• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Asymmetric coherent rainbows induced by liquid convection?

    2021-12-22 06:49:04TingtingShi施婷婷XuanQian錢軒TianjiaoSun孫天嬌LiCheng程力RunjiangDou竇潤江LiyuanLiu劉力源andYangJi姬揚
    Chinese Physics B 2021年12期
    關鍵詞:力源

    Tingting Shi(施婷婷) Xuan Qian(錢軒) Tianjiao Sun(孫天嬌) Li Cheng(程力)Runjiang Dou(竇潤江) Liyuan Liu(劉力源) and Yang Ji(姬揚)

    1State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    2College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China

    3College of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    4Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: coherent interference,thermal lens effect,convection,numerical simulation

    1. Introduction

    Coherent rainbows are colorful interference rings formed by injecting white laser into liquids or solids. It has been observed in pure solvents (e.g., water, acetone, and anhydrous ethanol),plastics,wax and ice.[1–3]Interference rings induced by single-wavelength lasers were reported much earlier (e.g.,liquid crystals,[4–6]tea,[7]nano-material suspensions,[8–18]and organic solvents).[19,20]There are mainly two models to explain interference rings in liquids: the thermal lens effect[8,16,19]and the electronic third-order nonlinear selfphase modulation.[9,10,12,14,17]While different materials and models were used in these studies, the asymmetric shapes of the interference rings (when appeared) were ascribed to convection,but no detailed discussion was given. Here we report experimental study of the effect of convection on the shape of interference rings. We also clarify the mechanism behind the coherent rainbows in the liquid. The optical path difference necessary for the interference comes from the local change of the refractive index,which in turn comes from the temperature distribution in the liquid induced by laser heating. The liquid behaves as a non-ideal plane concave lens, i.e., the thermal lens effect. When the temperature of the liquid in the middle part of the laser beam becomes much higher than that of the outer part, convection occurs in the upper part of the liquid,while the lower part stays still. This makes the temperature distribution in the liquid asymmetric (an up–down asymmetry),thus leading to the asymmetric interference rings.We also numerically simulate the effect of heat conduction on the temperature distribution in the liquid in two-dimensional cases,with and without convection, respectively. The numerical results agree well with our experimental observations.

    2. Experimental systems and observations

    2.1. Experimental setup

    The experimental setup is shown in Fig. 1. A fiber laser with white light pulse is used(Model: SC-PRO,Wuhan Yangtze Soton Laser Company). Its wavelength ranges from 400 nm to 2400 nm,with a pulse width~100 ps,a beam diameter~2 mm(@633 nm),and an emission angle<1 mrad.The repetition rate is 1 MHz and the visible light power is continuously adjustable from 0 to 1 W.When the shutter(SH)is opened, the white laser (WL) beam from the fiber laser is focused through the lens (L) into the sample (S), and colorful interference rings(coherent rainbows)appear on the image screen(IS),an interference filter(IF)can be inserted into the laser beam,just behind the sample. The free-fall part(FF,enclosed by the dash line)has all the components fixed to a stage and we can let it go a free-fall. The focal length of the lens is about 10 cm,the sample is placed in a quartz cuvette,and the distance between the imaging screen and the sample is about 30 cm. The optical path is 10 mm in the liquid. Colorful images are recorded with a commercial cell-phone,and blackwhite images are recorded with a high-speed camera, which can capture 1000 frames per second with an image resolution of 800×600 pixels.[21]

    Fig.1. Schematic diagram of the experimental set-up: when the shutter(SH)opens,the white laser(WL)beam from a pulsed fiber is focused through the lens(L)into the sample(S),and the colorful interference rings(coherent rainbows)appear on the image screen(IS).An interference filter(IF)can be inserted behind the sample. The FF part(enclosed by the dash line)is fixed to a stage and we can let it go a free-fall.

    2.2. Experimental materials

    Samples are water and/or dimethicone. Dimethicone is a kind of hydrophobic silicone material, also known as polydime-thylsiloxane. It has a wide range of molar mass(162–500000 g/mol),with viscosity varying from 0.65 mm2/s to 1000000 mm2/s. By adjusting the amount of chain stopper during synthesis,or mixing two kinds of dimethicone with different viscosity,one can obtain dimethicone with any specific viscosity.[22]The viscosity of dimethicone used in the experiment is 50 cst, 500 cst, 5000 cst, and 50000 cst, respectively(1 cst=1 mm2/s). The viscosity of water is about 0.89 cst at room temperature.

    2.3. Experimental results

    Multi-order colorful rings are observed in water and dimethicone with various viscosity, as show in Fig. 1 for the case of water. To make observation and analysis easier, we insert an IF (central wavelength 632.8 nm, half width of full magnitude 10 nm±2 nm)behind the sample and record blackand-white images with the high-speed camera, as shown in

    Fig. 2. The interference rings of water (Fig. 2(a)) have an oval shape, with the distance between rings becoming wider and wider from the center to the edge. Obviously they are asymmetric, i.e., instead of concentric circles, they are oval with a core sitting in the upper part. The interference patterns from dimethicone with viscosity 50 cst,500 cst,5000 cst and 50000 cst are shown in Figs.2(b)–2(e). They are much bigger than that from water. The interference rings from the dimethicone with viscosity 50 cst (Fig. 2(b)) deviate from the circular symmetry most significantly, similar to water shown in Fig. 2(a). With the increase of the viscosity, the shape of the rings gradually changes from oval ones to circular ones. As for the dimethicone with viscosity 50000 cst,the shape of the interference rings is almost circular(Fig.2(e)).

    After the shutter opens, we record the dynamics of the interference rings with the high-speed camera mentioned before. It takes much shorter time for water to form a stable oval shape than the dimethicone. We choose water as the sample in the following dynamic experiments, though the results of dimethicone are similar. The laser beam goes in the horizontal plane. As shown in Fig. 3(a), concentric circles start to appear when the shutter opens. Then the rings gradually spread out and the number of rings increases. The number of the rings reaches the maximum at~0.08 s, and the interference rings distort more and more and reach a stable oval shape after~0.20 s. When the white light goes perpendicularly,along the direction of the gravity,there are only a set of concentric circles.[1]This suggests that the asymmetric rings are caused by the convection in the liquid. To check it,we let the FF part go a free-fall and open the shutter simultaneously.As shown in Fig. 3(b), the interference rings also spread out(and the number of rings increases,too),however,their shape remains circular. When the shape of the interference rings is stable in static state, we reduce the laser power from 1 W to 0.6 W in less than 1 ms,the shape of the rings will remain the same,but the intensity of the rings will drops(Fig.3(c)).After a few milliseconds(ms),they begin to shrink inward,and the number of rings decreases gradually.

    Fig.2. Interference rings from(a)water,(b)–(e)dimethicone with different viscosity.

    Fig.3. Dynamic of the interference rings from water: (a)in static state,(b)in free-fall. (c)In static and stable state,the laser power is reduced from 1 W to 0.6 W in less than 1 ms.

    3. Theoretical analysis and numerical simulation

    Multi-order colorful interference rings in the liquid come from the change of local refractive index for sure. The controversy lays on which mechanism induces the refractive index change. Wuet al.explained it with electronic thirdorder nonlinear self-phase modulation and proposed a windchime model to account for the emergence of the ac electron coherence.[17]Many others took the thermal lens effect as the mechanism,such as Pillaet al.,[8]Wanget al.[16]and Zhanget al.[19]They ascribed the optical path difference to the temperature gradient in the liquid. However,the effect of convection in the liquid has not be discussed in details,though it has been mentioned before.[4,9–11,14,16–18]Here we clarify the formation mechanism of interference rings in the liquid with and without convection,respectively.

    We make a gross assumption that the laser heating of liquid along the laser direction is uniform in a finite lengthlnear the focal point. In other words,we only consider the thermal conduction perpendicular to the laser propagation direction.In this way,the three-dimensional problem is transformed into a two-dimensional one,which greatly simplifies our subsequent theoretical analysis and numerical simulation.

    The laser heating process of the liquid can be divided into two stages. In the first stage, the liquid at room temperature is suddenly irradiated by laser. The temperature rises continuously,but the temperature gradient is not big enough to start convection in the liquid. In the second stage, as the heating goes on,the temperature of the liquid in the middle part of the laser beam becomes much higher than that of the outer part,and convection is generated and it affects the heat conduction.

    3.1. The first stage: no convection

    First,we consider the case without convection. When the Gaussian-shape laser beam is absorbed,the local temperature goes up. The heating process of liquid can be expressed by the following heat conduction equation:

    whereβis the thermal conductivity coefficient;x,yare the coordinate axes;the planexoyis perpendicular to the laser direction;?is the heat flux density;ρis the density of the liquid;cpis the constant pressure specific heat capacity of the liquid;andtis the time.

    This is a typical thermal conduction process. The refractive indexnchanges accordingly, since the latter is inversely proportional to temperature for most media. The higher the temperature is,the smaller the refractive index is. Figure 4(a)shows the two-dimensional distribution of refractive index in the planexoy. Black circle indicates the Gaussian-shape laser spot, and its beam waist radiusw0is 100 μm in the simulation. The distribution of refractive index remains unchanged in the direction of laser beamz,so the optical-path difference??=∫?ndlpassing through the liquid also shows a bump shape when ?nx=nx ?nx=0, as shown in Fig. 4(b). In other words, we regard the optical-path difference at the center of the beam as zero, and then normalize the optical-path difference at each position, with laser wavelengthλ=632.8 nm.Figure 4(c)shows the radial gradient of the optical-path,which determines the outgoing direction of each sub-beamφ. The highest point corresponds to the maximum outgoing angle(i.e.,the outgoing direction),which determines the size of the outermost ring.[3]When the outgoing angle is smaller than its maximum value,there are two sub-beams going into the same direction(φr1=φr2),whose optical path difference can be expressed ass=(??r1???r2)?(r1?r2)·φin far-field regime.They may interfere constructively or destructively,depending on the optical-path differencesbetween them. The constructive(destructive)interference occurs whens/λ=mkπfor integermbeing even(odd). As the liquid temperature increases,the maximum optical path difference and the maximum outgoing angle also increase. The radial distribution of interference rings may be simulated,as shown in Figs.4(d)and 4(e).The rings are dense at the center, and become sparser as the outgoing angle increases,in agreement with the experimental observations.

    Fig.4. Formation mechanism and numerical simulation of interference rings without convection. (a) The two-dimensional distribution of refractive index in the plane xoy. Black circle indicates the Gaussianshape laser spot, and its beam waist radius w0 is 100 μm in the simulation. (b) The distribution of optical path difference ?? along the radial direction. (c) The radial gradient of the optical path difference. Two sub-beams at r1 and r2 are refracted into the same angle φr1 = φr2, whose optical path difference can be expressed as ?s =(??r1 ???r2)?(r1 ?r2)·φ in far-field regime. The constructive (destructive)interference occurs when s/λ =mkπ for integer m being even(odd). (d), (e) The radial distribution of interference rings obtained in the planes xoy and xoz by simulation,respectively.

    3.2. The second stage: convection starts

    As the heating goes on,the temperature difference of the liquid reaches a threshold, and convection starts. This is a result of Rayleigh instability which relates to the thermal gradient,the gravity and viscosity of the liquid. It is worth noting that convection occurs in the upper part of the liquid, while the lower part stays still. The reason is the following. With the laser beam being the center,from the center to the upper outmost part,the temperature is lower and lower,i.e.,the density becomes heavier. This results in buoyancy which can oppose gravity and viscosity of the liquid,thus leading to convection.In the lower half, no convection occurs since the temperature gradient is along the direction of the gravity. This leads to an asymmetric temperature distribution in the liquid,and thus the asymmetric interference rings. The higher the viscosity of the liquid is,the stronger the internal friction is in the flow,and it is more difficult to start convection. This is why the shape of the interference rings changes from oval ones to circular ones as the viscosity increases,as shown in Figs.2(b)an 2(e).

    The dynamic experiment (Fig. 3(a)) also proves that the asymmetry comes from the convection. After the injection of the laser, but before the convection starts, heat conduction is symmetric and circular-shape rings are observed.As time goes by,convection starts. Accordingly,a non-circular temperature distribution forms, which turns the circular shape of the interference rings into an oval shape. When the FF part makes a free-fall, the convection cannot start, since the gravity does not act on the liquid(“weight-loss”).So,the interference rings remain circular(Fig.3(b)).

    For the convenience of calculation,we may regard the effect of the convection as an additional thermal conductivity?β. As shown before,the convection exists only in the upper half of the perpendicular plane. In other words, the effective thermal conductivity of the upper part is larger than that of the lower part, as shown in Fig. 5(a). The heat-conduction convection differential equation is the following:

    Because of the additional thermal conductivity ?β,the refractive index distribution (temperature distribution) of the upper half plane is less dramatic than the lower half, in other words, the refractive index gradient (temperature gradient) is smoother, as shown in Fig. 5(b). The maximum value of the gradient is smaller,i.e.,the outgoing direction of the maximum ring decreases. Therefore, the shape of the interference rings is an oval with a small top and a big bottom. The fitting result verifies the theoretical explanation,as shown in Fig.5(c).This also explains why the size of interference rings from water is smaller than that from dimethicone. Table 1 shows some thermophysical parameters of water and dimethicone.The thermal diffusivityK=β/ρcp,which describes the diffusion ability in the process of heat conduction,of water(~1.5×10?7m2/s)is 1.5 times that of dimethicone(~1.0×10?7m2/s). The power of the incident light is the same, but the absorptivity of water is greater than that of dimethicone,of water is just 1.5 times that of dimethicone. So according to Eq.(1), when the steady state is reached(?T/?t=0),the temperature gradient of water and dimethicone is the same. The refractive temperature coefficient of water is?1.37×104K?1, while that of most liquid organic compounds is from?3×104K?1to?5×104K?1,[23]thus the maximum optical path difference gradient (the maximum outgoing angle) of water is smaller than that of dimethicone. So the size of the interference rings from water is smaller. Besides that,because the thermal conduction of water is greater than that of dimethicone, this explains why the time for water to reach steady state is shorter than that of dimethicone(~0.20 s and~2 s,respectively).

    Fig. 5. Formation mechanism and numerical simulation of interference rings with convection. (a) Equivalent model of heat convection. (b)The distribution of refractive index in the plane xoy. (c)The radial distribution of interference rings obtained by simulation.

    Table 1. Thermophysical parameters of water and dimethicone.

    In addition, when the laser power is reduced suddenly,the temperature distribution in liquid remains unchanged(for a few ms),so the interference pattern does not change,as shown in Fig. 3(c). In other words, its response time is longer than 1 ms. This also suggests that the mechanism behind the interference rings is a thermal effect—the response time of refractive index change caused by thermal effect is about 10?3–1 s,while the response time of other effects is much shorter (for instance, the high frequency Kerr effect related to polarized molecules is about 10?11–10?12s).[24]All in all,the above experiments have confirmed that the asymmetry of interference rings is due to the convection,along with a local change of the refractive index induced by laser heating(thermal lens effect).

    4. Discussion and conclusion

    Focus a white light laser on different viscosity of dimethicone,different shapes of interference rings will appear. Increase the viscosity,the shape of the interference rings changes from oval to circular shape. When the liquid is free-fall, the interference rings remain symmetrical. The reason for the formation of interference rings is that the temperature distribution in the liquid changes due to laser heating, which affects the refractive properties and leads to optical path difference. The symmetry of the rings is caused by the convection, which makes the temperature distribution asymmetric.The two-dimensional heat conduction simulation is consistent with the observation results, thus verifying the rationality of the physical mechanism.

    猜你喜歡
    力源
    南北方越冬對皺紋盤鮑生長的影響
    “童心向黨”征集作品展示
    未來教育家(2021年9期)2021-12-24 08:24:22
    一種光傳送網的建模及其價值評估
    軟件(2020年3期)2020-04-20 01:45:48
    包力源、鐘琦翔作品
    降低永磁同步電動機噪聲的方法
    力源信息“變形計”
    包力源、鐘琦翔作品
    包力源、鐘琦翔作品
    PSO_SA算法在水下結構激勵力源識別中的應用
    健力源16字理念致勝
    餐飲世界(2012年4期)2012-01-18 02:56:28
    日韩强制内射视频| 亚洲美女视频黄频| 久久人人精品亚洲av| 国产一区二区三区av在线 | 麻豆乱淫一区二区| a级毛色黄片| 成人二区视频| 欧洲精品卡2卡3卡4卡5卡区| 最近最新中文字幕大全电影3| 国产伦精品一区二区三区四那| 不卡一级毛片| 深夜a级毛片| 久久久欧美国产精品| 99热这里只有是精品在线观看| 精品人妻熟女av久视频| 91久久精品国产一区二区成人| 欧美激情在线99| 欧美成人一区二区免费高清观看| 97热精品久久久久久| 午夜精品在线福利| 成人性生交大片免费视频hd| 国产美女午夜福利| 欧美xxxx性猛交bbbb| 又爽又黄无遮挡网站| 精品久久久久久久久久久久久| 99热精品在线国产| 亚洲性久久影院| 熟女电影av网| 男人舔奶头视频| 菩萨蛮人人尽说江南好唐韦庄 | 全区人妻精品视频| 午夜福利在线在线| 国产男人的电影天堂91| 亚洲aⅴ乱码一区二区在线播放| 成人av在线播放网站| 人妻久久中文字幕网| 91精品国产九色| 欧美3d第一页| 丝袜喷水一区| 成人综合一区亚洲| 日日摸夜夜添夜夜添av毛片| 国产精品人妻久久久久久| av在线亚洲专区| 久久久久国产网址| 永久网站在线| 亚洲精品成人久久久久久| 国产一区二区激情短视频| 亚洲av一区综合| 亚洲va在线va天堂va国产| 免费在线观看成人毛片| 亚洲av不卡在线观看| 午夜精品国产一区二区电影 | 亚洲在线观看片| 日日摸夜夜添夜夜添av毛片| 色噜噜av男人的天堂激情| 成人午夜高清在线视频| 天堂影院成人在线观看| 不卡一级毛片| 成人漫画全彩无遮挡| a级毛色黄片| 亚洲无线观看免费| 精品人妻视频免费看| 超碰av人人做人人爽久久| 桃色一区二区三区在线观看| 国产毛片a区久久久久| 久久精品久久久久久噜噜老黄 | 欧洲精品卡2卡3卡4卡5卡区| 亚洲一区二区三区色噜噜| 亚洲国产欧洲综合997久久,| 亚洲人与动物交配视频| 少妇熟女aⅴ在线视频| 久久国产乱子免费精品| 久久6这里有精品| 一卡2卡三卡四卡精品乱码亚洲| 久久久久国产网址| 久久久久久久久久黄片| 国产片特级美女逼逼视频| 啦啦啦韩国在线观看视频| 一进一出抽搐gif免费好疼| 哪里可以看免费的av片| 人妻系列 视频| 伦精品一区二区三区| 哪个播放器可以免费观看大片| 校园人妻丝袜中文字幕| 高清毛片免费看| 国产乱人偷精品视频| 女同久久另类99精品国产91| 久久人人爽人人爽人人片va| 午夜激情欧美在线| 亚洲最大成人中文| 美女黄网站色视频| 中文字幕精品亚洲无线码一区| 欧美高清成人免费视频www| 国产亚洲5aaaaa淫片| 欧美性感艳星| 又爽又黄无遮挡网站| 黄色配什么色好看| 日韩三级伦理在线观看| 狂野欧美白嫩少妇大欣赏| 日韩在线高清观看一区二区三区| 免费观看a级毛片全部| 日韩av在线大香蕉| 国产精品麻豆人妻色哟哟久久 | 看片在线看免费视频| 欧美成人精品欧美一级黄| 长腿黑丝高跟| 综合色丁香网| 久久久久九九精品影院| 久久人人爽人人片av| 乱码一卡2卡4卡精品| 天天一区二区日本电影三级| 99久久久亚洲精品蜜臀av| 国产午夜精品久久久久久一区二区三区| 久久中文看片网| 综合色丁香网| 国产精品美女特级片免费视频播放器| 欧美成人精品欧美一级黄| 国产精品野战在线观看| 欧美日韩综合久久久久久| 精品人妻视频免费看| 一级毛片电影观看 | 亚洲av男天堂| 女人十人毛片免费观看3o分钟| 久久精品国产亚洲网站| 欧美最黄视频在线播放免费| 成人三级黄色视频| 97热精品久久久久久| 黄色欧美视频在线观看| 亚洲真实伦在线观看| av在线播放精品| 国产久久久一区二区三区| 人体艺术视频欧美日本| 国产精品人妻久久久影院| 国产成人aa在线观看| 亚洲,欧美,日韩| 久久精品夜夜夜夜夜久久蜜豆| 男插女下体视频免费在线播放| 国产黄色视频一区二区在线观看 | 黄片无遮挡物在线观看| 欧美精品国产亚洲| 91久久精品国产一区二区成人| 精品99又大又爽又粗少妇毛片| 99久久九九国产精品国产免费| 亚洲欧美日韩无卡精品| 国产亚洲91精品色在线| 99在线视频只有这里精品首页| 久久久精品大字幕| 欧美不卡视频在线免费观看| 深夜a级毛片| 深爱激情五月婷婷| 人妻系列 视频| 亚洲国产日韩欧美精品在线观看| 日韩av不卡免费在线播放| a级毛片a级免费在线| 亚洲国产精品成人久久小说 | 自拍偷自拍亚洲精品老妇| 国产亚洲91精品色在线| 亚洲va在线va天堂va国产| 国产久久久一区二区三区| 国产探花极品一区二区| 99国产极品粉嫩在线观看| 九色成人免费人妻av| 久久久久九九精品影院| 别揉我奶头 嗯啊视频| 久久久久国产网址| 91av网一区二区| 乱人视频在线观看| 国产淫片久久久久久久久| 国产 一区 欧美 日韩| 日本成人三级电影网站| avwww免费| 卡戴珊不雅视频在线播放| 99热这里只有是精品50| 亚洲成人中文字幕在线播放| 午夜精品在线福利| 久久精品国产亚洲av涩爱 | 少妇的逼水好多| 日韩中字成人| 热99re8久久精品国产| www.av在线官网国产| 黑人高潮一二区| 桃色一区二区三区在线观看| 成人毛片60女人毛片免费| 在线观看美女被高潮喷水网站| 亚洲国产精品国产精品| 日本免费一区二区三区高清不卡| 六月丁香七月| 亚洲无线观看免费| 国产国拍精品亚洲av在线观看| 99热这里只有是精品在线观看| 欧美最新免费一区二区三区| 综合色av麻豆| 久久久精品大字幕| 久久这里只有精品中国| a级毛色黄片| 人体艺术视频欧美日本| 狠狠狠狠99中文字幕| 亚洲欧美日韩高清在线视频| 国产高清激情床上av| 一进一出抽搐动态| 欧美日韩一区二区视频在线观看视频在线 | 毛片一级片免费看久久久久| 91狼人影院| 丰满人妻一区二区三区视频av| 久久久久性生活片| 国产极品精品免费视频能看的| 国产精品女同一区二区软件| 久久这里有精品视频免费| 少妇被粗大猛烈的视频| 非洲黑人性xxxx精品又粗又长| 国产精品一区二区在线观看99 | 在线观看66精品国产| 国产精品日韩av在线免费观看| 中文字幕免费在线视频6| 人妻夜夜爽99麻豆av| 亚洲av熟女| 美女被艹到高潮喷水动态| avwww免费| 国产麻豆成人av免费视频| 亚洲av二区三区四区| 成人特级av手机在线观看| 高清毛片免费看| 国产免费一级a男人的天堂| 一区二区三区四区激情视频 | 狠狠狠狠99中文字幕| 联通29元200g的流量卡| avwww免费| 久久精品夜色国产| 国产精品1区2区在线观看.| 国产精品爽爽va在线观看网站| 国产在视频线在精品| 国产亚洲5aaaaa淫片| 最近手机中文字幕大全| 熟妇人妻久久中文字幕3abv| 亚洲国产欧洲综合997久久,| 欧美极品一区二区三区四区| 久久久久久九九精品二区国产| 91久久精品国产一区二区成人| 亚洲av中文字字幕乱码综合| 久久久久久伊人网av| 桃色一区二区三区在线观看| 日本-黄色视频高清免费观看| 日本av手机在线免费观看| 欧美潮喷喷水| 精品一区二区免费观看| 麻豆av噜噜一区二区三区| 不卡一级毛片| 毛片一级片免费看久久久久| 日韩在线高清观看一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 夜夜看夜夜爽夜夜摸| 一夜夜www| 成人欧美大片| 久久99热这里只有精品18| 麻豆乱淫一区二区| 不卡一级毛片| 欧美成人a在线观看| 国产成人午夜福利电影在线观看| 国产精品,欧美在线| 干丝袜人妻中文字幕| 两个人的视频大全免费| 天天躁日日操中文字幕| 国内精品一区二区在线观看| 免费电影在线观看免费观看| 久久久国产成人精品二区| 成人毛片60女人毛片免费| 精品久久久久久久末码| 内射极品少妇av片p| 麻豆国产97在线/欧美| 别揉我奶头 嗯啊视频| 黄片无遮挡物在线观看| 国产精品久久久久久精品电影小说 | 国产午夜福利久久久久久| 欧美zozozo另类| 97超碰精品成人国产| 亚洲国产欧洲综合997久久,| 亚洲不卡免费看| 国产av在哪里看| 国产片特级美女逼逼视频| 在线a可以看的网站| 在线观看美女被高潮喷水网站| 美女被艹到高潮喷水动态| 国产精品一及| 人妻久久中文字幕网| 此物有八面人人有两片| 禁无遮挡网站| 色综合色国产| 国产精品女同一区二区软件| 国产精品野战在线观看| 日韩欧美三级三区| 欧美成人免费av一区二区三区| 黄色日韩在线| 亚洲国产欧美人成| 国产v大片淫在线免费观看| 在线天堂最新版资源| 亚洲国产欧美人成| 久久久a久久爽久久v久久| avwww免费| 成人二区视频| 欧美又色又爽又黄视频| 国产片特级美女逼逼视频| 国产亚洲精品久久久久久毛片| а√天堂www在线а√下载| 97超碰精品成人国产| 亚洲精品粉嫩美女一区| 观看免费一级毛片| 久久精品夜色国产| 我的老师免费观看完整版| 成人无遮挡网站| 看免费成人av毛片| 美女xxoo啪啪120秒动态图| 小蜜桃在线观看免费完整版高清| 亚洲av免费在线观看| 在线播放国产精品三级| 欧美日韩精品成人综合77777| 桃色一区二区三区在线观看| 又粗又爽又猛毛片免费看| 在现免费观看毛片| 国产精品一区二区三区四区免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲无线观看免费| 丰满乱子伦码专区| 中文字幕久久专区| 日韩欧美三级三区| 天堂影院成人在线观看| 热99在线观看视频| 国产精品蜜桃在线观看 | 可以在线观看的亚洲视频| 国产午夜福利久久久久久| 最后的刺客免费高清国语| 网址你懂的国产日韩在线| а√天堂www在线а√下载| 国产伦在线观看视频一区| 久久久精品欧美日韩精品| a级一级毛片免费在线观看| 天堂√8在线中文| 国产又黄又爽又无遮挡在线| 菩萨蛮人人尽说江南好唐韦庄 | 欧美潮喷喷水| 国产av不卡久久| av在线老鸭窝| 久久中文看片网| 国产在视频线在精品| 久久99热这里只有精品18| 内地一区二区视频在线| eeuss影院久久| 男人狂女人下面高潮的视频| 最好的美女福利视频网| 热99re8久久精品国产| 中文字幕av成人在线电影| 在线免费十八禁| 日本黄大片高清| 亚洲最大成人手机在线| 成年女人看的毛片在线观看| 一级毛片我不卡| 夫妻性生交免费视频一级片| 国产成人a∨麻豆精品| 老熟妇乱子伦视频在线观看| 丝袜美腿在线中文| 国产精品国产高清国产av| 精品免费久久久久久久清纯| 伊人久久精品亚洲午夜| 69人妻影院| 日韩国内少妇激情av| 日本av手机在线免费观看| 一个人看视频在线观看www免费| 综合色丁香网| 内射极品少妇av片p| 国产亚洲91精品色在线| 中文在线观看免费www的网站| 久久99热这里只有精品18| 亚洲美女搞黄在线观看| 久久亚洲精品不卡| 内地一区二区视频在线| 婷婷六月久久综合丁香| 直男gayav资源| 菩萨蛮人人尽说江南好唐韦庄 | 精品久久久久久久人妻蜜臀av| 97在线视频观看| 小蜜桃在线观看免费完整版高清| 久久久久久大精品| 久久久久久久久中文| 久久久精品94久久精品| 小蜜桃在线观看免费完整版高清| 国产视频首页在线观看| 免费av观看视频| 我要看日韩黄色一级片| 欧美日本视频| av在线天堂中文字幕| 国产伦在线观看视频一区| 观看美女的网站| 中文资源天堂在线| 午夜亚洲福利在线播放| 国产免费男女视频| 最近中文字幕高清免费大全6| 九草在线视频观看| 男女视频在线观看网站免费| 变态另类成人亚洲欧美熟女| 一边摸一边抽搐一进一小说| 国产精品久久久久久久电影| 国内精品宾馆在线| 男的添女的下面高潮视频| 简卡轻食公司| 亚洲av中文av极速乱| 久久99热6这里只有精品| 深夜a级毛片| 午夜福利成人在线免费观看| 欧美bdsm另类| 久久精品国产鲁丝片午夜精品| 日韩欧美一区二区三区在线观看| 国产亚洲av片在线观看秒播厂 | 人妻夜夜爽99麻豆av| 人妻少妇偷人精品九色| 午夜福利在线在线| 国产精品伦人一区二区| 男女下面进入的视频免费午夜| 别揉我奶头 嗯啊视频| 91麻豆精品激情在线观看国产| 观看免费一级毛片| 国产国拍精品亚洲av在线观看| 天堂av国产一区二区熟女人妻| 舔av片在线| 欧美激情国产日韩精品一区| av视频在线观看入口| 免费av不卡在线播放| 日本一二三区视频观看| 一区二区三区高清视频在线| 最近2019中文字幕mv第一页| 免费看a级黄色片| 晚上一个人看的免费电影| 热99在线观看视频| 国产又黄又爽又无遮挡在线| 变态另类丝袜制服| 国产午夜精品一二区理论片| 99九九线精品视频在线观看视频| 熟妇人妻久久中文字幕3abv| 色播亚洲综合网| 熟女电影av网| 成人av在线播放网站| 国产av在哪里看| 精品日产1卡2卡| 99热网站在线观看| 亚洲三级黄色毛片| 最近视频中文字幕2019在线8| 麻豆成人av视频| 毛片一级片免费看久久久久| 免费观看在线日韩| 最近的中文字幕免费完整| 日韩欧美精品v在线| 国产91av在线免费观看| 亚洲国产精品久久男人天堂| 亚洲欧美成人综合另类久久久 | 亚洲中文字幕一区二区三区有码在线看| 国产老妇伦熟女老妇高清| 亚洲精品日韩在线中文字幕 | 精品午夜福利在线看| 看片在线看免费视频| 亚洲av一区综合| 亚洲经典国产精华液单| 麻豆国产av国片精品| 国产精品久久久久久亚洲av鲁大| 亚洲欧美精品综合久久99| 久久精品国产清高在天天线| 国产精品野战在线观看| 最近中文字幕高清免费大全6| 夫妻性生交免费视频一级片| 久99久视频精品免费| 亚洲乱码一区二区免费版| 亚洲不卡免费看| 国产男人的电影天堂91| 欧美日韩国产亚洲二区| 97热精品久久久久久| 亚洲成人久久性| 国产精品一二三区在线看| 国内揄拍国产精品人妻在线| 大又大粗又爽又黄少妇毛片口| 中文字幕熟女人妻在线| 免费无遮挡裸体视频| 亚洲四区av| 亚洲激情五月婷婷啪啪| 欧美极品一区二区三区四区| 国产精品一区二区三区四区久久| 国产成人一区二区在线| 亚洲va在线va天堂va国产| 日韩一本色道免费dvd| 嘟嘟电影网在线观看| 国产精品免费一区二区三区在线| 亚洲人成网站在线观看播放| 少妇猛男粗大的猛烈进出视频 | 久久99热6这里只有精品| 婷婷六月久久综合丁香| 国产精品野战在线观看| 99国产精品一区二区蜜桃av| 国内精品美女久久久久久| a级毛色黄片| 国产蜜桃级精品一区二区三区| 亚洲欧美日韩高清在线视频| 综合色丁香网| 亚洲第一区二区三区不卡| 午夜激情欧美在线| 久久这里只有精品中国| 日韩一区二区视频免费看| 日日干狠狠操夜夜爽| 国产午夜福利久久久久久| 国产视频内射| 我的女老师完整版在线观看| 人人妻人人看人人澡| 91久久精品国产一区二区成人| 亚洲一区二区三区色噜噜| 干丝袜人妻中文字幕| 国产精品,欧美在线| kizo精华| 午夜老司机福利剧场| 波多野结衣高清无吗| 免费黄网站久久成人精品| 99在线人妻在线中文字幕| 伦精品一区二区三区| 18禁裸乳无遮挡免费网站照片| 欧美+亚洲+日韩+国产| 内地一区二区视频在线| 国产一区二区激情短视频| 黄色一级大片看看| 久久久国产成人免费| 国产一区二区三区av在线 | 国产精品精品国产色婷婷| 国语自产精品视频在线第100页| 久久午夜亚洲精品久久| 国产一区二区三区av在线 | 欧美一区二区亚洲| 国产老妇女一区| 日本撒尿小便嘘嘘汇集6| 精品一区二区免费观看| 国产精品人妻久久久久久| 欧美xxxx黑人xx丫x性爽| 中文字幕av成人在线电影| 欧美高清性xxxxhd video| 97在线视频观看| 人人妻人人澡人人爽人人夜夜 | 国产精品精品国产色婷婷| 欧美日韩综合久久久久久| 热99re8久久精品国产| 久久99热这里只有精品18| 国产成人午夜福利电影在线观看| 亚洲精品久久国产高清桃花| 人人妻人人澡欧美一区二区| av在线老鸭窝| 亚洲av第一区精品v没综合| 人妻夜夜爽99麻豆av| 成熟少妇高潮喷水视频| 国产一区二区激情短视频| 网址你懂的国产日韩在线| 午夜激情欧美在线| 高清日韩中文字幕在线| 欧美人与善性xxx| 亚洲av免费高清在线观看| 国产精品无大码| 精品久久久噜噜| 成人午夜高清在线视频| 天天躁夜夜躁狠狠久久av| 日本三级黄在线观看| or卡值多少钱| 亚洲电影在线观看av| 久久草成人影院| 天堂√8在线中文| 成年版毛片免费区| 韩国av在线不卡| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美精品国产亚洲| 婷婷亚洲欧美| 国产精品美女特级片免费视频播放器| 久久久成人免费电影| a级一级毛片免费在线观看| 午夜亚洲福利在线播放| 国产乱人视频| 国产美女午夜福利| 人人妻人人澡欧美一区二区| 中文字幕免费在线视频6| av免费在线看不卡| 亚洲最大成人手机在线| 亚洲在线自拍视频| 亚洲18禁久久av| 麻豆一二三区av精品| 一级二级三级毛片免费看| 日本成人三级电影网站| 久久精品夜色国产| 26uuu在线亚洲综合色| 国产大屁股一区二区在线视频| 国产成人精品婷婷| 国产亚洲精品av在线| 亚洲欧美日韩卡通动漫| 99视频精品全部免费 在线| 99九九线精品视频在线观看视频| 日本熟妇午夜| 美女cb高潮喷水在线观看| 国产三级中文精品| 国产精品,欧美在线| 亚洲国产色片| 黄片无遮挡物在线观看| 精品久久久久久久久久久久久| 美女黄网站色视频| 国产中年淑女户外野战色| 九九久久精品国产亚洲av麻豆| 欧美潮喷喷水| 亚洲七黄色美女视频| 欧美三级亚洲精品| 国产麻豆成人av免费视频| 欧美日韩精品成人综合77777| 天堂影院成人在线观看| 亚洲国产欧美人成| 国产成人一区二区在线| videossex国产| 日韩av不卡免费在线播放| 中文字幕免费在线视频6| 国产成人精品婷婷| 熟妇人妻久久中文字幕3abv|