• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The D’Alembert type waves and the soliton molecules in a (2+1)-dimensional Kadomtsev-Petviashvili with its hierarchy equation*

    2021-10-12 05:31:36HuiLingWu吳慧伶ShengWanFan樊盛婉JinXiFei費(fèi)金喜andZhengYiMa馬正義
    Communications in Theoretical Physics 2021年10期
    關(guān)鍵詞:正義

    Hui-Ling Wu (吳慧伶), Sheng-Wan Fan (樊盛婉), Jin-Xi Fei (費(fèi)金喜) and Zheng-Yi Ma (馬正義),3

    1 Institute of Nonlinear Analysis and Department of Mathematics,Lishui University,Lishui 323000,China

    2 Institute of Optoelectronic Technology and Department of Photoelectric Engineering, Lishui University,Lishui 323000, China

    3 Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou 310018, China

    Abstract For a one(2+1)-dimensional combined Kadomtsev-Petviashvili with its hierarchy equation,the missing D’Alembert type solution is derived first through the traveling wave transformation which contains several special kink molecule structures.Further,after introducing the B?cklund transformation and an auxiliary variable, the N-soliton solution which contains some soliton molecules for this equation,is presented through its Hirota bilinear form.The concrete molecules including line solitons, breathers and a lump as well as several interactions of their hybrid are shown with the aid of special conditions and parameters.All these dynamical features are demonstrated through the different figures.

    Keywords: Kadomtsev-Petviashvili equation, soliton molecule, breather/lump soliton, elastic interaction

    1.Introduction

    It is well known that the standard Kadomtsev-Petviashvili(KP) equation can be written as (v ≡v(x, y, t))

    which possesses the quadratic nonlinearity vvxand a weak dispersion vxxx[1].Equation(1)admits the weakly dispersive waves in a paraxial wave approximation and can also be described as the evolution of long ion-acoustic waves of small amplitude propagating in plasma physics under the effect of long transverse perturbations [2, 3].

    The KP hierarchy is a paradigm of the hierarchies of one integrable system and includes an infinite number of integrable nonlinear differential equations [4–6].Generally speaking, integrable equations possess properties such as Lax pair, an infinite number of conservation laws and multiple soliton solutions.These nonlinear wave equations that model complex physical phenomena have attracted more and more attention from different fields [7–13].The following member of the KP hierarchy[14]is derived through the pseudo-differential formalism [15].Its multiple soliton solutions are obtained mainly using a simplified version of Hirota’s method [16].

    In fact, an integrable nonlinear equation combined with another will often produce unexpected results [17–20].Inspired by this idea, we employ the following integrable system which is extended and combines the (2+1)-dimensional KP equation (1) with the KP hierarchy (2) (KP-h)

    to illustrate the related soliton structures and some nonlinear phenomena.Here, the parameters a, b, α and β are four real constants.Whenand a=1, b=0,equation (3) is just the KP equation (1), but a=0, b=1,equation (3) is the KP hierarchy (2).

    This system (3) is integrable and its Lax pair can be derived as (ψ ≡ψ(x, y, t), Ψ ≡Ψ(x, y, t))

    and its dual

    The outline of this paper is as follows:In section 2,after taking the traveling wave transformation, the missing D’Alembert type solution is derived which contains several special kink molecule structures for the (2+1)-dimensional Kadomtsev-Petviashvili with its hierarchy equation (3).In section 3, after introducing the B?cklund transformation and an auxiliary variable τ, the Hirota bilinear form of this equation is conducted, the N-soliton solution which contains some soliton molecules is presented.These concrete molecules include the line solitons, the breathers and a lump as well as several interactions of their hybrid after studying some special conditions and parameters.These dynamic features are demonstrated using the different figures.In the last section, a brief summary is given for this paper.

    2.The D’Alembert type solutions of the (2+1)-dimensional KP-h system

    Recently, Lou studied the cKP3-4 equation and the Nizhnik-Novikov-Veselov (NNV) equation to investigate various types of solitons including the missing D’Alembert type solutions, the arbitrary traveling waves moving in one direction with a fixed model dependent velocity and soliton molecules [21, 22].In fact, this (2+1)-dimensional KP-h system (3) may have the same properties.For this purpose,we rewrite equation (3) as (u ≡u(píng)(x, y, t), w ≡w(x, y, t))

    After taking the traveling wave transformation

    Equation (6) becomes

    which can be derived as

    This equation induces

    and

    where the traveling wave V becomes an arbitrary D’Alembert type wave.This solution contains several special Kink molecule structures through equations(9)–(11).For example,when the related parameters are

    while the solution v=V(X) of equation (3) is

    we can present a kink molecule(figure 1(a)),a kink and a half periodic kink (HPK) molecule (figure 1(b)), a HPK-HPK molecule (figure 1(c)) and a HPK-PK molecule (figure 1(d)),respectively at time t=0 [20–22].

    Figure 1.(a)Kink molecule expressed by equations(12)and(13);(b)Kink-HPK molecule given by equations(12)and(14);(c)HPK-HPK molecule described by equations (12) and (15); (d) HPK-PK molecule defined by equations (12) and (16) at time t=0.

    3.The soliton molecule solutions of the (2+1)-dimensional KP-h system

    To derive the soliton molecule solutions of the (2+1)-dimensional KP-h system(3),we first introduce the following B?cklund transformation (f ≡f(x, y, t))

    Then,the trilinear form in terms of the auxiliary function f can be written out through equation (3)

    Further, we introduce an auxiliary variable τ, such that this trilinear equation (18) can be bilinearized directly

    After that, equation (18) becomes

    which can be solved through the bilinear equation

    with the D-operator defined by [23]

    Therefore, the N-soliton solutions described through equation(17)of the(2+1)-dimensional KP-h system(3)also have the following standard expression for the auxiliary function f

    from equation (21) [24–28], while the relations of the parameters are

    These multiple soliton solutions of equations (17) with(23) may contain many kinds of resonant excitations [29, 30].In the following, we try our best to derive the soliton molecules,the breathers through the resonant condition,the rational lumps by further limit condition and their hybrid structures for the above conclusion.The concrete formula of the auxiliary function f of equation (23) for N=4 can be rewritten as

    where the phase shifts aij(i <j, i, j=1, 2, 3, 4) and the parameters qi(i=1, 2, 3, 4) satisfy equations (24) and (25).

    In order to construct soliton molecules, we use the following velocity resonant conditions:

    (1) The molecules produced by the solitons

    · One two-soliton molecule

    We first take the above phase shifts aij=0(j=3, 4) and ξi=0(i=3, 4) in equation (26), and require the velocity resonant condition (27) for i=1, j=2.The soliton molecule structure is satisfied with the condition

    from equations (24) and (25) for a12, q1and q2.

    Figure 2(a)exhibits the two-soliton molecule after taking the determining parameters

    which lead to the other parameters’ values

    In this case, the the auxiliary function f is given by

    This soliton molecule structure of variable v of equation(17)for the(2+1)-dimensional KP-h system(3)is constructed by two line solitons in the molecule, which possess the same velocity,but their height and width are different (figure 2(a)).

    Figure 2.(a) The two-soliton molecule structure of the solution v from equations (17) and (31) at t=0.(b) The three-soliton molecule structure of the solution v from equations(17)and(33)at t=0.(c)The four-soliton molecule structure of the solution v from equations(17)and (35) at t=0.

    · One three-soliton molecule

    We continue to take the phase shift ai4=0(i <4) and ξ4=0 in equation (26), and require the velocity resonant condition (27) for i, j=1, 2, 3 the three-soliton molecule structure may appear.For example, when we set the parameters in equation (29) andwhile the others are derived as

    from equations (24), (25) and (27), then the transformation function f of equation (26) is given by

    The three-soliton molecule structure of v for the (2+1)-dimensional KP-h system (3) is constructed directly from equations (17) and (33), where three line solitons in the molecule (figure 2(b)).

    · One four-soliton molecule

    When taking the phase shifts aij≠0(i <j,i,j=1,2,3,4)and the parameters qi≠0(i=1,2,3,4)in equation(26),and expanding the resonant conditions (27) for i, j=1,2,3,4, the four-soliton molecule can be produced.

    For instance, we select the same parameters as equation (29) and

    then the function f of equation (26) is derived as

    For this purpose, after taking the long-wave limit

    the transformation function f of equation (26) is simplified

    with the phase shift ai4=0(i <4) and ξ4=0.Here,

    If we take the conjugate constants

    the supposing quadratic function

    is derived from the expression f0≡θ1θ2+b12of equation (37) with the constraint relations of the parameters ai(1 ≤i ≤9) are

    Therefore, the molecule with four line solitons is produced through equations (17) and (35) (figure 2(c)).

    (2) The molecules constructed by the solitons and a lump

    · The soliton molecule through a line soliton and a lump which the moving route of the lump is

    This solution may produce the soliton molecule through a line soliton and a lump with the condition

    the transformation function f of equation (37) is

    Figure 3 is one soliton molecule constructed through a line soliton and a lump at different times with the parameters are equation (44), while the moving velocity of this lump is

    Figure 3.The soliton molecule consisting of a line soliton and a lump of the solution v from equations(17)and(45)at(a)t = -,(b)t=0 and (c) respectively.

    · The soliton molecule t hrough the line soliton molecule and a lump

    After taking the parameters aij≠0(i <j,i,j=1,2,3,4),qi≠0(i=1,2,3,4)of equation(26),and the long-wave limit condition of equation (36), the transformation function f of equation (37) is expanded

    with

    Through this auxiliary function, we can construct the soliton molecule structure of variable v of equation (17) for the (2+1)-dimensional KP-h system (3) by two line solitons and a lump in the molecule with the condition

    and

    For example, after selecting the parameters a, b, α, β as equation (29) and

    the transformation function f of equation (46) becomes

    Figure 4 shows the soliton molecule through the line soliton molecule and a lump at different times with the parameters are taken as equation (50).

    Figure 4.The soliton molecule consisting of the line soliton molecule and a lump of the solution v from equations (17) and (51) at (a)t = - (b) t=0 and (c)t = respectively.

    However, if we don’t obey the rule of equation (48),but hold on equation (49), the above soliton molecule structure may be destroyed.For example, when taking the parameters a, b, α, β as equation (29), but

    the function f of equation (46) is

    This conclusion induces the elastic interaction of the line soliton molecule and a lump of the solution v from equations (17) and (53) for the (2+1)-dimensional KP-h system (3).Figure 5 shows that the amplitude, the velocity and the shape of these structures not any change front and back their collision.

    Figure 5.The elastic interaction between the line soliton molecule and a lump of the solution v from equations(17)and(53)at(a)t=-2,(b)t=-1.3, (c) t=0 and (d) t=1, respectively.

    (3) The molecules induced by the solitons and the breathers

    · The soliton molecule through a line soliton and the breather

    After taking the phase shift ai4=0(i <4) and ξ4=0 of equation (26), we let the conjugate relationξ1=ξ2[31, 32],i.e.the variables ki, piand ηi(i=1, 2) satisfy

    with i is an imaginary unit.Equation (26) is deduced

    with

    and ξ3, a12also obey equations (24), (25).

    When taking the parameters a, b, α, β as equation (29),but

    and

    one can construct the soliton molecule expressed a line soliton and the breather of variable v of equation (17)for the (2+1)-dimensional KP-h system (3) through the function (55)(figure 6(a)).

    Figure 6.(a) The soliton molecule expressed a line soliton and the breather for the variable v of equation (17) with the condition equations(55)–(58)at t=0.(b)The soliton molecule constructed the line soliton molecule and the breather for the variable v of equation(17)with the condition equations (61) and (62) at t=0.(c) The elastic interaction between the line soliton molecule and the breather with the condition equations(61)and(63)at t=0.(d)The soliton molecule formed through two breathers with the condition equations(68)and(69)at t=0.

    · The soliton molecule through the line soliton molecule and the breather

    When equations (54) and (56) hold with

    and

    equation (26) is induced

    which is an expanded expression of equation (55).

    Figure 6(b) shows the soliton molecule through the line soliton molecule and the breather at time t=0 with the parameters are selected as

    However,if we don’t obey the rule of equation(59),that is, when taking the parameters as equation (62) except for

    the above soliton molecule structure may be destroyed.The interaction of the line soliton molecule and the breather is elastic for the (2+1)-dimensional KP-h system (figure 6(c)).

    · The soliton molecule through two breathers

    Based on equations (54) and (56), we further take

    and

    but

    with

    equation (26) is reproduced as

    For this time,the soliton molecule occurs after taking the following parameters

    which is constructed by two breathers (figure 6(d)).

    4.Summary

    We employ the integrable KP-h system(3)as the investigated subject which is the (2+1)-dimensional KP equation (1)combining with the KP hierarchy (2).After taking the traveling wave transformation (7),the missing D’Alembert type solution (11) for this equation (3) is first derived.This solution contains several special Kink molecule structures (13)–(16).Further, after introducing the B?cklund transformation(17)and an auxiliary variable τ,the Hirota bilinear form(21)of equation (3) is conducted and the N-soliton solution (23)with equations (24) and (25) is presented.This N-soliton solution contains some typical soliton molecules including the line solitons, the breathers and a lump (figures 2–4, 6(a), (b)and (d)) as well as the elastic interaction between the line soliton molecule and a lump/the breather(figures 5 and 6(c))after selecting some special conditions and parameters.Up to now, these dynamics features have not been reported for this(2+1)-dimensional KP-h system (3).We believe that these structures derived above would be worth underlying in the future research.

    猜你喜歡
    正義
    用正義書寫文化自信
    從解釋到證成——最優(yōu)解釋方法是否可以充分證成正義理論?
    從出文看《毛詩正義》單疏本到十行本的演變
    天一閣文叢(2020年0期)2020-11-05 08:28:16
    紅六軍團(tuán)的正義槍聲
    我的“正義”女神
    有了正義就要喊出來
    山東青年(2016年3期)2016-02-28 14:25:49
    正義必勝!和平必勝!人民必勝!
    倒逼的正義與溫情
    正義必勝!和平必勝!人民必勝!
    法律與正義
    浙江人大(2014年5期)2014-03-20 16:20:26
    久久久精品免费免费高清| 国产v大片淫在线免费观看| 干丝袜人妻中文字幕| 国产视频内射| 久久精品久久久久久久性| 国产v大片淫在线免费观看| 日本三级黄在线观看| 丝袜喷水一区| 天堂网av新在线| 免费观看精品视频网站| 乱码一卡2卡4卡精品| 内射极品少妇av片p| 天天躁夜夜躁狠狠久久av| 日韩大片免费观看网站| 亚洲va在线va天堂va国产| 国产精品久久久久久久久免| 亚洲,欧美,日韩| 亚洲精品亚洲一区二区| 亚洲精品国产成人久久av| 老司机影院成人| 极品少妇高潮喷水抽搐| 亚洲成人av在线免费| 男人舔女人下体高潮全视频| 日韩av在线大香蕉| 亚洲av在线观看美女高潮| 国产一区二区三区综合在线观看 | 最近最新中文字幕大全电影3| 免费无遮挡裸体视频| 欧美日韩在线观看h| 人人妻人人澡欧美一区二区| 日本猛色少妇xxxxx猛交久久| 亚洲va在线va天堂va国产| 亚洲av在线观看美女高潮| 色综合色国产| 日韩制服骚丝袜av| 国产精品久久视频播放| 老师上课跳d突然被开到最大视频| 波野结衣二区三区在线| 亚洲伊人久久精品综合| 亚洲国产最新在线播放| 国产 一区 欧美 日韩| av天堂中文字幕网| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲高清免费不卡视频| av黄色大香蕉| 日本-黄色视频高清免费观看| 久久久久久久久大av| 亚洲高清免费不卡视频| 高清在线视频一区二区三区| av.在线天堂| 国产成人免费观看mmmm| 国产精品嫩草影院av在线观看| av在线老鸭窝| av网站免费在线观看视频 | 亚洲av不卡在线观看| 伊人久久精品亚洲午夜| 热99在线观看视频| 能在线免费看毛片的网站| 内地一区二区视频在线| 在线天堂最新版资源| 国产精品一及| 成年人午夜在线观看视频 | 免费av毛片视频| 六月丁香七月| 男女那种视频在线观看| 久久热精品热| 18禁在线播放成人免费| 国产乱来视频区| kizo精华| 亚洲欧美日韩无卡精品| 成人午夜高清在线视频| 特大巨黑吊av在线直播| 亚洲色图av天堂| 又大又黄又爽视频免费| 欧美xxxx黑人xx丫x性爽| 亚洲成人一二三区av| 97超碰精品成人国产| 天天躁夜夜躁狠狠久久av| 床上黄色一级片| 男人爽女人下面视频在线观看| 国产一区有黄有色的免费视频 | 日韩强制内射视频| 午夜精品国产一区二区电影 | 欧美变态另类bdsm刘玥| 久久久午夜欧美精品| 舔av片在线| 亚洲成人一二三区av| 久久鲁丝午夜福利片| 少妇人妻一区二区三区视频| 日日干狠狠操夜夜爽| 18禁动态无遮挡网站| 少妇高潮的动态图| 久久这里只有精品中国| 午夜精品在线福利| 免费av观看视频| 免费高清在线观看视频在线观看| 久久97久久精品| 国产91av在线免费观看| 国产黄片美女视频| 国产精品一区二区三区四区久久| 麻豆成人午夜福利视频| 高清视频免费观看一区二区 | 久久久a久久爽久久v久久| 夜夜看夜夜爽夜夜摸| 亚洲自偷自拍三级| 欧美xxxx性猛交bbbb| 国产精品人妻久久久久久| 国产极品天堂在线| 免费观看无遮挡的男女| 欧美成人午夜免费资源| 国产成人精品久久久久久| 国产成人精品婷婷| 国产69精品久久久久777片| 99re6热这里在线精品视频| 国产不卡一卡二| 91精品伊人久久大香线蕉| 久久久久久久久久久丰满| 亚洲经典国产精华液单| 欧美精品国产亚洲| 免费无遮挡裸体视频| 免费播放大片免费观看视频在线观看| 国产亚洲av嫩草精品影院| 精品一区二区三卡| 中文欧美无线码| 一区二区三区四区激情视频| 又黄又爽又刺激的免费视频.| 国产高潮美女av| 国产精品爽爽va在线观看网站| 99热这里只有是精品在线观看| 看免费成人av毛片| 亚洲国产欧美在线一区| 韩国高清视频一区二区三区| 国产白丝娇喘喷水9色精品| 国产成人91sexporn| 久久久色成人| 特级一级黄色大片| 男人舔女人下体高潮全视频| 午夜老司机福利剧场| 亚洲av成人精品一区久久| 国产女主播在线喷水免费视频网站 | 搡老妇女老女人老熟妇| 亚洲国产精品国产精品| 日韩av不卡免费在线播放| 视频中文字幕在线观看| 亚洲精品一区蜜桃| 午夜福利高清视频| 嫩草影院新地址| 亚洲图色成人| 久久精品人妻少妇| 一二三四中文在线观看免费高清| 天堂影院成人在线观看| 亚洲精品日韩在线中文字幕| 免费观看无遮挡的男女| 国产伦精品一区二区三区四那| 中文欧美无线码| 六月丁香七月| 成年女人在线观看亚洲视频 | 乱人视频在线观看| 乱码一卡2卡4卡精品| 精品人妻偷拍中文字幕| 搡老妇女老女人老熟妇| 国产高清三级在线| 少妇人妻一区二区三区视频| 国产老妇伦熟女老妇高清| 国产精品不卡视频一区二区| 亚洲欧美成人综合另类久久久| 亚洲av免费高清在线观看| 亚洲精华国产精华液的使用体验| 婷婷色综合大香蕉| 能在线免费观看的黄片| 白带黄色成豆腐渣| 一级片'在线观看视频| 麻豆乱淫一区二区| 在线天堂最新版资源| 精品一区在线观看国产| 久久久久久久久久久丰满| 日韩欧美 国产精品| 综合色丁香网| 午夜精品一区二区三区免费看| freevideosex欧美| 亚洲国产最新在线播放| 麻豆成人av视频| 99久久精品热视频| 秋霞在线观看毛片| 国产av码专区亚洲av| 国产亚洲最大av| 91精品国产九色| 九九在线视频观看精品| 在线观看美女被高潮喷水网站| 色尼玛亚洲综合影院| 纵有疾风起免费观看全集完整版 | a级一级毛片免费在线观看| 97人妻精品一区二区三区麻豆| 欧美成人一区二区免费高清观看| 国产又色又爽无遮挡免| 日韩中字成人| 秋霞在线观看毛片| 国产成人精品久久久久久| 超碰av人人做人人爽久久| 中文在线观看免费www的网站| 91午夜精品亚洲一区二区三区| 丝袜美腿在线中文| 国产又色又爽无遮挡免| av又黄又爽大尺度在线免费看| 三级国产精品片| 最近中文字幕2019免费版| 久久精品综合一区二区三区| 日韩欧美国产在线观看| 街头女战士在线观看网站| 最后的刺客免费高清国语| 亚洲精品一二三| 九九久久精品国产亚洲av麻豆| 亚洲国产精品成人久久小说| 看十八女毛片水多多多| 少妇的逼好多水| 欧美极品一区二区三区四区| 免费高清在线观看视频在线观看| 久久久久网色| av天堂中文字幕网| 91在线精品国自产拍蜜月| 青春草视频在线免费观看| 国产 一区精品| 大香蕉97超碰在线| 国产精品一区二区在线观看99 | 真实男女啪啪啪动态图| 3wmmmm亚洲av在线观看| 少妇熟女欧美另类| 熟女电影av网| 日韩成人av中文字幕在线观看| 老女人水多毛片| 亚洲欧美精品专区久久| 国产精品嫩草影院av在线观看| 国产一区二区三区综合在线观看 | 久久99热这里只有精品18| 能在线免费观看的黄片| 精品国产一区二区三区久久久樱花 | 久久久久久久久久成人| 夫妻午夜视频| 天堂影院成人在线观看| 男女下面进入的视频免费午夜| 简卡轻食公司| 天堂中文最新版在线下载 | 性色avwww在线观看| 97超碰精品成人国产| 免费电影在线观看免费观看| 成人亚洲精品av一区二区| 中文天堂在线官网| 日本一二三区视频观看| www.av在线官网国产| 亚洲内射少妇av| 亚洲图色成人| 3wmmmm亚洲av在线观看| 啦啦啦啦在线视频资源| 精品人妻偷拍中文字幕| 国产精品嫩草影院av在线观看| 国产成人精品福利久久| 精品一区在线观看国产| 免费人成在线观看视频色| 男女下面进入的视频免费午夜| 午夜激情福利司机影院| 国产女主播在线喷水免费视频网站 | 18+在线观看网站| 亚洲精品乱久久久久久| 18禁动态无遮挡网站| 国产女主播在线喷水免费视频网站 | 国产免费又黄又爽又色| 夜夜看夜夜爽夜夜摸| 久久精品久久精品一区二区三区| 欧美变态另类bdsm刘玥| 国产 亚洲一区二区三区 | 一本一本综合久久| 99视频精品全部免费 在线| 国产黄片视频在线免费观看| 亚洲丝袜综合中文字幕| 国产亚洲91精品色在线| 亚洲美女搞黄在线观看| 日本午夜av视频| 亚洲欧美清纯卡通| 色综合色国产| 校园人妻丝袜中文字幕| 在线播放无遮挡| 国产成年人精品一区二区| 熟妇人妻不卡中文字幕| 少妇人妻一区二区三区视频| 韩国av在线不卡| 精品国产一区二区三区久久久樱花 | 黄色一级大片看看| 色综合站精品国产| 亚洲三级黄色毛片| 在线免费观看的www视频| 成年av动漫网址| 自拍偷自拍亚洲精品老妇| 午夜精品在线福利| 欧美xxⅹ黑人| 亚洲欧美清纯卡通| 国产精品久久久久久久电影| 亚洲国产最新在线播放| 国产高清不卡午夜福利| 69人妻影院| 在线播放无遮挡| 精品久久久久久久久av| 国产精品麻豆人妻色哟哟久久 | 联通29元200g的流量卡| 最近最新中文字幕免费大全7| 欧美成人精品欧美一级黄| 精品酒店卫生间| 久久久午夜欧美精品| 精品一区二区三区视频在线| 全区人妻精品视频| 午夜福利视频精品| 久久久久久久久久久免费av| 国产成人a∨麻豆精品| 国产午夜精品论理片| 亚洲内射少妇av| 国产精品麻豆人妻色哟哟久久 | 国产欧美日韩精品一区二区| xxx大片免费视频| videos熟女内射| 精华霜和精华液先用哪个| 麻豆精品久久久久久蜜桃| 纵有疾风起免费观看全集完整版 | 女人久久www免费人成看片| 一级毛片久久久久久久久女| 亚洲国产日韩欧美精品在线观看| 日韩强制内射视频| 午夜免费男女啪啪视频观看| 亚洲熟妇中文字幕五十中出| 老师上课跳d突然被开到最大视频| 精品国产三级普通话版| 精品99又大又爽又粗少妇毛片| 久久国产乱子免费精品| 久久精品国产亚洲网站| 汤姆久久久久久久影院中文字幕 | 日本免费在线观看一区| 一区二区三区乱码不卡18| 少妇高潮的动态图| 国产成人a∨麻豆精品| 久久久久国产网址| 久久97久久精品| 国产精品99久久久久久久久| 久久99热这里只频精品6学生| 国产伦理片在线播放av一区| 少妇裸体淫交视频免费看高清| 久久久久久久久中文| 国产av不卡久久| 精品久久久噜噜| 免费电影在线观看免费观看| 国产精品麻豆人妻色哟哟久久 | 国产精品人妻久久久久久| 麻豆国产97在线/欧美| 国产成人精品一,二区| 国产成人91sexporn| 国产久久久一区二区三区| 亚洲精品成人久久久久久| 国产亚洲一区二区精品| 国产一区二区三区av在线| 成年免费大片在线观看| 亚洲精品,欧美精品| 久久精品国产亚洲网站| 中文欧美无线码| 美女高潮的动态| 2022亚洲国产成人精品| 免费看av在线观看网站| 亚洲欧美日韩无卡精品| 晚上一个人看的免费电影| 哪个播放器可以免费观看大片| 久久人人爽人人片av| 亚洲av中文av极速乱| 国产精品美女特级片免费视频播放器| 亚洲精品日韩在线中文字幕| 欧美丝袜亚洲另类| 神马国产精品三级电影在线观看| 少妇人妻精品综合一区二区| 国产黄频视频在线观看| 亚洲精品中文字幕在线视频 | 亚洲成人久久爱视频| 午夜福利网站1000一区二区三区| 日韩亚洲欧美综合| 国产女主播在线喷水免费视频网站 | 国产激情偷乱视频一区二区| 亚洲内射少妇av| 国产伦精品一区二区三区四那| 亚洲国产欧美人成| 国产又色又爽无遮挡免| 国产精品女同一区二区软件| 内射极品少妇av片p| 嫩草影院新地址| 人妻制服诱惑在线中文字幕| 性插视频无遮挡在线免费观看| 网址你懂的国产日韩在线| 国产免费视频播放在线视频 | 五月天丁香电影| 纵有疾风起免费观看全集完整版 | 国产有黄有色有爽视频| 国产精品熟女久久久久浪| 成人毛片60女人毛片免费| 好男人在线观看高清免费视频| 国产一级毛片七仙女欲春2| 日韩亚洲欧美综合| 亚洲精品乱码久久久久久按摩| 亚洲人与动物交配视频| 街头女战士在线观看网站| 国产精品伦人一区二区| 久久精品久久久久久噜噜老黄| 丝瓜视频免费看黄片| 国产成人91sexporn| 观看免费一级毛片| 亚洲熟妇中文字幕五十中出| 中文字幕av在线有码专区| 搡老乐熟女国产| 尾随美女入室| 日日摸夜夜添夜夜爱| 欧美不卡视频在线免费观看| av国产久精品久网站免费入址| 亚洲成人av在线免费| 国产亚洲av嫩草精品影院| 两个人的视频大全免费| 少妇人妻精品综合一区二区| 国产 一区精品| 狠狠精品人妻久久久久久综合| 国产精品av视频在线免费观看| 午夜久久久久精精品| 美女黄网站色视频| 日韩电影二区| 亚洲av电影在线观看一区二区三区 | 人人妻人人澡人人爽人人夜夜 | 国产一区二区三区综合在线观看 | 97在线人人人人妻| 十八禁网站网址无遮挡| 精品少妇内射三级| 黄频高清免费视频| 欧美精品亚洲一区二区| 国产精品一国产av| 久久精品国产a三级三级三级| 桃花免费在线播放| 久久狼人影院| 久久人人爽av亚洲精品天堂| 亚洲经典国产精华液单| 欧美国产精品va在线观看不卡| 日韩人妻精品一区2区三区| 国产 精品1| av在线观看视频网站免费| 国产精品久久久久久久久免| av片东京热男人的天堂| 久久这里有精品视频免费| 精品一区在线观看国产| 久久精品国产亚洲av涩爱| 卡戴珊不雅视频在线播放| 精品人妻熟女毛片av久久网站| 亚洲成人手机| 久久人妻熟女aⅴ| 国产精品99久久99久久久不卡 | 国产日韩一区二区三区精品不卡| 五月开心婷婷网| 日韩免费高清中文字幕av| 国产成人精品无人区| 韩国av在线不卡| 美女主播在线视频| 精品亚洲成a人片在线观看| 亚洲av福利一区| 国产不卡av网站在线观看| 欧美日韩视频高清一区二区三区二| 国产精品.久久久| 一级毛片我不卡| av网站免费在线观看视频| 在线观看www视频免费| 亚洲欧洲国产日韩| 国产精品久久久av美女十八| 久久午夜综合久久蜜桃| 久久精品人人爽人人爽视色| 成年人午夜在线观看视频| 亚洲精品日韩在线中文字幕| 欧美成人精品欧美一级黄| 国产熟女午夜一区二区三区| 亚洲少妇的诱惑av| 国产精品欧美亚洲77777| 久久av网站| 午夜日韩欧美国产| 男的添女的下面高潮视频| 久久久久久免费高清国产稀缺| 国产极品粉嫩免费观看在线| 日韩视频在线欧美| 欧美日韩视频高清一区二区三区二| 久久女婷五月综合色啪小说| 人妻少妇偷人精品九色| 美女主播在线视频| 国产日韩欧美在线精品| 人人澡人人妻人| 欧美日韩综合久久久久久| 97人妻天天添夜夜摸| 亚洲色图 男人天堂 中文字幕| 极品少妇高潮喷水抽搐| 精品一区在线观看国产| 久久久久久久久久久免费av| 欧美日韩av久久| av免费观看日本| av在线老鸭窝| 黑人欧美特级aaaaaa片| 叶爱在线成人免费视频播放| 99热全是精品| 亚洲av成人精品一二三区| 日本91视频免费播放| 欧美精品av麻豆av| 亚洲人成77777在线视频| 亚洲国产色片| 欧美日韩精品成人综合77777| 欧美精品高潮呻吟av久久| 成人18禁高潮啪啪吃奶动态图| 国产成人精品在线电影| 国产精品免费视频内射| 亚洲欧洲国产日韩| 日韩欧美一区视频在线观看| 国产1区2区3区精品| 国产成人精品无人区| 欧美亚洲日本最大视频资源| 十分钟在线观看高清视频www| 精品人妻在线不人妻| 亚洲色图综合在线观看| 亚洲欧美精品自产自拍| 国产精品久久久久久精品古装| 99热网站在线观看| 成人午夜精彩视频在线观看| 国产精品久久久久久av不卡| 老鸭窝网址在线观看| 三上悠亚av全集在线观看| av网站在线播放免费| 伦精品一区二区三区| 一级毛片我不卡| 汤姆久久久久久久影院中文字幕| 男人舔女人的私密视频| √禁漫天堂资源中文www| 国产一区二区激情短视频 | 国产黄色免费在线视频| 日韩制服丝袜自拍偷拍| 可以免费在线观看a视频的电影网站 | 国产成人精品福利久久| 人妻少妇偷人精品九色| 久久久久精品久久久久真实原创| 久热这里只有精品99| 91精品伊人久久大香线蕉| 一级片免费观看大全| 自线自在国产av| www.精华液| 久久久国产精品麻豆| 久久精品夜色国产| 国产成人91sexporn| 日韩在线高清观看一区二区三区| 性色avwww在线观看| freevideosex欧美| 国产日韩欧美亚洲二区| 国产精品女同一区二区软件| 永久网站在线| 18禁动态无遮挡网站| 有码 亚洲区| 国产成人精品福利久久| 国产精品免费视频内射| 亚洲综合色惰| 人人妻人人爽人人添夜夜欢视频| 不卡av一区二区三区| 观看av在线不卡| 精品一品国产午夜福利视频| 黄色毛片三级朝国网站| 亚洲精品视频女| 女人高潮潮喷娇喘18禁视频| 久久综合国产亚洲精品| 国产免费福利视频在线观看| 蜜桃国产av成人99| 精品久久蜜臀av无| 国产在线视频一区二区| 男人爽女人下面视频在线观看| 国产极品粉嫩免费观看在线| 国产精品国产av在线观看| 一区二区三区乱码不卡18| 国产精品无大码| 男人添女人高潮全过程视频| 午夜福利视频精品| freevideosex欧美| 国产精品麻豆人妻色哟哟久久| 91在线精品国自产拍蜜月| 电影成人av| 久久精品国产鲁丝片午夜精品| 国产高清国产精品国产三级| 黄频高清免费视频| 亚洲精品国产av蜜桃| 国产视频首页在线观看| 欧美日韩一区二区视频在线观看视频在线| 国产一级毛片在线| 熟女少妇亚洲综合色aaa.| 久久女婷五月综合色啪小说| 性色av一级| 大码成人一级视频| 日韩熟女老妇一区二区性免费视频| 少妇熟女欧美另类| 国产精品人妻久久久影院| 日韩,欧美,国产一区二区三区| 777久久人妻少妇嫩草av网站| 日本vs欧美在线观看视频| 国产精品二区激情视频| 人妻少妇偷人精品九色| 亚洲av.av天堂| 欧美人与善性xxx| 丝袜脚勾引网站| 精品一区二区三区四区五区乱码 | 成人二区视频| 国产精品三级大全| 国产av码专区亚洲av| 晚上一个人看的免费电影| 激情五月婷婷亚洲| 久久人妻熟女aⅴ| 免费黄网站久久成人精品| 成人漫画全彩无遮挡| 亚洲精品aⅴ在线观看| 精品人妻一区二区三区麻豆| 国产精品女同一区二区软件| 欧美精品人与动牲交sv欧美|