| 久久99蜜桃精品久久| 嫩草影院入口| 成人一区二区视频在线观看| av播播在线观看一区| 国模一区二区三区四区视频| 亚洲国产毛片av蜜桃av| 久久久久久九九精品二区国产| 久久6这里有精品| 黄色欧美视频在线观看| 亚洲天堂av无毛| 在线 av 中文字幕| 十八禁网站网址无遮挡 | 亚州av有码| 国产一级毛片在线| 国产精品久久久久久久电影| 国产精品精品国产色婷婷| 国产精品麻豆人妻色哟哟久久| 亚洲美女黄色视频免费看| 国产亚洲精品久久久com| 99国产精品免费福利视频| 亚洲av男天堂| 国产黄色视频一区二区在线观看| 国产成人freesex在线| 黑人高潮一二区| 欧美丝袜亚洲另类| 精品国产一区二区三区久久久樱花 | 成人国产av品久久久| 内射极品少妇av片p| 成人国产av品久久久| 久久久国产一区二区| 国产一级毛片在线| 美女脱内裤让男人舔精品视频| 日韩强制内射视频| 久久精品国产鲁丝片午夜精品| 在线观看av片永久免费下载| 国产免费视频播放在线视频| 日韩一区二区视频免费看| 免费播放大片免费观看视频在线观看| 下体分泌物呈黄色| 伦理电影大哥的女人| 国产精品三级大全| 久久精品国产亚洲av天美| 亚洲精品乱码久久久久久按摩| 久久午夜福利片| 97超碰精品成人国产| 视频区图区小说| 熟女人妻精品中文字幕| 国产黄片美女视频| 欧美少妇被猛烈插入视频| 高清在线视频一区二区三区| 午夜福利高清视频| 97热精品久久久久久| 欧美+日韩+精品| 啦啦啦在线观看免费高清www| 精品99又大又爽又粗少妇毛片| 汤姆久久久久久久影院中文字幕| 日本一二三区视频观看| 在线精品无人区一区二区三 | 亚洲av成人精品一区久久| 男女下面进入的视频免费午夜| 狂野欧美白嫩少妇大欣赏| 黑丝袜美女国产一区| 综合色丁香网| 美女中出高潮动态图| 亚洲av男天堂| 香蕉精品网在线| 久久久午夜欧美精品| 日韩免费高清中文字幕av| 人妻制服诱惑在线中文字幕| 少妇的逼好多水| 久久久a久久爽久久v久久| 免费观看a级毛片全部| 亚洲人与动物交配视频| av.在线天堂| 亚洲成人手机| 欧美日本视频| 97超视频在线观看视频| 精品99又大又爽又粗少妇毛片| 免费高清在线观看视频在线观看| 亚洲欧美中文字幕日韩二区| 一个人看的www免费观看视频| 少妇裸体淫交视频免费看高清| 少妇的逼水好多| 美女国产视频在线观看| 国产精品伦人一区二区| 男女啪啪激烈高潮av片| 国产亚洲精品久久久com| h日本视频在线播放| 色视频在线一区二区三区| 亚洲人成网站在线观看播放| 七月丁香在线播放| 国产一级毛片在线| 午夜福利在线在线| 久久久久精品性色| av福利片在线观看| 色视频在线一区二区三区| 人妻 亚洲 视频| 亚洲自偷自拍三级| 国产在线一区二区三区精| 久久国产乱子免费精品| 少妇 在线观看| 1000部很黄的大片| 丰满少妇做爰视频| 国产成人精品福利久久| 狂野欧美激情性xxxx在线观看| 联通29元200g的流量卡| 亚洲美女视频黄频| 如何舔出高潮| 自拍偷自拍亚洲精品老妇| 国产亚洲精品久久久com| 老司机影院成人| av天堂中文字幕网| 日韩成人av中文字幕在线观看| 久久这里有精品视频免费| 色婷婷av一区二区三区视频| 亚洲精品456在线播放app| 久久久久久九九精品二区国产| 美女cb高潮喷水在线观看| 波野结衣二区三区在线| 免费观看性生交大片5| kizo精华| 一级a做视频免费观看| 精品亚洲成国产av| 婷婷色综合大香蕉| 色视频www国产| 中文字幕av成人在线电影| 老司机影院成人| 人体艺术视频欧美日本| 六月丁香七月| 伦理电影大哥的女人| 午夜免费鲁丝| 欧美老熟妇乱子伦牲交| 国产亚洲午夜精品一区二区久久| 国产色爽女视频免费观看| 少妇人妻 视频| 午夜精品国产一区二区电影| 一区二区三区精品91| 麻豆乱淫一区二区| 亚洲av国产av综合av卡| 亚洲欧美中文字幕日韩二区| 在线天堂最新版资源| 能在线免费看毛片的网站| 精品少妇黑人巨大在线播放| 美女xxoo啪啪120秒动态图| 80岁老熟妇乱子伦牲交| 精品久久久久久久久av| 黄色欧美视频在线观看| 97超视频在线观看视频| 伊人久久国产一区二区| 搡女人真爽免费视频火全软件| 午夜精品国产一区二区电影| 亚洲精品日韩av片在线观看| 干丝袜人妻中文字幕| av播播在线观看一区| a级毛色黄片| 亚洲av国产av综合av卡| 一级毛片我不卡| 国产精品不卡视频一区二区| 日日撸夜夜添| 国产无遮挡羞羞视频在线观看| 免费av不卡在线播放| 麻豆国产97在线/欧美| 性色av一级| .国产精品久久| 777米奇影视久久| 国产中年淑女户外野战色| 国内少妇人妻偷人精品xxx网站| 亚洲精品色激情综合| 在线亚洲精品国产二区图片欧美 | videossex国产| 成人亚洲精品一区在线观看 | 99热6这里只有精品| 亚洲av欧美aⅴ国产| 在线免费十八禁| 欧美精品人与动牲交sv欧美| 下体分泌物呈黄色| 成人毛片a级毛片在线播放| 国产人妻一区二区三区在| 成人毛片a级毛片在线播放| 简卡轻食公司| 久久热精品热| 中文乱码字字幕精品一区二区三区| 最近中文字幕2019免费版| 好男人视频免费观看在线| 美女脱内裤让男人舔精品视频| 亚洲va在线va天堂va国产| 亚洲国产高清在线一区二区三| 免费观看的影片在线观看| 国产有黄有色有爽视频| 大香蕉97超碰在线| 我的老师免费观看完整版| 在线免费十八禁| 日韩一本色道免费dvd| 丝袜脚勾引网站| 亚洲精品日韩在线中文字幕| 久久精品夜色国产| 三级国产精品欧美在线观看| 精品一区二区三区视频在线| 永久免费av网站大全| 国产精品99久久99久久久不卡 | www.色视频.com| 极品少妇高潮喷水抽搐| 一级毛片 在线播放| 久久久久久久亚洲中文字幕| 中文精品一卡2卡3卡4更新| 一级毛片aaaaaa免费看小| 夫妻午夜视频| 久久亚洲国产成人精品v| 丰满迷人的少妇在线观看| 99国产精品免费福利视频| 久久久久久久精品精品| www.av在线官网国产| av国产久精品久网站免费入址| 九九在线视频观看精品| av不卡在线播放| 日韩av不卡免费在线播放| 麻豆乱淫一区二区| 亚洲天堂av无毛| 老熟女久久久| 国产精品秋霞免费鲁丝片| 国产一区有黄有色的免费视频| 2018国产大陆天天弄谢| 人妻 亚洲 视频| 一级毛片久久久久久久久女| 伊人久久精品亚洲午夜| 亚洲高清免费不卡视频| 大话2 男鬼变身卡| 水蜜桃什么品种好| 街头女战士在线观看网站| 在线亚洲精品国产二区图片欧美 | 国产精品麻豆人妻色哟哟久久| 大片电影免费在线观看免费| 亚洲欧美成人精品一区二区| 综合色丁香网| 成人免费观看视频高清| 亚洲va在线va天堂va国产| 边亲边吃奶的免费视频| 99热全是精品| 成人黄色视频免费在线看| 蜜桃久久精品国产亚洲av| 一本—道久久a久久精品蜜桃钙片| 国产高清三级在线| 激情五月婷婷亚洲| 不卡视频在线观看欧美| 亚洲婷婷狠狠爱综合网| 人妻夜夜爽99麻豆av| 麻豆乱淫一区二区| 自拍偷自拍亚洲精品老妇| 亚洲国产成人一精品久久久|