• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Line positions,intensities,and Einstein A coefficients for 3–0 band of 12C16O:A spectroscopy learning method?

    2021-12-22 06:48:08ZhiXiangFan范志祥ZhiZhangNi倪志樟JieJieHe賀潔潔YiFanWang王一凡QunChaoFan樊群超JiaFu付佳YongGenXu徐勇根
    Chinese Physics B 2021年12期
    關(guān)鍵詞:馬杰范志徐勇

    Zhi-Xiang Fan(范志祥) Zhi-Zhang Ni(倪志樟) Jie-Jie He(賀潔潔) Yi-Fan Wang(王一凡)Qun-Chao Fan(樊群超) Jia Fu(付佳)Yong-Gen Xu(徐勇根)

    Hui-Dong Li(李會東)1, Jie Ma(馬杰)2, and Feng Xie(謝鋒)3

    1School of Science,Key Laboratory of High Performance Scientific Computation,Xihua University,Chengdu 610039,China

    2State Key Laboratory of Quantum Optics and Quantum Optics Devices,Laser Spectroscopy Laboratory,College of Physics and Electronics Engineering,Shanxi University,Taiyuan 030006,China

    3Institute of Nuclear and New Energy Technology,Collaborative Innovation Center of Advanced Nuclear Energy Technology,Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education,Tsinghua University,Beijing 100084,China

    Keywords: carbon monoxide,line lists,a model-and data-driven strategy,spectroscopy learning

    1. Introduction

    Carbon monoxide (CO) is the most abundant polar molecule in understanding of interstellar medium, planetary atmospheres and interstellar clouds, in which line positions and line intensities are important in a variety of applications.[1,2]The vibrational–rotational transition focusing on the 3–0 band in the ground state of12C16O has been the subject of numerous experimental and theoretical investigations due to its relatively weak intensity.[3–16]

    For example, the ATMOS Fourier transform spectrometer has been used to record accurate transition lines of vibrational–rotational bands, from which the Dunham coefficients have been generated for12C16O.[3]Later,the strongest transitions of the 3–0 band were measured by using Fourier transform spectrometer(FTS)with lines from P17 to R17,[4,5]external cavity diode laser(ECL)with lines from R0 to R20,[6]FTS and a multi-line-fitting technique from P25 to R25.[7]In 2014, Mondelainet al.reported experimental line positions with sub-MHz accuracy using comb-assisted cavity ringdown spectroscopy.[8]Later, molecular transition frequencies including the line intensities for 3–0 band of12C16O have been measured by Cyganet al.using cavity-enhanced spectroscopy techniques for R23,[9]R24, and R28[10]with relative uncertainties at the level of 10?10. Recently,the spectral sensitivity of the comb-locked cavity ring-down spectrometer established by Wanget al.allowed the detection of lines with an accuracy of tens of kHz.[11]

    It should be noted that comprehensive theoretical investigations have been performed for various line lists, such as Goorvitch’s line list(G94),[12]Velichkoet al.(2012)line list(V12),[13]Coxon and Hajigeorgiou’s line list(CH04)derived from an empirical potential function,[14]and Liet al. line list.[15]These scientific tasks and high-quality spectral data are helpful for understanding the observational astronomy better, description of model-building, constructing dipole moment function,[16,17]and proposing data analysis techniques.

    Recently, the performance analyses of a joint data- and model-driven machine learning approaches were presented for the prediction of full diatomic vibrational spectra including dissociation energy, which were extracted from a wide range of existing heat capacity data.[18]In this article, a modeland data-driven spectroscopy learning method is opted to determine the line positions, intensities, and EinsteinAcoefficients based on information from the measurements and the HITRAN2020 line list.[19]This paper is organized as follows.Section 2 introduces the model-and data-driven spectroscopy learning strategy. Section 3 gives the application for 3–0 band of12C16O.Finally,summary is described in Section 4.

    2. Theory and method of calculations

    2.1. Modeling of transition lines

    The one-dimensional Schr¨odinger equation can be presented as

    whereμdenotes the reduced mass of the given diatomic system,υandJare the vibrational and rotational quantum numbers, respectively.VJ(r) is the effective potential energy that is a sum of the rotationless potentialV(r) plus the centrifugal term from the kinetic operator. The eigenfunctionsΨυ,J(r)of the potentialVJ(r)along with the transition dipole moment curves (TDMCs) were then applied for calculating the TDM matrix elements,yielding transition dipole momentRυ′J′,υ′′J′′to compute the line intensities, EinsteinAcoefficients for the transitions of a given molecule(see Subsection 2.2). The rovibrational energy levelsEυ,Jmay be calculated by the Dunham formula[20]or by the Herzberg expression,[21]and the latter one is defined as

    whereGυandFJcorrespond to the vibrational and rotational level, respectively.Bυ,Dυ, andHυ,...are the effective rotational and centrifugal constants.?is the projection of the electronic angular momentum onto the internuclear axis. The transition lines from a higher energy state to a lower energy state of a given molecule may then be written as Together equations (11) and (12) allow us to determine the{imax}(imax=even) molecular constants with{imax+3}accurate experimental transition lines. Thus, it becomes clear that the biggest challenge in calculating the argumentsχis to obtain the final form of algebraic equation (12), which offers alternative choices for the maximal degrees of the multiexpansions. Accordingly,the model described above that consists of a difference and algebraic approach (DAA) is constructed to calculate R branch transition lines.

    2.2. Spectroscopy learning strategy

    It appeared that the DAA model with fewer and explicit parameters which is desirable in the prediction of wild spectral range is better than the artificial neural networks. Therefore,understanding and characterizing the proper parametersxcan improve the overall performance of the proposed model that is generally associated with problems of avoiding under- and over-fitting. According to the DAA model, it is possible to characterize the parametersxfrom the one-to-one mapping

    in which the restricted valueχwas manipulated according to the following rule:

    It is understood that the development of the laser spectroscopy and frequency-comb allows for precisely determined line positionsvwith high resolution, which play essential roles in determining the emission EinsteinAcoefficients for the transition from a lower state(υ′′,J′′)to an upper state(υ′,J′)[23]

    wheregs,giare the state-dependent weight and state-independent weight,respectively.cis the speed of light,kis Boltzmann’s constant,Ev′′,J′′is the lower energy state,Qis the partition function atT0(=296 K), andIa(=98.6544%) is the isotopic abundance of12C16O molecule.

    An alternative approach which corresponds to the calculation of line intensity of a transition at temperatureTrelies on that of reference temperatureT0[23]

    Finally,it is thus devoted to explore spectroscopy learning that helps to extract the novel and hidden information from the data sets such as{vexpt},{ARef},{SRef}, where the learning and optimization algorithms can be seen in the next section.

    2.3. Learning and optimization algorithms

    According to Eq.(11),the DAA model embedded in spectroscopy learning algorithm is practically heuristic, yielding many possibilities for{x}, which may suffer from different optimization problems that require some effective implementation algorithms to evaluate the final determination.

    Thus, to get the optimal solution, the main idea of spectroscopy learning is to find accessible and explicit rules to minimize the objective functions

    where the parametersxare unknown to be computed through Eq. (12). The Einstein coefficientAcal(χ), line intensityScal(χ) both associate strongly withxand their own definitions. In order to estimate the precision of the reconstruction,we used the residual of the root mean squares (RMS) of the deviations as the distance for transition lines

    whereNis the number of data points.According to other spectroscopic quantities,the distance can be arranged into the similar forms,written as

    Equations (22)–(24) listed above are straightforward optimal goals to evaluatex?. From another point of view, there is no doubt that the EinsteinAcoefficient and line intensity are the critical basis for understanding the spectral information, and more importantly,the ideal physical convergence of extrapolative prediction. As mentioned earlier, spectroscopy that is an essential investigative technique allows for satisfactory transition lines{vexptn }with sub-MHz or even kHz accuracy,which can be used to analyze molecular constants at a local fitting by the least square strategy, however, resulting in poor ability in extrapolating line positions beyond the measurement.

    In this work,the most attention of spectroscopy learning has been devoted to the optimization of parameters{x}with the experimental line positions lists to be divided into training and testing parts,where the optimization problems can be solved and designed in following two aspects.

    Fig. 1. The schematic diagram of greedy algorithm. The least error (right axis)for each iteration is shown.

    2.4. Calculation details

    Step 1 Select an initial value(e.g.,i=4),which is suggested for the correspondingχ(i).

    Step 2 Record all possible alternatives, utilizing greedy algorithm in each iteration.

    Step 3 Using Eqs. (22)–(24) to quantify the parametersχ(i)that best meet the corresponding threshold requirements.

    Step 4 If Step 3 is done,terminate the process and currentiis the final degree of Eq.(12). Otherwise, a bigger adaptive value of degree(e.g.,i=6)will be loaded to execute and repeat Steps 1–4.

    Step 5 Here,the EinsteinAcoefficient and line intensity for each line position could be generated.

    3. Application

    3.1. Line positions

    In the present article, the spectroscopy learning method has been applied to the R-branch of 3–0 band in the ground of12C16O,where excellent examples of line positions are collected by Mondelainet al.[8]and Wanget al.[11]Moreover,the former frequencies are quoted in HITRAN2016[26]and latter ones will be updated in HITRAN2020[19]soon.Here,it is possible to test the spectroscopy learning method directly on the Wanget al.line lists(W21)[11]and the labelled line intensities and the EinsteinAcoefficients from HITRAN2020.[19]

    Table 1. The determined“true”transition linesk of the 3–0 band in the ground electronic state of CO(in unit kHz).

    Table 1. The determined“true”transition linesk of the 3–0 band in the ground electronic state of CO(in unit kHz).

    JkvJkJkvJk 19192019842944.2622190708280671.213 21192113077706.7864190910419589.804 23192193333611.4466191099878013.489 25192260575649.4248191276620759.635 27192314768823.34210191440612666.217 0190493496458.961

    Table 2. Spectroscopic constants of the 3–0 band in the ground electronic state of CO(in unit MHz).

    In this work, some line lists are introduced for comparison, such as Mondelainet al. line list (M15),[8]Farrenq and Guelachvili’s line list (FG91),[3]W21 line list,[11]V12 line list,[13]CH04 line list,[14]Li’s line list(Li15).[15]Indeed, we can also make effort to reproduce the transition frequencies of P branch. Figure 2 gives the differences of the linesversus min the range?31≤m ≤30. It can be seen that an excellent agreement can be obtained between the present transition frequencies with values from measurements of M15[8]within sub-MHz accuracy and W21[11]within kHz accuracy,and with values from calculations of V12[13]and CH04[14]line lists except for FG91 set.[3]However,transition frequencies from Li’s line list[15]show poor agreement with those illustrated in Fig.2. Details of all line positions obtained which incorporate data from literature are collected in supporting information Table A1. Recently, Cyganet al.reported their results of line positions for R23,[9]R24 and R28[10]in the 3–0 band. The determined valuev(R23)=192 193 333 611 kHz is close to, but slightly higher than the Cygan’s value of 192 193 333 554 kHz.[9]We also compared the current line positions ofv(R24)=192 228 583.55 MHz andv(R28)=192 336 961.15 MHz with the results obtained by Cyganet al. withv(R24)=192 228 583.47 MHz andv(R28)=192 336 961.03 kHz,[10]verifying the accuracy of our values.

    Fig.2. The differences in the transition lines for the 3–0 band. The line differences display with m=?J′′ in the P branch and m=J′′+1 in the R branch.

    Fig.3. The differences in the transition lines of“this work(n)”and the values from the HITRAN2020 for the 3–0 band. The line differences display with m=?J′′ in the P branch and m=J′′+1 in the R branch. It should be noticed that n in“this work(n)”means n experimental lines used in the training.

    Fig. 4. The differences in the transition lines of this work and those from Wang et al.[11] for the 0–0 band. The line differences display with J′′. The color shadow covers 1–σ uncertainty region.

    As already pointed out, there is diversity in DAA model which can yield line positions with different choices of spectroscopic constantsχ(i)i=4,6,8.... And, comparisons of the differences in line positions are shown in Fig. 3, where lines from “This work (11)” show a best agreement with those of HITRAN2020 line list, giving the RMS value of 2.4×10?5cm?1.

    Apparently, the molecular constants with respect to the vibrational statesυ=0,?3 allow the calculations of rotational lines for 0–0 and 3–3 bands. The line differences between our results and those from Wanget al.[11]are plotted in Fig.4 and Fig.5,respectively,leading to an acceptable determination of the transition frequencies with a few kHz accuracy (see supporting information Table A2 for details).

    Fig.5. Differences in the transition lines of this work and those from Wang et al.[11] for the 3–3 band. The line differences display with J′′. The color shadow covers 1–σ uncertainty region.

    3.2. Einstein A coefficients and line intensities

    The EinsteinAcoefficients and line intensities are used to evaluate the performance of the DAA model in predicting the line positions especially those beyond the measurements. Then, according to the definitions of the EinsteinAcoefficient and line intensity(see Eqs.(16)and(17)),the potential challenge is to determine the transition dipole momentRυ′J′,υ′′J′′, which can be extracted from LEVEL[24]from the semi-empirical DMF suggested by Liet al.[15]and a PEF from Coxon&Hajigeorgiou[14]or calculated directly through Eq. (16) using EinsteinAcoefficient and transition line that both are provided by HITRAN2020 database.[19]In this work,we prefer the latter approach to confirm better predictive accuracy of the lines.

    The accuracy of EinsteinAcoefficients and line intensities will be assessed by comparison between this work and those from HITRAN2020.[19]Moreover, in order to compare to literature values,several lists of EinsteinAcoefficients and line intensities are also collected, which were displayed in Fig.6 and Fig.7,respectively.And,detailed values of EinsteinAcoefficients and line intensities are presented in the supporting information Tables A3 and A4.

    For the case of EinsteinAcoefficient comparisons,values from HITRAN2020,[19]G94,[12]Langhoff and Bauschlicher(LB95),[29]Hur′e and Roueff (HR96)[30]are presented. The LB95 EinsteinAcoefficient values are those calculated by Eq. (16) using the DMF suggested by Langhoff and Bauschlicher.[29]And, the HR96 EinsteinAcoefficient values are those computed by Eq.(16)using the transition dipole momentRυ′J′,υ′′J′′obtained by Hur′e and Roueff.[30]It should be noted that the lines of this work(11)were used in the calculation of EinsteinAcoefficient for both cases. The satisfactory agreement with HITRAN2020 values is viewed by the EinsteinAcoefficient comparisons plotted in Fig.6 withmbetween?46 and 49. While G94 overestimated the EinsteinAcoefficients by about average 4.4%,and the EinsteinAcoefficients of HR96 and LB95 are approximately 1.8% and 1.5%lower than calculations of this work.

    Fig.6. Comparison of the Einstein A coefficients for the 3–0 band. The Einstein A coefficients display with m=?J′′ in the P branch and m=J′′+1 in the R branch.

    For the case of line intensity comparison atT=296 K,values from HITRAN2020,[19]G94,[12]LB95,HR96,SV04,[7]and Borkovet al. (B20)[17]are taken in account.The G94 line intensities performed atT=296 K are computed by Eq.(18)using G94 line intensities at reference temperatureT=3000 K[12]with theQ(T=3000 K) value of 1717.24391[15]in order to foster a fair comparison with available line intensities. The LB95 and HR96 line intensities are calculated by Eq. (17) with respective EinsteinAcoefficients derived before and with theQ(T=296 K) value of 107.419824.[15]The B20 line intensities are the calculated values that can be found in supplementary material of Ref.[17].

    The comparisons of line intensitiesversus mbetween?46 and 49 are shown in Fig. 7, in which the line intensity values of G94 and B20 are approximately 5.8% and 3.9%higher than present values, respectively, and the values of LB95 and HR96 are smaller than present values by about 1.5%and 1.8%,respectively. These slight discrepancies arose from that slightly different line position values and transition dipole moment are used for line intensity calculation. Whereas,line intensity values of this work are identical to the entries of the HITRAN2020 values[19]and deviate slightly from those measured by Sung and Varanasi.[7]

    Fig.7. Comparison of the line intensities for the 3–0 band. The line intensities display with m=?J′′ in the P branch and m=J′′+1 in the R branch.

    Fig.8. Comparison of the Einstein A coefficients for the 0–0 and 3–3 bands.The Einstein A coefficients display with m=J′′+1 in the R branch.

    Fig.9. Comparison of the line intensities for the 0–0 and 3–3 bands.The line intensities display with m=J′′+1 in the R branch.

    Let us finally consider the EinsteinAcoefficients,line intensities for the 0–0 and 3–3 bands. Now,spectroscopic constants reported in Table 2 are ready for these two tasks with the help of transition dipole momentRυ′J′,υ′′J′′that were extracted from LEVEL[24]from the semi-empirical DMF suggested by Liet al.[15]and a PEF from Coxon&Hajigeorgiou.[14]Then,solving Eqs. (16) and (17) leads to the EinsteinAcoefficients and line intensities that are consistent with those from HITRAN2020.[19]These are clearly shown in Figs. 8 and 9 that compare these two value lists for the cases of EinsteinAcoefficients and line intensities, respectively, withm=1 tom=81 for the 0–0 band,m=1 tom=48 for the 3–3 band.Those values of EinsteinAcoefficients and line intensities for the 0–0 and 3–3 bands are presented in the supporting information Tables A5 and A6.

    4. Conclusions

    In this article, a model- and data-driven strategy is proposed to learn line positions for diatomic molecules. The use of the strategy can help us unearth the hidden information behind the measurement and is applied for the 3–0 band in the ground electronic state of12C16O,enabling prediction with a few kHz accuracy. The present values of line positions, EinsteinAcoefficients and line intensities are compared to several other line lists, verifying the validity of the strategy. The results also suggest that the size in the learned-model can have different effects and diversities on the predictive accuracy of line positions. Moreover,in our forthcoming work,it could be interesting to see if the performance of the proposed technique is also reachable for CO isotopologues.

    Acknowledgment

    We appreciate Prof. V.I.Perevalov for his valuable suggestions for the line intensity calculations.

    猜你喜歡
    馬杰范志徐勇
    徐勇:質(zhì)量為重 耕耘奮進
    華人時刊(2023年7期)2023-05-17 09:05:02
    研究生科研自主發(fā)展能力培養(yǎng)的分析與探討
    Single-molecule mechanical folding and unfolding kinetics of armless mitochondrial tRNAArg from Romanomermis culicivorax?
    徐勇教授
    In-situ reduction of silver by surface DBD plasma:a novel method for preparing highly effective electromagnetic interference shielding Ag/PET
    夏天的浪漫
    金秋(2019年16期)2019-11-15 02:41:18
    Theoretical study of overstretching DNA-RNA hybrid duplex?
    范治斌作品選登
    藝術(shù)家(2017年1期)2017-11-29 17:11:16
    Efficacy comparison between anterior subcutaneous and submuscular transposition of ulnar nerve in treating moderate-severe cubital tunnel syndrome
    連續(xù)化簡巧解難題
    91九色精品人成在线观看| 欧美丝袜亚洲另类 | 亚洲成a人片在线一区二区| 日韩有码中文字幕| 色综合亚洲欧美另类图片| www日本在线高清视频| 制服人妻中文乱码| 男人操女人黄网站| 免费少妇av软件| 啦啦啦韩国在线观看视频| 午夜久久久在线观看| 国产精品一区二区在线不卡| 国产99久久九九免费精品| 亚洲国产日韩欧美精品在线观看 | 好男人电影高清在线观看| 精品卡一卡二卡四卡免费| 性少妇av在线| 亚洲中文av在线| 亚洲久久久国产精品| 欧美日本中文国产一区发布| 嫩草影院精品99| 亚洲精品中文字幕一二三四区| 一夜夜www| 亚洲aⅴ乱码一区二区在线播放 | 久久久久久人人人人人| 一进一出抽搐gif免费好疼| www.自偷自拍.com| 伊人久久大香线蕉亚洲五| 亚洲片人在线观看| 精品一区二区三区视频在线观看免费| 欧美午夜高清在线| 电影成人av| 麻豆国产av国片精品| 9色porny在线观看| 亚洲成人久久性| 91成人精品电影| 88av欧美| 操出白浆在线播放| 国产熟女xx| 乱人伦中国视频| 欧美激情 高清一区二区三区| 电影成人av| 多毛熟女@视频| 成人国产综合亚洲| 欧美午夜高清在线| 在线观看日韩欧美| 91在线观看av| av在线播放免费不卡| 精品国产乱码久久久久久男人| 久久这里只有精品19| 国产成人av激情在线播放| 黑人巨大精品欧美一区二区mp4| 日本五十路高清| 亚洲av电影在线进入| 热99re8久久精品国产| 99国产精品99久久久久| 亚洲伊人色综图| 一个人免费在线观看的高清视频| 少妇的丰满在线观看| 好看av亚洲va欧美ⅴa在| 天天躁夜夜躁狠狠躁躁| 大陆偷拍与自拍| 日韩一卡2卡3卡4卡2021年| 久久久久久久久免费视频了| 久久精品亚洲熟妇少妇任你| 久久久久国内视频| 精品久久久久久,| 成人三级黄色视频| 国产成人系列免费观看| 亚洲一区二区三区色噜噜| 免费看a级黄色片| 国产av一区二区精品久久| 精品久久久久久久毛片微露脸| 国产三级黄色录像| 亚洲av日韩精品久久久久久密| 高清毛片免费观看视频网站| 久久性视频一级片| 亚洲片人在线观看| 动漫黄色视频在线观看| 在线视频色国产色| 99久久久亚洲精品蜜臀av| 亚洲国产高清在线一区二区三 | 成年女人毛片免费观看观看9| 国产1区2区3区精品| 窝窝影院91人妻| 国产精品一区二区精品视频观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲专区中文字幕在线| 大型黄色视频在线免费观看| 一级a爱片免费观看的视频| 99国产精品免费福利视频| 欧美激情高清一区二区三区| 三级毛片av免费| 免费一级毛片在线播放高清视频 | 男女之事视频高清在线观看| 午夜精品在线福利| 十分钟在线观看高清视频www| 国产成人av激情在线播放| 亚洲国产精品合色在线| 变态另类成人亚洲欧美熟女 | 亚洲avbb在线观看| 久久久久久久久中文| 久热爱精品视频在线9| 久久久久精品国产欧美久久久| 人人妻人人爽人人添夜夜欢视频| 国产高清激情床上av| 美女高潮喷水抽搐中文字幕| 亚洲熟妇熟女久久| 亚洲av第一区精品v没综合| 欧美激情高清一区二区三区| 色婷婷久久久亚洲欧美| 国产欧美日韩一区二区三区在线| 久久人人97超碰香蕉20202| 午夜免费观看网址| 国产成人精品无人区| 欧美色视频一区免费| 亚洲av电影不卡..在线观看| 色综合婷婷激情| 亚洲精品在线美女| 在线观看www视频免费| 日本欧美视频一区| 女性生殖器流出的白浆| 1024视频免费在线观看| 18美女黄网站色大片免费观看| 真人一进一出gif抽搐免费| 国产亚洲欧美精品永久| 十分钟在线观看高清视频www| 成人18禁在线播放| 亚洲国产精品久久男人天堂| 伦理电影免费视频| 国产1区2区3区精品| 黑人巨大精品欧美一区二区mp4| 午夜两性在线视频| 日本免费一区二区三区高清不卡 | 日本 av在线| 午夜福利在线观看吧| 亚洲天堂国产精品一区在线| 精品人妻1区二区| 18禁美女被吸乳视频| 国产激情久久老熟女| 黑人巨大精品欧美一区二区mp4| 久久精品影院6| 一进一出抽搐动态| 9热在线视频观看99| www.999成人在线观看| 制服诱惑二区| 好看av亚洲va欧美ⅴa在| 精品一品国产午夜福利视频| 嫁个100分男人电影在线观看| 啦啦啦观看免费观看视频高清 | 国内精品久久久久久久电影| 一边摸一边抽搐一进一出视频| 国产精品香港三级国产av潘金莲| www.www免费av| 久久青草综合色| 亚洲精品在线观看二区| 色精品久久人妻99蜜桃| 午夜福利成人在线免费观看| 国产精品亚洲美女久久久| 亚洲欧美日韩无卡精品| 久久中文字幕一级| 在线播放国产精品三级| 国产高清视频在线播放一区| 久久久久久久精品吃奶| 麻豆一二三区av精品| 亚洲欧美日韩无卡精品| 十八禁人妻一区二区| 欧美中文综合在线视频| 脱女人内裤的视频| 国产精品日韩av在线免费观看 | 91大片在线观看| 黄网站色视频无遮挡免费观看| 国产免费av片在线观看野外av| 国产亚洲精品久久久久5区| 一边摸一边抽搐一进一小说| 国产欧美日韩综合在线一区二区| 久久精品国产99精品国产亚洲性色 | 免费看a级黄色片| www.999成人在线观看| 久久精品91无色码中文字幕| 久久精品国产99精品国产亚洲性色 | 亚洲精品av麻豆狂野| 亚洲欧美日韩另类电影网站| 伊人久久大香线蕉亚洲五| 美女高潮喷水抽搐中文字幕| 久久中文字幕人妻熟女| 淫妇啪啪啪对白视频| 涩涩av久久男人的天堂| 国产熟女午夜一区二区三区| www日本在线高清视频| 国产精品一区二区三区四区久久 | 国产片内射在线| 日本免费一区二区三区高清不卡 | 国产一级毛片七仙女欲春2 | 国产精品香港三级国产av潘金莲| 国产精品自产拍在线观看55亚洲| 国产日韩一区二区三区精品不卡| 免费少妇av软件| 久久午夜亚洲精品久久| 国产精品一区二区精品视频观看| 丝袜美腿诱惑在线| 国产亚洲欧美精品永久| 曰老女人黄片| 国产真人三级小视频在线观看| 欧美成人性av电影在线观看| 国产精品久久久人人做人人爽| 欧美乱码精品一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 午夜亚洲福利在线播放| e午夜精品久久久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 村上凉子中文字幕在线| 午夜亚洲福利在线播放| 禁无遮挡网站| 国产精品永久免费网站| 欧美性长视频在线观看| 国产高清激情床上av| 国产色视频综合| 国产熟女xx| 国产一卡二卡三卡精品| 高清毛片免费观看视频网站| 亚洲中文日韩欧美视频| 一区二区三区高清视频在线| 午夜福利免费观看在线| 操美女的视频在线观看| 夜夜躁狠狠躁天天躁| 亚洲午夜精品一区,二区,三区| 亚洲欧美日韩无卡精品| 中国美女看黄片| 制服人妻中文乱码| 日本五十路高清| a级毛片在线看网站| 国产单亲对白刺激| 亚洲成人免费电影在线观看| 久久久水蜜桃国产精品网| 日韩一卡2卡3卡4卡2021年| 午夜激情av网站| 亚洲,欧美精品.| av福利片在线| 中文字幕av电影在线播放| 午夜影院日韩av| 老鸭窝网址在线观看| 怎么达到女性高潮| 免费在线观看影片大全网站| 久久精品人人爽人人爽视色| 婷婷丁香在线五月| 国产精品98久久久久久宅男小说| 国产av一区二区精品久久| 在线观看免费日韩欧美大片| 亚洲色图综合在线观看| 日韩欧美国产一区二区入口| 性色av乱码一区二区三区2| 一进一出抽搐动态| 欧美日本视频| 涩涩av久久男人的天堂| 搡老妇女老女人老熟妇| 最新美女视频免费是黄的| 12—13女人毛片做爰片一| 国产精品自产拍在线观看55亚洲| 老司机午夜福利在线观看视频| 国语自产精品视频在线第100页| 色在线成人网| 一个人免费在线观看的高清视频| 亚洲七黄色美女视频| 人妻久久中文字幕网| 亚洲欧美日韩另类电影网站| 长腿黑丝高跟| 国产精品美女特级片免费视频播放器 | 欧美在线黄色| 琪琪午夜伦伦电影理论片6080| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国产乱子伦一区二区三区| 午夜精品国产一区二区电影| 国产精品爽爽va在线观看网站 | 1024视频免费在线观看| 淫妇啪啪啪对白视频| 国产精品久久久久久亚洲av鲁大| 日韩欧美免费精品| 成人亚洲精品av一区二区| 一级黄色大片毛片| 天堂动漫精品| 亚洲成a人片在线一区二区| 一边摸一边做爽爽视频免费| 色播亚洲综合网| 9191精品国产免费久久| 亚洲精品粉嫩美女一区| 大码成人一级视频| 日韩精品中文字幕看吧| 我的亚洲天堂| netflix在线观看网站| 女人被躁到高潮嗷嗷叫费观| 亚洲av日韩精品久久久久久密| 国产熟女午夜一区二区三区| 国产亚洲精品av在线| 人人妻,人人澡人人爽秒播| 91av网站免费观看| 美女扒开内裤让男人捅视频| 变态另类成人亚洲欧美熟女 | 婷婷丁香在线五月| 黑人巨大精品欧美一区二区mp4| 极品教师在线免费播放| 亚洲av片天天在线观看| 国产一区二区激情短视频| 亚洲片人在线观看| 精品熟女少妇八av免费久了| 久久精品91蜜桃| 两个人视频免费观看高清| 中文字幕高清在线视频| 亚洲av日韩精品久久久久久密| 精品一区二区三区av网在线观看| 一进一出好大好爽视频| 多毛熟女@视频| 美女免费视频网站| 精品欧美一区二区三区在线| 久久欧美精品欧美久久欧美| 真人一进一出gif抽搐免费| 一边摸一边做爽爽视频免费| 一边摸一边抽搐一进一小说| 精品不卡国产一区二区三区| 视频在线观看一区二区三区| 国产精品亚洲一级av第二区| 电影成人av| 色婷婷久久久亚洲欧美| 日本免费a在线| 精品高清国产在线一区| 国产精品爽爽va在线观看网站 | 两性午夜刺激爽爽歪歪视频在线观看 | 女人被躁到高潮嗷嗷叫费观| 别揉我奶头~嗯~啊~动态视频| 在线观看www视频免费| 一边摸一边抽搐一进一小说| 在线观看免费视频日本深夜| 丝袜人妻中文字幕| 亚洲国产高清在线一区二区三 | 99久久国产精品久久久| 波多野结衣高清无吗| 久9热在线精品视频| 精品一区二区三区视频在线观看免费| 午夜精品在线福利| 成人av一区二区三区在线看| 国产欧美日韩综合在线一区二区| 91字幕亚洲| 99在线视频只有这里精品首页| 久久久久久免费高清国产稀缺| 18美女黄网站色大片免费观看| 精品福利观看| 色精品久久人妻99蜜桃| 亚洲人成网站在线播放欧美日韩| 国产精华一区二区三区| 丝袜在线中文字幕| 日本一区二区免费在线视频| 黑人巨大精品欧美一区二区蜜桃| 99久久精品国产亚洲精品| 日韩欧美国产一区二区入口| 夜夜夜夜夜久久久久| 成人国产一区最新在线观看| 美女 人体艺术 gogo| 91字幕亚洲| bbb黄色大片| 大型黄色视频在线免费观看| 99久久国产精品久久久| 亚洲精品一区av在线观看| 欧美日韩福利视频一区二区| 国产精品免费视频内射| 叶爱在线成人免费视频播放| 久久午夜综合久久蜜桃| 无遮挡黄片免费观看| 香蕉国产在线看| 亚洲va日本ⅴa欧美va伊人久久| 在线天堂中文资源库| 正在播放国产对白刺激| 亚洲欧美日韩无卡精品| 日本一区二区免费在线视频| 精品国产亚洲在线| 久久久久久大精品| 久久久久国产一级毛片高清牌| 亚洲欧美精品综合一区二区三区| 亚洲av第一区精品v没综合| 日日摸夜夜添夜夜添小说| 国产免费av片在线观看野外av| 十分钟在线观看高清视频www| 麻豆成人av在线观看| 视频区欧美日本亚洲| 亚洲av电影不卡..在线观看| 亚洲美女黄片视频| av福利片在线| 免费在线观看视频国产中文字幕亚洲| 99热只有精品国产| 极品人妻少妇av视频| 999久久久精品免费观看国产| 亚洲国产精品成人综合色| 50天的宝宝边吃奶边哭怎么回事| 97人妻精品一区二区三区麻豆 | 国产黄a三级三级三级人| 日韩大尺度精品在线看网址 | 欧美乱色亚洲激情| 免费人成视频x8x8入口观看| 在线观看免费视频日本深夜| 一区在线观看完整版| 丝袜在线中文字幕| 很黄的视频免费| 女人高潮潮喷娇喘18禁视频| 老司机福利观看| 一区二区日韩欧美中文字幕| 久久热在线av| 国产三级黄色录像| 欧美乱色亚洲激情| 电影成人av| 国产亚洲精品久久久久久毛片| 午夜免费激情av| 亚洲精品美女久久av网站| 精品国产乱子伦一区二区三区| 在线天堂中文资源库| 中文字幕高清在线视频| 搡老妇女老女人老熟妇| 一级a爱视频在线免费观看| 在线观看午夜福利视频| 亚洲成人久久性| 无人区码免费观看不卡| 亚洲成人精品中文字幕电影| 美女扒开内裤让男人捅视频| 精品乱码久久久久久99久播| 免费在线观看日本一区| 露出奶头的视频| av电影中文网址| 国产成人精品久久二区二区91| 国产精品98久久久久久宅男小说| 久久久久久久久久久久大奶| 欧美成人午夜精品| 国产欧美日韩综合在线一区二区| 国产男靠女视频免费网站| 国产精品亚洲av一区麻豆| 国产又色又爽无遮挡免费看| 九色国产91popny在线| 亚洲精品美女久久av网站| 丝袜美足系列| 免费女性裸体啪啪无遮挡网站| 午夜两性在线视频| 国产色视频综合| 亚洲全国av大片| 女人精品久久久久毛片| 国产又色又爽无遮挡免费看| xxx96com| videosex国产| 免费在线观看视频国产中文字幕亚洲| 中国美女看黄片| 动漫黄色视频在线观看| 国内精品久久久久久久电影| 男女下面进入的视频免费午夜 | 看黄色毛片网站| 99国产综合亚洲精品| 色老头精品视频在线观看| 这个男人来自地球电影免费观看| 欧美一区二区精品小视频在线| 很黄的视频免费| 美女午夜性视频免费| 国产精品永久免费网站| 啦啦啦 在线观看视频| 亚洲国产欧美网| 满18在线观看网站| 亚洲成人免费电影在线观看| 热99re8久久精品国产| 亚洲国产精品sss在线观看| 精品久久久久久成人av| 亚洲熟妇中文字幕五十中出| 在线国产一区二区在线| 亚洲aⅴ乱码一区二区在线播放 | 成年版毛片免费区| 成人手机av| 国产精品久久久久久亚洲av鲁大| 美女扒开内裤让男人捅视频| 十八禁网站免费在线| 韩国av一区二区三区四区| 国产高清有码在线观看视频 | 成人18禁高潮啪啪吃奶动态图| 欧美激情极品国产一区二区三区| 搞女人的毛片| 色精品久久人妻99蜜桃| 国产欧美日韩一区二区三区在线| 久久久久国产一级毛片高清牌| 亚洲视频免费观看视频| 亚洲中文日韩欧美视频| 亚洲黑人精品在线| 亚洲三区欧美一区| 三级毛片av免费| 中文字幕人成人乱码亚洲影| 淫妇啪啪啪对白视频| 天天添夜夜摸| 又紧又爽又黄一区二区| 无人区码免费观看不卡| 久久亚洲精品不卡| 啦啦啦韩国在线观看视频| 少妇裸体淫交视频免费看高清 | 91大片在线观看| 久久精品人人爽人人爽视色| 老司机在亚洲福利影院| 制服诱惑二区| 亚洲国产毛片av蜜桃av| 91大片在线观看| 一个人免费在线观看的高清视频| 777久久人妻少妇嫩草av网站| 99在线视频只有这里精品首页| 久久人人精品亚洲av| 欧美中文综合在线视频| 黄色视频不卡| 亚洲va日本ⅴa欧美va伊人久久| 午夜免费激情av| 午夜免费成人在线视频| 亚洲欧洲精品一区二区精品久久久| 色综合站精品国产| 国产精品99久久99久久久不卡| 久久香蕉激情| 国产又色又爽无遮挡免费看| 99精品在免费线老司机午夜| 亚洲一码二码三码区别大吗| 99久久久亚洲精品蜜臀av| 亚洲第一欧美日韩一区二区三区| 亚洲,欧美精品.| 91九色精品人成在线观看| 久久精品91无色码中文字幕| 97碰自拍视频| 国内久久婷婷六月综合欲色啪| 欧美激情极品国产一区二区三区| 一边摸一边抽搐一进一出视频| 久9热在线精品视频| 巨乳人妻的诱惑在线观看| 亚洲欧美日韩高清在线视频| 天天添夜夜摸| 亚洲三区欧美一区| 在线av久久热| 国产精品免费一区二区三区在线| 亚洲av成人一区二区三| 中国美女看黄片| 久久欧美精品欧美久久欧美| 正在播放国产对白刺激| av在线天堂中文字幕| 精品不卡国产一区二区三区| 免费不卡黄色视频| 欧美黄色片欧美黄色片| 久久精品亚洲精品国产色婷小说| a在线观看视频网站| 最好的美女福利视频网| 91大片在线观看| 久久中文字幕一级| 亚洲中文字幕一区二区三区有码在线看 | 变态另类成人亚洲欧美熟女 | 国产av一区二区精品久久| 一区二区三区国产精品乱码| 中亚洲国语对白在线视频| 日韩欧美国产一区二区入口| 亚洲欧洲精品一区二区精品久久久| 免费高清在线观看日韩| 午夜两性在线视频| 久久久国产成人精品二区| 欧美黄色片欧美黄色片| 日韩国内少妇激情av| 国产亚洲av嫩草精品影院| 悠悠久久av| av片东京热男人的天堂| 在线观看一区二区三区| 久久影院123| 久久 成人 亚洲| 亚洲第一青青草原| 日韩欧美在线二视频| 欧美黄色片欧美黄色片| 亚洲中文日韩欧美视频| 满18在线观看网站| 久热爱精品视频在线9| 国产精华一区二区三区| 韩国精品一区二区三区| 成熟少妇高潮喷水视频| 精品人妻在线不人妻| 精品国内亚洲2022精品成人| 极品教师在线免费播放| 精品卡一卡二卡四卡免费| 久久精品人人爽人人爽视色| 国产亚洲精品av在线| 极品教师在线免费播放| 国产免费男女视频| 丝袜美腿诱惑在线| 亚洲色图av天堂| 视频在线观看一区二区三区| 一级a爱视频在线免费观看| 午夜免费激情av| 日本免费一区二区三区高清不卡 | 岛国在线观看网站| 视频在线观看一区二区三区| 一进一出抽搐gif免费好疼| 亚洲第一欧美日韩一区二区三区| 免费av毛片视频| 啦啦啦观看免费观看视频高清 | 欧美国产精品va在线观看不卡| 母亲3免费完整高清在线观看| 999久久久精品免费观看国产| 香蕉国产在线看| 亚洲精品在线观看二区| 亚洲男人的天堂狠狠| 黄色视频不卡| 美女国产高潮福利片在线看| 别揉我奶头~嗯~啊~动态视频| 天天躁狠狠躁夜夜躁狠狠躁| 午夜久久久久精精品| 淫秽高清视频在线观看| 亚洲一区中文字幕在线| 色播亚洲综合网| 久久久久久免费高清国产稀缺| 三级毛片av免费| 精品久久久久久,| 久久热在线av| 亚洲九九香蕉| 国产视频一区二区在线看| 国产麻豆69| 日韩欧美一区视频在线观看| 久久国产亚洲av麻豆专区| 色播亚洲综合网|