• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Single-molecule mechanical folding and unfolding kinetics of armless mitochondrial tRNAArg from Romanomermis culicivorax?

    2021-10-28 07:03:24YanHuiLi李彥慧ZhenShengZhong鐘振聲andJieMa馬杰
    Chinese Physics B 2021年10期
    關(guān)鍵詞:馬杰

    Yan-Hui Li(李彥慧) Zhen-Sheng Zhong(鐘振聲) and Jie Ma(馬杰)

    1School of Physics,Sun Yat-sen University,Guangzhou 510275,China

    2State Key Laboratory of Optoelectronic Materials and Technologies,Sun Yat-sen University,Guangzhou 510006,China

    Keywords: mitochondrial tRNA, mechanical stability, singlemolecule manipulation, amino acid-chelated Mg2+

    1. Introduction

    Mitochondria are the sites of aerobic respiration and responsible for energy production in eukaryotic cells. Mitochondrial genomes encode not only proteins essential for energy production, but also parts of the translation machinery,including mitochondrial tRNAs (mt tRNAs).[1]Notably, for bilateral animals, high aerobic respiration demands and accumulative replication errors in asexual reproduction, results in strong mutation pressure in mt DNA encoded genes.[2–6]As a result,mutation in mt tRNAs can cause serious diseases such as myopathies and neurological disorders in human.[7–12]However, inevitable mutations in mt tRNA frequently lead to some bizarre mt tRNAs which have various degrees of truncation and loss on D-or T-arms,being deviation from canonical tRNAs.[13–17]Evidence indicated that these armless tRNAs lacking one or both side arms could still fold into a stable L-shape tertiary structure,[17]and interact with tRNA processing enzymes,i.e.,aminoacyl-tRNA synthetase(aaRS).[18]The conserved tertiary structure is crucial to the functionality of tRNA, including interaction with post-transcriptional editing enzymes, aaRS, and elongation factor, as well as positioning in the ribosome.[19–22]Interestingly, recent studies illustrated an mt tRNA/aaRS recognition mechanism which used shape and folding properties rather than specific base pair in eukaryotic cells to discriminate cognate from non-cognate mt tRNA substrates.[23]Besides the tertiary structure, the mechanical stability of tRNAs is also important to their biological activities. For example,tRNA is under tension and distorted during ribosomal translocation.[24]However,how the armless mt tRNAs maintain the L-shape tertiary structure and mechanical strength is not clear.

    A recent research discovered an mt tRNAArgwithout Dand T-arms fromRomanomermis culicivorax, which is the shortest mt tRNA ever known (45 nucleotides (nt), including CCA tail).[15]It has a stem-bulge-stem secondary architecture and an L-shape tertiary structure,but lacks tertiary interaction even in the presence of Mg2+(Fig. 1(a)).[17]Moreover, the predicted folding free energy(?8.34 kcal/mol)for folding mt tRNAArgis substantially higher than canonical tRNA in 1 M NaCl,at 22°C by using MFold.[25]

    Besides the advances on structural biology of mt tRNAArgfromRomanomermis culicivorax, its mechanical unfolding/refolding properties have not been studied previously.To clarify its adaptive mechanism of maintaining structural stability in physiological conditions when suffering the environmental destabilization, we performed single-molecule pulling/relaxing experiments on the mt tRNAArgusing homebuilt optical tweezers.[26]Moreover, it is known that RNA is exposed to large amounts of amino acid-chelated magnesium(aaCM)in vivo,[27–30]and these weakly chelated magnesium ions promote the thermal stability of RNA.[31]However,how the aaCM affects the mechanical stability of RNAs is still unknown. Thus, we also investigated the single-molecule mechanical folding/unfolding pathways in the presence of aaCM using optical tweezers. Our results unraveled the folding and unfolding kinetics as well as the free energy landscapes of the mt tRNAArgin different solutions.We discovered the solutiondependent mechanical stability of the bulge region of the armless tRNA,which may shed light on the mechanisms of armless tRNA-protein interactions.

    2. Methods and model

    2.1. Sample preparation

    The synthesis strategy of the single-molecule construct in this study was modified from the one described by Blocket al.[32]In brief, a chemically synthesized DNA containing the mt tRNAArgsequences (42 nt, without 3′CCA tail) and the upstream 1 nt spacer (‘C’) was inserted in between theHindIIIsite andXbaIsite of pUC19 vector(Sangon). The linear DNA template forin vitrotranscription was generated by PCR using the recombinant plasmids, a T7 promoter labeled upstream primer and a downstream primer (see Appendix A,Table A1). RNA containing the mt tRNAArgsequences(42 nt,without 3′CCA tail), the upstream 1 nt spacer sequence, the upstream and downstream 30 nt‘sticky’sequences, was synthesized byin vitrotranscription using T7 RNA polymerase(Promega). Two dsDNA handles were generated by PCR using the pUC19 plasmid as their templates. The 1195 bp upstream handle with an abasic site and a 30 nt 5′overhang was synthesized by PCR, using an autosticky primer and a 5′-digoxygenin modified primer(see Appendix A,Table A1).The 1409 bp downstream handle with a 30 nt 3′overhang was generated by PCR using a 5′phosphorylated primer with three phosphorothioate bonds and a 5′-biotin modified primer (see Appendix A,Table A1),followed by 1 minute lambda exonuclease (New England Biolabs) digestion. All primers were purchased from Sangon, and both handles were purified using PCR purification kit (QIAGEN). The RNA was annealed to the dsDNA handles at the ratio of 1:3:1 in a buffer containing 100 mM NaCl, 20 mM PIPES, and 1 mM EDTA,pH 7.0. During the annealing process, the temperature was first held at 80°C for 5 minutes, then lowered from 80°C to 4°C at a rate of?1°C/min. The samples were first tethered to the cover-glass surface through digoxigenin–antibody interaction and then attached to an 800 nm streptavidin-coated polystyrene bead(Spherotech,Lake Forest,IL,USA)through biotin-streptavidin interaction(Fig.1(b)).

    2.2. Amino acid-chelated magnesium(aaCM)

    The recipe of aaCM buffer was described by Ryota Yamagamiet al.[31]Briefly,aaCM buffer for 2.0 mM free Mg2+contains 96 mM potassium glutamate, 4.2 mM aspartate, 3.8 mM glutamine, 2.6 mM alanine, 50 mM KCl, 16.0 mM MgCl2, and 20 mM Tris, pH 7.4. All the amino acids were purchased from Sigma-Aldrich.

    2.3. Single molecule experiments and data processing

    Single-molecule force-ramp experiments were performed using homebuilt single-trap optical tweezers described previously.[26]The 3D piezoelectric stage moved at a constant speed of 100 nm/s during the pulling/relaxing process.The laser power was kept constant during the whole measurement. Each tether was pulled no more than five times. All the experiments were performed at a temperature [(22±1)°C]and humidity[(50±5)%]controlled room. The buffer conditions were 20 mM Tris,0.4 U/μL RNasin plus RNase Inhibitor(Promega),1 mM DTT,in interested KCl and MgCl2concentrations or aaCM,pH 7.4. The 1 kHz raw data were averaged to 200 Hz by using custom MATLAB programs.

    2.4. Worm-like chain(WLC)model

    During unfolding,contour length changes were found by partitioning the force extension curves(FECs)data into separate states with different contour lengths,then fitting each state to two extensible worm-like chain (eWLC) models in series:one for the dsDNA handles,and the other for the single strand RNA (ssRNA) that is unfolded in each state. We employed a modified Marko–Siggia WLC model described previously as[33]

    herekBis the Boltzmann constant,Tis the absolute temperature(295 K,22°C),Lis the contour length,Pis the persistence length, andKis the stretch modulus. The parametersL,P, andKdescribing the dsDNA handles were first determined by fitting the FEC for the fully folded state. Then the FECs for the intermediate state and fully unfolded state were fitted by treatingL,P, andKas fixed variables for both the dsDNA handles. The unfolded ssRNALis 0.59 nm/nt,Pis 1 nm andKis 1500 pN,[34,35]respectively. The diameter of an A-form dsRNA helix(2.2 nm).[34]is also taken into consideration when the RNA is fully unfolded.

    2.5. Kinetics extracted from force distributions

    We assumed the positions of the activation barriers are force-independent,so that the Bell’s kinetic model was applied to describe the force dependence of unfolding and folding kinetics of each transition:[36,37]

    in whichk(F)is the rate constant as a function of forceF,kis the apparent folding/unfolding rate at 0 pN,X?is the distance from the folded/unfolded state to the transition state along the reaction coordinate,kBis the Boltzmann constant, andTis absolute temperature(295 K,22°C).

    The folding/unfolding kinetics can be expressed in a transformed equation by taking the logarithm of Eq.(2):

    where the slope isX?/kBT, and theyintercept is lnk. The critical forceF1/2is defined as the force at which the unfolding rate equals to the refolding rate,obtaining from the crossing point of the force-dependent unfolding and refolding rate curves,i.e.,tok1/2.

    We determined the force-dependent unfolding and refolding kinetics extracted from distributions of the rupture forces using Dudko’s method.[38]The rate constant at forceF,k(F),can be computed from force probability density histogram:

    where ?GssRNA(F) is the free energy of stretching the unfolded ssRNA from 0 pN to forceF, and the free energy at 0 pN ?G0is determined from

    whereW(F)is the reversible work of the reaction by integrating the FEC from the folded state at 0 pN to the unfolded state at forceF, and ?Gstreching(F) is the free energy of stretching the handles and the unfolded ssRNA from 0 pN to forceF.

    3. Results and discussion

    We firstly performed pulling/relaxing experiments at 146 mM KCl whose monovalent cation concentration corresponds to physiological conditions. However,we only observed a discernible transition from these trajectories at around 12 pN–14 pN and a suspected transition at about 4 pN, which was difficult to distinguish (Fig. 2(a)). In consideration of the effect of monovalent cation concentration on structural stability,then we increased salt concentration to 1 M KCl and observed two obvious two reversible transitions: a large hopping transition at 7 pN–9 pN with 8 nm–10 nm end-to-end extension change(?x), and a small back-and-forth transition at 12 pN–14 pN with 4 nm–5 nm ?x(Fig. 1(c)). It indicated that only an intermediate state(‘I’)was observed between a fully folded state (‘F’) and a fully unfolded state (‘U’). Scarcely hysteresis was observed between pulling and relaxing traces,indicating that the mechanical pulling pathway is highly reversible.We fitted the state ‘F’ by applying Eq. (1) (Fig. 1(c), green curve),whose fitting parameter describes the stretching of the handles. Considering it hard to distinguish the state ‘I’ and state ‘U’ by eWLC fitting, we then employed the theoretical ssRNA length changed of the state‘I’(26 nt)and state‘U’(41 nt) compared to state ‘F’, as well as the fitting parameters of‘F’ states to draw the theoretical pulling curves of these two states (Fig. 1(c), orange and sky-blue curves). These curves are well superimposed onto FECs data,which indicate that the acceptor stem and the bulge are disrupted by tension firstly and anti-codon hairpin as followed(Fig.1(d)).

    As can be seen, K+concentration mainly affected the first transition but almost not affected the second transition.As the backbone is negative charged, RNA depends critically on cation ionic conditions which can stabilize RNA secondary and tertiary structures.[41,42]On the basis of 1 M KCl concentration, the addition of 5 mM MgCl2did not apparently affect the mechanical folding/unfolding of mt tRNAArg(Fig. 2(c)). These mechanical unfolding/refolding results agreed with NMR signals measured by Tina J¨uhlinget al.,[17]indicating that the presence of magnesium ion did not induce additional tertiary interactions for mt tRNAArg.

    Fig.1. Scheme of the mt tRNAArg mechanical unfolding/refolding experiments.(a)The proposed secondary structure(I)and tertiary structure(II)of mt tRNAArg from Romanomermis culicivorax,which lacks both D-and T-arms.[17](b)The schematic plot of the pulling experiment:mt tRNAArg molecule with two functionalized dsDNA handles was attached between the anti-digoxigenin antibody coated cover-glass surface and a 800 nm streptavidincoated polystyrene bead. (c)Representative force-extension curves(FECs)of unfolding(black)and refolding(red)of mt tRNAArg during the pulling experiments at 1 M KCl. The curves are averaged to 200 Hz from 1 kHz raw data. WLC fitting was applied to the FECs, discovering three states:‘F’,the fully folded state(green); ‘I’,the intermediate state(orange); ‘U’,the fully unfolded state(sky-blue). (d)The probable two-step pathways of unfolding/refolding of the mt tRNAArg.

    Fig.2. Typical FECs of the mt tRNAArg at different solutions: (a)146 mM KCl; (b)1 M KCl; (c)1 M KCl and 5 mM MgCl2; (d)146 mM KCl and 2 mM MgCl2;(e)aaCM solution including 146 mM K+ and 16 mM total Mg2+ (with 2 mM free Mg2+).

    The acceptor stem and bulge structure were stable under high cation concentration instead of physiological concentration,but in fact high cation concentration did not exist in normal cells.To clarify the possibility of mt tRNAArgmaintaining stable structurein vivo,we measured its mechanical unfolding and refolding under a near cellular condition,i.e.,in an amino acid-chelated magnesium buffer(aaCM),which contains 146 mM K+and 16 mM total Mg2+(with 2 mM free Mg2+)(see methods for details).[31]As can be seen,the unfolding rupture forces of the first transition were around 7 pN–9 pN,which is close to those at 1 M KCl (Fig. 2(e)) but significantly higher than those at 146 mM KCl, while aaCM did not obviously affect the second transition. We also performed the pulling experiment at 146 mM KCl and 2 mM MgCl2as a control(Fig. 2(d)). In this case, the unfolding rupture forces of the first transition decreased to 5 pN–7 pN(Fig.2(d)),while those of the second transition did not obviously changed. We also performed the Kolmogorov–Smirnov test(KS test)atα=0.05 level on the unfolding and refolding rupture force distributions of four different solution conditions.We compared the rupture force distributions of two selected solutions in each test. The results indicated that, when the solution condition changes,folding and unfolding rupture forces of F–I but not I–U transition are statistically obvious different(see Appendix A,Table A2).

    In addition, we also measured the extension changes at rupture force (?x) for each unfolding transition (Fig. 3). The measured ?xvalues were not apparently affected by solution conditions,and they are all well superimposed on the predicted WLC prediction curves for the stretching of unfolded ssRNAs during the transition,which were calculated by Eq.(1). These results suggested that both high concentration of cations and weakly chelated magnesium ions in aaCM (~16 mM total Mg2+and 2 mM free Mg2+) could promote the mechanical stability of armless mt tRNAArgwithout changing the intermediate structure,which suggested that they enhanced the stability of the bulge region from being destructed at lower external forces.

    Fig.3. Force-dependent extension changes(?x)of two unfolding transitions: state‘F’to state‘I’and state‘I’to state‘U’.?x values of F→I transition(red triangle)and I→U transition(blue circle,2.2 nm was added)are plotted at their rupture forces respectively. Red curves(acceptor stem and bulge,26 nt) and blue curves (anticodon arm, 15 nt) are the ssRNA WLC predictions. Measured data are well superimposed on the WLC predictions in different solutions,including: (a)1 M KCl;(b)1 M KCl and 5 mM MgCl2;(c)146 mM KCl and 2 mM MgCl2;(d)aaCM.

    Fig.4. Probability density distributions of unfolding and refolding rupture forces in different buffers. (a)–(d)Unfolding forces in F→I(crimson)and I→U(light-red)transitions. (e)–(h)Refolding forces in I→F(dark-blue)and U→I(sky-blue)transitions. The solid curves were plotted using Eq.(5)and extrapolated kinetics parameters from Table 1 respectively. n is the number of observed transitions.

    Table 1. Unfolding and refolding kinetics parameters of mt tRNAArg extracted from the force distributions of different solutions. The presented data are mainly from linear fitting by using Eq.(3).

    Table 2. End-to-end extension changes at critical force and free energy changes as well as activation energies calculated from parameters shown above in Table 1.

    Fig.5. Theforce-dependent unfolding(open markers)andrefolding(fliled markers)kinetics indifferent solution conditions.The criticalforces(F1/2)of two transitions wereobtainedon thecrossing pointsofthe unfoldingandrefolding rates curves. The R2values ofthelinearftis rangefrom 0.87to 0.97.

    Moreover, we also reconstructed the three-state free energy landscapes for mt tRNAArgin four solutions. The change of Gibbs free energies ?G, the height of barrier ?G?and the extension of each transition were plotted with reference to the fully unfolded state (state ‘U’) by piecewise two-state analyses of each transition at 5 pN (calculated by Eqs. (6)–(7)).Clearly, the free energy landscapes of the tRNA at 1 M KCl,1 M KCl,and 5 mM MgCl2or in aaCM buffer were not obviously different, while the free energy of state ‘F’ at 146 mM KCl and 2 mM MgCl2was around 2.9 kcal/mol higher than the one at 1 M KCl at 5 pN. In addition, the sum of ?G0of both transitions (10.2±0.7 kcal/mol) at 1 M KCl is larger than the predicted free energy (8.34 kcal/mol) for unfolding the secondary structures,at 22°C by using MFold,[25]further indicating the existence of possible local noncanonical base pairings within the bulge region. Although the unfolding free energy is higher than canonical tRNA,considerable stability of these mt tRNAArgmolecules has been observed during pulling experiments. Our studies clearly illustrated the presence of aaCM or high concentration of cations could increase the mechanical stability of mt tRNAArgby stabilizing the fully folded state,which further supports the suggestion that aaCM or high concentration of cations increase the mechanical stability of the armless tRNA by stabilizing the bulge region.

    Fig.6. Free energy landscapes for mt tRNAArg. The key features of the energy landscapes for the three-state native unfolding/folding pathways were reconstructed from piecewise two-state analyses of each transition at 5 pN.Energies and positions are plotted with reference to the fully unfolded state(state ‘U’). Error bars show S.E. Dotted lines indicate notional landscape shapes. The free energy of state‘F’at 146 mM KCl and 2 mM MgCl2 was around 2.9 kcal/mol higher than the one at 1 M KCl at 5 pN.

    4. Conclusion

    In this study, we employed single-trap optical tweezers to perform single-molecule mechanical folding and unfolding experiments on an armless mt tRNAArgmolecules in different solution conditions. We discovered that the armless tRNA followed a highly reversible two-step folding/unfolding pathway with one intermediate in all four different solutions. High concentrations of cations or aaCM can promote the mechanical stability of the armless tRNA, probably by stabilizing the bulge region of the tRNA.

    Our studies suggest that the bulge region of the armless tRNA is sensitive to the surrounding electrostatic environment,which could be disrupted by changing the concentration or types of ions in the solution,as described in this study. Moreover,it could also be disrupted by possible post-transcriptional nucleoside modification.[48]As the bulge region functions as a hinge between the acceptor arm and the anti-codon arm,such disruption may change the distance between the aminoacylation site and the anticodon, which is critical to the biological functions of tRNAs.[15]Overall, our studies indicate the critical role of the bulge region in the mechanical stability of the armless tRNAs.

    Appendix A:Supplementary information

    Some experiment results and tables for better understanding the present article are given below.

    We employed a nonparametric test,i.e., Kolmogorov–Smirnov test(K–S test)atα=0.05 significance level for the unfolding and refolding force distributions in four different solutions to ask whether a significant difference between the rupture force distributions of two selected solutions in each test.Here,the rupture forces from two selected solutions were the samples for comparison and we firstly assumed the two samples had no significant difference initially. If the test results rejected the initial assumption atα=0.05 level, the parameterhshould be equal to 1, otherwiseh=0. The results were shown in Table A2.

    Table A1. Sequences of oligomers used in the experiments. Here, ‘-’ represents an abasic site, ‘p’ represents phosphorylation and‘*’is phosphorothioate bond.

    Table A2. The calculated results of parameter h were shown,parameter h=1 consists with significant difference,while h=0 agrees with no difference.

    Acknowledgements

    We thank members of the J. M. Laboratory for helpful discussions. We also wish to thank for the support from the Physical Research Platform in School of Physics,Sun Yat-sen University(PRPSP,SYSU).

    猜你喜歡
    馬杰
    Efficient loading of cesium atoms in a magnetic levitated dimple trap
    Combination of density-clustering and supervised classification for event identification in single-molecule force spectroscopy data
    Spin current in a spinor Bose–Einstein condensate induced by a gradient magnetic field
    Superfluid to Mott-insulator transition in a one-dimensional optical lattice
    馬杰作品
    Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser?
    R-branch high-lying transition emission spectra of SbNa molecule*
    夏天的浪漫
    金秋(2019年16期)2019-11-15 02:41:18
    Theoretical study of overstretching DNA-RNA hybrid duplex?
    用愛的星火溫暖山區(qū)留守兒童
    白带黄色成豆腐渣| 无遮挡黄片免费观看| 男女啪啪激烈高潮av片| 国产爱豆传媒在线观看| 欧美一区二区精品小视频在线| 男女啪啪激烈高潮av片| 神马国产精品三级电影在线观看| 91午夜精品亚洲一区二区三区| 欧美+亚洲+日韩+国产| 18禁黄网站禁片免费观看直播| 成人国产麻豆网| 日韩欧美一区二区三区在线观看| 黄片wwwwww| 亚洲美女视频黄频| 婷婷色综合大香蕉| 看非洲黑人一级黄片| 深夜a级毛片| 一a级毛片在线观看| 高清日韩中文字幕在线| АⅤ资源中文在线天堂| 黑人高潮一二区| 免费观看人在逋| 99热全是精品| 中国美白少妇内射xxxbb| 国产乱人视频| 中国国产av一级| 最近在线观看免费完整版| av在线老鸭窝| 一区二区三区高清视频在线| 欧美一区二区国产精品久久精品| 国产精品一二三区在线看| 看片在线看免费视频| 我的老师免费观看完整版| 日韩欧美三级三区| 别揉我奶头~嗯~啊~动态视频| 丝袜喷水一区| 国产精品亚洲一级av第二区| 亚洲精品色激情综合| 在线观看午夜福利视频| 久久久精品大字幕| 亚洲成人久久性| 国产成年人精品一区二区| 国模一区二区三区四区视频| 男女那种视频在线观看| 99久久久亚洲精品蜜臀av| 国产不卡一卡二| 国产av不卡久久| 一区二区三区四区激情视频 | 国内揄拍国产精品人妻在线| 免费av毛片视频| 国产亚洲91精品色在线| 亚洲性夜色夜夜综合| 69av精品久久久久久| 国内精品宾馆在线| 欧美xxxx性猛交bbbb| 久久99热6这里只有精品| 亚洲美女搞黄在线观看 | 国产欧美日韩精品亚洲av| 美女cb高潮喷水在线观看| 天堂影院成人在线观看| 在线观看66精品国产| 久久婷婷人人爽人人干人人爱| 欧美成人a在线观看| 成人亚洲精品av一区二区| 久久久久国产精品人妻aⅴ院| 日本色播在线视频| 91久久精品国产一区二区成人| 亚洲欧美精品综合久久99| 欧美绝顶高潮抽搐喷水| 婷婷色综合大香蕉| 色播亚洲综合网| 精品久久久久久成人av| 在线观看免费视频日本深夜| 亚洲熟妇熟女久久| 三级毛片av免费| 赤兔流量卡办理| 亚洲精品在线观看二区| 亚洲欧美日韩卡通动漫| 久久人妻av系列| 亚洲电影在线观看av| 深夜精品福利| 秋霞在线观看毛片| 婷婷亚洲欧美| 亚洲美女视频黄频| 日本欧美国产在线视频| 日日摸夜夜添夜夜添小说| 精品人妻偷拍中文字幕| 日韩成人av中文字幕在线观看 | 香蕉av资源在线| 国产成人影院久久av| 国内久久婷婷六月综合欲色啪| 亚洲成人av在线免费| 久久精品久久久久久噜噜老黄 | 黄色配什么色好看| 麻豆久久精品国产亚洲av| 精品久久久久久久久亚洲| 国产成年人精品一区二区| 亚洲性夜色夜夜综合| 99riav亚洲国产免费| 成人鲁丝片一二三区免费| 国产成人a区在线观看| a级一级毛片免费在线观看| 伦理电影大哥的女人| 国产女主播在线喷水免费视频网站 | 在线a可以看的网站| 亚洲av中文av极速乱| 男女边吃奶边做爰视频| 韩国av在线不卡| 搞女人的毛片| 亚洲av.av天堂| 精品欧美国产一区二区三| 久久久a久久爽久久v久久| 国产免费一级a男人的天堂| 色哟哟·www| aaaaa片日本免费| 精品一区二区三区av网在线观看| 亚洲av二区三区四区| 国产高清视频在线播放一区| 亚洲成人中文字幕在线播放| 国产精品人妻久久久影院| 岛国在线免费视频观看| 好男人在线观看高清免费视频| 国产69精品久久久久777片| 97超碰精品成人国产| ponron亚洲| 久久精品久久久久久噜噜老黄 | 三级男女做爰猛烈吃奶摸视频| 日日啪夜夜撸| 深夜精品福利| 国产一区二区在线观看日韩| 最后的刺客免费高清国语| 成人美女网站在线观看视频| 亚洲自拍偷在线| 少妇猛男粗大的猛烈进出视频 | 亚洲国产高清在线一区二区三| 我要看日韩黄色一级片| 在线播放国产精品三级| 亚洲精品亚洲一区二区| 亚洲av第一区精品v没综合| 国产久久久一区二区三区| 亚洲国产高清在线一区二区三| 少妇的逼好多水| 麻豆乱淫一区二区| 熟女电影av网| 麻豆国产97在线/欧美| 桃色一区二区三区在线观看| 久久精品91蜜桃| 国产黄a三级三级三级人| 最新在线观看一区二区三区| 国产伦精品一区二区三区四那| 在线免费观看不下载黄p国产| 在现免费观看毛片| 啦啦啦啦在线视频资源| 十八禁国产超污无遮挡网站| 日本熟妇午夜| 嫩草影视91久久| 久久久久久久久久黄片| 女人十人毛片免费观看3o分钟| 能在线免费观看的黄片| 国产又黄又爽又无遮挡在线| 99久久九九国产精品国产免费| 日日啪夜夜撸| 女生性感内裤真人,穿戴方法视频| 国产片特级美女逼逼视频| 日韩成人伦理影院| 久久这里只有精品中国| 日本欧美国产在线视频| 日韩成人伦理影院| 男女做爰动态图高潮gif福利片| 国内精品宾馆在线| 99久久九九国产精品国产免费| 黑人高潮一二区| 麻豆精品久久久久久蜜桃| 亚洲国产精品合色在线| 变态另类丝袜制服| 午夜精品国产一区二区电影 | 欧美激情久久久久久爽电影| 国产av不卡久久| 国产69精品久久久久777片| 变态另类成人亚洲欧美熟女| 乱人视频在线观看| av黄色大香蕉| 美女大奶头视频| 日韩av在线大香蕉| 精品久久久久久久人妻蜜臀av| 搡老岳熟女国产| 亚洲av免费高清在线观看| 欧美日本视频| 一进一出好大好爽视频| 国产精品一二三区在线看| 亚洲专区国产一区二区| 国产精品日韩av在线免费观看| 特大巨黑吊av在线直播| 国产精品综合久久久久久久免费| 69人妻影院| 99久久成人亚洲精品观看| 麻豆久久精品国产亚洲av| 一夜夜www| 十八禁国产超污无遮挡网站| 久久精品国产自在天天线| 99久国产av精品国产电影| 国产伦在线观看视频一区| 久久中文看片网| 99热这里只有是精品在线观看| 三级经典国产精品| 男女边吃奶边做爰视频| 观看免费一级毛片| 校园人妻丝袜中文字幕| 看片在线看免费视频| 一区福利在线观看| 免费在线观看成人毛片| 在线观看66精品国产| 亚洲无线在线观看| 午夜精品一区二区三区免费看| 亚洲乱码一区二区免费版| 嫩草影院入口| 麻豆一二三区av精品| 亚洲美女视频黄频| 性欧美人与动物交配| 精品熟女少妇av免费看| 69人妻影院| 精品国内亚洲2022精品成人| 久久精品国产清高在天天线| 亚洲精品456在线播放app| 午夜福利在线观看免费完整高清在 | 少妇的逼好多水| 国产v大片淫在线免费观看| 免费观看在线日韩| 18禁在线无遮挡免费观看视频 | 久久韩国三级中文字幕| 国产午夜精品论理片| av免费在线看不卡| 久久99热6这里只有精品| 亚洲电影在线观看av| 国产黄色小视频在线观看| 亚洲在线自拍视频| 免费av毛片视频| aaaaa片日本免费| 欧美日韩一区二区视频在线观看视频在线 | 国产一区亚洲一区在线观看| 精品99又大又爽又粗少妇毛片| 97碰自拍视频| 国产成人影院久久av| 内射极品少妇av片p| 国产成年人精品一区二区| 国产v大片淫在线免费观看| 成人毛片a级毛片在线播放| 日韩av在线大香蕉| 97超碰精品成人国产| 丰满人妻一区二区三区视频av| 成年免费大片在线观看| 国产三级中文精品| 亚洲精品久久国产高清桃花| 一个人看视频在线观看www免费| 精品午夜福利在线看| 99久国产av精品| 91久久精品电影网| 春色校园在线视频观看| 欧美日韩国产亚洲二区| 亚洲无线在线观看| av专区在线播放| 搡女人真爽免费视频火全软件 | 麻豆久久精品国产亚洲av| 少妇猛男粗大的猛烈进出视频 | 97人妻精品一区二区三区麻豆| 能在线免费观看的黄片| 亚洲一区二区三区色噜噜| 女人十人毛片免费观看3o分钟| 亚洲中文日韩欧美视频| 久久精品影院6| 亚洲精品乱码久久久v下载方式| 2021天堂中文幕一二区在线观| 给我免费播放毛片高清在线观看| 亚洲人成网站在线播放欧美日韩| 精品久久久久久久末码| 伦理电影大哥的女人| 嫩草影院精品99| 国产色婷婷99| 日本精品一区二区三区蜜桃| av黄色大香蕉| 国产高清激情床上av| 日本撒尿小便嘘嘘汇集6| 夜夜看夜夜爽夜夜摸| av视频在线观看入口| 成人精品一区二区免费| 九色成人免费人妻av| 欧美丝袜亚洲另类| 日韩人妻高清精品专区| 97热精品久久久久久| 日韩,欧美,国产一区二区三区 | 国产高清视频在线观看网站| 最近最新中文字幕大全电影3| 久久精品国产自在天天线| a级毛色黄片| 老熟妇仑乱视频hdxx| 18禁裸乳无遮挡免费网站照片| 精品少妇黑人巨大在线播放 | 天堂动漫精品| 老师上课跳d突然被开到最大视频| 97人妻精品一区二区三区麻豆| 在线免费观看不下载黄p国产| 国产成人精品久久久久久| 18禁在线无遮挡免费观看视频 | 最近手机中文字幕大全| 欧美不卡视频在线免费观看| 日日摸夜夜添夜夜爱| 国产伦在线观看视频一区| 久久精品综合一区二区三区| 黄色欧美视频在线观看| 亚州av有码| 久久精品国产鲁丝片午夜精品| 97人妻精品一区二区三区麻豆| 韩国av在线不卡| ponron亚洲| 亚洲四区av| 在线a可以看的网站| av在线播放精品| 18+在线观看网站| 精品久久久久久久久av| 日韩大尺度精品在线看网址| 亚洲熟妇中文字幕五十中出| 人妻丰满熟妇av一区二区三区| av免费在线看不卡| 国产 一区 欧美 日韩| 一区福利在线观看| 亚洲不卡免费看| 亚洲成人中文字幕在线播放| 特大巨黑吊av在线直播| 国产不卡一卡二| 非洲黑人性xxxx精品又粗又长| 99久久精品一区二区三区| 精品99又大又爽又粗少妇毛片| 熟妇人妻久久中文字幕3abv| 久久婷婷人人爽人人干人人爱| 最近手机中文字幕大全| av在线老鸭窝| 老熟妇仑乱视频hdxx| 超碰av人人做人人爽久久| 女的被弄到高潮叫床怎么办| 色综合色国产| 色吧在线观看| 在线免费十八禁| 色5月婷婷丁香| 菩萨蛮人人尽说江南好唐韦庄 | 一级a爱片免费观看的视频| 日本爱情动作片www.在线观看 | 国产午夜精品久久久久久一区二区三区 | 嫩草影院新地址| 十八禁国产超污无遮挡网站| 人人妻人人澡欧美一区二区| 岛国在线免费视频观看| 国产色爽女视频免费观看| 此物有八面人人有两片| 搡老妇女老女人老熟妇| 精品人妻一区二区三区麻豆 | 在线观看美女被高潮喷水网站| 国内久久婷婷六月综合欲色啪| 成人三级黄色视频| 老司机午夜福利在线观看视频| 亚洲精品日韩在线中文字幕 | 国产精品不卡视频一区二区| 免费看美女性在线毛片视频| 欧美激情国产日韩精品一区| 亚洲av熟女| 国产伦在线观看视频一区| 美女xxoo啪啪120秒动态图| 午夜免费男女啪啪视频观看 | 国产黄片美女视频| 一区二区三区免费毛片| 在线天堂最新版资源| 久久午夜福利片| av福利片在线观看| 日韩高清综合在线| 亚洲中文字幕一区二区三区有码在线看| 亚洲欧美清纯卡通| 人妻夜夜爽99麻豆av| 午夜福利视频1000在线观看| 久久久久久久久久成人| 免费在线观看影片大全网站| 插逼视频在线观看| АⅤ资源中文在线天堂| 三级毛片av免费| 18+在线观看网站| 少妇丰满av| 18禁裸乳无遮挡免费网站照片| 亚洲中文日韩欧美视频| 久久99热这里只有精品18| 国产美女午夜福利| 国产av麻豆久久久久久久| 深夜a级毛片| 毛片女人毛片| 亚洲欧美成人精品一区二区| 色综合亚洲欧美另类图片| 别揉我奶头~嗯~啊~动态视频| 日韩国内少妇激情av| 少妇的逼好多水| 亚洲久久久久久中文字幕| 91午夜精品亚洲一区二区三区| 18禁在线无遮挡免费观看视频 | 免费观看人在逋| 不卡视频在线观看欧美| 欧美成人a在线观看| 国产老妇女一区| 99久久精品国产国产毛片| av在线蜜桃| 国产黄色视频一区二区在线观看 | 国产女主播在线喷水免费视频网站 | h日本视频在线播放| 亚洲高清免费不卡视频| 永久网站在线| 少妇人妻精品综合一区二区 | www.色视频.com| 国产 一区 欧美 日韩| 国产高清视频在线观看网站| 中文字幕av在线有码专区| a级毛片a级免费在线| 91在线观看av| 亚洲aⅴ乱码一区二区在线播放| av福利片在线观看| 欧美色视频一区免费| 亚洲精品亚洲一区二区| 亚洲精品456在线播放app| avwww免费| 久久精品国产鲁丝片午夜精品| 日韩欧美三级三区| 麻豆一二三区av精品| 国产精品女同一区二区软件| 身体一侧抽搐| 禁无遮挡网站| 国产三级中文精品| 晚上一个人看的免费电影| 男女下面进入的视频免费午夜| 色尼玛亚洲综合影院| 美女黄网站色视频| 午夜视频国产福利| 天美传媒精品一区二区| 日本成人三级电影网站| 久99久视频精品免费| 神马国产精品三级电影在线观看| 欧美成人免费av一区二区三区| 久久婷婷人人爽人人干人人爱| 日本一本二区三区精品| 色综合站精品国产| 精品少妇黑人巨大在线播放 | 嫩草影院新地址| 三级经典国产精品| 1024手机看黄色片| 亚洲精品在线观看二区| 欧美另类亚洲清纯唯美| 嫩草影视91久久| 国产麻豆成人av免费视频| 欧美又色又爽又黄视频| 一卡2卡三卡四卡精品乱码亚洲| 91麻豆精品激情在线观看国产| 国产色婷婷99| 偷拍熟女少妇极品色| 老熟妇乱子伦视频在线观看| 日韩亚洲欧美综合| 国产av在哪里看| 欧美另类亚洲清纯唯美| 五月玫瑰六月丁香| 搡老熟女国产l中国老女人| 免费观看人在逋| 人人妻人人澡人人爽人人夜夜 | 女同久久另类99精品国产91| 熟女人妻精品中文字幕| 亚洲精品成人久久久久久| 又爽又黄a免费视频| 九色成人免费人妻av| 欧美+日韩+精品| 男女视频在线观看网站免费| 亚洲成人久久性| 美女高潮的动态| 日韩制服骚丝袜av| 啦啦啦韩国在线观看视频| 久久久精品欧美日韩精品| 欧美不卡视频在线免费观看| 国产欧美日韩一区二区精品| 欧美日韩在线观看h| 欧美色欧美亚洲另类二区| 一区二区三区高清视频在线| 久久韩国三级中文字幕| 男人的好看免费观看在线视频| 日韩,欧美,国产一区二区三区 | 亚洲精品日韩av片在线观看| 国产美女午夜福利| 国产女主播在线喷水免费视频网站 | 岛国在线免费视频观看| 搞女人的毛片| 少妇裸体淫交视频免费看高清| 亚洲欧美成人精品一区二区| 亚洲无线在线观看| 欧美成人精品欧美一级黄| 亚洲自拍偷在线| 啦啦啦啦在线视频资源| 国产精品福利在线免费观看| 美女 人体艺术 gogo| 嫩草影视91久久| 51国产日韩欧美| 久久热精品热| 热99re8久久精品国产| 日韩av不卡免费在线播放| 51国产日韩欧美| 国产不卡一卡二| 成人综合一区亚洲| 校园人妻丝袜中文字幕| 午夜福利在线观看免费完整高清在 | 特大巨黑吊av在线直播| 天堂动漫精品| 日本熟妇午夜| 1024手机看黄色片| 亚洲精品成人久久久久久| 久久久久久久亚洲中文字幕| 欧美性猛交╳xxx乱大交人| 在线a可以看的网站| 少妇人妻精品综合一区二区 | 有码 亚洲区| 久久久久国产网址| 亚洲最大成人手机在线| 亚洲欧美日韩无卡精品| 丝袜喷水一区| 欧美日韩乱码在线| 国产成人精品久久久久久| 干丝袜人妻中文字幕| 97超视频在线观看视频| 国产伦一二天堂av在线观看| 久久国内精品自在自线图片| 欧美日本亚洲视频在线播放| 真实男女啪啪啪动态图| 免费看美女性在线毛片视频| 亚洲第一区二区三区不卡| 亚洲一区高清亚洲精品| 亚洲av免费在线观看| 尾随美女入室| 久久国内精品自在自线图片| 深夜a级毛片| 精品久久久噜噜| 少妇裸体淫交视频免费看高清| 亚洲国产高清在线一区二区三| 麻豆av噜噜一区二区三区| 丰满人妻一区二区三区视频av| 色5月婷婷丁香| 国模一区二区三区四区视频| 成年女人看的毛片在线观看| av女优亚洲男人天堂| 免费看av在线观看网站| 午夜福利在线观看免费完整高清在 | 欧美+亚洲+日韩+国产| 热99re8久久精品国产| 亚洲精品一区av在线观看| 久久久国产成人精品二区| 日韩欧美精品v在线| 中出人妻视频一区二区| 少妇被粗大猛烈的视频| 国产成人a区在线观看| 精品免费久久久久久久清纯| 日韩欧美 国产精品| 国产精品久久电影中文字幕| 国产一区二区亚洲精品在线观看| av福利片在线观看| 亚洲成a人片在线一区二区| 久久久久久久久久黄片| 国产成人freesex在线 | 日产精品乱码卡一卡2卡三| 国产aⅴ精品一区二区三区波| 在线观看美女被高潮喷水网站| 日本黄大片高清| 欧美成人免费av一区二区三区| 国产一区二区激情短视频| 色综合色国产| 少妇熟女欧美另类| 国产精品国产三级国产av玫瑰| 欧美绝顶高潮抽搐喷水| 午夜爱爱视频在线播放| 免费av毛片视频| 尾随美女入室| 亚洲欧美日韩高清专用| 亚洲美女视频黄频| 国产亚洲精品av在线| 久久九九热精品免费| 美女免费视频网站| 精品久久久久久久人妻蜜臀av| 在线观看午夜福利视频| 深夜a级毛片| 可以在线观看毛片的网站| 一区二区三区免费毛片| 国产真实伦视频高清在线观看| 国产色婷婷99| 18禁在线无遮挡免费观看视频 | 国产aⅴ精品一区二区三区波| 精品免费久久久久久久清纯| 久久热精品热| 国产 一区 欧美 日韩| 亚洲七黄色美女视频| 久久精品人妻少妇| 久久久a久久爽久久v久久| 岛国在线免费视频观看| 国产三级中文精品| 国产高清三级在线| 99国产精品一区二区蜜桃av| 亚洲精品在线观看二区| 人妻丰满熟妇av一区二区三区| 天天躁日日操中文字幕| 亚洲自拍偷在线| 日日摸夜夜添夜夜添小说| 亚洲va在线va天堂va国产| 精品久久久久久久久亚洲| 在线国产一区二区在线| 春色校园在线视频观看| 少妇丰满av| 尾随美女入室| 成人性生交大片免费视频hd| 久久久久久伊人网av| 熟妇人妻久久中文字幕3abv| 最近2019中文字幕mv第一页|