• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Computational ghost imaging with deep compressed sensing?

    2021-12-22 06:42:56HaoZhang張浩YunjieXia夏云杰andDeyangDuan段德洋
    Chinese Physics B 2021年12期
    關(guān)鍵詞:張浩

    Hao Zhang(張浩) Yunjie Xia(夏云杰) and Deyang Duan(段德洋)

    1School of Physics and Physical Engineering,Qufu Normal University,Qufu 273165,China

    2Shandong Provincial Key Laboratory of Laser Polarization and Information Technology,Research Institute of Laser,Qufu Normal University,Qufu 273165,China

    Keywords: computational ghost imaging, compressed sensing, deep convolution generative adversarial network

    1. Introduction

    Ghost imaging (GI) uses the spatial correlation of the light field to indirectly obtain the object’s information.[1–3]In the GI setup, the light source is divided into two spatially related light beams: the reference beam and the object beam. The reference beam, which never interacts with the object, is measured by a multipixel detector with a spatial resolution (e.g., a charge-coupled device), and the object beam after illuminating the object is collected by a bucket detector without spatial resolution. By correlating the photocurrents from the above two detectors, the image of the object can be retrieved. GI has attracted considerable attention from researchers because it has many peculiar features,such as turbulence-free,[4,5]medical imaging,[6–8]and night vision.[9,10]

    However, the two optical paths of the conventional GI limit its application. In 2008,Shapiro creatively proposed the computational ghost imaging(CGI)that simplified the original light paths.[11]In the scheme of CGI,the spatial distribution of the light field is modulated by a spatial light modulator(SLM).The distribution of the light field in the object plane can be calculated according to the diffraction theory.Thus,the reference light path is omitted.Because of the simple light path and high quality,[12]CGI is the most potential imaging scheme for the applications of radar[13,14]and remote sensing.[15,16]

    After more than ten years,the theory and experiments of CGI have become mature. However, a crucial disadvantage hinders the application of CGI, i.e., CGI needs to process a large quantity of data to obtain a high-quality reconstructed image. Compressed sensing (CS) provides an elegant framework to improve the performance of CGI, but its application has been restricted by the strong assumption of sparsity and costly reconstruction process.[17–20]Recently, deep learning(DL) has removed the constraint of sparsity, but reconstruction remains slow.[21–24]

    In this article, we propose a novel CGI scheme with a deep compressed sensing (DCS) framework to improve the imaging quality. Compared with the conventional DL algorithm,neural networks in the DCS can be trained from scratch for both measuring and online reconstruction.[25]Here, we choose a CS based on a deep convolution generative adversarial network(DCGAN)to illustrate this method. Furthermore,we show a useful phenomenon in which background-noisefree images can be obtained by our method.

    2. Theory

    We depict the scheme of computational ghost imaging with deep compression sensing in Fig.1. In the setup,a quasimonochromatic laser is modulated by an SLM and then an objectT(ρ)is illuminated,and the reflected light carrying the object information is modulated by a spatial light modulator.A bucket detector collects the modulated lightEdi(ρ,t). Correspondingly,the calculated lightEci(ρ′,t)can be obtained by diffraction theory. By calculating the second-order correlation between the signal output by the bucket detector and the calculated signal, the object’s image can be reconstructed,[26,27]i.e.,

    where〈·〉denotes an ensemble average. The subscripti=1,2,...,ndenotes theith measurement,andndenotes the total number of measurements. For simplicity, the object functionT(ρ)is contained inEdi(ρ,t).

    Fig. 1. Setup of the computational ghost imaging system with a deep compressed sensing network.SLM:spatial light modulator,BD:bucket detector.

    The flowchart of the DCS is shown in Fig.2. The model consists of four parts: (i) a CS program to compress the data collected by the CGI device,(ii)a conventional CGI algorithm,(iii)a generator G of DCGAN converts random data into sample images through continuous training;and(iv)a discriminator D of DCGAN distinguishes sample images from the real images.

    Fig. 2. Network structure of the DCS. z represents random data; G(z)represents sample images; x represents real images, and the dotted arrows represent the iterative optimization process for the generator G and the discriminator D.

    In the conventional CGI setup,a bucket detector collects a set of data(n). Correspondingly,the distribution of the idle light field in the object plane can be calculated according to the diffraction theory. Here, we can obtainn200×200 data points,and each data point can be divided into 20×20 blocks without overlapping. Under the CS theory,[17–19]the random Gaussian matrix is used to process the 20×20 data blocks,and a 400-dimensional column vector is obtained. In our scheme,the measurement rate is MR=0.25,so the size of the measurement matrix is 100×400. The process of CS can be expressed as

    whereφ ∈RM×N(M ?N) is the measurement basis matrix,x ∈RNrepresents the vectorized image block, andy ∈RMis the measurement vector.N/Mrepresents the measurement rate. Finally, we can obtain a 100-dimensional measurement vectorz.

    By processing the above data with a conventional CGI algorithm,a new set of data(n)is obtained. Then,we train the data through a generator G of DCGAN. The network structure of generator G is shown in Fig. 3. The input is a 100-dimensional random vectorz. The first layer is the fully connected layer, and it turnszinto a 4×4×512-dimensional vector. The 2–5 layers are transposed convolution layers,and the number of channels is gradually reduced through the upsampling operation of transposed convolutions. In the second layer (a transposed convolution layer), 512×5×5 convolution kernels are used to generate 256×8×8 feature maps.The third network layer (a transposed convolution layer) is connected to the second layer, and 256×5×5 convolution kernels are used to generate128×16×16 characteristic graphs.The third layer of the network is connected to the fourth layer(a transposed convolution layer),and 128×5×5 convolution kernels are used to generate 64 32×32 feature maps.

    Fig.3.Network structure of the generator G.FC:fully connected layer;TCONV:transposed convolution layer;512×5×5,represents the number and size of the convolution kernel; s represents stride(s); and pr represents pruning.

    All the above processes are performed by batch normalization and the activation function is a ReLU(rectified linear unit) function. The fifth network layer (a transposed convolution layer) is connected to the fourth layer, and 64×5×5 convolution kernels are used to generate 3×64×64 feature maps. The activation function of the fifth layer is a tanh function. Finally,the sample images are output.

    The sample images(3×64×64)obtained by the generator are used as input to the first layer. Then, the images go through a 50% dropout process to prevent overfitting so that the size of the image remains unchanged. The 3–7 layers are convolution layers. Figure 4 shows the discriminator network structure. In the third layer (a convolution layer), 3×5×5 convolution kernels are used to generate 64×32×32 feature maps. The third network layer is connected to the fourth layer(a convolution layer), and 64×5×5 convolution kernels are used to generate 128×16×16 feature maps.The fifth network layer(a convolution layer)is connected to the fourth layer,and 64×5×5 convolution kernels are used to generate 256×8×8 feature maps. The sixth network layer(a convolution layer)is connected to the fifth layer, and 256×5×5 convolution kernels are used to generate 512×4×4 feature maps. All the above processes are performed by batch normalization, and the activation function is a leaky ReLU function. The seventh network layer (a convolution layer) is connected to the sixth layer,and 512×5×5 convolution kernels are used to generate 1 scalar value.In this article, we choose TensorFlow as the learning framework and train the DCS model based on the TensorFlow learning framework. The learning rate is set to 0.0002,and the number of epochs is 500. The cyclic process can be described as follows: firstly, generatorGgenerates the sample images,then discriminatorDdiscriminates, and the loss is calculated by the output of generatorGand discriminatorD. Therefore,the loss function can be expressed as

    Fig.4.Network structure of discriminator D.CONV:convolution layer;3×5×5 represent the number and size of the convolution kernel;s represents stride(s); pa represents padding.

    whereDrepresents discriminatorD,Grepresents generatorG,xis the input to the model,G(x)represents the sample images andD(x) represents the probability thatxcomes from a real sample and does not come from a sample. Finally, the back-propagation algorithm is used to optimize the weight parameters, and then the next cycle is started. The test images are output every 25 epochs.

    3. Results

    The experimental setup is schematically shown in Fig.1.A standard monochromatic laser(30 mW,Changchun New Industries Optoelectronics Technology Co.,Ltd. MGL-III-532)with wavelengthλ= 532 nm illuminates a cube. A twodimensional amplitude-only ferroelectric liquid crystal spatial light modulator(Meadowlark Optics A512-450-850)with 512×512 addressable 15μm×15μm pixels through the lens collects the reflected light from the object. A bucket detector collects the modulated light. Correspondingly, the reference signal can be obtained through MATLAB software. The ghost image is reconstructed by the DCS. In this experiment, the sampling rate is MR=0.25 and the number of frames is 100.

    Figure 5 shows a series of reconstructed images. Figure 5(a) is the object. Figures 5(b)–5(e) represent reconstructed ghost images with different numbers of frames. The experimental results obviously show that the reconstructed image quality is improved significantly with the increase in frames. The high-quality reconstructed ghost images are comparable to those of classical optical imaging with very little sample data.

    Fig.5. The ghost image reconstructed by computational ghost imaging with compressed sensing based on a deep convolution generative adversarial network (DCS). (a) Real image. The numbers of frames in the reconstructed ghost images are(b)20,(c)40,(d)60,(e)80.

    Fig. 6. Detailed comparison between reconstructed ghost images using the conventional compressed sensing (CS) algorithm, deep learning(DL)algorithm and deep compressed sensing algorithm(DCS).The numbers of frames in the reconstructed ghost images are(a)20,(b)40,(c)60,and(d)80.

    We compare the conventional CS, DL, and DCS algorithms based on the same experimental data. The conventional CS algorithm and DCS algorithm have the same sampling rate,i.e.,MR=0.25. The DL algorithm and DCS algorithm set the same training times, i.e., 100 times. Figure 6 shows that the reconstructed images obtained by our scheme have the best quality under the same number of frames. Figure 6 clearly shows that the background noise can be eliminated by the DCS scheme, which is better than the CS and DL methods.In the generated network, the background noise is eliminated by full convolution. After each convolution, the noise information is reduced, and the details of the image will be lost accordingly. However, the transposed convolution layers in generatorGcompensate for the detailed information. Moreover, because of the existence of a discriminatorDthat can distinguish the “true” image, this causes the generatorGto constantly adjust the parameters to produce images with high reconstruction quality and low background noise.[28]

    The peak signal-to-noise ratio(PSNR)and structural similarity index(SSIM)are used as evaluation indexes to quantitatively analyse the reconstructed image quality. The quantitative results(Fig.7)show that the PSNR of CGI with DCS is on average 57.69%higher than that of CGI with DL under the same reconstructed frame number, SSIM increased by 125%on average. More important, the image quality reconstructed by this method is much higher than that of the other two methods.

    Fig.7. The(a)PSNR and(b)SSIM curves of reconstructed images of CS,DL and DCS with different numbers of frames,respectively.

    4. Summary

    Computational ghost imaging with deep compressed sensing is demonstrated in this article. We show that the imaging quality of CGI can be significantly improved by our approach. More important, this method can eliminate background noise very well,which is difficult for CS and conventional DL methods. The effect is more obvious, especially when the number of samples is small. Consequently, our scheme is more suitable for application in some special cases.For example, for fast-moving objects, we cannot collect a lot of data in a very short time.

    猜你喜歡
    張浩
    峽谷中的小鎮(zhèn)
    Effect of rotating liquid samples on dynamic propagation and aqueous activation of a helium plasma jet
    海綿拖鞋的因果律
    小小說月刊(2022年6期)2022-06-14 10:08:29
    燃燒吧,少年
    Numerical simulations of partial elements excitation for hemispherical high-intensity focused ultrasound phased transducer*
    守護(hù)平安守護(hù)你
    參花(上)(2020年11期)2020-11-02 02:21:12
    瑕疵女友自殺墜亡,“氣死她”也擔(dān)責(zé)?
    商量
    張浩關(guān)注原因
    中國畫畫刊(2017年3期)2017-03-23 07:49:20
    淘出來的好運(yùn)
    故事林(2014年9期)2014-05-08 05:15:10
    午夜免费观看性视频| 国产毛片在线视频| 下体分泌物呈黄色| 能在线免费看毛片的网站| 王馨瑶露胸无遮挡在线观看| 国产黄片视频在线免费观看| 亚洲av电影在线观看一区二区三区 | 亚洲性久久影院| 国产在线男女| 国产精品人妻久久久久久| 精品久久久久久久人妻蜜臀av| 可以在线观看毛片的网站| 免费黄频网站在线观看国产| 又爽又黄a免费视频| 精品99又大又爽又粗少妇毛片| 亚洲精品成人av观看孕妇| 少妇人妻精品综合一区二区| 成年免费大片在线观看| 干丝袜人妻中文字幕| 超碰97精品在线观看| 日本黄色片子视频| 热re99久久精品国产66热6| 国产精品国产三级国产专区5o| 日本黄色片子视频| 香蕉精品网在线| 欧美极品一区二区三区四区| 国产精品蜜桃在线观看| 亚洲久久久久久中文字幕| 免费看av在线观看网站| 蜜桃久久精品国产亚洲av| 九九爱精品视频在线观看| 丝瓜视频免费看黄片| 亚洲精品一区蜜桃| 国产色婷婷99| 欧美老熟妇乱子伦牲交| 国产成人freesex在线| 99re6热这里在线精品视频| 黄色一级大片看看| 人妻制服诱惑在线中文字幕| 黄色日韩在线| 亚洲欧美一区二区三区黑人 | 中文欧美无线码| 中文天堂在线官网| 亚洲熟女精品中文字幕| 亚洲欧洲国产日韩| 国产一区亚洲一区在线观看| 一级毛片久久久久久久久女| 男插女下体视频免费在线播放| 人妻系列 视频| 日韩一区二区三区影片| 一本一本综合久久| 成年人午夜在线观看视频| 精品人妻熟女av久视频| 国产亚洲一区二区精品| 特大巨黑吊av在线直播| 国产爽快片一区二区三区| 中文字幕免费在线视频6| av在线app专区| tube8黄色片| 真实男女啪啪啪动态图| 国产综合懂色| 国产色婷婷99| a级一级毛片免费在线观看| 人人妻人人爽人人添夜夜欢视频 | 亚洲精品,欧美精品| 亚洲精品日韩av片在线观看| 亚洲欧美成人综合另类久久久| 99热国产这里只有精品6| 男女下面进入的视频免费午夜| 国产成人91sexporn| 最近最新中文字幕免费大全7| 亚洲自偷自拍三级| 一级二级三级毛片免费看| 天天躁日日操中文字幕| 禁无遮挡网站| 成人鲁丝片一二三区免费| 在线免费十八禁| 热99国产精品久久久久久7| 少妇熟女欧美另类| 高清毛片免费看| videos熟女内射| 国产伦精品一区二区三区四那| 欧美高清成人免费视频www| 免费看光身美女| 插逼视频在线观看| 肉色欧美久久久久久久蜜桃 | 午夜福利视频精品| 亚洲欧美清纯卡通| 一级毛片久久久久久久久女| 精品国产乱码久久久久久小说| 欧美日韩精品成人综合77777| 国产午夜精品久久久久久一区二区三区| av播播在线观看一区| 精品国产乱码久久久久久小说| 精品久久久久久久久亚洲| 亚洲国产精品专区欧美| 啦啦啦在线观看免费高清www| 丰满乱子伦码专区| 国产高清有码在线观看视频| 亚洲国产最新在线播放| 乱系列少妇在线播放| 极品教师在线视频| 久久久a久久爽久久v久久| 人妻 亚洲 视频| 日韩国内少妇激情av| 熟女电影av网| 亚洲精品久久久久久婷婷小说| 九九久久精品国产亚洲av麻豆| 自拍欧美九色日韩亚洲蝌蚪91 | 午夜视频国产福利| 色5月婷婷丁香| 黄色配什么色好看| 欧美区成人在线视频| 男女边摸边吃奶| 亚洲欧美日韩无卡精品| 免费av毛片视频| 少妇的逼好多水| 少妇裸体淫交视频免费看高清| 丝袜美腿在线中文| 王馨瑶露胸无遮挡在线观看| 国产 精品1| 国产爽快片一区二区三区| 国产探花在线观看一区二区| 国产精品99久久久久久久久| h日本视频在线播放| 永久免费av网站大全| 婷婷色综合大香蕉| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲91精品色在线| 校园人妻丝袜中文字幕| 日本一二三区视频观看| 青春草国产在线视频| 国产综合懂色| 午夜视频国产福利| 国产成人精品福利久久| 最近中文字幕2019免费版| 国产爱豆传媒在线观看| 哪个播放器可以免费观看大片| 免费av毛片视频| 欧美另类一区| 69人妻影院| 国产综合精华液| 偷拍熟女少妇极品色| 亚洲精品色激情综合| 一边亲一边摸免费视频| 噜噜噜噜噜久久久久久91| 深爱激情五月婷婷| 国产av国产精品国产| 热99国产精品久久久久久7| 国产精品久久久久久久久免| 中文字幕人妻熟人妻熟丝袜美| 18+在线观看网站| 成人亚洲精品一区在线观看 | 大又大粗又爽又黄少妇毛片口| www.av在线官网国产| 肉色欧美久久久久久久蜜桃 | 青春草国产在线视频| 亚洲人成网站在线播| 国产免费又黄又爽又色| 成年版毛片免费区| 22中文网久久字幕| 深夜a级毛片| 国产一区二区亚洲精品在线观看| 91精品伊人久久大香线蕉| 水蜜桃什么品种好| 国产久久久一区二区三区| 国产精品国产av在线观看| 黄色日韩在线| 三级国产精品欧美在线观看| 日韩中字成人| 久久久久久久午夜电影| 六月丁香七月| 亚洲欧美日韩另类电影网站 | 午夜亚洲福利在线播放| 最后的刺客免费高清国语| 国产黄色视频一区二区在线观看| 国产91av在线免费观看| 波多野结衣巨乳人妻| 天堂中文最新版在线下载 | 国产精品久久久久久精品电影| 一级毛片 在线播放| 欧美国产精品一级二级三级 | 国产黄片美女视频| 国产极品天堂在线| 高清日韩中文字幕在线| 嫩草影院新地址| 2021少妇久久久久久久久久久| 国产精品伦人一区二区| 一级毛片aaaaaa免费看小| 大陆偷拍与自拍| 久久99蜜桃精品久久| 1000部很黄的大片| 身体一侧抽搐| 日韩中字成人| 搡老乐熟女国产| 99久久精品国产国产毛片| 欧美极品一区二区三区四区| 中文资源天堂在线| 插逼视频在线观看| 国产 一区精品| 九色成人免费人妻av| 日韩免费高清中文字幕av| 亚洲精品国产av蜜桃| 人妻一区二区av| 国产爱豆传媒在线观看| 在线观看一区二区三区| 我要看日韩黄色一级片| 禁无遮挡网站| 久久精品国产亚洲av天美| 日韩成人伦理影院| av在线蜜桃| 我的女老师完整版在线观看| 天天躁日日操中文字幕| 国产成人一区二区在线| 久久久久国产网址| 亚洲精品视频女| 亚洲av免费在线观看| 国产精品久久久久久av不卡| 香蕉精品网在线| 欧美老熟妇乱子伦牲交| 22中文网久久字幕| 日韩大片免费观看网站| 亚洲高清免费不卡视频| 国产欧美日韩一区二区三区在线 | 色综合色国产| 深夜a级毛片| 免费大片18禁| 亚洲欧美中文字幕日韩二区| 亚洲天堂国产精品一区在线| 亚洲国产日韩一区二区| 午夜福利在线在线| 大码成人一级视频| 国语对白做爰xxxⅹ性视频网站| 午夜精品国产一区二区电影 | 免费看a级黄色片| 高清av免费在线| 精品久久久精品久久久| 久久精品国产a三级三级三级| 黄色配什么色好看| 免费看a级黄色片| 国产亚洲午夜精品一区二区久久 | 最近中文字幕2019免费版| 搡女人真爽免费视频火全软件| 色播亚洲综合网| 男人狂女人下面高潮的视频| 另类亚洲欧美激情| 三级国产精品欧美在线观看| 国产精品一及| 大片免费播放器 马上看| 热re99久久精品国产66热6| 另类亚洲欧美激情| 亚洲精品自拍成人| 精品久久国产蜜桃| 国产片特级美女逼逼视频| 真实男女啪啪啪动态图| 久久久久久久久久久免费av| 免费观看a级毛片全部| av在线天堂中文字幕| 韩国av在线不卡| 国产高清三级在线| 国产av码专区亚洲av| 亚洲国产精品专区欧美| 免费观看的影片在线观看| 亚洲图色成人| 久久女婷五月综合色啪小说 | 亚洲欧洲日产国产| 2021少妇久久久久久久久久久| 伊人久久国产一区二区| 国产黄片美女视频| 国产黄色免费在线视频| 在线观看国产h片| 欧美日韩国产mv在线观看视频 | 国产精品久久久久久久久免| 高清视频免费观看一区二区| 91aial.com中文字幕在线观看| 国产亚洲午夜精品一区二区久久 | 欧美人与善性xxx| 男女啪啪激烈高潮av片| 免费不卡的大黄色大毛片视频在线观看| 日本一二三区视频观看| 老师上课跳d突然被开到最大视频| 精品国产一区二区三区久久久樱花 | 久久久久性生活片| av在线老鸭窝| 最近中文字幕2019免费版| 久久久久久久久大av| 毛片女人毛片| 成人欧美大片| 亚洲一区二区三区欧美精品 | 国产在线一区二区三区精| 国产午夜精品一二区理论片| 国产精品国产三级专区第一集| 国产一区二区亚洲精品在线观看| 在线免费十八禁| 日韩在线高清观看一区二区三区| 亚洲一区二区三区欧美精品 | 成年人午夜在线观看视频| 久久这里有精品视频免费| 汤姆久久久久久久影院中文字幕| 中国国产av一级| 亚洲成人一二三区av| 下体分泌物呈黄色| 夜夜爽夜夜爽视频| 久久久亚洲精品成人影院| 中国国产av一级| 亚洲不卡免费看| 国产成人精品久久久久久| 精品久久国产蜜桃| 色视频www国产| 久久久久国产网址| www.色视频.com| 成人无遮挡网站| 久久久久久久亚洲中文字幕| 午夜福利在线观看免费完整高清在| 日韩大片免费观看网站| 男人爽女人下面视频在线观看| 成人欧美大片| 亚洲成人精品中文字幕电影| 亚洲高清免费不卡视频| 国产一区有黄有色的免费视频| 国内精品美女久久久久久| 久久久久久久午夜电影| 国产黄色视频一区二区在线观看| 国产毛片在线视频| 日韩精品有码人妻一区| 97热精品久久久久久| 精品视频人人做人人爽| 久久99精品国语久久久| 日本爱情动作片www.在线观看| 久久精品国产亚洲av天美| 99久久九九国产精品国产免费| 色吧在线观看| 国产精品一区www在线观看| 另类亚洲欧美激情| 欧美日韩在线观看h| 97热精品久久久久久| 午夜精品一区二区三区免费看| 日韩人妻高清精品专区| 少妇裸体淫交视频免费看高清| 尤物成人国产欧美一区二区三区| 国内精品美女久久久久久| 深爱激情五月婷婷| 亚洲国产精品国产精品| 纵有疾风起免费观看全集完整版| 国产一区二区亚洲精品在线观看| 成人二区视频| 欧美最新免费一区二区三区| 国产精品人妻久久久影院| 少妇人妻精品综合一区二区| 久久久久久久久久成人| 亚洲欧洲国产日韩| 在线 av 中文字幕| 人妻一区二区av| 国产精品一及| 少妇人妻精品综合一区二区| 伦理电影大哥的女人| 最近最新中文字幕免费大全7| 狂野欧美白嫩少妇大欣赏| 国产毛片a区久久久久| 国产成年人精品一区二区| 久久精品国产亚洲网站| 成年版毛片免费区| xxx大片免费视频| 性色av一级| 精品熟女少妇av免费看| 欧美性猛交╳xxx乱大交人| 成人亚洲精品av一区二区| 亚洲欧美精品自产自拍| 美女xxoo啪啪120秒动态图| 日日啪夜夜爽| 天天躁夜夜躁狠狠久久av| 国精品久久久久久国模美| 日本一本二区三区精品| 亚洲精品亚洲一区二区| 亚洲欧美日韩卡通动漫| 黄色欧美视频在线观看| 亚洲欧美日韩无卡精品| 午夜福利视频1000在线观看| 国产又色又爽无遮挡免| 哪个播放器可以免费观看大片| 欧美成人a在线观看| 可以在线观看毛片的网站| 老司机影院毛片| 免费av不卡在线播放| 成人免费观看视频高清| 国产色婷婷99| 午夜激情福利司机影院| 91在线精品国自产拍蜜月| 日韩大片免费观看网站| 精品久久久精品久久久| 国产日韩欧美亚洲二区| 成人毛片60女人毛片免费| 成人特级av手机在线观看| 欧美极品一区二区三区四区| 成年女人看的毛片在线观看| 搡老乐熟女国产| 久久精品国产亚洲av天美| 久久久久久九九精品二区国产| 久久韩国三级中文字幕| 一级毛片aaaaaa免费看小| 3wmmmm亚洲av在线观看| 在线 av 中文字幕| 九草在线视频观看| 精品久久久久久久久av| 欧美 日韩 精品 国产| 在线看a的网站| 69人妻影院| 精品久久久噜噜| 国产真实伦视频高清在线观看| 一本久久精品| 久久亚洲国产成人精品v| 免费电影在线观看免费观看| 性色av一级| 肉色欧美久久久久久久蜜桃 | 亚洲国产精品国产精品| 午夜日本视频在线| 毛片一级片免费看久久久久| 人妻 亚洲 视频| 成人国产麻豆网| 下体分泌物呈黄色| .国产精品久久| 欧美少妇被猛烈插入视频| 如何舔出高潮| 男的添女的下面高潮视频| 大片免费播放器 马上看| 欧美变态另类bdsm刘玥| 亚洲国产av新网站| 亚洲精品456在线播放app| 美女脱内裤让男人舔精品视频| 亚洲国产欧美人成| 晚上一个人看的免费电影| 大话2 男鬼变身卡| 校园人妻丝袜中文字幕| 国产免费又黄又爽又色| 少妇丰满av| 在线免费观看不下载黄p国产| .国产精品久久| 观看美女的网站| 真实男女啪啪啪动态图| 亚洲成人中文字幕在线播放| 热99国产精品久久久久久7| 欧美激情久久久久久爽电影| 国产国拍精品亚洲av在线观看| 亚洲av不卡在线观看| 亚洲激情五月婷婷啪啪| 一本久久精品| 91狼人影院| 一级a做视频免费观看| 免费黄网站久久成人精品| 国产淫语在线视频| 国产极品天堂在线| 国产亚洲av嫩草精品影院| 黄色配什么色好看| 精品一区在线观看国产| 久久久久久久亚洲中文字幕| 少妇被粗大猛烈的视频| 水蜜桃什么品种好| 少妇高潮的动态图| 亚洲av电影在线观看一区二区三区 | 久久久a久久爽久久v久久| 最新中文字幕久久久久| 国产精品国产三级国产专区5o| 国产免费福利视频在线观看| 在线观看免费高清a一片| 赤兔流量卡办理| 丰满人妻一区二区三区视频av| 欧美日韩亚洲高清精品| 男的添女的下面高潮视频| 国产片特级美女逼逼视频| 午夜精品国产一区二区电影 | 2018国产大陆天天弄谢| 别揉我奶头 嗯啊视频| 国产午夜精品久久久久久一区二区三区| 一本久久精品| 大香蕉久久网| 国产精品精品国产色婷婷| 久热这里只有精品99| xxx大片免费视频| 97在线人人人人妻| 黄片wwwwww| 啦啦啦啦在线视频资源| 天天躁夜夜躁狠狠久久av| 99久久精品国产国产毛片| 亚洲av二区三区四区| 午夜免费鲁丝| 亚洲精华国产精华液的使用体验| 各种免费的搞黄视频| 极品少妇高潮喷水抽搐| 看非洲黑人一级黄片| 天堂俺去俺来也www色官网| 国产乱人视频| 婷婷色综合www| 亚洲成色77777| 午夜亚洲福利在线播放| 人人妻人人看人人澡| 国产亚洲91精品色在线| 中文在线观看免费www的网站| 国内揄拍国产精品人妻在线| 蜜桃亚洲精品一区二区三区| 国产精品一区二区性色av| 亚洲欧美清纯卡通| 国产高清不卡午夜福利| 色播亚洲综合网| 久久久久久久久久成人| 欧美性感艳星| 看黄色毛片网站| 激情五月婷婷亚洲| 免费人成在线观看视频色| 高清日韩中文字幕在线| 亚洲国产精品国产精品| 亚洲av成人精品一二三区| 午夜精品国产一区二区电影 | 久久影院123| 另类亚洲欧美激情| 久久久久久久午夜电影| 久久这里有精品视频免费| 九色成人免费人妻av| 中文字幕久久专区| 日日撸夜夜添| 午夜激情福利司机影院| 亚洲经典国产精华液单| 久久6这里有精品| 青春草视频在线免费观看| 黄片无遮挡物在线观看| 国产乱来视频区| 自拍偷自拍亚洲精品老妇| 国产视频内射| 2022亚洲国产成人精品| 国产成人aa在线观看| 国产爱豆传媒在线观看| 国产精品熟女久久久久浪| 国内精品美女久久久久久| 精品一区二区三区视频在线| 天堂中文最新版在线下载 | 亚洲丝袜综合中文字幕| av又黄又爽大尺度在线免费看| 亚洲天堂国产精品一区在线| 亚洲av男天堂| 精品人妻一区二区三区麻豆| www.色视频.com| 久久精品国产鲁丝片午夜精品| 亚洲av男天堂| av在线老鸭窝| 中文精品一卡2卡3卡4更新| 日韩视频在线欧美| 一级a做视频免费观看| 国产伦精品一区二区三区四那| 少妇的逼好多水| 成人一区二区视频在线观看| 国产国拍精品亚洲av在线观看| 欧美潮喷喷水| 国产成人福利小说| 国产午夜精品一二区理论片| 亚洲精品国产色婷婷电影| 中国美白少妇内射xxxbb| 黄色怎么调成土黄色| 看免费成人av毛片| 亚洲欧美日韩卡通动漫| 国产精品.久久久| 一级毛片我不卡| 亚洲欧美精品自产自拍| 国产淫片久久久久久久久| 寂寞人妻少妇视频99o| 亚洲国产精品成人久久小说| 日韩av不卡免费在线播放| 少妇人妻精品综合一区二区| 日本与韩国留学比较| 极品教师在线视频| 亚洲欧美成人综合另类久久久| 欧美高清性xxxxhd video| 菩萨蛮人人尽说江南好唐韦庄| 伊人久久国产一区二区| 国产精品一及| 国产高清三级在线| 国产男女内射视频| 欧美日本视频| 久久久久久久精品精品| 伦理电影大哥的女人| 性色avwww在线观看| 夜夜看夜夜爽夜夜摸| 高清欧美精品videossex| 国产免费福利视频在线观看| 丝袜脚勾引网站| 国产黄频视频在线观看| 亚洲精品中文字幕在线视频 | 久久99热这里只频精品6学生| 国产成人精品福利久久| 国精品久久久久久国模美| 国产精品.久久久| 亚洲精品影视一区二区三区av| 伦理电影大哥的女人| 性色avwww在线观看| 边亲边吃奶的免费视频| 亚洲欧美日韩另类电影网站 | 亚洲欧美精品自产自拍| 国产精品一区www在线观看| 国产黄频视频在线观看| 亚洲久久久久久中文字幕| 亚洲av免费在线观看| a级一级毛片免费在线观看| 噜噜噜噜噜久久久久久91| 十八禁网站网址无遮挡 | av网站免费在线观看视频| 久久人人爽人人片av| 日韩中字成人| 尤物成人国产欧美一区二区三区| 精品午夜福利在线看| 最后的刺客免费高清国语| 最近中文字幕2019免费版| 国产片特级美女逼逼视频| 久久久午夜欧美精品| 久久久久久久大尺度免费视频| 久久久久久伊人网av| 久久精品熟女亚洲av麻豆精品| 噜噜噜噜噜久久久久久91|