• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Single-molecule mechanical folding and unfolding kinetics of armless mitochondrial tRNAArg from Romanomermis culicivorax?

    2021-10-28 07:03:24YanHuiLi李彥慧ZhenShengZhong鐘振聲andJieMa馬杰
    Chinese Physics B 2021年10期
    關(guān)鍵詞:馬杰

    Yan-Hui Li(李彥慧) Zhen-Sheng Zhong(鐘振聲) and Jie Ma(馬杰)

    1School of Physics,Sun Yat-sen University,Guangzhou 510275,China

    2State Key Laboratory of Optoelectronic Materials and Technologies,Sun Yat-sen University,Guangzhou 510006,China

    Keywords: mitochondrial tRNA, mechanical stability, singlemolecule manipulation, amino acid-chelated Mg2+

    1. Introduction

    Mitochondria are the sites of aerobic respiration and responsible for energy production in eukaryotic cells. Mitochondrial genomes encode not only proteins essential for energy production, but also parts of the translation machinery,including mitochondrial tRNAs (mt tRNAs).[1]Notably, for bilateral animals, high aerobic respiration demands and accumulative replication errors in asexual reproduction, results in strong mutation pressure in mt DNA encoded genes.[2–6]As a result,mutation in mt tRNAs can cause serious diseases such as myopathies and neurological disorders in human.[7–12]However, inevitable mutations in mt tRNA frequently lead to some bizarre mt tRNAs which have various degrees of truncation and loss on D-or T-arms,being deviation from canonical tRNAs.[13–17]Evidence indicated that these armless tRNAs lacking one or both side arms could still fold into a stable L-shape tertiary structure,[17]and interact with tRNA processing enzymes,i.e.,aminoacyl-tRNA synthetase(aaRS).[18]The conserved tertiary structure is crucial to the functionality of tRNA, including interaction with post-transcriptional editing enzymes, aaRS, and elongation factor, as well as positioning in the ribosome.[19–22]Interestingly, recent studies illustrated an mt tRNA/aaRS recognition mechanism which used shape and folding properties rather than specific base pair in eukaryotic cells to discriminate cognate from non-cognate mt tRNA substrates.[23]Besides the tertiary structure, the mechanical stability of tRNAs is also important to their biological activities. For example,tRNA is under tension and distorted during ribosomal translocation.[24]However,how the armless mt tRNAs maintain the L-shape tertiary structure and mechanical strength is not clear.

    A recent research discovered an mt tRNAArgwithout Dand T-arms fromRomanomermis culicivorax, which is the shortest mt tRNA ever known (45 nucleotides (nt), including CCA tail).[15]It has a stem-bulge-stem secondary architecture and an L-shape tertiary structure,but lacks tertiary interaction even in the presence of Mg2+(Fig. 1(a)).[17]Moreover, the predicted folding free energy(?8.34 kcal/mol)for folding mt tRNAArgis substantially higher than canonical tRNA in 1 M NaCl,at 22°C by using MFold.[25]

    Besides the advances on structural biology of mt tRNAArgfromRomanomermis culicivorax, its mechanical unfolding/refolding properties have not been studied previously.To clarify its adaptive mechanism of maintaining structural stability in physiological conditions when suffering the environmental destabilization, we performed single-molecule pulling/relaxing experiments on the mt tRNAArgusing homebuilt optical tweezers.[26]Moreover, it is known that RNA is exposed to large amounts of amino acid-chelated magnesium(aaCM)in vivo,[27–30]and these weakly chelated magnesium ions promote the thermal stability of RNA.[31]However,how the aaCM affects the mechanical stability of RNAs is still unknown. Thus, we also investigated the single-molecule mechanical folding/unfolding pathways in the presence of aaCM using optical tweezers. Our results unraveled the folding and unfolding kinetics as well as the free energy landscapes of the mt tRNAArgin different solutions.We discovered the solutiondependent mechanical stability of the bulge region of the armless tRNA,which may shed light on the mechanisms of armless tRNA-protein interactions.

    2. Methods and model

    2.1. Sample preparation

    The synthesis strategy of the single-molecule construct in this study was modified from the one described by Blocket al.[32]In brief, a chemically synthesized DNA containing the mt tRNAArgsequences (42 nt, without 3′CCA tail) and the upstream 1 nt spacer (‘C’) was inserted in between theHindIIIsite andXbaIsite of pUC19 vector(Sangon). The linear DNA template forin vitrotranscription was generated by PCR using the recombinant plasmids, a T7 promoter labeled upstream primer and a downstream primer (see Appendix A,Table A1). RNA containing the mt tRNAArgsequences(42 nt,without 3′CCA tail), the upstream 1 nt spacer sequence, the upstream and downstream 30 nt‘sticky’sequences, was synthesized byin vitrotranscription using T7 RNA polymerase(Promega). Two dsDNA handles were generated by PCR using the pUC19 plasmid as their templates. The 1195 bp upstream handle with an abasic site and a 30 nt 5′overhang was synthesized by PCR, using an autosticky primer and a 5′-digoxygenin modified primer(see Appendix A,Table A1).The 1409 bp downstream handle with a 30 nt 3′overhang was generated by PCR using a 5′phosphorylated primer with three phosphorothioate bonds and a 5′-biotin modified primer (see Appendix A,Table A1),followed by 1 minute lambda exonuclease (New England Biolabs) digestion. All primers were purchased from Sangon, and both handles were purified using PCR purification kit (QIAGEN). The RNA was annealed to the dsDNA handles at the ratio of 1:3:1 in a buffer containing 100 mM NaCl, 20 mM PIPES, and 1 mM EDTA,pH 7.0. During the annealing process, the temperature was first held at 80°C for 5 minutes, then lowered from 80°C to 4°C at a rate of?1°C/min. The samples were first tethered to the cover-glass surface through digoxigenin–antibody interaction and then attached to an 800 nm streptavidin-coated polystyrene bead(Spherotech,Lake Forest,IL,USA)through biotin-streptavidin interaction(Fig.1(b)).

    2.2. Amino acid-chelated magnesium(aaCM)

    The recipe of aaCM buffer was described by Ryota Yamagamiet al.[31]Briefly,aaCM buffer for 2.0 mM free Mg2+contains 96 mM potassium glutamate, 4.2 mM aspartate, 3.8 mM glutamine, 2.6 mM alanine, 50 mM KCl, 16.0 mM MgCl2, and 20 mM Tris, pH 7.4. All the amino acids were purchased from Sigma-Aldrich.

    2.3. Single molecule experiments and data processing

    Single-molecule force-ramp experiments were performed using homebuilt single-trap optical tweezers described previously.[26]The 3D piezoelectric stage moved at a constant speed of 100 nm/s during the pulling/relaxing process.The laser power was kept constant during the whole measurement. Each tether was pulled no more than five times. All the experiments were performed at a temperature [(22±1)°C]and humidity[(50±5)%]controlled room. The buffer conditions were 20 mM Tris,0.4 U/μL RNasin plus RNase Inhibitor(Promega),1 mM DTT,in interested KCl and MgCl2concentrations or aaCM,pH 7.4. The 1 kHz raw data were averaged to 200 Hz by using custom MATLAB programs.

    2.4. Worm-like chain(WLC)model

    During unfolding,contour length changes were found by partitioning the force extension curves(FECs)data into separate states with different contour lengths,then fitting each state to two extensible worm-like chain (eWLC) models in series:one for the dsDNA handles,and the other for the single strand RNA (ssRNA) that is unfolded in each state. We employed a modified Marko–Siggia WLC model described previously as[33]

    herekBis the Boltzmann constant,Tis the absolute temperature(295 K,22°C),Lis the contour length,Pis the persistence length, andKis the stretch modulus. The parametersL,P, andKdescribing the dsDNA handles were first determined by fitting the FEC for the fully folded state. Then the FECs for the intermediate state and fully unfolded state were fitted by treatingL,P, andKas fixed variables for both the dsDNA handles. The unfolded ssRNALis 0.59 nm/nt,Pis 1 nm andKis 1500 pN,[34,35]respectively. The diameter of an A-form dsRNA helix(2.2 nm).[34]is also taken into consideration when the RNA is fully unfolded.

    2.5. Kinetics extracted from force distributions

    We assumed the positions of the activation barriers are force-independent,so that the Bell’s kinetic model was applied to describe the force dependence of unfolding and folding kinetics of each transition:[36,37]

    in whichk(F)is the rate constant as a function of forceF,kis the apparent folding/unfolding rate at 0 pN,X?is the distance from the folded/unfolded state to the transition state along the reaction coordinate,kBis the Boltzmann constant, andTis absolute temperature(295 K,22°C).

    The folding/unfolding kinetics can be expressed in a transformed equation by taking the logarithm of Eq.(2):

    where the slope isX?/kBT, and theyintercept is lnk. The critical forceF1/2is defined as the force at which the unfolding rate equals to the refolding rate,obtaining from the crossing point of the force-dependent unfolding and refolding rate curves,i.e.,tok1/2.

    We determined the force-dependent unfolding and refolding kinetics extracted from distributions of the rupture forces using Dudko’s method.[38]The rate constant at forceF,k(F),can be computed from force probability density histogram:

    where ?GssRNA(F) is the free energy of stretching the unfolded ssRNA from 0 pN to forceF, and the free energy at 0 pN ?G0is determined from

    whereW(F)is the reversible work of the reaction by integrating the FEC from the folded state at 0 pN to the unfolded state at forceF, and ?Gstreching(F) is the free energy of stretching the handles and the unfolded ssRNA from 0 pN to forceF.

    3. Results and discussion

    We firstly performed pulling/relaxing experiments at 146 mM KCl whose monovalent cation concentration corresponds to physiological conditions. However,we only observed a discernible transition from these trajectories at around 12 pN–14 pN and a suspected transition at about 4 pN, which was difficult to distinguish (Fig. 2(a)). In consideration of the effect of monovalent cation concentration on structural stability,then we increased salt concentration to 1 M KCl and observed two obvious two reversible transitions: a large hopping transition at 7 pN–9 pN with 8 nm–10 nm end-to-end extension change(?x), and a small back-and-forth transition at 12 pN–14 pN with 4 nm–5 nm ?x(Fig. 1(c)). It indicated that only an intermediate state(‘I’)was observed between a fully folded state (‘F’) and a fully unfolded state (‘U’). Scarcely hysteresis was observed between pulling and relaxing traces,indicating that the mechanical pulling pathway is highly reversible.We fitted the state ‘F’ by applying Eq. (1) (Fig. 1(c), green curve),whose fitting parameter describes the stretching of the handles. Considering it hard to distinguish the state ‘I’ and state ‘U’ by eWLC fitting, we then employed the theoretical ssRNA length changed of the state‘I’(26 nt)and state‘U’(41 nt) compared to state ‘F’, as well as the fitting parameters of‘F’ states to draw the theoretical pulling curves of these two states (Fig. 1(c), orange and sky-blue curves). These curves are well superimposed onto FECs data,which indicate that the acceptor stem and the bulge are disrupted by tension firstly and anti-codon hairpin as followed(Fig.1(d)).

    As can be seen, K+concentration mainly affected the first transition but almost not affected the second transition.As the backbone is negative charged, RNA depends critically on cation ionic conditions which can stabilize RNA secondary and tertiary structures.[41,42]On the basis of 1 M KCl concentration, the addition of 5 mM MgCl2did not apparently affect the mechanical folding/unfolding of mt tRNAArg(Fig. 2(c)). These mechanical unfolding/refolding results agreed with NMR signals measured by Tina J¨uhlinget al.,[17]indicating that the presence of magnesium ion did not induce additional tertiary interactions for mt tRNAArg.

    Fig.1. Scheme of the mt tRNAArg mechanical unfolding/refolding experiments.(a)The proposed secondary structure(I)and tertiary structure(II)of mt tRNAArg from Romanomermis culicivorax,which lacks both D-and T-arms.[17](b)The schematic plot of the pulling experiment:mt tRNAArg molecule with two functionalized dsDNA handles was attached between the anti-digoxigenin antibody coated cover-glass surface and a 800 nm streptavidincoated polystyrene bead. (c)Representative force-extension curves(FECs)of unfolding(black)and refolding(red)of mt tRNAArg during the pulling experiments at 1 M KCl. The curves are averaged to 200 Hz from 1 kHz raw data. WLC fitting was applied to the FECs, discovering three states:‘F’,the fully folded state(green); ‘I’,the intermediate state(orange); ‘U’,the fully unfolded state(sky-blue). (d)The probable two-step pathways of unfolding/refolding of the mt tRNAArg.

    Fig.2. Typical FECs of the mt tRNAArg at different solutions: (a)146 mM KCl; (b)1 M KCl; (c)1 M KCl and 5 mM MgCl2; (d)146 mM KCl and 2 mM MgCl2;(e)aaCM solution including 146 mM K+ and 16 mM total Mg2+ (with 2 mM free Mg2+).

    The acceptor stem and bulge structure were stable under high cation concentration instead of physiological concentration,but in fact high cation concentration did not exist in normal cells.To clarify the possibility of mt tRNAArgmaintaining stable structurein vivo,we measured its mechanical unfolding and refolding under a near cellular condition,i.e.,in an amino acid-chelated magnesium buffer(aaCM),which contains 146 mM K+and 16 mM total Mg2+(with 2 mM free Mg2+)(see methods for details).[31]As can be seen,the unfolding rupture forces of the first transition were around 7 pN–9 pN,which is close to those at 1 M KCl (Fig. 2(e)) but significantly higher than those at 146 mM KCl, while aaCM did not obviously affect the second transition. We also performed the pulling experiment at 146 mM KCl and 2 mM MgCl2as a control(Fig. 2(d)). In this case, the unfolding rupture forces of the first transition decreased to 5 pN–7 pN(Fig.2(d)),while those of the second transition did not obviously changed. We also performed the Kolmogorov–Smirnov test(KS test)atα=0.05 level on the unfolding and refolding rupture force distributions of four different solution conditions.We compared the rupture force distributions of two selected solutions in each test. The results indicated that, when the solution condition changes,folding and unfolding rupture forces of F–I but not I–U transition are statistically obvious different(see Appendix A,Table A2).

    In addition, we also measured the extension changes at rupture force (?x) for each unfolding transition (Fig. 3). The measured ?xvalues were not apparently affected by solution conditions,and they are all well superimposed on the predicted WLC prediction curves for the stretching of unfolded ssRNAs during the transition,which were calculated by Eq.(1). These results suggested that both high concentration of cations and weakly chelated magnesium ions in aaCM (~16 mM total Mg2+and 2 mM free Mg2+) could promote the mechanical stability of armless mt tRNAArgwithout changing the intermediate structure,which suggested that they enhanced the stability of the bulge region from being destructed at lower external forces.

    Fig.3. Force-dependent extension changes(?x)of two unfolding transitions: state‘F’to state‘I’and state‘I’to state‘U’.?x values of F→I transition(red triangle)and I→U transition(blue circle,2.2 nm was added)are plotted at their rupture forces respectively. Red curves(acceptor stem and bulge,26 nt) and blue curves (anticodon arm, 15 nt) are the ssRNA WLC predictions. Measured data are well superimposed on the WLC predictions in different solutions,including: (a)1 M KCl;(b)1 M KCl and 5 mM MgCl2;(c)146 mM KCl and 2 mM MgCl2;(d)aaCM.

    Fig.4. Probability density distributions of unfolding and refolding rupture forces in different buffers. (a)–(d)Unfolding forces in F→I(crimson)and I→U(light-red)transitions. (e)–(h)Refolding forces in I→F(dark-blue)and U→I(sky-blue)transitions. The solid curves were plotted using Eq.(5)and extrapolated kinetics parameters from Table 1 respectively. n is the number of observed transitions.

    Table 1. Unfolding and refolding kinetics parameters of mt tRNAArg extracted from the force distributions of different solutions. The presented data are mainly from linear fitting by using Eq.(3).

    Table 2. End-to-end extension changes at critical force and free energy changes as well as activation energies calculated from parameters shown above in Table 1.

    Fig.5. Theforce-dependent unfolding(open markers)andrefolding(fliled markers)kinetics indifferent solution conditions.The criticalforces(F1/2)of two transitions wereobtainedon thecrossing pointsofthe unfoldingandrefolding rates curves. The R2values ofthelinearftis rangefrom 0.87to 0.97.

    Moreover, we also reconstructed the three-state free energy landscapes for mt tRNAArgin four solutions. The change of Gibbs free energies ?G, the height of barrier ?G?and the extension of each transition were plotted with reference to the fully unfolded state (state ‘U’) by piecewise two-state analyses of each transition at 5 pN (calculated by Eqs. (6)–(7)).Clearly, the free energy landscapes of the tRNA at 1 M KCl,1 M KCl,and 5 mM MgCl2or in aaCM buffer were not obviously different, while the free energy of state ‘F’ at 146 mM KCl and 2 mM MgCl2was around 2.9 kcal/mol higher than the one at 1 M KCl at 5 pN. In addition, the sum of ?G0of both transitions (10.2±0.7 kcal/mol) at 1 M KCl is larger than the predicted free energy (8.34 kcal/mol) for unfolding the secondary structures,at 22°C by using MFold,[25]further indicating the existence of possible local noncanonical base pairings within the bulge region. Although the unfolding free energy is higher than canonical tRNA,considerable stability of these mt tRNAArgmolecules has been observed during pulling experiments. Our studies clearly illustrated the presence of aaCM or high concentration of cations could increase the mechanical stability of mt tRNAArgby stabilizing the fully folded state,which further supports the suggestion that aaCM or high concentration of cations increase the mechanical stability of the armless tRNA by stabilizing the bulge region.

    Fig.6. Free energy landscapes for mt tRNAArg. The key features of the energy landscapes for the three-state native unfolding/folding pathways were reconstructed from piecewise two-state analyses of each transition at 5 pN.Energies and positions are plotted with reference to the fully unfolded state(state ‘U’). Error bars show S.E. Dotted lines indicate notional landscape shapes. The free energy of state‘F’at 146 mM KCl and 2 mM MgCl2 was around 2.9 kcal/mol higher than the one at 1 M KCl at 5 pN.

    4. Conclusion

    In this study, we employed single-trap optical tweezers to perform single-molecule mechanical folding and unfolding experiments on an armless mt tRNAArgmolecules in different solution conditions. We discovered that the armless tRNA followed a highly reversible two-step folding/unfolding pathway with one intermediate in all four different solutions. High concentrations of cations or aaCM can promote the mechanical stability of the armless tRNA, probably by stabilizing the bulge region of the tRNA.

    Our studies suggest that the bulge region of the armless tRNA is sensitive to the surrounding electrostatic environment,which could be disrupted by changing the concentration or types of ions in the solution,as described in this study. Moreover,it could also be disrupted by possible post-transcriptional nucleoside modification.[48]As the bulge region functions as a hinge between the acceptor arm and the anti-codon arm,such disruption may change the distance between the aminoacylation site and the anticodon, which is critical to the biological functions of tRNAs.[15]Overall, our studies indicate the critical role of the bulge region in the mechanical stability of the armless tRNAs.

    Appendix A:Supplementary information

    Some experiment results and tables for better understanding the present article are given below.

    We employed a nonparametric test,i.e., Kolmogorov–Smirnov test(K–S test)atα=0.05 significance level for the unfolding and refolding force distributions in four different solutions to ask whether a significant difference between the rupture force distributions of two selected solutions in each test.Here,the rupture forces from two selected solutions were the samples for comparison and we firstly assumed the two samples had no significant difference initially. If the test results rejected the initial assumption atα=0.05 level, the parameterhshould be equal to 1, otherwiseh=0. The results were shown in Table A2.

    Table A1. Sequences of oligomers used in the experiments. Here, ‘-’ represents an abasic site, ‘p’ represents phosphorylation and‘*’is phosphorothioate bond.

    Table A2. The calculated results of parameter h were shown,parameter h=1 consists with significant difference,while h=0 agrees with no difference.

    Acknowledgements

    We thank members of the J. M. Laboratory for helpful discussions. We also wish to thank for the support from the Physical Research Platform in School of Physics,Sun Yat-sen University(PRPSP,SYSU).

    猜你喜歡
    馬杰
    Efficient loading of cesium atoms in a magnetic levitated dimple trap
    Combination of density-clustering and supervised classification for event identification in single-molecule force spectroscopy data
    Spin current in a spinor Bose–Einstein condensate induced by a gradient magnetic field
    Superfluid to Mott-insulator transition in a one-dimensional optical lattice
    馬杰作品
    Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser?
    R-branch high-lying transition emission spectra of SbNa molecule*
    夏天的浪漫
    金秋(2019年16期)2019-11-15 02:41:18
    Theoretical study of overstretching DNA-RNA hybrid duplex?
    用愛的星火溫暖山區(qū)留守兒童
    蜜桃在线观看..| 看十八女毛片水多多多| 久久精品国产综合久久久| 久久亚洲国产成人精品v| 天天躁日日躁夜夜躁夜夜| 18禁裸乳无遮挡动漫免费视频| 国产一区二区三区综合在线观看| 中文字幕制服av| 九色亚洲精品在线播放| 亚洲av男天堂| 国产成人精品无人区| 亚洲伊人色综图| 国产在视频线精品| 欧美日韩视频高清一区二区三区二| 成人黄色视频免费在线看| 伦理电影大哥的女人| 老司机影院成人| 亚洲激情五月婷婷啪啪| 一区福利在线观看| 国产精品久久久久久精品古装| 中文精品一卡2卡3卡4更新| 免费在线观看完整版高清| 下体分泌物呈黄色| av又黄又爽大尺度在线免费看| 51午夜福利影视在线观看| 伊人久久大香线蕉亚洲五| 亚洲色图 男人天堂 中文字幕| 欧美变态另类bdsm刘玥| 两个人看的免费小视频| 99国产精品免费福利视频| 高清欧美精品videossex| 日韩精品有码人妻一区| 亚洲精品一二三| 成年人午夜在线观看视频| 18禁裸乳无遮挡动漫免费视频| 亚洲av日韩精品久久久久久密 | 精品卡一卡二卡四卡免费| 男女国产视频网站| 亚洲欧洲国产日韩| 一个人免费看片子| 狂野欧美激情性xxxx| 麻豆av在线久日| 丝袜美腿诱惑在线| 国产一区二区激情短视频 | 一边摸一边做爽爽视频免费| 午夜久久久在线观看| 国产一区二区 视频在线| √禁漫天堂资源中文www| 久久99精品国语久久久| 日韩精品免费视频一区二区三区| a 毛片基地| av国产精品久久久久影院| 精品少妇久久久久久888优播| 人人妻人人添人人爽欧美一区卜| 亚洲国产欧美在线一区| 免费高清在线观看日韩| 久热这里只有精品99| 亚洲精品一区蜜桃| 久久久久国产精品人妻一区二区| 欧美国产精品va在线观看不卡| 99久久综合免费| 一本色道久久久久久精品综合| 一级片免费观看大全| 汤姆久久久久久久影院中文字幕| 国产麻豆69| 欧美精品一区二区免费开放| 亚洲欧美精品自产自拍| 久久国产精品大桥未久av| 国产免费福利视频在线观看| 国产一区二区三区综合在线观看| 久久av网站| 亚洲成人国产一区在线观看 | 超碰97精品在线观看| 亚洲综合精品二区| 少妇人妻久久综合中文| 久久久久久久久久久久大奶| 国产毛片在线视频| 国产一卡二卡三卡精品 | 三上悠亚av全集在线观看| 成人漫画全彩无遮挡| 看非洲黑人一级黄片| 亚洲国产欧美一区二区综合| 天天添夜夜摸| 99国产精品免费福利视频| 色视频在线一区二区三区| 这个男人来自地球电影免费观看 | 一区在线观看完整版| 国产av一区二区精品久久| 国产亚洲av高清不卡| 搡老乐熟女国产| 18在线观看网站| 人妻一区二区av| 国产亚洲av高清不卡| 啦啦啦中文免费视频观看日本| 婷婷色综合大香蕉| 精品酒店卫生间| 亚洲国产成人一精品久久久| 9色porny在线观看| 超色免费av| 国产亚洲av片在线观看秒播厂| 欧美国产精品一级二级三级| 亚洲国产欧美一区二区综合| 99精国产麻豆久久婷婷| 一本一本久久a久久精品综合妖精| 妹子高潮喷水视频| 国产97色在线日韩免费| 中文天堂在线官网| 大陆偷拍与自拍| 女性生殖器流出的白浆| 午夜影院在线不卡| 日韩一区二区三区影片| 午夜久久久在线观看| 99精品久久久久人妻精品| 国产成人精品久久久久久| 欧美97在线视频| 欧美av亚洲av综合av国产av | 亚洲欧美激情在线| 亚洲免费av在线视频| 国产免费福利视频在线观看| 午夜福利在线免费观看网站| 天天操日日干夜夜撸| 国产精品成人在线| 成人国产av品久久久| 午夜福利影视在线免费观看| 国产精品 欧美亚洲| 国产一区二区在线观看av| 欧美另类一区| 美女福利国产在线| 777久久人妻少妇嫩草av网站| 久久人人97超碰香蕉20202| 亚洲少妇的诱惑av| 亚洲精品国产av蜜桃| 欧美成人精品欧美一级黄| 亚洲精品成人av观看孕妇| 多毛熟女@视频| 国产97色在线日韩免费| 久久精品久久久久久噜噜老黄| 一区二区三区精品91| 99国产综合亚洲精品| 韩国精品一区二区三区| 久久 成人 亚洲| 亚洲国产欧美在线一区| 国产精品偷伦视频观看了| 不卡视频在线观看欧美| 精品少妇黑人巨大在线播放| 97人妻天天添夜夜摸| 久久午夜综合久久蜜桃| 99热网站在线观看| 婷婷色麻豆天堂久久| 欧美激情极品国产一区二区三区| 国产色婷婷99| 三上悠亚av全集在线观看| 在线 av 中文字幕| 99久久综合免费| 欧美乱码精品一区二区三区| 欧美精品av麻豆av| 亚洲精品久久久久久婷婷小说| 在线天堂中文资源库| 日本wwww免费看| 国产在线免费精品| 午夜影院在线不卡| 久久久久国产一级毛片高清牌| 一区二区三区精品91| 精品国产乱码久久久久久男人| 成年动漫av网址| 午夜影院在线不卡| av在线老鸭窝| 久久久国产欧美日韩av| 亚洲av成人不卡在线观看播放网 | 九草在线视频观看| 欧美黑人欧美精品刺激| 免费看不卡的av| 伊人久久大香线蕉亚洲五| 国产99久久九九免费精品| 亚洲综合色网址| 色婷婷av一区二区三区视频| 欧美精品一区二区大全| 成人亚洲精品一区在线观看| 伦理电影大哥的女人| 女性生殖器流出的白浆| 午夜福利乱码中文字幕| 国产免费又黄又爽又色| 久久久久国产精品人妻一区二区| 日日摸夜夜添夜夜爱| 9191精品国产免费久久| 中文字幕高清在线视频| 十分钟在线观看高清视频www| 日韩制服骚丝袜av| av网站免费在线观看视频| 久久久久久久久久久久大奶| 麻豆av在线久日| 亚洲天堂av无毛| 中文字幕人妻熟女乱码| 亚洲精品,欧美精品| 男女下面插进去视频免费观看| 在线精品无人区一区二区三| 国产成人一区二区在线| 成人亚洲精品一区在线观看| 美女高潮到喷水免费观看| 美女高潮到喷水免费观看| 日韩 欧美 亚洲 中文字幕| 在线亚洲精品国产二区图片欧美| 亚洲精品成人av观看孕妇| 美女国产高潮福利片在线看| 一边摸一边抽搐一进一出视频| 一二三四在线观看免费中文在| 亚洲精品国产av成人精品| 国产在视频线精品| 久久99热这里只频精品6学生| 美女扒开内裤让男人捅视频| 国产片内射在线| 亚洲精品,欧美精品| 日韩av在线免费看完整版不卡| 亚洲国产精品一区二区三区在线| 老鸭窝网址在线观看| 1024视频免费在线观看| 国产女主播在线喷水免费视频网站| 国产精品.久久久| 人妻一区二区av| 岛国毛片在线播放| 99国产综合亚洲精品| 成人手机av| 一级毛片黄色毛片免费观看视频| 免费看不卡的av| 亚洲国产看品久久| 国产野战对白在线观看| av女优亚洲男人天堂| www日本在线高清视频| 亚洲欧美一区二区三区久久| 国产精品免费大片| 欧美人与性动交α欧美精品济南到| 亚洲激情五月婷婷啪啪| 成年美女黄网站色视频大全免费| 久久国产精品大桥未久av| 久久久精品免费免费高清| 新久久久久国产一级毛片| 美女视频免费永久观看网站| 久久久久国产精品人妻一区二区| 亚洲精品日本国产第一区| 在线观看免费高清a一片| 成人影院久久| 国产成人啪精品午夜网站| 十分钟在线观看高清视频www| 视频区图区小说| 十八禁人妻一区二区| 黄频高清免费视频| 99国产综合亚洲精品| 永久免费av网站大全| 青草久久国产| e午夜精品久久久久久久| 国产高清国产精品国产三级| 又大又爽又粗| 亚洲精品久久久久久婷婷小说| 90打野战视频偷拍视频| 色精品久久人妻99蜜桃| 国产欧美日韩综合在线一区二区| 免费高清在线观看视频在线观看| 男女之事视频高清在线观看 | 最近手机中文字幕大全| 久久久久国产精品人妻一区二区| 一级a爱视频在线免费观看| 菩萨蛮人人尽说江南好唐韦庄| 青草久久国产| 自拍欧美九色日韩亚洲蝌蚪91| 叶爱在线成人免费视频播放| 在线观看一区二区三区激情| 女性生殖器流出的白浆| 亚洲美女黄色视频免费看| 天堂8中文在线网| 亚洲三区欧美一区| 免费在线观看完整版高清| 91aial.com中文字幕在线观看| xxx大片免费视频| 亚洲,一卡二卡三卡| 国产精品99久久99久久久不卡 | 国产伦理片在线播放av一区| 最近中文字幕2019免费版| 美女主播在线视频| 成人漫画全彩无遮挡| 久热爱精品视频在线9| 亚洲精品久久成人aⅴ小说| 成人亚洲欧美一区二区av| av福利片在线| 成年女人毛片免费观看观看9 | 老汉色∧v一级毛片| 欧美黄色片欧美黄色片| 热99久久久久精品小说推荐| 在线天堂中文资源库| 亚洲国产欧美一区二区综合| 国产麻豆69| 亚洲av电影在线观看一区二区三区| 国产免费一区二区三区四区乱码| 精品少妇一区二区三区视频日本电影 | 中国国产av一级| 9191精品国产免费久久| 在线亚洲精品国产二区图片欧美| 免费少妇av软件| 精品人妻熟女毛片av久久网站| 免费观看人在逋| 欧美精品一区二区免费开放| 国产一区二区在线观看av| av一本久久久久| 国产免费一区二区三区四区乱码| 侵犯人妻中文字幕一二三四区| 99久久人妻综合| 国产精品国产av在线观看| 国产成人精品在线电影| 一级,二级,三级黄色视频| 亚洲国产av影院在线观看| 国产精品欧美亚洲77777| 91精品伊人久久大香线蕉| 亚洲欧美日韩另类电影网站| 亚洲图色成人| 一本一本久久a久久精品综合妖精| 丝袜美腿诱惑在线| 制服诱惑二区| √禁漫天堂资源中文www| 亚洲综合精品二区| 在线亚洲精品国产二区图片欧美| av视频免费观看在线观看| 亚洲国产精品一区二区三区在线| 大码成人一级视频| 欧美国产精品va在线观看不卡| 精品一区二区三卡| 久久久久久久久久久免费av| 欧美亚洲 丝袜 人妻 在线| 欧美中文综合在线视频| 精品少妇久久久久久888优播| 老司机在亚洲福利影院| 男人添女人高潮全过程视频| 最近最新中文字幕大全免费视频 | 亚洲精品视频女| 久久午夜综合久久蜜桃| 国产无遮挡羞羞视频在线观看| 少妇被粗大的猛进出69影院| 午夜福利网站1000一区二区三区| 国产97色在线日韩免费| 国产老妇伦熟女老妇高清| 午夜福利乱码中文字幕| 黄片无遮挡物在线观看| 亚洲色图综合在线观看| 999久久久国产精品视频| 十八禁网站网址无遮挡| 一级,二级,三级黄色视频| 极品人妻少妇av视频| 高清不卡的av网站| 在线观看免费午夜福利视频| 中国国产av一级| 超碰97精品在线观看| 国产成人精品福利久久| 国产麻豆69| 日韩免费高清中文字幕av| 国产在线一区二区三区精| 欧美日本中文国产一区发布| 黄片无遮挡物在线观看| 中国国产av一级| 黄网站色视频无遮挡免费观看| a级片在线免费高清观看视频| 一区在线观看完整版| 丰满少妇做爰视频| 国产色婷婷99| 欧美日韩成人在线一区二区| 亚洲 欧美一区二区三区| 亚洲精品国产区一区二| 国产精品二区激情视频| 久久精品久久久久久噜噜老黄| 99久久99久久久精品蜜桃| 自线自在国产av| 人人妻人人澡人人爽人人夜夜| 国产欧美日韩综合在线一区二区| 大片免费播放器 马上看| 国产精品蜜桃在线观看| 欧美日本中文国产一区发布| 久久这里只有精品19| 一区二区三区四区激情视频| 亚洲精品在线美女| 亚洲成av片中文字幕在线观看| 国产熟女午夜一区二区三区| 嫩草影院入口| 精品一品国产午夜福利视频| 亚洲精品自拍成人| 人人妻人人添人人爽欧美一区卜| 欧美成人精品欧美一级黄| 在线天堂中文资源库| 国产欧美日韩综合在线一区二区| 午夜福利视频精品| 精品人妻一区二区三区麻豆| 久久人妻熟女aⅴ| 熟女少妇亚洲综合色aaa.| 777久久人妻少妇嫩草av网站| 午夜免费观看性视频| 99国产综合亚洲精品| 亚洲av福利一区| 在线观看www视频免费| 不卡视频在线观看欧美| 国产极品粉嫩免费观看在线| 国产1区2区3区精品| 99久久人妻综合| 国产av码专区亚洲av| 中文字幕色久视频| 久久久久网色| 国产精品麻豆人妻色哟哟久久| 大香蕉久久网| av福利片在线| 9191精品国产免费久久| 高清在线视频一区二区三区| 黑丝袜美女国产一区| 国产精品亚洲av一区麻豆 | 久久久精品免费免费高清| 国产极品天堂在线| 久久久久精品国产欧美久久久 | 精品视频人人做人人爽| 日韩一本色道免费dvd| 青春草亚洲视频在线观看| 性色av一级| 美女高潮到喷水免费观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美清纯卡通| 丝袜喷水一区| 免费女性裸体啪啪无遮挡网站| 精品一区在线观看国产| 国产精品国产三级国产专区5o| 亚洲成av片中文字幕在线观看| 亚洲av男天堂| 另类精品久久| 大陆偷拍与自拍| xxx大片免费视频| 欧美成人精品欧美一级黄| 人成视频在线观看免费观看| 久久青草综合色| 晚上一个人看的免费电影| 欧美变态另类bdsm刘玥| 9191精品国产免费久久| 亚洲熟女毛片儿| 亚洲国产欧美日韩在线播放| 国产熟女欧美一区二区| 中国三级夫妇交换| 欧美日韩亚洲高清精品| 久久精品国产亚洲av涩爱| 亚洲成国产人片在线观看| 最新的欧美精品一区二区| 国产一区二区在线观看av| 欧美亚洲日本最大视频资源| 亚洲欧美精品自产自拍| 成人18禁高潮啪啪吃奶动态图| 亚洲精品国产av蜜桃| 亚洲av中文av极速乱| 黄色毛片三级朝国网站| 亚洲精华国产精华液的使用体验| 在线观看免费日韩欧美大片| 卡戴珊不雅视频在线播放| 欧美亚洲日本最大视频资源| 夫妻性生交免费视频一级片| 国产极品粉嫩免费观看在线| av卡一久久| 丝袜喷水一区| 久久女婷五月综合色啪小说| 欧美中文综合在线视频| 免费黄网站久久成人精品| 又大又爽又粗| 综合色丁香网| 久久天堂一区二区三区四区| 菩萨蛮人人尽说江南好唐韦庄| 你懂的网址亚洲精品在线观看| 日韩不卡一区二区三区视频在线| 亚洲欧美一区二区三区久久| 国产又爽黄色视频| 精品国产一区二区久久| 我要看黄色一级片免费的| 国产精品二区激情视频| 一区二区av电影网| 激情视频va一区二区三区| av有码第一页| 久久影院123| 精品亚洲成国产av| 久久精品久久久久久噜噜老黄| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品美女久久久久99蜜臀 | 麻豆乱淫一区二区| 日本欧美视频一区| 亚洲一卡2卡3卡4卡5卡精品中文| 免费观看性生交大片5| 男女午夜视频在线观看| 叶爱在线成人免费视频播放| 日本一区二区免费在线视频| 国产精品熟女久久久久浪| 欧美精品高潮呻吟av久久| 国产探花极品一区二区| 99久久精品国产亚洲精品| 国产av国产精品国产| 啦啦啦啦在线视频资源| 国产男女超爽视频在线观看| 十分钟在线观看高清视频www| 亚洲精品第二区| 宅男免费午夜| 亚洲人成电影观看| 黑人猛操日本美女一级片| 97精品久久久久久久久久精品| 国产一区二区三区综合在线观看| 男人操女人黄网站| 亚洲 欧美一区二区三区| 国产精品香港三级国产av潘金莲 | 性色av一级| 国产欧美亚洲国产| 男女国产视频网站| 亚洲精品中文字幕在线视频| 天天操日日干夜夜撸| 激情五月婷婷亚洲| 日韩精品免费视频一区二区三区| 黄频高清免费视频| 精品一区在线观看国产| 欧美成人午夜精品| 日韩人妻精品一区2区三区| 久久久久人妻精品一区果冻| 精品国产一区二区三区四区第35| 亚洲精品自拍成人| a级毛片黄视频| 啦啦啦 在线观看视频| 久久热在线av| 免费看av在线观看网站| 成人亚洲欧美一区二区av| 成人三级做爰电影| 丝袜在线中文字幕| 日本黄色日本黄色录像| 一本—道久久a久久精品蜜桃钙片| 在线免费观看不下载黄p国产| 高清黄色对白视频在线免费看| 日本av手机在线免费观看| a级片在线免费高清观看视频| 日本一区二区免费在线视频| 18禁动态无遮挡网站| videosex国产| 亚洲色图综合在线观看| 久久精品国产a三级三级三级| 国产黄色免费在线视频| 丰满迷人的少妇在线观看| 久久精品aⅴ一区二区三区四区| 18禁裸乳无遮挡动漫免费视频| 侵犯人妻中文字幕一二三四区| 精品福利永久在线观看| 日日摸夜夜添夜夜爱| 十八禁网站网址无遮挡| 日韩伦理黄色片| 高清欧美精品videossex| 久久精品人人爽人人爽视色| 在线观看三级黄色| 亚洲精品一区蜜桃| 国产免费福利视频在线观看| 亚洲国产av影院在线观看| 下体分泌物呈黄色| 国产成人一区二区在线| 国产人伦9x9x在线观看| 啦啦啦啦在线视频资源| 制服诱惑二区| 热re99久久国产66热| 人人妻人人爽人人添夜夜欢视频| 一级毛片 在线播放| 亚洲av在线观看美女高潮| 男女下面插进去视频免费观看| 国产精品熟女久久久久浪| 人妻一区二区av| 久久热在线av| 亚洲成人免费av在线播放| 七月丁香在线播放| 激情视频va一区二区三区| 18在线观看网站| 高清不卡的av网站| 日日啪夜夜爽| 国产一区亚洲一区在线观看| 欧美亚洲日本最大视频资源| 丝袜美腿诱惑在线| 又粗又硬又长又爽又黄的视频| 在线观看一区二区三区激情| 免费高清在线观看视频在线观看| 精品少妇一区二区三区视频日本电影 | 在线观看一区二区三区激情| 免费高清在线观看视频在线观看| 久久人人爽av亚洲精品天堂| 亚洲成人国产一区在线观看 | 亚洲av日韩精品久久久久久密 | 欧美日韩国产mv在线观看视频| av在线老鸭窝| 大码成人一级视频| 在线亚洲精品国产二区图片欧美| 国产精品无大码| 欧美 亚洲 国产 日韩一| 黄频高清免费视频| 亚洲色图综合在线观看| 亚洲精品美女久久av网站| 日韩不卡一区二区三区视频在线| 中文字幕亚洲精品专区| 精品福利永久在线观看| 一本大道久久a久久精品| 国产免费又黄又爽又色| 久久天躁狠狠躁夜夜2o2o | 亚洲av中文av极速乱| 国产精品免费视频内射| a级片在线免费高清观看视频| 桃花免费在线播放| 一级a爱视频在线免费观看| 国产成人精品久久久久久| 亚洲 欧美一区二区三区| 捣出白浆h1v1| 亚洲成人一二三区av| 国产精品av久久久久免费| 咕卡用的链子| 宅男免费午夜| 国产免费视频播放在线视频| 天天添夜夜摸| 黄色怎么调成土黄色| videosex国产| av国产精品久久久久影院| 色网站视频免费| 中文字幕av电影在线播放| 男女之事视频高清在线观看 |