• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A terahertz on-chip InP-based power combiner designed using coupled-grounded coplanar waveguide lines?

    2021-12-22 06:42:12HualiZhu朱華利YongZhang張勇KunQu屈坤HaomiaoWei魏浩淼YukunLi黎雨坤YuehangXu徐躍杭andRuiminXu徐銳敏
    Chinese Physics B 2021年12期
    關(guān)鍵詞:張勇

    Huali Zhu(朱華利), Yong Zhang(張勇), Kun Qu(屈坤), Haomiao Wei(魏浩淼),Yukun Li(黎雨坤), Yuehang Xu(徐躍杭), and Ruimin Xu(徐銳敏)

    School of Electronic Science and Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China

    Keywords: coupled-GCPW, InP technology, terahertz monolithic integrated circuits (TMICs), Wilkinson power combiner

    1. Introduction

    In recent years, terahertz monolithic integrated circuits(TMICs) have been developing rapidly and gaining attention due to advancements in transistor technologies, such as InP heterojunction bipolar transistors. The potential application areas for TMICs include high-speed wireless communication,wireless sensing, spectroscopy, and imaging.[1–3]The power combiners, such as Wilkinson combiners,[4–6]Tee-junction combiners,[7,8]Dolph–Chebyshev combiners,[9–11]and integrated planar spatial combiners,[12]are the essential and vital components,which increase the output power of the terahertz devices.

    Owing to their excellent port isolation performance and low-loss, the Wilkinson combiners are most commonly used in power amplifiers. However, as depicted in Fig. 1(a), the coverage area is relatively large due to the two unavoidable quarter-wavelength transmission lines and isolation resistor.In order to achieve length reduction in the quarter-waveguide transmission lines, many technologies have been proposed in the millimeter-wave band, such as capacitive and inductive loading[13]and elevated coplanar waveguide (CPW).[14]Unfortunately, for the combiners operating at terahertz frequencies, using the above technologies significantly deteriorates the performance of the Wilkinson combiners due to the parasitic parameter induced by the additional structure.[15]

    Grounded coplanar waveguide (GCPW) as the main transmission lines has been commonly used in designs of numerous TMICs due to its superior characteristics, including small dispersion, easy integration with lumped elements as well as active components, and great heat dissipation.Nonetheless, the Wilkinson combiner based on GCPW lines operating in the terahertz range is rare due to the complexity of the isolation resistor layout and the narrowband features.

    In order to resolve the above-discussed problem,a novel terahertz power combiner using coupled-GCPW Wilkinson combiner is proposed in this article. Apart from the conventional designs,as depicted in Fig.1(b),the quarter-wavelength GCPW lines are substituted with the coupled-GCPW lines and located at the end of the input port.The use of coupled-GCPW lines in realizing the inevitable quarter-wavelength sections can cause the coverage area minimization of the Wilkinson combiner.[16,17]In order to demonstrate the proposed topology, a two-way back-to-back combiner and a four-way backto-back combiner, operating in a 210–250 GHz frequency range and based on a 50-μm-thick InP TMICs process were designed,fabricated,and measured.

    2. Design of the proposed power combiner

    Fig.1. The schematic diagram of the Wilkinson combiners. (a)Conventional GCPW Wilkinson combiner. (b)Coupled-GCPW Wilkinson combiner.

    Fig.2. The three-dimensional views of the proposed coupled-GCPW combiner: (a)front view of the per combiner,(b)a cross-sectional view of the GCPW transmission line and the coupled-GCPW transmission line. (LTL=40μm,W =16μm,G=14μm,W1=12μm,G1=8μm,S1=22μm,WL=200μm,Rvia=25μm,t=3μm).

    Figure 2(a)shows the three-dimensional view of the proposed combiner, and the topology consists of a GCPW input port, two GCPW output ports, and a coupled-GCPW Wilkinson combiner.Two coupled-GCPW lines at the end of port 1 of the Wilkinson combiner is the replacement of the two quarterwavelength GCPW lines, where the input and output ports are standard GCPW lines with the characteristic impedance of 50 ?. Additionally,the isolation resistor was determined to be 100 ? to ensure high isolation characteristics and equal power ratios between port 2 and port 3.The two GCPW lines with the length ofWLadded between the coupled-GCPW Wilkinson combiner and the output ports facilitate lateral widths adaption of the power combiner chip.

    The use of coupled-GCPW as the quarter-wavelength transmission lines provides two advantages over the conventional Wilkinson power combiner. Firstly,placing the ground pads of the two coupled-GCPW lines outside the combiner can overcome the air bridge interconnects of the inner ground pad in the conventional Wilkinson power combiner. Secondly,the reduction in the Wilkinson combiner coverage area in the designed chip aids in fulfilling the electrical performance requirements, thereby achieving possible miniaturization and maintaining a low cost. As there is no special module for the coupled-GCPW structure calculations, formula-based approximate size calculations are performed initially. Later,the HFSS software performs separate simulations for the coupled-GCPW structure to determine the impedance that meets the design requirements. Lastly,to obtain the optimal value of the overall coupled-GCPW structure,adjustments are made.

    The principle of the conventional Wilkinson combiner is the basis for the coupled-GCPW Wilkinson combiner, which can be easily analyzed using even-mode and odd-mode excitations of port 2 and port 3 with a loadZ0connected to port 1.[16]The even-mode excitation of the design is symmetrical,having symmetry in the field distribution of the two coupled-GCPW lines and the symmetry plane of the coupled-GCPW equivalent to an open circuit. The odd-mode excitation of the design is asymmetrical,with equal and inverting field distribution in the two coupled-GCPW lines,and the symmetry plane of the coupled-GCPW equivalent to a short circuit. The operation bandwidth is a ratio of the even-modeZeand odd-modeZo,and the broadest bandwidth is at the ratio value equal to 1.As shown in Fig.2(b),the geometrical parameters of GCPW,G0andW0, are calculated according to the 50 ? characteristic impedance. Moreover, the initial values of the coupled-GCPW,Ze/Zo/W1/G1/S1can be calculated by the analytical formulation of the quasi-static even-and odd-mode characteristics of the coplanar coupled lines,as described in the previous studies:[18]

    whereK(t(o,e))andK′(t(o,e))are the complete elliptic integral of the first kind and its complement,respectively,with the precise expressions reported in an earlier study.[19]Thef(o,e)is a function ofεrand the substrate thickness, which have been discussed further in earlier studies.[18]The mode impedances ofZeandZoobtained from these calculations were 72 ? and 45 ?,respectively.

    Using the above-stated values,a simulated structure of the proposed combiner was established with the considerations of the design rules of the 50-μm-thick InP process. The fullwave simulator simulates and optimizes the practical circuit,and the isolation resistor is an ideal high resistive region with ideal contacts.

    In order to better understand the proposed combiner principle, we further studied the general effect of the coupled-GCPW lengths(LCC)and the lateral width(WL). As depicted in Fig.3(a),theS-parameters for differentLCCwere simulated to demonstrate the relationship between the center frequency andLCC. It was established that theLCCdirectly impacts the central frequency of the combiner,with the peak of return lossS11continually moving from the frequency region of 250 GHz to 210 GHz and maintaining similar operating bandwidth, as theLCCincreases from 60 μm to 80 μm. AtLCC=75 μm,the peak ofS11is around 220 GHz, with an improved lowloss characteristic. At 220 GHz, for the quarter-wavelength line of the Wilkinson combiner, the theoretical length should be 98 μm, which is a deviation from the simulated coupled-GCPW line length. It is revealed that as the above theoretical calculation method is based on the ideal even- and oddmode analysis characteristics, the final size selection must be according to the full-wave simulator.Figure 3(b)depicts theSparameters according to the lateral width(WL). The proposed coupled-GCPW Wilkinson combiner has uniform broadband and low-loss characteristics for the frequency region of 210–250 GHz,withWLincreasing from 100μm to 300μm. Thus,it is confirmed that the proposed structure is appropriate for terahertz chips with different lateral widths.

    Fig. 3. Simulated S-parameters of the proposed combiner. (a) Simulated S-parameters as a function of the length of coupled-GCPW(LCC).(b)Simulated S-parameters as a function of the lateral width(WL).

    Fig.4. The electric field distribution at 220 GHz of the proposed combiner based on the coupled-GCPW.

    In addition, the line widthW1and the spacingS1can be adjusted and optimized to obtain equal output signals and low insertion losses at ports 2 and 3. A tapered line is added to improve the matched-degree between the standard GCPW and the coupled-GCPW,while the cutting corners in ports 2 and 3 reduce the mismatch at transmission line discontinuities.

    According to the optimized geometrical parameters, as shown in Fig.4, the electric field distribution at 220 GHz for a two-way back-to-back combiner was simulated. The input electric field energy fed to port 1 propagates through the standard GCPW and converts to an even mode of the coupled-GCPW.[16]Propagation through the coupled-GCPW forms two components with phase congruence occurring at ports 2 and 3. Subsequently,a back-to-back combiner is formed by a symmetrical structure design.

    3. Results and discussion

    Figure 5 shows theS-parameter measurements of the proposed power combiner chip by the on-wafer probe using an Agilent N5247A VNA with 220–325 GHz frequency-extender modules. In order to ensure the reference planes on the probe tips, the line-reflect-reflect-match (LRRM) on-wafer calibration was applied.

    Fig.5. Test setup for S-parameters measurements.

    Figure 6 presents a micrograph of the fabricated two-way back-to-back combiner based on an Au surface micromachining process on the 50-μm-thick InP substrate,with the overall chip dimension of 650μm×650μm. The vector network analyzer can measure the combiner,with two additional GCPW pads added to the input and the output ports. Simultaneously,to verify that the structure has excellent characteristics during multi-combining, a four-way back-to-back combiner was fabricated using the same technologies. Figure 7 depicts a micrograph that occupies a die size of 1250μm×750μm. The geometry and the isolation resistors of the two coupled-GCPW Wilkinson combiners are the same. The metal layer covering the ground in the chips causes the vias no-visibility on the micrographs.

    Figures 6 and 7 show the insertion lossS21and the return lossS11,respectively,for the combiners. According to the results, for the frequency range of 210–250 GHz, the insertion losses of the two-way back-to-back combiner and four-way back-to-back combiner were lower than 2.1 dB and 2.7 dB,respectively.In addition,the return losses were lower than 11 dB in the frequency region. It translates to a loss per two-way combiner and a four-way combiner of 1.05 dB and 1.35 dB,respectively. In comparison,the insertion losses were in good agreement with the simulated ones,and the return losses deteriorated within an acceptable limit. To the best of our knowledge,with the rise in the frequency to the terahertz band,complicated parasitic effects induced by the on-wafer probe become difficult to ignore. In addition,the errors occurring during processing in the subtle structures are inevitable, such as the assumption of vias metallization, the inaccuracy of modeling of isolation resistors. The above factors will cause the returning loss to deteriorate.

    Fig.6. Simulated(solid line)and measured(dashed line)S-parameters for the two-way back-to-back combiner.

    Fig.7. Simulated(solid line)and measured(dashed line)S-parameters for the four-way back-to-back combiner.

    It is worth mentioning that the measured losses of the proposed combiners include the loss of RF pads and standard GCPW lines. As for the standard, long GCPW lines were designed, in the middle of the combiner, to ensure enough space for the amplifier circuit, i.e., 500 μm for a two-way back-to-back combiner and 800 μm for a four-way back-toback combiner. Thus,it was inferred that the actual losses of the coupled-GCPW Wilkinson combiners were lower than the measured ones.

    In order to demonstrate the excellent performance of the proposed coupled-GCPW Wilkinson combiner, Table 1 presents the comparative analysis with the other state-of-theart terahertz power combiners operating above 100 GHz. The per-cell combiner size considered in this study excludes the RF pads,input and output lines,and reserved space for the amplifier circuit.Small-size and low-loss have been shown in earlier studies,[4,12]respectively,and the transmission lines of the two combiners are microstrip, which is noteworthy. When compared with the microstrip technology,the transmission line of GCPW has lower dispersion and better heat dissipation performance, which is more suitable for the terahertz devices.As compared to the GCPW-based Wilkinson power combiners presented in earlier studies,[5,6]the structure proposed in this paper significantly reduces the insertion loss and the combiner size. Compared to the GCPW-based combiner presented in earlier studies,[10]the proposed combiner presents improved broadband features while maintaining the other superior performance parameters.

    The results evidenced that, compared to other GCPWbased Wilkinson combiner, the design proposed in this study substantially improves the performance by lowering the combiner size and insertion loss by nearly two times of those presented by the others. To the best of the knowledge, among the terahertz InP GCPW-based Wilkinson combiners,the proposed design presents the smallest losses along with excellent broadband performance and smaller size. Thus, the overall property of the proposed combiner design is superior, which makes it versatile.

    Table 1. Comparison of the state-of-the-art integrated power combiners above 100 GHz.

    4. Conclusion

    This paper describes an on-chip power combiner based on the coupled-GCPW Wilkinson combiner operating in the terahertz range. Two coupled-GCPW lines were used to substitute the two inevitable quarter-wavelength GCPW lines,which have greatly resolved the complex layout problem of the terahertz on-chip Wilkinson combiners. A two-way back-to-back combiner and a four-way back-to-back combiner were fabricated on the 50-μm-thick InP substrate and measured by the on-wafer probe using an Agilent N5247A VNA with frequency extender modules. The power combiner proposed in this work has lower insertion losses,compact size,and stable broadband performance and is, therefore, versatile for many terahertz devices such as power amplifiers and signal distribution networks.

    猜你喜歡
    張勇
    A new global potential energy surface of the ground state of SiH+2(X2A1)system and dynamics calculations of the Si++H2(v0=2,j0=0)→SiH++H reaction
    Design of a low-frequency miniaturized piezoelectric antenna based on acoustically actuated principle
    Photon blockade in a cavity–atom optomechanical system
    跟曾國藩學(xué)修身
    做人與處世(2022年6期)2022-05-26 10:26:35
    傅山的“四寧四毋”
    做人與處世(2022年4期)2022-05-26 04:43:14
    關(guān)于組合和式的Dwork類型超同余式
    張勇
    書香兩岸(2020年3期)2020-06-29 12:33:45
    《家務(wù)機(jī)器人》等
    在體驗(yàn)中走向共生
    Wind Estimation for UAV Based on Multi-sensor Information Fusion
    少妇猛男粗大的猛烈进出视频| 午夜老司机福利剧场| 日韩欧美精品免费久久| 国产成人精品一,二区| 黄色视频在线播放观看不卡| 最后的刺客免费高清国语| 免费观看性生交大片5| 亚洲国产欧美日韩在线播放| 在线观看三级黄色| 国产又色又爽无遮挡免| 国语对白做爰xxxⅹ性视频网站| 成人漫画全彩无遮挡| xxxhd国产人妻xxx| 黄色怎么调成土黄色| 制服人妻中文乱码| 久久国产亚洲av麻豆专区| 男女国产视频网站| 久久久精品94久久精品| 国产亚洲午夜精品一区二区久久| 亚洲欧洲日产国产| 亚洲欧洲精品一区二区精品久久久 | 久久韩国三级中文字幕| 高清视频免费观看一区二区| 亚洲人成网站在线播| 色视频在线一区二区三区| 18+在线观看网站| 91精品国产国语对白视频| 一级,二级,三级黄色视频| 成人毛片60女人毛片免费| 日韩精品免费视频一区二区三区 | 一本色道久久久久久精品综合| av网站免费在线观看视频| 黄色欧美视频在线观看| 久久久精品区二区三区| 久久午夜福利片| 人妻人人澡人人爽人人| 国产免费视频播放在线视频| 在线观看国产h片| 成人国产av品久久久| 一本色道久久久久久精品综合| 蜜臀久久99精品久久宅男| 麻豆成人av视频| 韩国av在线不卡| 80岁老熟妇乱子伦牲交| 一本一本综合久久| 啦啦啦视频在线资源免费观看| 久久久精品94久久精品| 少妇人妻久久综合中文| 熟女电影av网| 91精品伊人久久大香线蕉| 一区在线观看完整版| 亚洲av国产av综合av卡| 亚洲第一区二区三区不卡| a级片在线免费高清观看视频| 午夜福利视频在线观看免费| 建设人人有责人人尽责人人享有的| 麻豆精品久久久久久蜜桃| 久久国内精品自在自线图片| xxxhd国产人妻xxx| 久久 成人 亚洲| 亚洲精品av麻豆狂野| 免费大片18禁| 中文字幕精品免费在线观看视频 | 777米奇影视久久| 毛片一级片免费看久久久久| 丰满饥渴人妻一区二区三| tube8黄色片| 欧美日本中文国产一区发布| 免费高清在线观看视频在线观看| 日韩av免费高清视频| 美女福利国产在线| 亚洲av综合色区一区| 成年女人在线观看亚洲视频| 五月开心婷婷网| 日本色播在线视频| 国产高清有码在线观看视频| 人妻少妇偷人精品九色| 亚洲精品乱码久久久v下载方式| 亚洲无线观看免费| 国产精品偷伦视频观看了| 九色成人免费人妻av| 成人18禁高潮啪啪吃奶动态图 | 婷婷色综合大香蕉| 女性被躁到高潮视频| 考比视频在线观看| 亚洲图色成人| 国产成人精品一,二区| 女的被弄到高潮叫床怎么办| 大香蕉97超碰在线| a级毛片黄视频| 亚洲情色 制服丝袜| 亚洲综合色惰| 亚洲天堂av无毛| 蜜臀久久99精品久久宅男| 亚洲激情五月婷婷啪啪| 国产熟女欧美一区二区| 18禁观看日本| 女的被弄到高潮叫床怎么办| 美女视频免费永久观看网站| 中文字幕精品免费在线观看视频 | 免费av中文字幕在线| 午夜福利影视在线免费观看| 午夜精品国产一区二区电影| 一个人看视频在线观看www免费| 天天操日日干夜夜撸| 精品一区二区免费观看| 亚洲精品av麻豆狂野| 一边摸一边做爽爽视频免费| 久久精品熟女亚洲av麻豆精品| 看免费成人av毛片| av福利片在线| 久久97久久精品| 自线自在国产av| 亚洲人成77777在线视频| 亚洲精品,欧美精品| 国国产精品蜜臀av免费| 老司机亚洲免费影院| 丝袜喷水一区| 免费观看在线日韩| √禁漫天堂资源中文www| 久久国内精品自在自线图片| 精品亚洲乱码少妇综合久久| 看十八女毛片水多多多| 欧美日韩在线观看h| 日韩强制内射视频| 国产乱来视频区| 99国产精品免费福利视频| 街头女战士在线观看网站| 国产精品三级大全| 欧美xxxx性猛交bbbb| 久久国产精品男人的天堂亚洲 | av免费在线看不卡| 国产亚洲精品久久久com| 狠狠精品人妻久久久久久综合| 精品人妻熟女毛片av久久网站| 久久99蜜桃精品久久| 有码 亚洲区| 狂野欧美白嫩少妇大欣赏| 精品视频人人做人人爽| 亚洲精品乱码久久久久久按摩| 2018国产大陆天天弄谢| 中文字幕精品免费在线观看视频 | 久久国产精品大桥未久av| 精品久久久久久电影网| 天堂8中文在线网| 久久久久久久大尺度免费视频| 亚洲久久久国产精品| 日本与韩国留学比较| 自拍欧美九色日韩亚洲蝌蚪91| 人妻人人澡人人爽人人| 91成人精品电影| 在线看a的网站| 男女国产视频网站| 亚洲精品国产av蜜桃| 久久鲁丝午夜福利片| 亚洲美女黄色视频免费看| 久久久久视频综合| 91久久精品国产一区二区成人| 午夜福利视频精品| 91午夜精品亚洲一区二区三区| 人成视频在线观看免费观看| 欧美精品一区二区免费开放| 十分钟在线观看高清视频www| 毛片一级片免费看久久久久| 啦啦啦啦在线视频资源| 精品视频人人做人人爽| 99国产综合亚洲精品| 国产黄色免费在线视频| 亚洲综合色惰| 亚洲综合精品二区| 精品久久久噜噜| 我的老师免费观看完整版| 最新的欧美精品一区二区| 九色成人免费人妻av| 日本欧美国产在线视频| 亚洲精品456在线播放app| 美女中出高潮动态图| 久久久精品免费免费高清| 岛国毛片在线播放| 大话2 男鬼变身卡| 国产亚洲欧美精品永久| 天美传媒精品一区二区| 日韩免费高清中文字幕av| 国内精品宾馆在线| 免费看av在线观看网站| 青春草国产在线视频| 最近的中文字幕免费完整| 另类精品久久| 免费黄网站久久成人精品| 成年av动漫网址| 欧美人与善性xxx| 国产白丝娇喘喷水9色精品| 国产高清不卡午夜福利| 大话2 男鬼变身卡| 美女主播在线视频| 视频中文字幕在线观看| 三级国产精品片| 国产白丝娇喘喷水9色精品| 欧美人与性动交α欧美精品济南到 | 中文字幕人妻熟人妻熟丝袜美| 国产熟女欧美一区二区| 国产精品免费大片| 亚洲不卡免费看| 亚洲av日韩在线播放| 一级a做视频免费观看| 天堂俺去俺来也www色官网| 久久毛片免费看一区二区三区| 日韩一本色道免费dvd| 国产精品女同一区二区软件| 性色av一级| 精品国产一区二区三区久久久樱花| 桃花免费在线播放| 人妻系列 视频| 黑丝袜美女国产一区| 美女主播在线视频| 一区二区三区免费毛片| 在线观看一区二区三区激情| 久久免费观看电影| 少妇猛男粗大的猛烈进出视频| av黄色大香蕉| 亚洲精品日韩在线中文字幕| 91在线精品国自产拍蜜月| 黑人巨大精品欧美一区二区蜜桃 | 26uuu在线亚洲综合色| 国产av国产精品国产| 亚洲人成网站在线播| 日本-黄色视频高清免费观看| 国产一区二区在线观看日韩| 大香蕉久久成人网| 欧美xxⅹ黑人| 一区二区av电影网| 亚洲精品乱久久久久久| av免费观看日本| 亚洲精品久久午夜乱码| 国产成人免费无遮挡视频| 99九九在线精品视频| 韩国av在线不卡| 精品亚洲成国产av| 久久女婷五月综合色啪小说| 你懂的网址亚洲精品在线观看| 最黄视频免费看| 亚洲国产av影院在线观看| 一级毛片电影观看| 女性被躁到高潮视频| 亚洲美女搞黄在线观看| 热99久久久久精品小说推荐| 日韩视频在线欧美| 久久精品人人爽人人爽视色| 欧美三级亚洲精品| 久久99精品国语久久久| 街头女战士在线观看网站| 少妇被粗大猛烈的视频| 亚洲美女黄色视频免费看| 一区二区av电影网| 观看美女的网站| 久久久久精品性色| 欧美97在线视频| 熟女电影av网| 日韩精品有码人妻一区| 多毛熟女@视频| 欧美日韩视频高清一区二区三区二| a 毛片基地| 一区二区日韩欧美中文字幕 | 在线观看人妻少妇| 免费人妻精品一区二区三区视频| 一级毛片我不卡| a级片在线免费高清观看视频| 26uuu在线亚洲综合色| 亚洲高清免费不卡视频| 人妻 亚洲 视频| 色婷婷av一区二区三区视频| 韩国av在线不卡| 免费观看在线日韩| 18禁在线无遮挡免费观看视频| 男人添女人高潮全过程视频| 91国产中文字幕| 欧美 亚洲 国产 日韩一| 另类亚洲欧美激情| 啦啦啦在线观看免费高清www| 婷婷色av中文字幕| a级毛片在线看网站| 欧美性感艳星| 亚洲丝袜综合中文字幕| 精品一区二区免费观看| 国产精品久久久久久精品电影小说| 一个人看视频在线观看www免费| 免费不卡的大黄色大毛片视频在线观看| 人妻系列 视频| 亚洲av日韩在线播放| 久久综合国产亚洲精品| 亚洲美女搞黄在线观看| 交换朋友夫妻互换小说| 久久国产亚洲av麻豆专区| 国产乱人偷精品视频| 男的添女的下面高潮视频| 欧美性感艳星| 精品久久久噜噜| 九九久久精品国产亚洲av麻豆| 中文乱码字字幕精品一区二区三区| 亚洲丝袜综合中文字幕| 制服诱惑二区| 国产日韩欧美视频二区| 美女脱内裤让男人舔精品视频| 一级a做视频免费观看| 三级国产精品片| 高清黄色对白视频在线免费看| 久久午夜综合久久蜜桃| 精品亚洲成a人片在线观看| 亚洲国产精品一区二区三区在线| 久久午夜综合久久蜜桃| 精品亚洲成a人片在线观看| 久久99蜜桃精品久久| 亚洲成人手机| 国产在线免费精品| 天美传媒精品一区二区| 男人添女人高潮全过程视频| 街头女战士在线观看网站| 婷婷色综合www| 久久久国产精品麻豆| 免费久久久久久久精品成人欧美视频 | 青青草视频在线视频观看| 少妇精品久久久久久久| 国产熟女午夜一区二区三区 | 哪个播放器可以免费观看大片| 中文乱码字字幕精品一区二区三区| 亚洲中文av在线| 黄色怎么调成土黄色| 久热这里只有精品99| 亚洲国产av新网站| 亚洲美女搞黄在线观看| 国产一区二区在线观看日韩| 超碰97精品在线观看| 交换朋友夫妻互换小说| 久久国内精品自在自线图片| 精品国产一区二区三区久久久樱花| 中国国产av一级| 日韩一区二区视频免费看| 日韩大片免费观看网站| 乱人伦中国视频| 精品国产乱码久久久久久小说| 久久精品国产亚洲网站| 亚洲精品乱码久久久久久按摩| 大香蕉97超碰在线| 高清黄色对白视频在线免费看| videossex国产| 国产在线免费精品| 国产精品久久久久久av不卡| 欧美日本中文国产一区发布| 观看美女的网站| 人人妻人人爽人人添夜夜欢视频| 久久ye,这里只有精品| 国产一区有黄有色的免费视频| 少妇人妻 视频| 欧美 日韩 精品 国产| 亚洲精品久久久久久婷婷小说| 国产精品蜜桃在线观看| 亚洲av日韩在线播放| 精品国产国语对白av| 精品少妇黑人巨大在线播放| 久久综合国产亚洲精品| 久久亚洲国产成人精品v| 高清av免费在线| 久久狼人影院| 国产精品三级大全| 亚洲欧美成人精品一区二区| 狂野欧美激情性xxxx在线观看| 男女无遮挡免费网站观看| 最近最新中文字幕免费大全7| 18禁观看日本| 极品人妻少妇av视频| 亚洲av不卡在线观看| 国产精品偷伦视频观看了| 国产精品一区www在线观看| 精品熟女少妇av免费看| 99久久精品国产国产毛片| 国产男女超爽视频在线观看| videossex国产| 久久国产精品大桥未久av| 国产黄片视频在线免费观看| 人妻一区二区av| 丰满迷人的少妇在线观看| 赤兔流量卡办理| 国产亚洲最大av| 国产成人午夜福利电影在线观看| a级毛片免费高清观看在线播放| 美女中出高潮动态图| 免费不卡的大黄色大毛片视频在线观看| 午夜福利视频在线观看免费| 国产精品国产三级国产av玫瑰| 精品亚洲乱码少妇综合久久| 日本vs欧美在线观看视频| 18禁观看日本| 日日撸夜夜添| 男人添女人高潮全过程视频| 高清av免费在线| 精品人妻在线不人妻| 大片电影免费在线观看免费| 精品久久久噜噜| 少妇的逼好多水| 国产av一区二区精品久久| 久久人人爽人人爽人人片va| 午夜福利视频在线观看免费| 亚洲美女视频黄频| 免费黄频网站在线观看国产| 一级毛片 在线播放| 老熟女久久久| 亚州av有码| 91成人精品电影| 99热网站在线观看| 久久久a久久爽久久v久久| 久久毛片免费看一区二区三区| 啦啦啦在线观看免费高清www| 亚洲精品中文字幕在线视频| 久久99蜜桃精品久久| 91午夜精品亚洲一区二区三区| 在现免费观看毛片| 中国美白少妇内射xxxbb| 久久久久久久久大av| 香蕉精品网在线| 高清黄色对白视频在线免费看| 国产成人免费无遮挡视频| 伊人久久国产一区二区| 亚洲国产av影院在线观看| 狂野欧美激情性xxxx在线观看| 热99久久久久精品小说推荐| 欧美日韩在线观看h| 午夜激情av网站| 久久久亚洲精品成人影院| 久久久久久久精品精品| 国产成人freesex在线| 亚洲av.av天堂| 国产色爽女视频免费观看| 女人精品久久久久毛片| 嘟嘟电影网在线观看| 国产一区二区三区av在线| 99久久综合免费| 中文字幕人妻丝袜制服| 人人妻人人添人人爽欧美一区卜| 十八禁网站网址无遮挡| 人人妻人人添人人爽欧美一区卜| 美女中出高潮动态图| 日韩av免费高清视频| 性色av一级| 免费播放大片免费观看视频在线观看| www.色视频.com| 女性被躁到高潮视频| 免费看光身美女| 国产成人a∨麻豆精品| 在线观看www视频免费| 婷婷色麻豆天堂久久| 国产高清国产精品国产三级| 日日摸夜夜添夜夜添av毛片| 亚洲国产精品一区三区| 中文字幕人妻熟人妻熟丝袜美| 男女啪啪激烈高潮av片| 久久久国产一区二区| 大又大粗又爽又黄少妇毛片口| 日韩三级伦理在线观看| 国产精品蜜桃在线观看| 国产极品粉嫩免费观看在线 | 亚洲三级黄色毛片| 男人操女人黄网站| 亚洲精品国产av蜜桃| 九九久久精品国产亚洲av麻豆| 人妻系列 视频| 国产欧美日韩综合在线一区二区| 久久久久久久国产电影| 成人手机av| 91精品国产九色| 一区二区三区精品91| 一级二级三级毛片免费看| 丝袜喷水一区| 黄片无遮挡物在线观看| 99热6这里只有精品| 汤姆久久久久久久影院中文字幕| 热re99久久国产66热| 插逼视频在线观看| 九色亚洲精品在线播放| 日韩熟女老妇一区二区性免费视频| 99九九在线精品视频| 免费少妇av软件| 国产精品一区二区在线不卡| 中国美白少妇内射xxxbb| 国产成人精品婷婷| 亚洲性久久影院| 九色成人免费人妻av| 成人午夜精彩视频在线观看| 99热网站在线观看| 少妇的逼水好多| 欧美bdsm另类| 亚洲av成人精品一区久久| 97超视频在线观看视频| 性色av一级| 少妇人妻久久综合中文| 妹子高潮喷水视频| 十分钟在线观看高清视频www| 在线观看人妻少妇| 日日撸夜夜添| 免费看不卡的av| 人人澡人人妻人| 欧美老熟妇乱子伦牲交| 视频中文字幕在线观看| 男女无遮挡免费网站观看| 免费av中文字幕在线| 中文字幕久久专区| 精品午夜福利在线看| 一级爰片在线观看| 精品久久蜜臀av无| 久久亚洲国产成人精品v| 视频中文字幕在线观看| 久久亚洲国产成人精品v| 免费观看无遮挡的男女| 亚洲精品久久成人aⅴ小说 | 成人影院久久| 成人免费观看视频高清| 午夜福利影视在线免费观看| 人人妻人人澡人人爽人人夜夜| 日韩免费高清中文字幕av| 欧美日本中文国产一区发布| 美女福利国产在线| 中国国产av一级| 国产免费现黄频在线看| 久久人人爽人人爽人人片va| 九九爱精品视频在线观看| 色婷婷av一区二区三区视频| 亚洲欧美日韩另类电影网站| 欧美日韩在线观看h| 精品一区二区三区视频在线| 久久鲁丝午夜福利片| 精品国产国语对白av| 在线精品无人区一区二区三| 亚洲成人手机| 久久精品人人爽人人爽视色| 久久国内精品自在自线图片| 久久女婷五月综合色啪小说| 女性被躁到高潮视频| 精品酒店卫生间| 女性被躁到高潮视频| 一级毛片黄色毛片免费观看视频| 久久久久精品性色| 久久热精品热| 欧美成人午夜免费资源| 欧美日韩视频精品一区| 国产无遮挡羞羞视频在线观看| 天天操日日干夜夜撸| 国产免费视频播放在线视频| 美女脱内裤让男人舔精品视频| 亚洲精品久久午夜乱码| 伦理电影大哥的女人| 搡老乐熟女国产| 久久这里有精品视频免费| 日本wwww免费看| 999精品在线视频| 日韩三级伦理在线观看| 三级国产精品片| 美女国产视频在线观看| 亚洲国产欧美日韩在线播放| 久久久久久伊人网av| 蜜桃国产av成人99| 啦啦啦在线观看免费高清www| av线在线观看网站| 国产精品一区二区在线不卡| 国产精品国产av在线观看| 国产免费视频播放在线视频| 国产伦理片在线播放av一区| 丰满少妇做爰视频| 国产男女超爽视频在线观看| 曰老女人黄片| 国产精品 国内视频| 欧美丝袜亚洲另类| 一区二区三区精品91| 一本一本综合久久| 久久精品国产自在天天线| 丝袜脚勾引网站| 国产欧美日韩综合在线一区二区| 婷婷色av中文字幕| 亚洲精品色激情综合| av黄色大香蕉| 国产成人av激情在线播放 | 免费观看在线日韩| 婷婷成人精品国产| 街头女战士在线观看网站| 久久久久久久久久久丰满| 精品久久久久久久久亚洲| tube8黄色片| 日韩大片免费观看网站| 日韩欧美一区视频在线观看| av免费在线看不卡| 极品少妇高潮喷水抽搐| 26uuu在线亚洲综合色| 午夜激情av网站| 国产成人91sexporn| 啦啦啦啦在线视频资源| 久久久久久久久大av| 欧美 日韩 精品 国产| 亚洲伊人久久精品综合| 国产无遮挡羞羞视频在线观看| av网站免费在线观看视频| 久久国内精品自在自线图片| 亚洲在久久综合| 亚洲av免费高清在线观看| 精品熟女少妇av免费看| 在线免费观看不下载黄p国产| 成人亚洲欧美一区二区av| 一边摸一边做爽爽视频免费| 母亲3免费完整高清在线观看 | 王馨瑶露胸无遮挡在线观看| 欧美人与善性xxx| 熟女人妻精品中文字幕| 男女免费视频国产| 狠狠精品人妻久久久久久综合| 一区二区三区精品91| 国产精品麻豆人妻色哟哟久久| 26uuu在线亚洲综合色| 精品人妻在线不人妻|