• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Single-molecule mechanical folding and unfolding kinetics of armless mitochondrial tRNAArg from Romanomermis culicivorax?

    2021-10-28 07:03:24YanHuiLi李彥慧ZhenShengZhong鐘振聲andJieMa馬杰
    Chinese Physics B 2021年10期
    關(guān)鍵詞:馬杰

    Yan-Hui Li(李彥慧) Zhen-Sheng Zhong(鐘振聲) and Jie Ma(馬杰)

    1School of Physics,Sun Yat-sen University,Guangzhou 510275,China

    2State Key Laboratory of Optoelectronic Materials and Technologies,Sun Yat-sen University,Guangzhou 510006,China

    Keywords: mitochondrial tRNA, mechanical stability, singlemolecule manipulation, amino acid-chelated Mg2+

    1. Introduction

    Mitochondria are the sites of aerobic respiration and responsible for energy production in eukaryotic cells. Mitochondrial genomes encode not only proteins essential for energy production, but also parts of the translation machinery,including mitochondrial tRNAs (mt tRNAs).[1]Notably, for bilateral animals, high aerobic respiration demands and accumulative replication errors in asexual reproduction, results in strong mutation pressure in mt DNA encoded genes.[2–6]As a result,mutation in mt tRNAs can cause serious diseases such as myopathies and neurological disorders in human.[7–12]However, inevitable mutations in mt tRNA frequently lead to some bizarre mt tRNAs which have various degrees of truncation and loss on D-or T-arms,being deviation from canonical tRNAs.[13–17]Evidence indicated that these armless tRNAs lacking one or both side arms could still fold into a stable L-shape tertiary structure,[17]and interact with tRNA processing enzymes,i.e.,aminoacyl-tRNA synthetase(aaRS).[18]The conserved tertiary structure is crucial to the functionality of tRNA, including interaction with post-transcriptional editing enzymes, aaRS, and elongation factor, as well as positioning in the ribosome.[19–22]Interestingly, recent studies illustrated an mt tRNA/aaRS recognition mechanism which used shape and folding properties rather than specific base pair in eukaryotic cells to discriminate cognate from non-cognate mt tRNA substrates.[23]Besides the tertiary structure, the mechanical stability of tRNAs is also important to their biological activities. For example,tRNA is under tension and distorted during ribosomal translocation.[24]However,how the armless mt tRNAs maintain the L-shape tertiary structure and mechanical strength is not clear.

    A recent research discovered an mt tRNAArgwithout Dand T-arms fromRomanomermis culicivorax, which is the shortest mt tRNA ever known (45 nucleotides (nt), including CCA tail).[15]It has a stem-bulge-stem secondary architecture and an L-shape tertiary structure,but lacks tertiary interaction even in the presence of Mg2+(Fig. 1(a)).[17]Moreover, the predicted folding free energy(?8.34 kcal/mol)for folding mt tRNAArgis substantially higher than canonical tRNA in 1 M NaCl,at 22°C by using MFold.[25]

    Besides the advances on structural biology of mt tRNAArgfromRomanomermis culicivorax, its mechanical unfolding/refolding properties have not been studied previously.To clarify its adaptive mechanism of maintaining structural stability in physiological conditions when suffering the environmental destabilization, we performed single-molecule pulling/relaxing experiments on the mt tRNAArgusing homebuilt optical tweezers.[26]Moreover, it is known that RNA is exposed to large amounts of amino acid-chelated magnesium(aaCM)in vivo,[27–30]and these weakly chelated magnesium ions promote the thermal stability of RNA.[31]However,how the aaCM affects the mechanical stability of RNAs is still unknown. Thus, we also investigated the single-molecule mechanical folding/unfolding pathways in the presence of aaCM using optical tweezers. Our results unraveled the folding and unfolding kinetics as well as the free energy landscapes of the mt tRNAArgin different solutions.We discovered the solutiondependent mechanical stability of the bulge region of the armless tRNA,which may shed light on the mechanisms of armless tRNA-protein interactions.

    2. Methods and model

    2.1. Sample preparation

    The synthesis strategy of the single-molecule construct in this study was modified from the one described by Blocket al.[32]In brief, a chemically synthesized DNA containing the mt tRNAArgsequences (42 nt, without 3′CCA tail) and the upstream 1 nt spacer (‘C’) was inserted in between theHindIIIsite andXbaIsite of pUC19 vector(Sangon). The linear DNA template forin vitrotranscription was generated by PCR using the recombinant plasmids, a T7 promoter labeled upstream primer and a downstream primer (see Appendix A,Table A1). RNA containing the mt tRNAArgsequences(42 nt,without 3′CCA tail), the upstream 1 nt spacer sequence, the upstream and downstream 30 nt‘sticky’sequences, was synthesized byin vitrotranscription using T7 RNA polymerase(Promega). Two dsDNA handles were generated by PCR using the pUC19 plasmid as their templates. The 1195 bp upstream handle with an abasic site and a 30 nt 5′overhang was synthesized by PCR, using an autosticky primer and a 5′-digoxygenin modified primer(see Appendix A,Table A1).The 1409 bp downstream handle with a 30 nt 3′overhang was generated by PCR using a 5′phosphorylated primer with three phosphorothioate bonds and a 5′-biotin modified primer (see Appendix A,Table A1),followed by 1 minute lambda exonuclease (New England Biolabs) digestion. All primers were purchased from Sangon, and both handles were purified using PCR purification kit (QIAGEN). The RNA was annealed to the dsDNA handles at the ratio of 1:3:1 in a buffer containing 100 mM NaCl, 20 mM PIPES, and 1 mM EDTA,pH 7.0. During the annealing process, the temperature was first held at 80°C for 5 minutes, then lowered from 80°C to 4°C at a rate of?1°C/min. The samples were first tethered to the cover-glass surface through digoxigenin–antibody interaction and then attached to an 800 nm streptavidin-coated polystyrene bead(Spherotech,Lake Forest,IL,USA)through biotin-streptavidin interaction(Fig.1(b)).

    2.2. Amino acid-chelated magnesium(aaCM)

    The recipe of aaCM buffer was described by Ryota Yamagamiet al.[31]Briefly,aaCM buffer for 2.0 mM free Mg2+contains 96 mM potassium glutamate, 4.2 mM aspartate, 3.8 mM glutamine, 2.6 mM alanine, 50 mM KCl, 16.0 mM MgCl2, and 20 mM Tris, pH 7.4. All the amino acids were purchased from Sigma-Aldrich.

    2.3. Single molecule experiments and data processing

    Single-molecule force-ramp experiments were performed using homebuilt single-trap optical tweezers described previously.[26]The 3D piezoelectric stage moved at a constant speed of 100 nm/s during the pulling/relaxing process.The laser power was kept constant during the whole measurement. Each tether was pulled no more than five times. All the experiments were performed at a temperature [(22±1)°C]and humidity[(50±5)%]controlled room. The buffer conditions were 20 mM Tris,0.4 U/μL RNasin plus RNase Inhibitor(Promega),1 mM DTT,in interested KCl and MgCl2concentrations or aaCM,pH 7.4. The 1 kHz raw data were averaged to 200 Hz by using custom MATLAB programs.

    2.4. Worm-like chain(WLC)model

    During unfolding,contour length changes were found by partitioning the force extension curves(FECs)data into separate states with different contour lengths,then fitting each state to two extensible worm-like chain (eWLC) models in series:one for the dsDNA handles,and the other for the single strand RNA (ssRNA) that is unfolded in each state. We employed a modified Marko–Siggia WLC model described previously as[33]

    herekBis the Boltzmann constant,Tis the absolute temperature(295 K,22°C),Lis the contour length,Pis the persistence length, andKis the stretch modulus. The parametersL,P, andKdescribing the dsDNA handles were first determined by fitting the FEC for the fully folded state. Then the FECs for the intermediate state and fully unfolded state were fitted by treatingL,P, andKas fixed variables for both the dsDNA handles. The unfolded ssRNALis 0.59 nm/nt,Pis 1 nm andKis 1500 pN,[34,35]respectively. The diameter of an A-form dsRNA helix(2.2 nm).[34]is also taken into consideration when the RNA is fully unfolded.

    2.5. Kinetics extracted from force distributions

    We assumed the positions of the activation barriers are force-independent,so that the Bell’s kinetic model was applied to describe the force dependence of unfolding and folding kinetics of each transition:[36,37]

    in whichk(F)is the rate constant as a function of forceF,kis the apparent folding/unfolding rate at 0 pN,X?is the distance from the folded/unfolded state to the transition state along the reaction coordinate,kBis the Boltzmann constant, andTis absolute temperature(295 K,22°C).

    The folding/unfolding kinetics can be expressed in a transformed equation by taking the logarithm of Eq.(2):

    where the slope isX?/kBT, and theyintercept is lnk. The critical forceF1/2is defined as the force at which the unfolding rate equals to the refolding rate,obtaining from the crossing point of the force-dependent unfolding and refolding rate curves,i.e.,tok1/2.

    We determined the force-dependent unfolding and refolding kinetics extracted from distributions of the rupture forces using Dudko’s method.[38]The rate constant at forceF,k(F),can be computed from force probability density histogram:

    where ?GssRNA(F) is the free energy of stretching the unfolded ssRNA from 0 pN to forceF, and the free energy at 0 pN ?G0is determined from

    whereW(F)is the reversible work of the reaction by integrating the FEC from the folded state at 0 pN to the unfolded state at forceF, and ?Gstreching(F) is the free energy of stretching the handles and the unfolded ssRNA from 0 pN to forceF.

    3. Results and discussion

    We firstly performed pulling/relaxing experiments at 146 mM KCl whose monovalent cation concentration corresponds to physiological conditions. However,we only observed a discernible transition from these trajectories at around 12 pN–14 pN and a suspected transition at about 4 pN, which was difficult to distinguish (Fig. 2(a)). In consideration of the effect of monovalent cation concentration on structural stability,then we increased salt concentration to 1 M KCl and observed two obvious two reversible transitions: a large hopping transition at 7 pN–9 pN with 8 nm–10 nm end-to-end extension change(?x), and a small back-and-forth transition at 12 pN–14 pN with 4 nm–5 nm ?x(Fig. 1(c)). It indicated that only an intermediate state(‘I’)was observed between a fully folded state (‘F’) and a fully unfolded state (‘U’). Scarcely hysteresis was observed between pulling and relaxing traces,indicating that the mechanical pulling pathway is highly reversible.We fitted the state ‘F’ by applying Eq. (1) (Fig. 1(c), green curve),whose fitting parameter describes the stretching of the handles. Considering it hard to distinguish the state ‘I’ and state ‘U’ by eWLC fitting, we then employed the theoretical ssRNA length changed of the state‘I’(26 nt)and state‘U’(41 nt) compared to state ‘F’, as well as the fitting parameters of‘F’ states to draw the theoretical pulling curves of these two states (Fig. 1(c), orange and sky-blue curves). These curves are well superimposed onto FECs data,which indicate that the acceptor stem and the bulge are disrupted by tension firstly and anti-codon hairpin as followed(Fig.1(d)).

    As can be seen, K+concentration mainly affected the first transition but almost not affected the second transition.As the backbone is negative charged, RNA depends critically on cation ionic conditions which can stabilize RNA secondary and tertiary structures.[41,42]On the basis of 1 M KCl concentration, the addition of 5 mM MgCl2did not apparently affect the mechanical folding/unfolding of mt tRNAArg(Fig. 2(c)). These mechanical unfolding/refolding results agreed with NMR signals measured by Tina J¨uhlinget al.,[17]indicating that the presence of magnesium ion did not induce additional tertiary interactions for mt tRNAArg.

    Fig.1. Scheme of the mt tRNAArg mechanical unfolding/refolding experiments.(a)The proposed secondary structure(I)and tertiary structure(II)of mt tRNAArg from Romanomermis culicivorax,which lacks both D-and T-arms.[17](b)The schematic plot of the pulling experiment:mt tRNAArg molecule with two functionalized dsDNA handles was attached between the anti-digoxigenin antibody coated cover-glass surface and a 800 nm streptavidincoated polystyrene bead. (c)Representative force-extension curves(FECs)of unfolding(black)and refolding(red)of mt tRNAArg during the pulling experiments at 1 M KCl. The curves are averaged to 200 Hz from 1 kHz raw data. WLC fitting was applied to the FECs, discovering three states:‘F’,the fully folded state(green); ‘I’,the intermediate state(orange); ‘U’,the fully unfolded state(sky-blue). (d)The probable two-step pathways of unfolding/refolding of the mt tRNAArg.

    Fig.2. Typical FECs of the mt tRNAArg at different solutions: (a)146 mM KCl; (b)1 M KCl; (c)1 M KCl and 5 mM MgCl2; (d)146 mM KCl and 2 mM MgCl2;(e)aaCM solution including 146 mM K+ and 16 mM total Mg2+ (with 2 mM free Mg2+).

    The acceptor stem and bulge structure were stable under high cation concentration instead of physiological concentration,but in fact high cation concentration did not exist in normal cells.To clarify the possibility of mt tRNAArgmaintaining stable structurein vivo,we measured its mechanical unfolding and refolding under a near cellular condition,i.e.,in an amino acid-chelated magnesium buffer(aaCM),which contains 146 mM K+and 16 mM total Mg2+(with 2 mM free Mg2+)(see methods for details).[31]As can be seen,the unfolding rupture forces of the first transition were around 7 pN–9 pN,which is close to those at 1 M KCl (Fig. 2(e)) but significantly higher than those at 146 mM KCl, while aaCM did not obviously affect the second transition. We also performed the pulling experiment at 146 mM KCl and 2 mM MgCl2as a control(Fig. 2(d)). In this case, the unfolding rupture forces of the first transition decreased to 5 pN–7 pN(Fig.2(d)),while those of the second transition did not obviously changed. We also performed the Kolmogorov–Smirnov test(KS test)atα=0.05 level on the unfolding and refolding rupture force distributions of four different solution conditions.We compared the rupture force distributions of two selected solutions in each test. The results indicated that, when the solution condition changes,folding and unfolding rupture forces of F–I but not I–U transition are statistically obvious different(see Appendix A,Table A2).

    In addition, we also measured the extension changes at rupture force (?x) for each unfolding transition (Fig. 3). The measured ?xvalues were not apparently affected by solution conditions,and they are all well superimposed on the predicted WLC prediction curves for the stretching of unfolded ssRNAs during the transition,which were calculated by Eq.(1). These results suggested that both high concentration of cations and weakly chelated magnesium ions in aaCM (~16 mM total Mg2+and 2 mM free Mg2+) could promote the mechanical stability of armless mt tRNAArgwithout changing the intermediate structure,which suggested that they enhanced the stability of the bulge region from being destructed at lower external forces.

    Fig.3. Force-dependent extension changes(?x)of two unfolding transitions: state‘F’to state‘I’and state‘I’to state‘U’.?x values of F→I transition(red triangle)and I→U transition(blue circle,2.2 nm was added)are plotted at their rupture forces respectively. Red curves(acceptor stem and bulge,26 nt) and blue curves (anticodon arm, 15 nt) are the ssRNA WLC predictions. Measured data are well superimposed on the WLC predictions in different solutions,including: (a)1 M KCl;(b)1 M KCl and 5 mM MgCl2;(c)146 mM KCl and 2 mM MgCl2;(d)aaCM.

    Fig.4. Probability density distributions of unfolding and refolding rupture forces in different buffers. (a)–(d)Unfolding forces in F→I(crimson)and I→U(light-red)transitions. (e)–(h)Refolding forces in I→F(dark-blue)and U→I(sky-blue)transitions. The solid curves were plotted using Eq.(5)and extrapolated kinetics parameters from Table 1 respectively. n is the number of observed transitions.

    Table 1. Unfolding and refolding kinetics parameters of mt tRNAArg extracted from the force distributions of different solutions. The presented data are mainly from linear fitting by using Eq.(3).

    Table 2. End-to-end extension changes at critical force and free energy changes as well as activation energies calculated from parameters shown above in Table 1.

    Fig.5. Theforce-dependent unfolding(open markers)andrefolding(fliled markers)kinetics indifferent solution conditions.The criticalforces(F1/2)of two transitions wereobtainedon thecrossing pointsofthe unfoldingandrefolding rates curves. The R2values ofthelinearftis rangefrom 0.87to 0.97.

    Moreover, we also reconstructed the three-state free energy landscapes for mt tRNAArgin four solutions. The change of Gibbs free energies ?G, the height of barrier ?G?and the extension of each transition were plotted with reference to the fully unfolded state (state ‘U’) by piecewise two-state analyses of each transition at 5 pN (calculated by Eqs. (6)–(7)).Clearly, the free energy landscapes of the tRNA at 1 M KCl,1 M KCl,and 5 mM MgCl2or in aaCM buffer were not obviously different, while the free energy of state ‘F’ at 146 mM KCl and 2 mM MgCl2was around 2.9 kcal/mol higher than the one at 1 M KCl at 5 pN. In addition, the sum of ?G0of both transitions (10.2±0.7 kcal/mol) at 1 M KCl is larger than the predicted free energy (8.34 kcal/mol) for unfolding the secondary structures,at 22°C by using MFold,[25]further indicating the existence of possible local noncanonical base pairings within the bulge region. Although the unfolding free energy is higher than canonical tRNA,considerable stability of these mt tRNAArgmolecules has been observed during pulling experiments. Our studies clearly illustrated the presence of aaCM or high concentration of cations could increase the mechanical stability of mt tRNAArgby stabilizing the fully folded state,which further supports the suggestion that aaCM or high concentration of cations increase the mechanical stability of the armless tRNA by stabilizing the bulge region.

    Fig.6. Free energy landscapes for mt tRNAArg. The key features of the energy landscapes for the three-state native unfolding/folding pathways were reconstructed from piecewise two-state analyses of each transition at 5 pN.Energies and positions are plotted with reference to the fully unfolded state(state ‘U’). Error bars show S.E. Dotted lines indicate notional landscape shapes. The free energy of state‘F’at 146 mM KCl and 2 mM MgCl2 was around 2.9 kcal/mol higher than the one at 1 M KCl at 5 pN.

    4. Conclusion

    In this study, we employed single-trap optical tweezers to perform single-molecule mechanical folding and unfolding experiments on an armless mt tRNAArgmolecules in different solution conditions. We discovered that the armless tRNA followed a highly reversible two-step folding/unfolding pathway with one intermediate in all four different solutions. High concentrations of cations or aaCM can promote the mechanical stability of the armless tRNA, probably by stabilizing the bulge region of the tRNA.

    Our studies suggest that the bulge region of the armless tRNA is sensitive to the surrounding electrostatic environment,which could be disrupted by changing the concentration or types of ions in the solution,as described in this study. Moreover,it could also be disrupted by possible post-transcriptional nucleoside modification.[48]As the bulge region functions as a hinge between the acceptor arm and the anti-codon arm,such disruption may change the distance between the aminoacylation site and the anticodon, which is critical to the biological functions of tRNAs.[15]Overall, our studies indicate the critical role of the bulge region in the mechanical stability of the armless tRNAs.

    Appendix A:Supplementary information

    Some experiment results and tables for better understanding the present article are given below.

    We employed a nonparametric test,i.e., Kolmogorov–Smirnov test(K–S test)atα=0.05 significance level for the unfolding and refolding force distributions in four different solutions to ask whether a significant difference between the rupture force distributions of two selected solutions in each test.Here,the rupture forces from two selected solutions were the samples for comparison and we firstly assumed the two samples had no significant difference initially. If the test results rejected the initial assumption atα=0.05 level, the parameterhshould be equal to 1, otherwiseh=0. The results were shown in Table A2.

    Table A1. Sequences of oligomers used in the experiments. Here, ‘-’ represents an abasic site, ‘p’ represents phosphorylation and‘*’is phosphorothioate bond.

    Table A2. The calculated results of parameter h were shown,parameter h=1 consists with significant difference,while h=0 agrees with no difference.

    Acknowledgements

    We thank members of the J. M. Laboratory for helpful discussions. We also wish to thank for the support from the Physical Research Platform in School of Physics,Sun Yat-sen University(PRPSP,SYSU).

    猜你喜歡
    馬杰
    Efficient loading of cesium atoms in a magnetic levitated dimple trap
    Combination of density-clustering and supervised classification for event identification in single-molecule force spectroscopy data
    Spin current in a spinor Bose–Einstein condensate induced by a gradient magnetic field
    Superfluid to Mott-insulator transition in a one-dimensional optical lattice
    馬杰作品
    Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser?
    R-branch high-lying transition emission spectra of SbNa molecule*
    夏天的浪漫
    金秋(2019年16期)2019-11-15 02:41:18
    Theoretical study of overstretching DNA-RNA hybrid duplex?
    用愛的星火溫暖山區(qū)留守兒童
    欧美日韩视频高清一区二区三区二| 国产黄频视频在线观看| 国产老妇伦熟女老妇高清| 高清av免费在线| 中文字幕人妻熟人妻熟丝袜美| 啦啦啦在线观看免费高清www| 国产精品 国内视频| 亚洲av日韩在线播放| 久久久久久久久久人人人人人人| 亚洲,欧美,日韩| 亚洲精品久久成人aⅴ小说 | 高清av免费在线| 哪个播放器可以免费观看大片| 久久久午夜欧美精品| 最近中文字幕2019免费版| 我要看黄色一级片免费的| 七月丁香在线播放| freevideosex欧美| 日韩一区二区视频免费看| 伊人久久国产一区二区| 999精品在线视频| 一区二区三区乱码不卡18| 3wmmmm亚洲av在线观看| 一区二区三区精品91| 日韩人妻高清精品专区| 国产女主播在线喷水免费视频网站| 亚洲精品视频女| 黑丝袜美女国产一区| 欧美日本中文国产一区发布| 夜夜爽夜夜爽视频| 亚洲欧美色中文字幕在线| 熟女av电影| 久久久久久久久久人人人人人人| 波野结衣二区三区在线| 精品熟女少妇av免费看| 精品一品国产午夜福利视频| 2021少妇久久久久久久久久久| 久久精品久久精品一区二区三区| 18禁在线播放成人免费| 久久久久久伊人网av| 成人免费观看视频高清| 亚洲第一av免费看| 国产精品蜜桃在线观看| av卡一久久| 色哟哟·www| 日韩不卡一区二区三区视频在线| 国产成人精品福利久久| 中文字幕久久专区| 久久精品熟女亚洲av麻豆精品| 国产淫语在线视频| 亚洲不卡免费看| 99热这里只有精品一区| 久久精品国产亚洲av涩爱| 亚洲不卡免费看| 一本—道久久a久久精品蜜桃钙片| 亚洲精品久久久久久婷婷小说| 国产在线一区二区三区精| 国产片特级美女逼逼视频| 男女边吃奶边做爰视频| 制服诱惑二区| 另类亚洲欧美激情| 两个人免费观看高清视频| 久久ye,这里只有精品| 国产亚洲欧美精品永久| 国产亚洲最大av| 最近中文字幕高清免费大全6| 一级二级三级毛片免费看| 制服人妻中文乱码| 黑人欧美特级aaaaaa片| 国产视频首页在线观看| 日韩精品有码人妻一区| 亚洲国产精品专区欧美| 久久99热这里只频精品6学生| 国产亚洲欧美精品永久| 色婷婷久久久亚洲欧美| 亚洲五月色婷婷综合| 亚洲,一卡二卡三卡| 不卡视频在线观看欧美| 中文字幕久久专区| 国产日韩欧美在线精品| 中文字幕久久专区| 久久久精品免费免费高清| 99久久精品一区二区三区| 中国国产av一级| 国产成人精品无人区| 成人毛片60女人毛片免费| 边亲边吃奶的免费视频| 欧美三级亚洲精品| 全区人妻精品视频| 免费人成在线观看视频色| 免费少妇av软件| 欧美激情极品国产一区二区三区 | 亚洲,欧美,日韩| 精品久久久久久久久亚洲| 免费看不卡的av| 欧美丝袜亚洲另类| 日本av免费视频播放| 日韩电影二区| 亚洲精品第二区| 最近2019中文字幕mv第一页| 国产老妇伦熟女老妇高清| 久久国内精品自在自线图片| 一级毛片我不卡| 26uuu在线亚洲综合色| 男女无遮挡免费网站观看| 啦啦啦啦在线视频资源| 中文字幕亚洲精品专区| 亚洲av在线观看美女高潮| 性色av一级| 人妻少妇偷人精品九色| 一本一本综合久久| 亚洲欧美一区二区三区黑人 | 色吧在线观看| 婷婷色麻豆天堂久久| 日本av免费视频播放| 五月伊人婷婷丁香| 伦精品一区二区三区| 亚洲av国产av综合av卡| 日韩成人伦理影院| 国产色爽女视频免费观看| 美女福利国产在线| 欧美3d第一页| 蜜桃国产av成人99| 中文字幕制服av| 18禁观看日本| 欧美97在线视频| 精品少妇黑人巨大在线播放| 久久99蜜桃精品久久| 国产精品秋霞免费鲁丝片| 欧美日韩一区二区视频在线观看视频在线| av专区在线播放| 精品一区二区三区视频在线| 亚洲少妇的诱惑av| 欧美+日韩+精品| 成人亚洲欧美一区二区av| 久久久久久久大尺度免费视频| 国产片特级美女逼逼视频| 超碰97精品在线观看| 国产色爽女视频免费观看| 另类精品久久| 久久久a久久爽久久v久久| 成人亚洲精品一区在线观看| 视频区图区小说| 精品熟女少妇av免费看| 免费播放大片免费观看视频在线观看| 只有这里有精品99| 国产精品成人在线| 在线观看三级黄色| 亚洲国产色片| 欧美亚洲日本最大视频资源| 国产乱人偷精品视频| 一边摸一边做爽爽视频免费| 精品人妻熟女av久视频| 久久人人爽av亚洲精品天堂| 99热网站在线观看| 欧美人与性动交α欧美精品济南到 | 少妇丰满av| 日韩在线高清观看一区二区三区| 欧美老熟妇乱子伦牲交| 日韩欧美精品免费久久| 高清在线视频一区二区三区| 亚洲人成77777在线视频| 人人妻人人澡人人爽人人夜夜| 亚洲精品久久久久久婷婷小说| 大香蕉久久成人网| 欧美老熟妇乱子伦牲交| 另类亚洲欧美激情| 精品国产一区二区三区久久久樱花| 亚洲精品日韩在线中文字幕| 一级,二级,三级黄色视频| 亚洲国产精品一区二区三区在线| 免费不卡的大黄色大毛片视频在线观看| 男男h啪啪无遮挡| 国产精品免费大片| 日韩中字成人| 亚洲av福利一区| av电影中文网址| 国产欧美日韩一区二区三区在线 | 黑人巨大精品欧美一区二区蜜桃 | 精品久久久久久久久av| 天天操日日干夜夜撸| 中文精品一卡2卡3卡4更新| 欧美bdsm另类| 十分钟在线观看高清视频www| 亚洲成人手机| 亚洲不卡免费看| 天堂俺去俺来也www色官网| 少妇人妻久久综合中文| 中文字幕最新亚洲高清| 亚洲国产精品一区三区| 中文精品一卡2卡3卡4更新| 亚洲中文av在线| 亚洲不卡免费看| 久久国产精品男人的天堂亚洲 | 2021少妇久久久久久久久久久| 欧美xxxx性猛交bbbb| 国产精品欧美亚洲77777| 国产成人91sexporn| 美女脱内裤让男人舔精品视频| 老司机影院毛片| 满18在线观看网站| 男女边摸边吃奶| 少妇的逼水好多| 秋霞伦理黄片| 亚洲精品美女久久av网站| 亚洲无线观看免费| 91精品三级在线观看| 午夜福利,免费看| 欧美 亚洲 国产 日韩一| 2021少妇久久久久久久久久久| 成年人午夜在线观看视频| 亚洲国产欧美日韩在线播放| 免费看光身美女| 欧美日韩在线观看h| 国产日韩一区二区三区精品不卡 | 在线观看免费日韩欧美大片 | 亚洲精品乱码久久久v下载方式| 99国产精品免费福利视频| 亚洲五月色婷婷综合| 国产又色又爽无遮挡免| 热99久久久久精品小说推荐| 日韩一本色道免费dvd| 亚洲天堂av无毛| 国产男人的电影天堂91| 一本大道久久a久久精品| 一区二区日韩欧美中文字幕 | 久久久欧美国产精品| 国产成人av激情在线播放 | 国产伦精品一区二区三区视频9| 3wmmmm亚洲av在线观看| 毛片一级片免费看久久久久| 91在线精品国自产拍蜜月| 乱人伦中国视频| 国产精品久久久久久久久免| 欧美老熟妇乱子伦牲交| 婷婷色综合大香蕉| 高清欧美精品videossex| 女人精品久久久久毛片| 卡戴珊不雅视频在线播放| 国产成人a∨麻豆精品| 亚洲国产精品成人久久小说| 另类亚洲欧美激情| 国产一区二区三区综合在线观看 | 丰满饥渴人妻一区二区三| 国产精品人妻久久久久久| 永久免费av网站大全| 国产成人精品无人区| 成人毛片a级毛片在线播放| 成人午夜精彩视频在线观看| 免费黄网站久久成人精品| 亚洲精品成人av观看孕妇| 丰满少妇做爰视频| 国产免费一区二区三区四区乱码| 校园人妻丝袜中文字幕| av不卡在线播放| 狂野欧美激情性bbbbbb| 最近的中文字幕免费完整| 91久久精品国产一区二区成人| 亚洲,一卡二卡三卡| 99久国产av精品国产电影| 中文字幕亚洲精品专区| 性高湖久久久久久久久免费观看| 成人毛片60女人毛片免费| 又大又黄又爽视频免费| 性高湖久久久久久久久免费观看| 天天影视国产精品| 欧美最新免费一区二区三区| 国产午夜精品久久久久久一区二区三区| 97超视频在线观看视频| 在线观看美女被高潮喷水网站| 热99国产精品久久久久久7| 国产色爽女视频免费观看| 久久久欧美国产精品| 性高湖久久久久久久久免费观看| 插逼视频在线观看| 久久精品久久久久久噜噜老黄| 国产一区二区三区av在线| √禁漫天堂资源中文www| 亚洲国产日韩一区二区| 色网站视频免费| 日本av免费视频播放| 久久99精品国语久久久| 亚洲美女视频黄频| 色94色欧美一区二区| 免费大片黄手机在线观看| 国产高清不卡午夜福利| 纵有疾风起免费观看全集完整版| 五月开心婷婷网| 中国美白少妇内射xxxbb| 久久热精品热| 看十八女毛片水多多多| 成人黄色视频免费在线看| 欧美日韩视频精品一区| √禁漫天堂资源中文www| 国产亚洲欧美精品永久| 亚洲欧洲国产日韩| 久久ye,这里只有精品| av视频免费观看在线观看| 99国产综合亚洲精品| 久久99一区二区三区| 国产女主播在线喷水免费视频网站| av网站免费在线观看视频| av福利片在线| 日韩中字成人| 日韩伦理黄色片| 最近最新中文字幕免费大全7| 亚洲av日韩在线播放| 美女大奶头黄色视频| 寂寞人妻少妇视频99o| 97超碰精品成人国产| 性高湖久久久久久久久免费观看| 午夜福利网站1000一区二区三区| 22中文网久久字幕| 超色免费av| 亚洲一级一片aⅴ在线观看| 精品久久久久久久久av| 亚洲经典国产精华液单| 国产在线一区二区三区精| 少妇精品久久久久久久| 久久久欧美国产精品| 在线天堂最新版资源| 国产免费一级a男人的天堂| 一本—道久久a久久精品蜜桃钙片| 国产高清国产精品国产三级| 在线观看美女被高潮喷水网站| 国产精品熟女久久久久浪| 欧美xxxx性猛交bbbb| 国产精品蜜桃在线观看| 精品久久久噜噜| 亚洲经典国产精华液单| 亚洲精品中文字幕在线视频| videosex国产| 国产精品久久久久久精品电影小说| 国产女主播在线喷水免费视频网站| 亚洲av欧美aⅴ国产| 久久久久久久久久人人人人人人| 亚洲精品一区蜜桃| av女优亚洲男人天堂| 欧美日韩亚洲高清精品| 青春草视频在线免费观看| 精品一区二区三区视频在线| 国产黄色视频一区二区在线观看| 天堂俺去俺来也www色官网| 一区二区三区乱码不卡18| 久久午夜福利片| 久久人人爽人人片av| 久久婷婷青草| 在线观看一区二区三区激情| 久久久欧美国产精品| av专区在线播放| 飞空精品影院首页| av卡一久久| 国产欧美另类精品又又久久亚洲欧美| 国产精品久久久久久av不卡| 午夜激情av网站| 国产黄片视频在线免费观看| 国产极品粉嫩免费观看在线 | 啦啦啦视频在线资源免费观看| 妹子高潮喷水视频| 伦精品一区二区三区| 男的添女的下面高潮视频| 国产精品无大码| 男的添女的下面高潮视频| 汤姆久久久久久久影院中文字幕| 在线观看免费日韩欧美大片 | 免费观看av网站的网址| 国产精品 国内视频| 亚洲欧美成人综合另类久久久| 菩萨蛮人人尽说江南好唐韦庄| 亚洲成人av在线免费| 成人亚洲精品一区在线观看| 国产成人精品在线电影| 日韩 亚洲 欧美在线| 999精品在线视频| kizo精华| av.在线天堂| 一区二区三区精品91| 欧美激情国产日韩精品一区| 亚洲高清免费不卡视频| 这个男人来自地球电影免费观看 | av电影中文网址| 老司机影院成人| 成人午夜精彩视频在线观看| 女性被躁到高潮视频| 国产视频内射| 成年人免费黄色播放视频| 亚洲欧美精品自产自拍| 国产av精品麻豆| 最近中文字幕2019免费版| .国产精品久久| 国产一区亚洲一区在线观看| 亚洲精品视频女| 少妇被粗大猛烈的视频| 在线观看免费日韩欧美大片 | 国产 精品1| 丝瓜视频免费看黄片| 国产精品一区二区三区四区免费观看| 在线播放无遮挡| 超碰97精品在线观看| 如何舔出高潮| 国产精品一区二区三区四区免费观看| kizo精华| 97超碰精品成人国产| 亚洲国产精品国产精品| 久久ye,这里只有精品| av国产久精品久网站免费入址| 成年人午夜在线观看视频| 国产一区亚洲一区在线观看| 国产成人aa在线观看| 黄色视频在线播放观看不卡| 黑人高潮一二区| 精品久久久久久电影网| 久久国产亚洲av麻豆专区| 成年av动漫网址| 午夜福利在线观看免费完整高清在| 搡老乐熟女国产| 多毛熟女@视频| 国产一级毛片在线| 日日摸夜夜添夜夜添av毛片| 日本黄大片高清| 国产精品不卡视频一区二区| 天堂中文最新版在线下载| 亚洲精品aⅴ在线观看| 99精国产麻豆久久婷婷| 桃花免费在线播放| 亚洲人与动物交配视频| 国产又色又爽无遮挡免| 国产精品成人在线| 成人18禁高潮啪啪吃奶动态图 | 精品亚洲成a人片在线观看| 国产av精品麻豆| 久久久午夜欧美精品| 高清不卡的av网站| 在线观看人妻少妇| 在线天堂最新版资源| 天天操日日干夜夜撸| 97超碰精品成人国产| 男人操女人黄网站| 亚洲成人手机| 18禁动态无遮挡网站| 国产爽快片一区二区三区| 久久久久久久久久久丰满| 国产精品国产av在线观看| 69精品国产乱码久久久| 亚洲精品av麻豆狂野| 性色avwww在线观看| 日本欧美国产在线视频| 日韩电影二区| 日本色播在线视频| 一级毛片电影观看| 欧美日韩亚洲高清精品| 久久久久久久久久久免费av| 观看av在线不卡| 国产伦精品一区二区三区视频9| 91精品国产国语对白视频| 欧美成人精品欧美一级黄| 高清视频免费观看一区二区| 亚洲av日韩在线播放| 亚洲av男天堂| 美女cb高潮喷水在线观看| 久久影院123| 久久99热6这里只有精品| 性高湖久久久久久久久免费观看| 久久久久视频综合| 夜夜看夜夜爽夜夜摸| 国产伦理片在线播放av一区| 亚洲av国产av综合av卡| 男男h啪啪无遮挡| 一级毛片aaaaaa免费看小| 飞空精品影院首页| 国产色爽女视频免费观看| av在线老鸭窝| 三上悠亚av全集在线观看| a级毛片黄视频| 亚洲精品国产av蜜桃| 国产亚洲一区二区精品| 在线观看人妻少妇| 最近中文字幕2019免费版| 亚洲第一区二区三区不卡| 欧美bdsm另类| av电影中文网址| 天美传媒精品一区二区| 搡老乐熟女国产| 亚洲国产成人一精品久久久| 亚洲少妇的诱惑av| 久久精品国产亚洲av涩爱| 久久99精品国语久久久| 久久热精品热| 成人手机av| 精品一区二区免费观看| 黄色视频在线播放观看不卡| 欧美激情极品国产一区二区三区 | 国产精品国产三级专区第一集| 在线观看三级黄色| 久久综合国产亚洲精品| 国产深夜福利视频在线观看| 亚洲精品国产av蜜桃| 人妻夜夜爽99麻豆av| 黑人欧美特级aaaaaa片| 国产伦精品一区二区三区视频9| 亚洲国产欧美在线一区| 国产亚洲一区二区精品| 亚洲欧美精品自产自拍| 91在线精品国自产拍蜜月| 少妇猛男粗大的猛烈进出视频| 日韩亚洲欧美综合| 丝袜在线中文字幕| 天天操日日干夜夜撸| 一边亲一边摸免费视频| av电影中文网址| 日日啪夜夜爽| 亚洲第一av免费看| 2022亚洲国产成人精品| 美女cb高潮喷水在线观看| 热99久久久久精品小说推荐| 日本色播在线视频| 亚洲四区av| 国产成人午夜福利电影在线观看| 午夜日本视频在线| 亚洲av.av天堂| 国产成人aa在线观看| 九草在线视频观看| 天堂8中文在线网| 免费少妇av软件| 日韩不卡一区二区三区视频在线| 日日爽夜夜爽网站| av有码第一页| 亚洲国产精品一区三区| 亚洲成色77777| 国产成人a∨麻豆精品| a级毛片黄视频| 午夜影院在线不卡| 在线观看三级黄色| 欧美bdsm另类| 国产国拍精品亚洲av在线观看| 国产乱人偷精品视频| 国产精品秋霞免费鲁丝片| a 毛片基地| 十八禁网站网址无遮挡| 美女大奶头黄色视频| 亚洲欧洲日产国产| 久久毛片免费看一区二区三区| 男人操女人黄网站| 18禁动态无遮挡网站| 国产熟女午夜一区二区三区 | av专区在线播放| 日韩三级伦理在线观看| 久久久a久久爽久久v久久| 我的女老师完整版在线观看| 久久精品国产鲁丝片午夜精品| 亚洲av.av天堂| 欧美精品亚洲一区二区| 插逼视频在线观看| 三级国产精品片| 街头女战士在线观看网站| 建设人人有责人人尽责人人享有的| 制服丝袜香蕉在线| 纯流量卡能插随身wifi吗| 搡女人真爽免费视频火全软件| 欧美成人午夜免费资源| 日日撸夜夜添| 91成人精品电影| 久久99精品国语久久久| 又黄又爽又刺激的免费视频.| 在线观看三级黄色| 国产成人午夜福利电影在线观看| 久久影院123| 亚洲国产精品999| 一本一本综合久久| 两个人的视频大全免费| 丝袜脚勾引网站| 亚洲精品视频女| 天天操日日干夜夜撸| 亚洲欧美日韩卡通动漫| 亚洲av欧美aⅴ国产| 最近的中文字幕免费完整| 亚洲精品日韩在线中文字幕| 少妇人妻 视频| 国产 精品1| 蜜臀久久99精品久久宅男| 久久精品夜色国产| 亚洲精品aⅴ在线观看| 日日爽夜夜爽网站| 久久人人爽人人片av| 国产极品天堂在线| 嘟嘟电影网在线观看| 制服丝袜香蕉在线| av在线播放精品| 免费高清在线观看日韩| 精品国产国语对白av| 日韩大片免费观看网站| 久久久精品94久久精品| 精品人妻在线不人妻| 精品久久久久久久久av| 熟女av电影| 亚洲国产精品一区三区| 国产不卡av网站在线观看| 亚洲第一区二区三区不卡| 中国国产av一级| 欧美激情国产日韩精品一区| 国产成人精品无人区| 午夜福利影视在线免费观看| 肉色欧美久久久久久久蜜桃| 亚洲精品,欧美精品| 成人影院久久| 不卡视频在线观看欧美| 一边亲一边摸免费视频| 久久久久久伊人网av| 在线观看免费视频网站a站| 亚州av有码| 亚洲人成网站在线观看播放| 综合色丁香网| 黄色欧美视频在线观看| 久久久精品94久久精品| 日本-黄色视频高清免费观看|