• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A new global potential energy surface of the ground state of SiH+2(X2A1)system and dynamics calculations of the Si++H2(v0=2,j0=0)→SiH++H reaction

    2022-11-21 09:28:54YongZhang張勇XiugangGuo郭秀剛andHaigangYang楊海剛
    Chinese Physics B 2022年11期
    關(guān)鍵詞:張勇

    Yong Zhang(張勇) Xiugang Guo(郭秀剛) and Haigang Yang(楊海剛)

    1Department of Physics,Tonghua Normal University,Tonghua 134002,China

    2Weifang University of Science and Technology,Shouguang 262700,China

    A global potential energy surface(PES)of the ground state of SiH+2 system is built by using neural network method based on 18223 ab initio points. The topographic properties of PES are presented and compared with previous theoretical and experimental studies. The results indicate that the spectroscopic parameters obtained from the new PES are in good agreement with the experimental data. In order to further verify the validity of the new PES,a test dynamics calculation of the Si++H2(v0=2,j0=0)→H+SiH+reaction has been carried out by using the time-dependent wave packet method.The integral cross sections and rate constants are computed for the title reaction. The reasonable dynamical behavior indicates that the newly constructed PES is suitable for relevant dynamics investigations.

    Keywords: potential energy surface,integral cross section,rate constant,time-dependent wave packet

    1. Introduction

    The Si++ H2reaction as one of ion–molecule reactions was received relatively less attention when compared with other reactions, such as O++ H2and C++ H2.[1–4]However, the studies of the Si++ H2reaction and its reverse reaction are of great practical significance, because the SiH+ion is postulated as an intermediate specie in the manufacturing process of amorphous silicon films in chemical vapor deposition process.[5–7]Furthermore, the Si++H2reaction and its reverse reaction are of considerable interest in astrophysics and spectroscopy. For example, the SiH radical and SiH+ion have been observed in the Sun’s photosphere.[8,9]Therefore,the spectroscopic and dynamics information of SiH2and SiH+2systems are very important for the modeling of star atmospheres.

    Since Curtis and co-workers[10]reported the ?A2B1(Π)←?X2A1transition electronic spectrum of SiH+2ion by using laser photofragment spectroscopy in 1985, numbers of theoretical studies have been carried out. The ?X2A1and ?A2B1potential energy surfaces (PESs) of SiH+2ion in collinear geometries have been reported by Hirstet al.[11]in 1986. Later,Gonz′alezet al.[12]also presented a new PES inC∞vandC2vsymmetry and the Si++H2→SiH++H reaction was studied. The PESs of four lowest electronic states of the SiH+2system was constructed by Mort and co-workers[13,14]in 1994. The conical intersection between ground state and excited state has been found and the influence of conical intersection on the photodissociation dynamics has been discussed. In the same year,the three-dimensional potential energy functions of ?X2A1and ?A2B1states of the SiH+2system were reported by Baueret al.[15]and rovibronic spectrum of the SiH+2ion was calculated and compared with experimental values.In 2019,a new global PES for the ground state of the SiH+2system was constructed by Gaoet al.[16]with the many-body expansion method. In addition, the H + SiH+→Si++ H2reaction has been studied by using Chebyshev quantum wave packet method based on the new PES.The reaction probabilities,integral cross sections(ICSs)and the rate constants were reported in their work.Later, Zhaoet al.[17]recalculated the H+SiH+→Si++H2reaction based on Gao’s PES.[16]In their work,the Chebyshev quantum wave packet method is used and the full Coriolis coupling effect is considered.The reaction probabilities,ICSs and rate constants were reported and the results indicated that the Coriolis coupling has large effect on the final dynamical results.

    As discussed above, much less effort has been made in the construction of global PES and related dynamics calculation. The aim of present work is to construct a new global PES for the ground state of the SiH+2system.In order to verify the validity of the new PES,a test dynamics calculation of the Si++H2(v0=2,j0=0)→H+SiH+reaction will be carried out based on the new PES.In this paper,the methods used in theab initiocalculation,fitting processes and dynamics calculation are shown in Section 2. The topographical features of the PES are presented in Section 3 as well as the dynamical results. The conclusions are displayed in Section 4.

    2. Potential energy surface

    2.1. Ab initio calculations

    Theab initiocalculations are carried out with MOLPRO software package[18]and theCssymmetry is used for all configurations.In theab initiocalculation,the aug-cc-pVQZ basis set[19,20]for H atom and cc-pwCVQZ[21]basis set for Si atom and an internally contracted multi-reference configuration interaction (MRCI)[22]method is used. In detail, we first perform the state-averaged complete active space self-consistent field (SA-CASSCF)[23,24]calculations over three electronic states (two2A′and one2A′′) with equal weight. In addition,15 valence electrons of the SiH+2system were involved 13 active orbitals(11a′+2a′′). In detail,the 1s,2s,and 2p orbitals of Si+are closed which related to the 4a′and 1a′′. The active orbitals 7a′and 1a′′were mainly contributed by 1s orbital of H and 3s,3p orbitals of Si+,while the 2s orbital of H and 4s orbital of Si+occupied a relatively small weight. Then, the MRCI calculations were performed with the reference orbitals which provided by the SA-CASSCF calculation. Finally, a total of 21530ab initiopoints was calculated. In fitting process,theab initiopoints about 10 eV larger than the minimum potential energy were abandoned and 18223ab initiopoints were used to construct the PES. The Jacobi coordinates (RQ,RHH,α) were used to sample theab initiopoints.RQis the distance between Si+ion and the midpoint of H2molecule.RHHis the bond length of H2molecule andαis the angle betweenRQandRHH. In detail, 1.0 Bohr≤RQ≤25.0 Bohr,0.6 Bohr≤RHH≤25.0 Bohr,and 1°≤α ≤89°.

    2.2. PES fitting

    The permutation invariant polynomial neural network(PIP-NN)[25,26]method is adopted in this work, which is widely used in the PES construction such as BrH2,[27]KH2,[28]and LiH2[29]system. To avoid the discontinuities of the derivatives around the boundary, PIP method is used to transform the three bond lengths of the SiH+2system. In detail,G1=(PSiH+a+PSiH+b)/2,G2=PSiH+a·PSiH+b,G3=PHH,wherePSiH+a= exp(-0.2·RSiH+a),PSiH+b= exp(-0.2·RSiH+b),andPHH=exp(-0.2·RHH),respectively.In the fitting process,G1,G2,andG3are used as the input term and two hidden layers are used, each of which involves 15 neurons. The neural network expansion can be written as

    Over-fitting has always been a problem of neural network.To deal with this problem,the input data are randomly divided into three parts,namely,training part(90%),testing part(5%)and validation part(5%).The root means square error(RMSE)is used to test the accuracy of PES and it can be presented as

    2.3. Topographical features of the potential energy surface

    To test the accuracy of PES, the spectroscopic parameters of SiH+(X1Σ+) ion and H2(X1Σ+g) molecule obtained from the PES are compared with available theoretical[16]and experimental[30,31]values and the results are shown in Table 1.

    Table 1. The spectroscopic constants of the SiH+ (X1Σ+)and H2 (X1Σ+g)molecules.

    As shown in Table 1,the spectroscopic constants obtained from the PES are in good agreement with experimental data.For the SiH+(X1Σ+) ion, the bond length, harmonic vibrational frequency, and dissociation energy obtained from the PES deviate from the experimental values by 0.0017 Bohr,14.57 cm-1, and 0.015 eV, respectively. It is very clear that present values closer to the experimental data than the results reported by Gaoet al.[16]For the H2molecule,the bond length is same with experimental data, the harmonic vibrational frequency lower than the experimental data by about 2 cm-1,and the dissociation energy is lower than the experimental data by 0.02 eV.As a whole,present PES can give a good description for the two-body term.

    The major topographical features of the newly constructed PES are shown in Figs. 2(a) and 2(b), which correspond to the global minimum and vertically approaching geometries,respectively.It is very clear that present PES shows a smooth and correct behavior over the configuration space studied. Figure 2(a)shows the contour plot for the bending angle fixed at 119.73°. Clearly, only a deep potential well is observed and no potential barrier is found. In addition,Fig.2(a)shows a symmetrical behavior which can be attributed to the exchange symmetry of H atom. Figure 2(b)exhibits the contour plot for the Si+ion approach the H2molecule in theC2vsymmetry. Two potential wells are found which correspond to a local minimum and global minimum geometries, respectively. In addition,a potential barrier is also found.

    To make a comparison with available theoretical and experimental results,the spectroscopic parameters of theses stationary points are presented in Table 2 as well as the values obtained from previous theoretical and experimental studies.As shown in Table 2,the global minimum is located atRHH=4.8400 Bohr,RSiH+a= 2.8008 Bohr,RSiH+b= 2.8008 Bohr,andθ[HSiH]+=119.73°,which is in good agreement with experimental dataRHH= 4.8529 Bohr,RSiH+a= 2.8161 Bohr,RSiH+b=2.8161 Bohr, andθ[HSiH]+=119°. The recently reported PES by Gaoet al.[16]obtained similar results with ours,both of which are in good agreement with experimental data.For the harmonic vibrational frequency, theωsymandωasymare in good agreement with each other, except for theωbend.For the local minimum,present values are in good agreement with the values reported by Gaoet al.[16]for both geometric structures and harmonic vibrational frequencies. However,in the transition state,great discrepancies can be found between present values and the results obtained from Gaoet al.[16]

    Fig. 1. Equipotential contour plot (a) for the structure of global minimum value in which the angle ∠[HSiH]+ = 119.73°, contours are equally spaced by 0.4 eV, starting at -5.1 eV and (b) for the Si+ ion approach to H2 molecule in C2v symmetry,contours are equally spaced by 0.4 eV,starting at-5.1 eV.

    Table 2. The spectroscopic parameters of stationary points.

    In order to find the reason why present PES and Gao’s PES are so different in the transition state, Fig. 2 shows the potential energy curves of Si+ions close to the midpoint of H2underC2vsymmetry when the bond length of H2is fixed at 2.999 Bohr and 3.232 Bohr. To compare conveniently, theab initiovalues and the results obtained from Gao’s PES are also displayed in Fig.2. Clearly,there is a conical intersection between the ground state (12A′) and excited state (22A′) and present PES gives a correct description of the conical intersection. However, the potential energy curves obtained from Gao’s PES obviously cannot correctly describe the conical intersection. We suppose this may be attributed to the drawback of many-body expansion method.

    Fig.2. The potential energy curves for the Si+ion approach to the midpoint of H2 molecule at C2v symmetry along with the ab initio results and the values obtained from Gao’s PES[16] ((a)for RHH=2.999 Bohr,(b)for RHH=3.232 Bohr).

    Figure 3(a)shows the change of potential energy for the Si+ion moves around the H2molecule as the bond length of H2fixed at 1.401 Bohr. As seen in the figure, there is a potential well with depth of about 0.4 eV at the positionRQ=4 Bohr, andθ=90°. Figure 3(b) exhibits the H atom moving around SiH+ion asRSiH+=2.844 Bohr. Obviously,there is a shallow potential well and a deep potential well on the side of H atom and Si+ion,respectively. The deep well is located atRQ=3.8 Bohr,θ=40°with the depth about 2.7 eV and the shallow well is located atRQ=1.2 Bohr,θ=135°with the depth about 0.9 eV.

    Figure 4 displays the minimum energy paths of the PES at several selected angles. As seen in the figure, the energy of Si++ H2asymptote is set to be zero. It is very clear that the Si++H2→SiH++H reaction is highly endothermic and the endoergic energy is about 1.30 eV when zero-point energy is not considered. As seen in the figure, there is a shallow potential well and a deep potential well on both sides of the barrier at 30°. The potential well on the right side gradually disappears with the increases of angle. The barrier decreases at first,then disappears,and then gradually increases with the increasing of angle. In the present work, the spin–orbit coupling effect is not considered since it has a little influence on the endothermic energy of the Si++H2reaction.

    Fig. 3. (a) Color plot for the Si+ ion moves around the H2 molecule when the bond length of H2 is fixed at 1.401 Bohr. (b)Color plot for H atom moves around SiH+ ion when the SiH+ bond length fixed at the equilibrium geometry.

    Fig.4.The minimum energy paths of the new PES at different[SiHH]+angles.

    3. Dynamics

    Based on the newly constructed PES, the dynamics calculations of the Si++ H2→SiH++ H reaction was carried out by using time-dependent wave packet method, which is widely used in the reaction scattering calculation, such as K+ H2,[28]and Li + H2.[29]As discussed above, the Si++H2→SiH++ H reaction is highly endothermic with the energy about 1.3 eV.We suppose the reaction probability of initial state (v0=0,j0=0) will be very small, which is similar with K+H2reaction.[28]Therefore,we chose(v0=2,j0=0)as the initial state. In the dynamical calculations, the convergence test should be carried out at first. In the present work,the convergence test is performed on the reaction probability ofJ=0. Finally, the optimal parameters are obtained and shown in Table 1. As shown in Fig. 4, there is a deep well on the reaction path,therefore it is very time consuming. For reducing the computational cost,the reaction probabilities for particularJ(e.g., 0, 10, 20, ..., 60) were computed and the others were obtained by using theJ-shifting method.[33]

    Table 3.Numerical parameters used in the TDWP calculations(atomic units unless otherwise stated).

    Figure 5 shows the ICSs of the title reaction in the collision energy range from 0 to 1.0 eV. As seen in the figure,a threshold about 0.19 eV is found which is consistent with Fig.4 as the zero-point energy and vibrational energy considered. In addition,some resonance structures are found on the ICS curve,and this can be attributed to the deep well on the reaction path which support numbers of quasi-bound and bound states. The ICSs increase with the increasing collision energy,which is similar with other endothermic reactions.

    Fig.5. The integral cross sections of the Si++H2 (v0 =2,j0 =0)→SiH++H reaction as a function of collision energy.

    The rate constants of the initial state(v0=2,j0=0)are presented in Fig. 6 in the temperature range from 333 K to 1000 K. As shown in the figure, the rate constant increases with roughly a factor about 20 with the increase of temperature. We suppose the rate constants of SiH+2system will be helpful for the modeling of star atmospheres.

    Fig.6. The rate constants of the Si++H2 (v0=2,j0=0)→SiH++H reaction in the temperature range up to 1000 K.

    4. Conclusions

    Based on 18223ab initiopoints, the global PES of the SiH+2system was constructed by using PIP-NN method. The properties of the new PES are discussed and compared in detail with previous theoretical and experimental data. The spectroscopic constants obtained from the new PES are in good agreement with experimental and previous theoretical results.In addition, present PES is in general better than previous ones, and especially the new PES gives a correct description in the region around the conical intersection. To verify the validity of the new PES,the dynamics calculations of the Si++H2(v0=2,j0=0)→SiH++ H reaction is studied by using the TDWP method. The dynamics properties such as ICSs and rate constants are reported in this work. In conclusion,the new PES of the SiH+2system shows reasonable and accurate behavior over the configuration space studied.

    Acknowledgement

    Project was supported by Key Projects of Science and Technology in the 13th Five Year Plan of Jilin Provincial Department of Education,China(Grant No.JJKH20200482KJ).

    猜你喜歡
    張勇
    Photon blockade in a cavity–atom optomechanical system
    跟曾國(guó)藩學(xué)修身
    做人與處世(2022年6期)2022-05-26 10:26:35
    傅山的“四寧四毋”
    做人與處世(2022年4期)2022-05-26 04:43:14
    張勇
    書香兩岸(2020年3期)2020-06-29 12:33:45
    同題異學(xué)(1)
    Code switching for college students on campus
    国产一区二区三区视频了| 在线天堂最新版资源| 校园春色视频在线观看| 午夜老司机福利剧场| 少妇的逼好多水| 婷婷色综合大香蕉| 国产熟女欧美一区二区| 亚洲成av人片在线播放无| 内射极品少妇av片p| 欧美人与善性xxx| 亚洲精品一卡2卡三卡4卡5卡| 91狼人影院| 日日夜夜操网爽| 老师上课跳d突然被开到最大视频| 日本三级黄在线观看| 桃色一区二区三区在线观看| 在现免费观看毛片| 一区二区三区四区激情视频 | 亚洲欧美清纯卡通| 国产一区二区在线av高清观看| 日韩精品有码人妻一区| 国产午夜福利久久久久久| 亚洲中文日韩欧美视频| 国产精品久久电影中文字幕| 国产精品嫩草影院av在线观看 | 1024手机看黄色片| 亚洲国产精品成人综合色| 国产欧美日韩精品亚洲av| 黄片wwwwww| 精品人妻视频免费看| 成人毛片a级毛片在线播放| 1000部很黄的大片| 午夜福利在线观看免费完整高清在 | 免费在线观看成人毛片| 亚洲五月天丁香| 少妇裸体淫交视频免费看高清| 热99在线观看视频| 婷婷精品国产亚洲av在线| 一区二区三区高清视频在线| h日本视频在线播放| 欧美高清成人免费视频www| 精品国内亚洲2022精品成人| 日日摸夜夜添夜夜添小说| 如何舔出高潮| 日本黄色片子视频| 99热这里只有精品一区| 两人在一起打扑克的视频| 男女视频在线观看网站免费| 亚洲国产欧美人成| 国产主播在线观看一区二区| 大型黄色视频在线免费观看| 国产精品久久久久久久电影| 老司机深夜福利视频在线观看| 18+在线观看网站| 欧洲精品卡2卡3卡4卡5卡区| 色视频www国产| 麻豆精品久久久久久蜜桃| 午夜激情福利司机影院| 麻豆成人午夜福利视频| 日韩亚洲欧美综合| 美女cb高潮喷水在线观看| 色精品久久人妻99蜜桃| 69av精品久久久久久| 亚洲av第一区精品v没综合| 精品免费久久久久久久清纯| 日韩亚洲欧美综合| 欧美中文日本在线观看视频| 美女被艹到高潮喷水动态| 别揉我奶头 嗯啊视频| 夜夜夜夜夜久久久久| aaaaa片日本免费| 久久午夜福利片| 国产精品爽爽va在线观看网站| 亚洲自偷自拍三级| 在线观看一区二区三区| 18禁黄网站禁片免费观看直播| av在线观看视频网站免费| 久久热精品热| 两个人的视频大全免费| 日本-黄色视频高清免费观看| 国产在线男女| 精品久久久噜噜| 久久草成人影院| 两人在一起打扑克的视频| 亚洲人成网站在线播| 久99久视频精品免费| 一级黄色大片毛片| 精品一区二区三区av网在线观看| 久久精品国产99精品国产亚洲性色| 真人一进一出gif抽搐免费| 亚洲七黄色美女视频| 久久久久久国产a免费观看| 色哟哟·www| 长腿黑丝高跟| 欧美黑人欧美精品刺激| 国产av不卡久久| 免费高清视频大片| 91久久精品国产一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 国产精品一区二区三区四区久久| 我的女老师完整版在线观看| 2021天堂中文幕一二区在线观| 国产熟女欧美一区二区| 夜夜看夜夜爽夜夜摸| 动漫黄色视频在线观看| av天堂中文字幕网| 免费av观看视频| 麻豆一二三区av精品| 国产激情偷乱视频一区二区| 午夜精品一区二区三区免费看| 精品久久久久久久久久久久久| 极品教师在线视频| 老司机午夜福利在线观看视频| 蜜桃久久精品国产亚洲av| 国产精品永久免费网站| 老师上课跳d突然被开到最大视频| 国内久久婷婷六月综合欲色啪| 久久精品国产亚洲av天美| 国产久久久一区二区三区| 国内久久婷婷六月综合欲色啪| a级一级毛片免费在线观看| 精品久久久久久久人妻蜜臀av| 波多野结衣巨乳人妻| 欧美人与善性xxx| 又黄又爽又免费观看的视频| 欧美日本视频| 国产成人一区二区在线| 老熟妇乱子伦视频在线观看| 欧美日韩瑟瑟在线播放| 久久精品91蜜桃| 两个人的视频大全免费| 欧美日韩黄片免| 国内精品美女久久久久久| 久久香蕉精品热| 在线a可以看的网站| h日本视频在线播放| 国产精品国产高清国产av| 日韩,欧美,国产一区二区三区 | 国产成人一区二区在线| 亚洲专区中文字幕在线| 一进一出抽搐gif免费好疼| 久久精品国产亚洲av香蕉五月| 一区福利在线观看| 最新中文字幕久久久久| 亚洲精品成人久久久久久| 2021天堂中文幕一二区在线观| 波多野结衣高清无吗| 日韩一本色道免费dvd| 午夜福利欧美成人| 久久99热这里只有精品18| 国产一区二区在线av高清观看| or卡值多少钱| 天天躁日日操中文字幕| 国产欧美日韩一区二区精品| 日本黄色片子视频| 又爽又黄a免费视频| 免费人成在线观看视频色| 国产亚洲精品综合一区在线观看| 欧美人与善性xxx| 欧美激情久久久久久爽电影| 看免费成人av毛片| 欧美绝顶高潮抽搐喷水| av天堂中文字幕网| 亚洲专区国产一区二区| 亚洲电影在线观看av| 999久久久精品免费观看国产| 麻豆久久精品国产亚洲av| 国产精品福利在线免费观看| 亚洲自拍偷在线| 精品一区二区免费观看| 在线免费观看的www视频| 舔av片在线| 日本 欧美在线| 久久九九热精品免费| 亚洲四区av| 一进一出抽搐动态| 国内精品久久久久久久电影| 久久久久性生活片| 国产v大片淫在线免费观看| 色av中文字幕| 午夜久久久久精精品| 国产伦在线观看视频一区| 日韩精品中文字幕看吧| 午夜福利在线观看免费完整高清在 | 国产久久久一区二区三区| 中出人妻视频一区二区| 亚洲男人的天堂狠狠| 老师上课跳d突然被开到最大视频| 午夜久久久久精精品| 91在线观看av| 欧美精品啪啪一区二区三区| 精品一区二区三区人妻视频| 身体一侧抽搐| 亚洲美女黄片视频| 日韩精品有码人妻一区| 美女高潮喷水抽搐中文字幕| 91在线精品国自产拍蜜月| 免费观看的影片在线观看| 亚洲精品456在线播放app | 三级男女做爰猛烈吃奶摸视频| 亚洲最大成人中文| 大型黄色视频在线免费观看| 国内揄拍国产精品人妻在线| 亚洲精品国产成人久久av| 亚洲七黄色美女视频| 亚洲黑人精品在线| 免费观看的影片在线观看| 欧美xxxx性猛交bbbb| 成年人黄色毛片网站| 亚洲欧美激情综合另类| 亚洲人成网站在线播| 搡老熟女国产l中国老女人| 国产乱人视频| 色在线成人网| 久久精品国产亚洲av香蕉五月| 国产高清视频在线观看网站| 亚洲最大成人av| 欧美在线一区亚洲| 午夜精品在线福利| 在线看三级毛片| 亚洲avbb在线观看| 黄色配什么色好看| www日本黄色视频网| 九色成人免费人妻av| 少妇裸体淫交视频免费看高清| 久久久色成人| 国产大屁股一区二区在线视频| 亚洲,欧美,日韩| 亚洲国产精品合色在线| 成人毛片a级毛片在线播放| 波多野结衣高清无吗| 国产成年人精品一区二区| 免费大片18禁| 国产亚洲精品久久久com| 亚洲男人的天堂狠狠| 亚洲性久久影院| 999久久久精品免费观看国产| 日韩欧美精品v在线| 久久久久久久久大av| 国产精品女同一区二区软件 | 国产色爽女视频免费观看| 一级黄色大片毛片| 97碰自拍视频| 淫秽高清视频在线观看| 成人性生交大片免费视频hd| 国产 一区 欧美 日韩| 日韩,欧美,国产一区二区三区 | 国产精品亚洲一级av第二区| 波多野结衣高清无吗| 久久久久久伊人网av| 九九热线精品视视频播放| 亚洲黑人精品在线| 午夜免费激情av| 欧美3d第一页| 真实男女啪啪啪动态图| av在线亚洲专区| 国产高潮美女av| 免费av毛片视频| 日韩欧美免费精品| 日本黄色片子视频| 午夜日韩欧美国产| 亚洲电影在线观看av| 黄片wwwwww| 国产精品女同一区二区软件 | 全区人妻精品视频| 黄色女人牲交| 免费看美女性在线毛片视频| av女优亚洲男人天堂| 99久久成人亚洲精品观看| 欧美绝顶高潮抽搐喷水| 嫩草影视91久久| 久久人人爽人人爽人人片va| 性色avwww在线观看| 免费看av在线观看网站| 色5月婷婷丁香| 欧美最新免费一区二区三区| 亚洲乱码一区二区免费版| 久久人人爽人人爽人人片va| 97热精品久久久久久| 日本在线视频免费播放| 天堂av国产一区二区熟女人妻| 日韩,欧美,国产一区二区三区 | 国产亚洲精品综合一区在线观看| 欧美日韩综合久久久久久 | 综合色av麻豆| 精品一区二区三区视频在线| 国产av一区在线观看免费| 欧美绝顶高潮抽搐喷水| 日日啪夜夜撸| 国产精品一及| 午夜福利在线观看吧| 亚洲精品456在线播放app | 亚洲中文字幕日韩| 国产主播在线观看一区二区| 久久久久久久精品吃奶| 99热6这里只有精品| 久久人妻av系列| 日韩国内少妇激情av| 国内少妇人妻偷人精品xxx网站| www.色视频.com| 精品免费久久久久久久清纯| 亚洲人与动物交配视频| 中文字幕久久专区| 在线观看66精品国产| 男女下面进入的视频免费午夜| 少妇裸体淫交视频免费看高清| 国产麻豆成人av免费视频| 成人美女网站在线观看视频| 国产视频一区二区在线看| 久久国产乱子免费精品| 天美传媒精品一区二区| 免费在线观看成人毛片| 成人一区二区视频在线观看| 亚洲第一区二区三区不卡| 国产精品人妻久久久影院| 99国产精品一区二区蜜桃av| 国产日本99.免费观看| 亚洲人成网站高清观看| 欧美最新免费一区二区三区| 日韩欧美精品v在线| 色综合站精品国产| 免费观看的影片在线观看| 亚洲不卡免费看| 麻豆成人av在线观看| 午夜a级毛片| 一区二区三区四区激情视频 | 亚洲av二区三区四区| 18禁黄网站禁片免费观看直播| 亚洲无线在线观看| 国产成人aa在线观看| 成人精品一区二区免费| 日本免费一区二区三区高清不卡| 亚州av有码| 午夜激情欧美在线| 国产精品一区二区三区四区免费观看 | 午夜福利视频1000在线观看| 午夜福利成人在线免费观看| 亚洲无线观看免费| 国产乱人视频| 国产一区二区三区在线臀色熟女| 欧美3d第一页| 天天一区二区日本电影三级| 精品人妻视频免费看| 成人午夜高清在线视频| 人妻久久中文字幕网| 日韩精品中文字幕看吧| 少妇丰满av| 免费人成视频x8x8入口观看| 99久国产av精品| 欧美日韩瑟瑟在线播放| 搡女人真爽免费视频火全软件 | 国产午夜福利久久久久久| 精品乱码久久久久久99久播| 欧美成人一区二区免费高清观看| 亚洲av电影不卡..在线观看| 内射极品少妇av片p| 精品人妻视频免费看| 国内毛片毛片毛片毛片毛片| 精品日产1卡2卡| 又紧又爽又黄一区二区| 国内揄拍国产精品人妻在线| 男女视频在线观看网站免费| 99久久成人亚洲精品观看| 国产一区二区三区视频了| 国产一区二区在线av高清观看| 亚洲国产色片| 少妇的逼水好多| 神马国产精品三级电影在线观看| 国产黄色小视频在线观看| 真实男女啪啪啪动态图| 日韩中文字幕欧美一区二区| 国产精品国产三级国产av玫瑰| 亚洲欧美清纯卡通| 国产成人a区在线观看| av在线蜜桃| 国产一区二区在线av高清观看| 人妻少妇偷人精品九色| 小蜜桃在线观看免费完整版高清| 国产高清视频在线播放一区| 女生性感内裤真人,穿戴方法视频| 人妻少妇偷人精品九色| 看片在线看免费视频| 99国产极品粉嫩在线观看| 欧美日韩乱码在线| 中文字幕免费在线视频6| 国产毛片a区久久久久| 精品乱码久久久久久99久播| 99精品久久久久人妻精品| 欧美一级a爱片免费观看看| 人妻夜夜爽99麻豆av| 国产精品精品国产色婷婷| 欧美成人免费av一区二区三区| 亚洲电影在线观看av| 麻豆国产97在线/欧美| 免费看av在线观看网站| 精品福利观看| 美女黄网站色视频| 久久久国产成人免费| 18+在线观看网站| 成人三级黄色视频| 成人无遮挡网站| 免费一级毛片在线播放高清视频| 久久精品国产自在天天线| 岛国在线免费视频观看| 直男gayav资源| 亚洲中文字幕一区二区三区有码在线看| 国产亚洲91精品色在线| x7x7x7水蜜桃| 国产探花极品一区二区| 亚洲美女视频黄频| 春色校园在线视频观看| 精品久久久久久久久久免费视频| 国产爱豆传媒在线观看| 舔av片在线| 精品日产1卡2卡| 精品不卡国产一区二区三区| 五月玫瑰六月丁香| 欧美xxxx性猛交bbbb| 欧美+日韩+精品| 国产主播在线观看一区二区| 一区二区三区免费毛片| 中文字幕高清在线视频| 在线免费观看的www视频| 成年女人毛片免费观看观看9| 日韩欧美 国产精品| 亚洲精品久久国产高清桃花| 国产伦一二天堂av在线观看| 国产亚洲91精品色在线| 国产成人aa在线观看| 搞女人的毛片| 国产欧美日韩精品亚洲av| 久久精品国产99精品国产亚洲性色| 伦理电影大哥的女人| 亚洲自偷自拍三级| 久久99热6这里只有精品| 免费观看在线日韩| 久久久精品欧美日韩精品| 亚洲图色成人| 国产高潮美女av| av视频在线观看入口| 人妻丰满熟妇av一区二区三区| 久久国产乱子免费精品| 俺也久久电影网| 在线播放无遮挡| 久久久成人免费电影| 国产中年淑女户外野战色| 亚洲人成网站在线播放欧美日韩| a级毛片免费高清观看在线播放| 婷婷丁香在线五月| 嫩草影视91久久| 岛国在线免费视频观看| 精品久久久噜噜| 亚洲精品成人久久久久久| 日韩高清综合在线| 亚洲av中文字字幕乱码综合| 少妇丰满av| 国产人妻一区二区三区在| 免费无遮挡裸体视频| av在线天堂中文字幕| 国产 一区 欧美 日韩| 美女免费视频网站| 女生性感内裤真人,穿戴方法视频| 亚洲美女搞黄在线观看 | 91久久精品电影网| av在线天堂中文字幕| 大又大粗又爽又黄少妇毛片口| 精品一区二区免费观看| 日本撒尿小便嘘嘘汇集6| 国产精品亚洲一级av第二区| 亚洲性夜色夜夜综合| 日韩欧美国产在线观看| av天堂在线播放| 午夜老司机福利剧场| 国产精品不卡视频一区二区| 国产91精品成人一区二区三区| 91精品国产九色| 日本免费一区二区三区高清不卡| 男女视频在线观看网站免费| 搡老熟女国产l中国老女人| 久久中文看片网| 蜜桃久久精品国产亚洲av| 自拍偷自拍亚洲精品老妇| 一本一本综合久久| 老熟妇乱子伦视频在线观看| 深爱激情五月婷婷| 日韩一区二区视频免费看| 免费av毛片视频| 一级av片app| ponron亚洲| 久久久久国内视频| 白带黄色成豆腐渣| 制服丝袜大香蕉在线| 国产精品野战在线观看| 久久久久久伊人网av| 麻豆av噜噜一区二区三区| 午夜福利在线观看免费完整高清在 | 女人十人毛片免费观看3o分钟| 免费av观看视频| 天堂动漫精品| 国内久久婷婷六月综合欲色啪| 日本五十路高清| 欧美色视频一区免费| 色综合色国产| 亚洲狠狠婷婷综合久久图片| 免费观看精品视频网站| avwww免费| 国产日本99.免费观看| 国产女主播在线喷水免费视频网站 | 久99久视频精品免费| .国产精品久久| 欧美日韩乱码在线| 午夜免费男女啪啪视频观看 | 国产91精品成人一区二区三区| 特大巨黑吊av在线直播| 大型黄色视频在线免费观看| 免费观看的影片在线观看| 欧美不卡视频在线免费观看| 极品教师在线免费播放| av专区在线播放| 丰满人妻一区二区三区视频av| 亚洲久久久久久中文字幕| 搡老岳熟女国产| 成人鲁丝片一二三区免费| 日韩一本色道免费dvd| 毛片女人毛片| 婷婷精品国产亚洲av| 校园人妻丝袜中文字幕| 看黄色毛片网站| 亚洲18禁久久av| 高清在线国产一区| 婷婷色综合大香蕉| 亚洲成a人片在线一区二区| 99久久久亚洲精品蜜臀av| videossex国产| 人妻制服诱惑在线中文字幕| 偷拍熟女少妇极品色| 赤兔流量卡办理| 久久久久久国产a免费观看| 淫妇啪啪啪对白视频| 日本精品一区二区三区蜜桃| 乱码一卡2卡4卡精品| 在线观看一区二区三区| 亚洲男人的天堂狠狠| 久久精品久久久久久噜噜老黄 | 一卡2卡三卡四卡精品乱码亚洲| 色在线成人网| 两人在一起打扑克的视频| 在线观看av片永久免费下载| 精品一区二区三区视频在线| 亚洲电影在线观看av| 少妇猛男粗大的猛烈进出视频 | 国产精品国产高清国产av| 俄罗斯特黄特色一大片| 午夜日韩欧美国产| 国产一区二区亚洲精品在线观看| 久久久精品大字幕| 在线免费观看的www视频| 18禁裸乳无遮挡免费网站照片| h日本视频在线播放| 69人妻影院| 老司机深夜福利视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲欧美日韩高清在线视频| 88av欧美| 日本一本二区三区精品| 久久中文看片网| 老师上课跳d突然被开到最大视频| 久久精品夜夜夜夜夜久久蜜豆| 女的被弄到高潮叫床怎么办 | 国产日本99.免费观看| 亚洲精品一区av在线观看| 色视频www国产| 少妇人妻一区二区三区视频| 国产精品久久久久久久久免| 久久精品久久久久久噜噜老黄 | 欧美潮喷喷水| 欧美性猛交黑人性爽| 日韩在线高清观看一区二区三区 | 18禁黄网站禁片午夜丰满| 1000部很黄的大片| 国产人妻一区二区三区在| 日本免费一区二区三区高清不卡| 简卡轻食公司| 又粗又爽又猛毛片免费看| x7x7x7水蜜桃| 免费看a级黄色片| 成人鲁丝片一二三区免费| 欧美日韩精品成人综合77777| 女人被狂操c到高潮| 国产午夜精品久久久久久一区二区三区 | 麻豆一二三区av精品| 丰满乱子伦码专区| 日日摸夜夜添夜夜添av毛片 | 国产欧美日韩精品一区二区| 国产一区二区亚洲精品在线观看| 日日夜夜操网爽| 国产一区二区在线av高清观看| 日日夜夜操网爽| 色综合站精品国产| 国产亚洲精品综合一区在线观看| 国产精品自产拍在线观看55亚洲| 亚洲无线观看免费| av视频在线观看入口| 黄色日韩在线| 久久午夜亚洲精品久久| 亚洲专区中文字幕在线| 久久精品国产亚洲网站| 亚洲乱码一区二区免费版| 欧美中文日本在线观看视频| 91av网一区二区| 亚洲美女搞黄在线观看 | av国产免费在线观看| 亚洲国产精品久久男人天堂| 日日撸夜夜添| 又黄又爽又刺激的免费视频.|