• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Examination of n-T9 conditions required by N=50, 82, 126 waiting points in r-process

    2021-10-12 05:32:48NguyenDuyLyNguyenNgocDuyNguyenKimUyenandVinhPham
    Communications in Theoretical Physics 2021年10期

    Nguyen Duy Ly, Nguyen Ngoc Duy, Nguyen Kim Uyenand Vinh N T Pham

    1 Faculty of Fundamental Sciences, Vanlang University, Ho Chi Minh City 700000, Vietnam

    2 Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea

    3 Department of Physics,Ho Chi Minh City University of Education,Ho Chi Minh City 700000,Vietnam

    Abstract We examined the conditions of neutron density(n)and temperature(T9)required for the N=50,82,and 126 isotopes to be waiting points(WP)in the r-process.The nuclear mass based on experimental data presented in the AME2020 database (AME and AME ± Δ) and that predicted using FRDM,WS4, DZ10, and KTUY models were employed in our estimations.We found that the conditions required by the N=50 WP significantly overlap with those required by the N=82 ones,except for the WS4 model.In addition, the upper (or lower) bounds of the n-T9 conditions based on the models are different from each other due to the deviations in the two-neutron separation energies.The standard deviations in the nuclear mass of 108 isotopes in the three N=50,82,and 126 groups are about rms=0.192 and 0.434 MeV for the pairs of KTUY-AME and WS4-KTUY models,respectively.We found that these mass uncertainties result in a large discrepancy in the nn-T9 conditions, leading to significant differences in the conditions for simultaneously appearing all the three peaks in the r-process abundance.The newly updated FRDM and WS4 calculations can give the overall conditions for the appearance of all the peaks but vice versa for their old versions in a previous study.The change in the final r-process isotopic abundance due to the mass uncertainty is from a few factors to three orders of magnitude.Therefore,accurate nuclear masses of the r-process key nuclei,especially for 76Fe, 81Cu, 127Rh, 132Cd, 192Dy,and 197Tm,are highly recommended to be measured in radioactive-ion beam facilities for a better understanding of the r-process evolution.

    Keywords: neutron capture, r-process, nuclear mass, isotopic abundance, precise mass measurement

    1.Introduction

    The synthesis of elements beyond iron is believed to mainly proceed via the rapid neutron-capture process (r-process) [1, 2].Analyses on the galactic elemental evolution [3–6] indicate that elemental abundance of the Solar system with three peaks at A ≈80 (Ge-Kr), 130(Te-Xe), and 195 (Os-Pt) is a result of the r-process [7–10].Indeed, about half of heavy elements, up to thorium,are produced in this process via a combination of the(n,γ), (γ, n) reactions, β-decay, and fission.Once the neutron capture is faster than the radioactive decay(mainly via β--decay)of the exotic seed nuclei, neutron-rich isotopes are enriched,leading to an expansion of the nuclear landscape far from the β stability.The competition between the(n,γ)-(γ,n)reaction and β--decay fluxes strongly impacts the isotopic abundance and reaction path of nucleosynthesis.A freeze-out of the neutron capture flux can occur when the (n, γ)-(γ, n) equilibrium is established under specific stellar conditions of neutron density and temperature[11–13],leading to the enrichment of long-lived isotopes, which are referred as waiting points (WP).In the equilibrium, the so-called WP nuclei await the β decay to shift the reaction path along the r-process towards the stability[14–16].Since the WP, whose neutron numbers are in the vicinity of neutron shell-closures at N=50,82,126,have relatively long lifetimes, their enrichment during the freeze-out results in the corresponding peaks at A=80, 130, 195 in the r-process abundance.Notice that the three peaks in the Solar-system r-process are thought not to be produced under the same set of stellar conditions[11,17,18].Hence,studies on the astrophysical conditions for the equilibrium and β-decay half-lives of extremely neutron-rich nuclei are important for a better understanding of the scenarios of the r-process.

    Since the behaviors of the r-process strongly depend on the(n,γ),(γ,n),and β-decay rates[19–22],both nuclear properties(e.g.mass, spin, half-life, etc) of unstable isotopes far from stability and astrophysical conditions are important inputs for r-process calculations.For instance, in the study of r-process matter flow,Niu et al[23]indicated that reaction paths from20Ca to50Sn can be expanded up to 14(or 4)neutrons from N=82 if the β-decay half-lives based on the RHFB+QRPA model[24, 25] (or measurements [26, 27]) were employed in the calculations.Recently, some new developments for predicting the β-decay rate (or half-life) have been conducted, which are helpful for r-process studies.For example, a large-scale shell model including Gamow-Teller and first-forbidden transitions developed by Zhi et al[28]and the interacting shell model using large spaces of single-particle valence and many-body Hamiltonians proposed by Kostensalo et al[29]are emerging as good candidates for calculating the half-lives of heavy nuclei.The Hartree–Fock calculation including forbidden transitions with Skyrme interaction and pairing correlations can also well reproduce measured half-lives of neutron-rich nuclei with A ≈190[30].In other studies[10,31–33],it was found that the determination of the neutron density and temperature conditions for the (γ, n)-(n, γ) equilibrium establishment or WP approximation strongly depends on neutron and/or two-neutron separation energies of neutron-rich nuclei.In particular, the deviations in two-neutron separation energies of78Ni and84Zn due to the differences among the RMF [34], FRDM [35], and WS [36, 37] mass models lead to a large change, from 1023to 1026cm-3at 1 GigaKelvin(GK),in the neutron density required by the N=50 WP[33].The same phenomenon is also observed for the N=82 isotones[33].The results in these studies indicate that the (n, γ)-(γ, n) equilibrium, the waiting-point approximation for the N=50, 82, 126 nuclei, and subsequently isotopic abundance are very sensitive to nuclear mass.Unfortunately, the nuclear masses and half-lives of these WP are mostly predicted using theoretical models.

    Recently, experimental studies on the nuclear mass have been expanded with the help of modern radioactive ion beam facilities [38–41].Several theoretical works have been developed to improve accuracy in the mass predictions[34–36, 42–44].For instance, Wang et al proposed a semiempirical formula (namely WS) based on the macroscopicmicroscopic method [35] with the isospin dependence and Skyrme energy density function being taken into account to predict the nuclear mass of isotopes up to A ≈312 [36, 37].The neutron separation energies estimated by using this model differ from those measured in laboratories by an average standard deviation of 0.332 MeV for 1988 nuclei[36].In another work,the Skyrme–Hartree–Fock–Bogoliubov(HFB) formula was developed by Goriely et al to predict the nuclear mass with a standard deviation of 0.581 MeV in a comparison with experimental data [42].Still in a theoretical study, the nuclear masses of isotopes calculated using the FRDM formula newly updated by Moller et al in 2019 differ from measured data by a standard error of only 0.4948 MeV[44].On the other hand, available experimental data until October 2020,including uncertainty,of the nuclear mass have been evaluated by Wang et al, which were reported in the AME2020 database in March 2021 [45].In that work, the reliably experimental and extrapolated data have been reviewed to provide the last updated nuclear mass data.

    As aforementioned,the stellar conditions estimated in the r-process waiting-point approximation strongly depend on the masses of neutron-rich isotopes,especially for relatively longlived nuclei.Therefore, in this study, we employed reliable nuclear mass in the newly updated AME2020 database to examine the neutron density and temperature (nn–T9) conditions required by the N=50, 82 WP.Notice that the neutron-and two-neutron separation energies of the N=126 WP and their neighbors are still not available in AME2020.The conditions are also investigated using the updated nuclear mass calculations based on the FRDM [44], Weizsacker–Skyrme (WS4) [46], Duflo-Zuker (DZ10) [47, 48], and Koura–Tachibana–Uno–Yamada(KTUY)[49]models for all the considered N=50,82,and 126 WP.The mass uncertainty due to different models is examined to suggest the best prediction for further studies.The stellar conditions associated with the different mass data sets(FRDM,AME2020 with and without uncertainty, WS4, DZ10, and KTUY) are compared to each other to determine the lower and upper bounds of the nn–T9conditions for r-process simulations.Subsequently,we investigated the impact of the uncertainty in the nn–T9conditions on the r-process isotopic abundance.

    The present paper is constructed as follows.The theoretical framework for the WP approximation is presented in section 2.The results of the stellar conditions based on the updated mass data from AME2020,FRDM,WS4,DZ10,and KTUY calculations are discussed in section 3.The summary of this work is given in section 4.

    2.Theoretical framework

    The (n, γ)-(γ, n) equilibrium can be established under high neutron density (nn≥1020) and temperature (T ≥109) conditions.Under such scenario, the abundance ratio of (Z, A+1)and(Z,A)isotopes is calculated by the Saha relation as[11–13]where Y(Z, A), u, G(Z, A), and Snare the abundance of the(Z, A) nuclide, atomic mass unit, temperature-dependent partition function [50] of the (Z, A) nuclide, and one-neutron separation energy; k and ? denote Boltzmann and reduced Planck constants, respectively.Due to the equilibrium, the r-process is paused at WP, leading to peaks established at A ≈80, 130, and 195 (N=50, 82, and 126).At the highest abundance for each element, the abundance ratio is approximately equal to 1.By ignoring small differences in the partition functions and mass numbers of two neighboring isotopes, the relation in equation (1) can be rewritten as [33]

    where the average neutron-separation energy(nn,T)is calculated by

    In equation (3), T9is the temperature T in the unit of Giga-Kelvin (GK).Notice that the average neutron-separation energiesn,T)of all the nuclei at the highest abundance are almost the same.

    Since all the WP have even neutron numbers (even-N)due to the paring effect on neutron binding, the abundance ratio of two neighboring even-N isotopes can be estimated by

    where S2n(Z, A) is the two-neutron separation energy of the isotope (Z, A).Obviously, the abundance of the (Z, A) even-N nuclide is increased with increasing neutron number N when Y(Z, A)/Y(Z, A-2)>1 untilS2n<from this point the abundance is decreasing with N when Y(Z,A)/Y(Z,A-2)<1.As a result, abundance peaks locate at the nuclei whose twoneutron separation energies fulfill the following condition [33]

    By taking equation (3) together with equation (5), the nn–T9conditions for a (Z, A) nuclide to be a WP can be determined.Obviously,the formalisms above indicate that the estimation of the nn–T9conditions strongly depends on the accuracy of the nuclear mass.Hence, in this study, the neutron- and/or twoneutron separation energies taken from the newly updated AME2020 database [45] and nuclear mass predicted using the last updated FRDM, WS4, DZ10, and KTUY models are utilized for the WP approximation.Notice that the two-neutron separation energy of the(Z,A)nuclide can be deduced in terms of the mass excesses, M(Z, A) and M(Z, A-2) (in MeV), as

    with Δn=8.071 MeV being the neutron mass excess.The deviation ΔS2nin the two-neutron separation energy due to the mass-excess uncertainty is determined using the error propagation rule in statistics [51].Subsequently, the average neutron separation(nn,T)in equation (5) is selected in the range of

    Table 1.Two-neutron separation energies(S2n,in MeV)of the 76Fe, 77Co, 78Ni, 79Cu, 127Rh, 128Pd, 129Ag, 130Cd, 192Dy, 193Ho, 194Er, 195Tm critical waiting points(WPs)[(Z,A)nuclei],and their even-N neighbors[(Z,A+2)nuclei].The separation energy values calculated using the FRDM,WS4,DZ10,and KTUY models taken from[44,46,48,49],respectively,are compared to available experimental data obtained from the AME2020 database [45].The half-lives of the isotopes are taken from the NUBASE2020 database [52] or new QRPA calculations in [44].

    3.Results and discussion

    We considered the waiting-point approximation for twelve extremely neutron-rich nuclei with N=50,82,and 126 which are76Fe,77Co,78Ni,79Cu,127Rh,128Pd,129Ag,130Cd,192Dy,193Ho,194Er,and195Tm.The nuclear masses of these isotopes are still very uncertain.In table 1, we list the two-neutron separation energies of the investigated WP (Z, A) and their even-N neighboring isotopes (Z, A+2), which were employed for the examination of the nn-T9conditions required by the considered WP.Figure 1 shows the nn–T9conditions, which are based on the six mass data sets[AME2020(AME),AME2020 with uncertainty(AME±Δ),FRDM, WS4, DZ10, and KTUY] required by the N=50[panels (A)–(F)] and N=82 [panels (G)–(L)] WP.It is clear that the upper and lower bounds of temperature (or neutron density) at a given neutron density (or temperature) required by the heavier isotones are higher (or lower) than those required by the lighter ones.For example, with the AME mass data, the required neutron density is ranging in nn=2.5×1021–3.1×1026cm-3for79Cu while it is nn=9×1025–9×1029cm-3for76Fe at T=2 GK, as can be seen in panel (A).Still with the AME data set,panel (G) shows that the condition is ranging in nn=8.5×1024–5.4×1028cm-3for130Cd but nn=1026–3.8×1029cm-3for128Pd at T=3 GK.The same behaviors are also observed for the AME±Δ,FRDM,WS4,DZ10, and KTUY mass models.This phenomenon can be understood by the greater two-neutron separation energies(S2n) of the heavier elements.For instance, the two-neutron separation energy is S2n=9.69 (or 5.65)MeV for79Cu (or81Cu) but it is S2n=6.07 (or 2.9)MeV for76Fe (or78Fe).Subsequently, the average neutron separation energies for76Fe and79Cu are 1.45 ≤(nn,T9)Fe≤3.035 MeV and 2.825 ≤(nn,T9)Cu≤4.845 MeV, respectively.

    Figure 1.nn-T9 conditions needed for [panels (A)–(C)] 76Fe, 77Co, 78Ni, 79Cu and [panels (D)–(F)] 127Rh, 128Pd, 129Ag, 130Cd to be the N=50 and N=82 WP, respectively, in the r-process.The conditions were estimated using two-neutron separation energies, S2n, from AME2020, AME2020 with uncertainty ΔS2n [(AME ± Δ)], and FRDM, WS4, DZ10, and KTUY calculations.The grey shaded areas in panels(A)–(C),(E),and(F)[or(G)–(L)]denote the overall conditions for all the investigated N=50[or N=82]WP.Yellow shaded are in panel (D) indicates the separation between conditions required by 76Fe and 79Cu.

    The shaded areas in the panels (A)–(F) or (G)–(L) of figure 1 are shown for the overall nn-T9conditions based on the AME, AME ± Δ, FRDM, WS4, DZ10, and KTUY nuclear masses for the N=50 or N=82 WP of interest.In the panels (A)–(F), the upper curves were determined using the two-neutron separation energy of the lightest N=50 WP,S2n(76Fe); the lower curves were deduced using S2n(81Cu),which is the two-neutron separation energy of the N=50+2 isotope of the heaviest N=50 WP(79Cu),except for the WS4 model in the panel(D).Similarly to the N=50 chain,the upper and lower curves for the N=82 WP were deduced using the two-neutron separation energies of127Rh (N=82) and132Cd(N=82+2), respectively.For the exception with the WS4 calculations,S2n(81Cu)=5.6406 MeV is larger than S2n(76Fe)=5.4335 MeV [refer to panel (D) of figure 2], leading to the separation between the condition bands required by76Fe and79Cu to be WP.In other words,there is no nn-T9condition for both76Fe and79Cu to simultaneously be WP.This exception is interesting because it clearly shows the sensitivity of the WP nn-T9conditions to the mass models.

    Figure 2.Two-neutron separation energies S2n/2(in MeV)based on the AME2020 database and FRDM,WS4,DZ10,KTUY mass models of the even-N isotopes considered in the present study.The grey shaded areas denote the average neutron separation energies,which result in the overall nn-T9 conditions required by N=50 or 82 waiting points.Yellow shaded area in panel(D)indicates the value which does not fulfill the conditions required by both 76Fe and 79Cu to be simultaneous waiting points.

    Similarly to the N=50 and 82 nuclei, the nn-T9conditions for the N=126 WP of162Dy,163Ho,164Er,and165Tm are determined by taking two-neutron separation energies S2nof162Dy and167Tm for the upper and lower bounds, respectively.The results of the conditions [upper panels (A)–(D)]based on the energies [lower panels (E)–(H)] calculated using the FRDM, WS4, DZ10, and KTUY models are shown in figure 3.Notice that the results based on AME cannot be considered due to the lack of experimental data for these nuclei.The results show that S2nvalues of the N=126 nuclei are about 1 MeV lower than those of the N=50 and 82 ones.This leads to the higher nn–T9conditions for the N=126 WP.For instance, the upper limit of neutron densities required by the N=126 isotopes are nn=1024and nn=1029(cm-3) at T=1 and 2.5 GK, respectively, which are about 1–4 orders of magnitude higher than those required by the N=50 and 82 WP.On the other hand, the lower and upper limits of the nn-T9conditions are also very uncertain,which may vary by 1–2 orders of magnitude due to the uncertainties in the twoneutron separation energies based on different mass models.Moreover,it can be seen in panels(A)–(D)that the conditions based on the WS4 and DZ10 models are mostly similar to each other but different from those based on the FRDM and KTUY methods.These results can be understood by the differences in S2ns of the investigated isotopes, as shown in panels (E)–(H).

    Figure 3.Comparisons of the overall nn–T9 conditions required by the N=126 waiting points[upper panels]and associated S2n/2(in MeV)based on the FRDM,WS4,DZ10,and KTUY mass models of N=126 neighboring even-N isotopes[lower panels].The shaded areas in the lower panels indicates the values, which result in the shaded areas in the conditions in the upper panels.

    The results and discussion above obviously indicate that the nn-T9conditions are sensitive to the mass predictions.Hence, it is worth studying the significant difference among the models to examine the influence of mass predictions on the overall conditions required by the WP.In figure 4, we show the differences in the two-neutron separation energies among the nuclear mass models[AME,FRDM,WS4,DZ10,KTUY] for 108 investigated isotopes, which are shown in figures 2 and 3.The difference is defined by the standard deviation, rms, which is given by

    Figure 4.Differences in the two-neutron separation energies between the FRDM, WS4, DZ10, KTUY calculations and experimental data AME2020 [panels (A)–(D)] and between FRDM, WS4, DZ10 and KTUY calculations [panels (E)–(G)].The dashed lines are to guide the eyes.

    Figure 5.Comparisons of the overall nn–T9 conditions required by N=50[left panel],N=82[middle panel],and N=126 waiting points based on various mass models (AME, AME ± Δ, FRDM, WS4, DZ10, and KTUY).The overlapped areas indicate the same nn-T9 conditions which are determined by all the mass models.Notice that the WS4 results are not included in the case of N=50 because there is no conditions for both Fe and Cu to be simultaneous waiting points as discussed in previous sections.

    The results show that the WS4 calculations give a larger deviation (rms=0.254 MeV) [panel (B)] compared to the FRDM, DZ10, and KTUY computations in the comparisons to experimental data (AME).In contrast, the KTUY prediction is close to the AME2020 data since the deviation is only rms=0.192 MeV between them [panel (D)].This result suggests that the KTUY model is reliable to be employed for the investigations of then n–T9conditions required by the N=50, 82, and 126 WP.Since the KTUY calculation is closer to experimental data, we examined the differences between the others and KTUY,as can be seen in panels(E)–(G).It was found that the KTUY prediction is closer to the DZ10 calculation than to the FRDM estimation.The largest deviation of rms=0.434 MeV in panel(F)indicates that it is significantly different between the WS4 and KTUY predictions.On the other hand, the comparisons show that the deviations among the predictions based on different models are increased with increasing neutron numbers, which correspond to the charge asymmetry factor I >0.315.In other words, the uncertainty in mass calculations for extremely neutron-rich isotopes with I >0.315 is still very large, which is from a few factors to one order of magnitude.

    Although with a small deviation of rms ≤0.254 MeV,the mass uncertainty strongly impacts the overall nn–T9conditions required by the N=50,82,and 126 WP,as can be seen in figure 5.For instance,in the case of the N=50 WP,it can be seen in the left panel that the nn–T9band based on the AME data set (vertical hatched band) is very narrow while it is much broader if the AME ±Δ or the other mass data(i.e.FRDM, DZ10, etc) are taken into the calculations.The deviation between the nn–T9bandwidths can be understood by the uncertainty, which results in the large difference between the AME and AME ± Δbands [see panels (A)and (B) of figure 2], of the two-neutron separation energies of the concerned nuclei.The difference between these bandwidths is found to be0.76 - 0.21 =0.55 MeV due to the uncertainties of ΔS2n(76Fe)=0.78 and ΔS2n(81Cu)=0.32 MeV in the twoneutron separation energies of76Fe and81Cu,respectively.As a result,the bandwidth of the neutron density required by the N=50 WP is extended from 9.2×1025–3.1×1026(AME,vertically hatched band) to 9.5×1024–7.8×1026cm-3(AME±Δ,horizontally hatched band)at T=2 GK.In other words, the current uncertainties of about 12% and 5% in the experimental two-neutron separation energies of76Fe and81Cu lead to a large deviation by a factor of 35 in the nn–T9conditions required by the N=50 WP at 2 GK.For the FRDM data, thebandwidth is 0.34 MeV, which is larger than that(0.21 MeV)of the AME-band[see panels(A)and(C) of figure 2], leading to a difference of one order of magnitude between the nn–T9bandwidths based on the AME(vertically hatched band) and FRDM (blue shaded are) data sets.Still in the left panel, it is clear that the DZ10 model results in the widest range of the conditions while the KTUY method can give a range comparable with that based on the AME mass data.

    For the N=82 WP (middle panel of figure 5), the nn-T9condition are also uncertain because of the deviation in the two-neutron separation energies of127Rh(N=82) and132Cd (N=82+2).It can be seen in the middle panel of figure 5 that the nn-T9bandwidths based on AME,AME±Δ, and FRDM are 2.8×1023–4.7×1026(green shaded band), 3.5×1022–5.1×1026(vertically hatched band), and 1.2×1022–3.2×1026(yellow shaded area) cm-3at T=2 GK, respectively.These nn-T9bandwidths correspond to the(nn,T9)bandwidths of 1.3, 1.7, and 1.8 MeV in the panels (G), (H), and (I) of figure 2, respectively.The results show that the uncertainty in the S2nenergies of the even-N isotopes can lead to a change of one order of magnitude in the lower thresholds of the neutron density required for127Rh,128Pd,129Ag, and130Cd (N=82) to be the r-process WP.Besides,it was found that the pairs of AME-WS4 and DZ10-KTUY calculations are in good agreement with each other due to almost the samevalues, as can be seen in panels(G)–(J) and (K)–(L) of figure 2, respectively.On the other hand, in the right panel of figure 5, we show the conditions required by the N=126 WP, which were calculated using FRDM (vertically hatched band), WS4 (purple shaded area),DZ10(yellow shaded area),and KTUY(horizontally hatched band)models.The results indicate that the condition based on the WS4 model is narrowest while that based on the KTUY is widest.These results confirm that the estimations of the stellar conditions for the r-process WP are very sensitive to the mass models.

    Table 2.Summary of the nn-T9 conditions,which are overlaps calculated by all the mass models(AME,AME±Δ,FRDM,WS4,DZ10,KTUY), for the N=50 and 82 waiting points; and by the FRDM,WS4, DZ10, KTUY models for the N=126 nuclei.Notice that neutron density nn is in the unit of cm-3.

    Because the WP calculations strongly depend on mass models as discussed above, it is necessary to determine the general nn-T9conditions required by the WP regardless of a specific mass model.By taking whole the conditions calculated with the various models, we can determine the mixed areas in figure 5,which indicate the general conditions so that all the mass models are satisfied.The conditions are summarized in table 2.It is clear that the N=126 isotopes required much higher neutron density and temperature, up to two orders of magnitude, to be the r-process WP.These results are consistent with those obtained by Xu et al in[33].

    Since the total half-lives of the N=50 (∑T1/2(76Fe-79Cu)≈382 ms [52]), N=82 (∑T1/2(127Rh-130Cd)≈240 ms[52]),and N=126(∑T1/2(192Dy-195Tm)≈130 ms[44])are about 752 ms,the distribution of isotopes in the first(N=50 or A ≈80), second (N=82 or A ≈130), and third(N=126 or A ≈195) peaks in the r-process abundance during the β--decay waiting time of 0.752 s strongly depends on the nn-T9conditions.The conditions for all the peaks simultaneously appearing in the waiting time can be determined by taking the overlaps of the nn-T9condition bands required by the N=50, N=82, and N=126 WP, as shown in figure 6.It is found that the nn-T9conditions needed for the N=50 isotopes (horizontally hatched bands) to be the WP also fulfill the requirement for the N=82 ones for all the models.In other words, when the temperature and neutron density of stellar environments (i.e.the bubble of high entropy neutrino-driven winds, neutron merging stars, etc)satisfy the yellow shaded areas,both the A ≈80 and A ≈130 peaks are simultaneously produced in the r-process.This result is similar to that obtained in a previous study conducted by Xu et al [33] with the HFB-17, RMF, and previous versions of the FRDM[35]and WS[36]mass models.We found that the three peaks can appear at the same time if the FRDM and KTUY models [panel (C) and (F)] are employed in the calculations.This finding contradicts the calculations [33]using the HFB-17, WS, and the previous version of the FRDM [35] models.Besides, the conditions for the simultaneous appearance of the peaks are very sensitive in the case of the DZ10 model as can be seen in panel (E).If the neutron density is decreased by a factor of 3,there is no appearance of the N=126 peak.

    To evaluate the impact of the nn-T9condition differences due to the mass uncertainty on the nucleosynthesis via the r-process, we calculated the r-process abundance of isotopes using the nn-T9conditions, which were shown in figure 6, as the input of the calculation.The other necessary inputs are determined as follows:the β-decay rates of WP are obtained from the NUBASE2020 database[52]or in[44];the(n,γ),and(γ,n)reaction rates of the WP are calculated using the TALYS code [53] based on the Hauser-Fesbach model[50]; and the β-decay and β-delayed neutron emission rates are taken from [35].Since the astrophysical sites for the r-process are still very complicated, we assumed that the r-process occurs in a high-entropy neutron-driven wind,which is popularly believed to be a suitable site for the main r-process [54–57].For the computation, we employed the calculation method which was well described in[58]by using the r-Java computer code [58].

    The estimated r-process abundances based on each mass model are shown in figure 7.Although these abundances are much (more than 3–4 orders of magnitude) lower, the positions of the peaks are consistent with those of the Solar system, which are adopted from [59].Notice that the lower abundance of the simulations can be understood by the short r-process timescale, which is a few milliseconds [10] compared to 4.6 billion years of the Solar system [60].The left panel shows that there is no appearance of the third peak since the conditions are only overlapped for the N=50 and 82 WP,as can be seen in panels(A)and(E) of figure 6.A very faint peak around A ≈190 (the third peak) clearly reflects the narrow overlapped band of the condition in the case of the DZ10 model.On the other hand, the nucleosyntheses based on the AME and DZ10 models of the isotopes beyond the second peak are also different from each other.The AME abundance is much lower than that based on the DZ10 mass data.It was found that the small deviation of rms <0.216 MeV in the AME and DZ10 two-neutron separation energies(S2n)can lead to a large discrepancy,up to two orders of magnitude, in the abundances.For the FRDM and KTUY cases,the overlapped conditions in panels(C)and(F) of figure 6 clearly result in the simultaneous appearances of all the three peaks, as can be seen in the right panel.Besides, the KTUY abundance is higher than that based on the FRDM for the A <190, and vice versa for the A >190 nuclei.Moreover, their abundances are sensitive to the nuclear mass of the investigated WP.We found that the deviation of rms=0.281 in the two-neutron separation energies based on the FRDM and KTUY models results in a difference up to three and two orders of magnitude in the abundances of the isotopes in the ranges of A=110–140 and A=200–250, respectively.Obviously, the r-process calculation is still very uncertain with the current predicted nuclear mass.The results of the present study indicate that the mass uncertainty should be reduced to be, at least, smaller than 0.216 MeV.Unfortunately, there are large discrepancies in both theoretical calculations and experimental data, e.g.results reported in [61] and [45].Therefore, precise mass measurements for extremely neutron-rich nuclei of76Fe,77Co,78Ni,79Cu,127Rh,128Pd,129Ag,130Cd,192Dy,193Ho,194Er,195Tm, and their even-N neighboring isotopes are necessary for a better understanding of the r-process properties (i.e.reaction paths, isotopic abundance, etc).

    Figure 6.The overall nn-T9 conditions required for both A=80,A=130,and/or A=195 peaks simultaneously appearing in the r-process abundance.The yellow shaded,vertically hatched,and/or horizontally hatched bands indicate the conditions required for the N=50 N=82,and/or N=126 isotones to be waiting points, respectively, which were calculated using the AME, AME±Δ, FRDM, WS4, DZ10, and KTUY data sets.

    Figure 7.The r-process abundances of isotopes calculated using the nn-T9 conditions based on the AME,DZ10,FRDM,and KTUY mass data sets.Notice that the calculated abundances are upscaled by a factor of 1000 to normalize with the A=130 peak of the Solar abundance which is taken from[59](black dots with error bars).The yellow shaded areas indicate the differences among the abundances based on the different models.The thin lines are to guide the eyes at the A ≈80, 130, and 190 peaks.

    4.Conclusion

    In the present study, we estimated the neutron density and temperature conditions required by the WP, which distribute in the A=80,130,and 195 peaks of the r-process abundance,using the newest updated two-neutron separation energies from the AME2020 database (with [AME ± Δ] and without uncertainty [AME]) and from calculations based on the FRDM,WS4,DZ10,and KTUY models.The findings in this work are different from those investigated using the RMF,HFB, and WS mass models in a previous work.The results indicate that the n–T9conditions based on the AME data are much narrower than those estimated using the AME±Δ and FRDM mass data.The FRDM and KTUY calculations are in a good agreement for the nn–T9condition approximation.The stellar condition ranging from the upper to lower bounds for the N=50 isotones is mostly smaller and overlaps with that for the N=82 ones when the AME,AME±Δ,FRDM,DZ10, and KTUY models are employed.Subsequently, with these models, the n–T9conditions necessary for the N=50 WP fulfill the conditions to simultaneously produce both A=80 and A=130 peaks in the r-process abundance.In contrast,the results based on the WS4 are different from those of the others for the simultaneous appearances of all the three peaks.Moreover, the conditions required by the N=126 isotopes are much higher than and mostly out of those required by the N=50 and 82 ones.On the other hand, the systematic study on the two-neutron separation energy indicates that the KTUY model is closer to experimental data in the AME2020 database than to the others.Hence,the KTUY model is reasonable to be employed for the mass predictions.The results show that the current mass uncertainties of76Fe and81Cu,127Rh,132Cd,192Dy,and197Tm strongly impact the determination of the n–T9conditions at the (n, γ)–(γ, n)equilibrium for the N=50, 82, and 126 WP, leading to a large discrepancy in the r-process abundance.Therefore,precise mass measurements for these nuclei are necessary to reduce the uncertainty in the r-process WP approximation.Finally, this work provides useful information for further studies on the r-process.

    Acknowledgments

    This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Ministry of Education, Science, and Technology (No.NRF-2020R1C1C1006029).

    ORCID iDs

    欧美一区二区亚洲| 免费黄网站久久成人精品| 青春草视频在线免费观看| 国产精品一区二区三区四区免费观看| 欧美精品一区二区大全| 国产成人免费观看mmmm| 美女福利国产在线 | 欧美日韩综合久久久久久| 成人黄色视频免费在线看| 男女边吃奶边做爰视频| 在现免费观看毛片| 老女人水多毛片| 性高湖久久久久久久久免费观看| 久久99蜜桃精品久久| 少妇的逼好多水| 美女cb高潮喷水在线观看| 国产久久久一区二区三区| 亚洲久久久国产精品| 亚洲一区二区三区欧美精品| 国产精品三级大全| 国产片特级美女逼逼视频| 在线观看人妻少妇| 老司机影院毛片| 久久精品久久久久久噜噜老黄| 国产亚洲最大av| 亚洲四区av| 涩涩av久久男人的天堂| 久久女婷五月综合色啪小说| 又大又黄又爽视频免费| 黄色怎么调成土黄色| 99热全是精品| 97超碰精品成人国产| 亚洲av欧美aⅴ国产| 国产精品蜜桃在线观看| 国产精品蜜桃在线观看| 伊人久久精品亚洲午夜| 亚洲精品亚洲一区二区| 国国产精品蜜臀av免费| 99久国产av精品国产电影| 久久精品夜色国产| 高清在线视频一区二区三区| 在线 av 中文字幕| 熟女人妻精品中文字幕| 成人美女网站在线观看视频| 夜夜看夜夜爽夜夜摸| 亚洲怡红院男人天堂| 啦啦啦视频在线资源免费观看| 国产乱来视频区| 欧美变态另类bdsm刘玥| 边亲边吃奶的免费视频| 欧美人与善性xxx| 欧美激情极品国产一区二区三区 | 狠狠精品人妻久久久久久综合| 内射极品少妇av片p| 国产精品成人在线| 欧美一区二区亚洲| 国产精品久久久久久久久免| 人人妻人人爽人人添夜夜欢视频 | 七月丁香在线播放| 性色avwww在线观看| 老熟女久久久| 精品国产一区二区三区久久久樱花 | 2018国产大陆天天弄谢| av女优亚洲男人天堂| 老师上课跳d突然被开到最大视频| av卡一久久| a级毛色黄片| 精品一区二区三卡| 久久久欧美国产精品| 亚洲精品一区蜜桃| 婷婷色综合www| 久久精品久久精品一区二区三区| 日韩不卡一区二区三区视频在线| 国产毛片在线视频| 在线观看一区二区三区激情| 国产高清三级在线| 纯流量卡能插随身wifi吗| 99久久人妻综合| 一个人免费看片子| 亚洲三级黄色毛片| 日韩一区二区视频免费看| 亚洲精华国产精华液的使用体验| 国产探花极品一区二区| 男女免费视频国产| 久久人人爽人人爽人人片va| av女优亚洲男人天堂| 国产伦精品一区二区三区四那| av网站免费在线观看视频| 九色成人免费人妻av| 久久久久精品性色| 欧美变态另类bdsm刘玥| 中文欧美无线码| 最近中文字幕高清免费大全6| 亚洲精品国产av蜜桃| 性高湖久久久久久久久免费观看| 中国三级夫妇交换| 日韩亚洲欧美综合| 久久久精品免费免费高清| 这个男人来自地球电影免费观看 | 精品国产三级普通话版| videossex国产| 涩涩av久久男人的天堂| 两个人的视频大全免费| 男女国产视频网站| 国产69精品久久久久777片| 99国产精品免费福利视频| 成人黄色视频免费在线看| 日日摸夜夜添夜夜爱| 亚洲不卡免费看| 黄色日韩在线| 国产午夜精品久久久久久一区二区三区| 黑人高潮一二区| 啦啦啦中文免费视频观看日本| 免费黄色在线免费观看| 亚洲国产精品999| 精品人妻视频免费看| 女人十人毛片免费观看3o分钟| 久久久久久人妻| 国产高清不卡午夜福利| 亚洲国产欧美在线一区| 少妇人妻精品综合一区二区| 精品少妇黑人巨大在线播放| 草草在线视频免费看| 成人无遮挡网站| 少妇精品久久久久久久| 国产乱人视频| 综合色丁香网| 国产在线一区二区三区精| 成人亚洲欧美一区二区av| 99久久精品热视频| 国产一区二区三区av在线| 高清日韩中文字幕在线| 日本欧美国产在线视频| 少妇的逼水好多| 国产精品成人在线| av国产久精品久网站免费入址| 观看免费一级毛片| 午夜日本视频在线| 国产黄片视频在线免费观看| 国产乱人偷精品视频| 成年美女黄网站色视频大全免费 | 日韩不卡一区二区三区视频在线| 免费观看的影片在线观看| 成年女人在线观看亚洲视频| 中文欧美无线码| 欧美成人a在线观看| av黄色大香蕉| 国产爱豆传媒在线观看| 免费大片18禁| av黄色大香蕉| 这个男人来自地球电影免费观看 | 深爱激情五月婷婷| 欧美极品一区二区三区四区| 欧美日韩一区二区视频在线观看视频在线| 少妇的逼好多水| 人妻系列 视频| www.av在线官网国产| 久久久久久伊人网av| 亚洲欧美清纯卡通| 亚洲人成网站在线观看播放| 最黄视频免费看| 好男人视频免费观看在线| 亚洲三级黄色毛片| 欧美精品一区二区免费开放| 夜夜骑夜夜射夜夜干| 久久毛片免费看一区二区三区| 深夜a级毛片| 午夜老司机福利剧场| 精品视频人人做人人爽| 亚洲欧美日韩无卡精品| 一区二区三区乱码不卡18| 日韩电影二区| 欧美日韩视频精品一区| 亚洲欧美清纯卡通| 人妻一区二区av| 国产精品av视频在线免费观看| 2021少妇久久久久久久久久久| 另类亚洲欧美激情| 视频区图区小说| 国内精品宾馆在线| 99国产精品免费福利视频| 高清日韩中文字幕在线| 少妇熟女欧美另类| 国产精品一区二区在线观看99| 欧美精品国产亚洲| 成人二区视频| 成人毛片60女人毛片免费| 18禁在线播放成人免费| 极品少妇高潮喷水抽搐| 亚洲激情五月婷婷啪啪| 在线观看美女被高潮喷水网站| 新久久久久国产一级毛片| 久久久久久九九精品二区国产| 亚洲色图综合在线观看| 国产免费又黄又爽又色| 国产一区二区三区av在线| 婷婷色综合www| 日日摸夜夜添夜夜添av毛片| 亚洲av.av天堂| 少妇熟女欧美另类| 国产男女超爽视频在线观看| 国产亚洲最大av| 亚洲精品一区蜜桃| 日本与韩国留学比较| 国产免费一区二区三区四区乱码| 日日摸夜夜添夜夜添av毛片| 国产精品人妻久久久影院| 青春草国产在线视频| 黄色日韩在线| 美女xxoo啪啪120秒动态图| 国产乱人偷精品视频| 日日啪夜夜撸| 亚洲va在线va天堂va国产| 熟女av电影| 美女国产视频在线观看| 免费看av在线观看网站| 永久网站在线| 久久6这里有精品| 日韩视频在线欧美| 3wmmmm亚洲av在线观看| a 毛片基地| 国产精品一区二区三区四区免费观看| 精品一区在线观看国产| 精品亚洲乱码少妇综合久久| 免费人妻精品一区二区三区视频| 国产精品嫩草影院av在线观看| 欧美人与善性xxx| 在线观看三级黄色| 国产视频内射| 大陆偷拍与自拍| 亚洲欧洲国产日韩| 2021少妇久久久久久久久久久| 小蜜桃在线观看免费完整版高清| 亚洲精品自拍成人| 97热精品久久久久久| 18+在线观看网站| 美女国产视频在线观看| 美女视频免费永久观看网站| 1000部很黄的大片| 午夜福利视频精品| 色5月婷婷丁香| 爱豆传媒免费全集在线观看| 国产爽快片一区二区三区| 亚洲精品自拍成人| 99久国产av精品国产电影| 免费大片黄手机在线观看| 大片电影免费在线观看免费| 内地一区二区视频在线| 只有这里有精品99| 在线免费十八禁| 女性生殖器流出的白浆| 舔av片在线| 久久国产精品男人的天堂亚洲 | 高清在线视频一区二区三区| 婷婷色综合大香蕉| 少妇 在线观看| 国产高清不卡午夜福利| 国产黄片视频在线免费观看| 亚洲欧美成人精品一区二区| 爱豆传媒免费全集在线观看| 老熟女久久久| 日韩中字成人| 国产乱来视频区| 大话2 男鬼变身卡| 美女内射精品一级片tv| 日本黄色日本黄色录像| a级毛片免费高清观看在线播放| 久久精品国产亚洲av天美| 一区二区三区精品91| 国产淫片久久久久久久久| 三级经典国产精品| 在线观看美女被高潮喷水网站| 免费人成在线观看视频色| 精品一区二区免费观看| 欧美3d第一页| 汤姆久久久久久久影院中文字幕| 五月天丁香电影| 五月开心婷婷网| 夫妻午夜视频| 国产精品麻豆人妻色哟哟久久| 最近手机中文字幕大全| 尾随美女入室| 国产精品三级大全| 日韩视频在线欧美| 亚洲精品乱久久久久久| 欧美成人午夜免费资源| 国产精品福利在线免费观看| 国产精品一区www在线观看| 老司机影院毛片| 91在线精品国自产拍蜜月| 国产又色又爽无遮挡免| 一级a做视频免费观看| 国产 一区 欧美 日韩| 男女下面进入的视频免费午夜| 亚洲欧美日韩另类电影网站 | 在线观看免费高清a一片| 午夜免费男女啪啪视频观看| 欧美精品国产亚洲| av在线老鸭窝| 少妇人妻久久综合中文| 亚洲美女搞黄在线观看| 少妇人妻一区二区三区视频| 麻豆精品久久久久久蜜桃| 精品熟女少妇av免费看| 高清不卡的av网站| 国产日韩欧美在线精品| 日本午夜av视频| 国产精品99久久99久久久不卡 | 亚洲美女搞黄在线观看| 看非洲黑人一级黄片| 日韩一区二区三区影片| 日韩人妻高清精品专区| 色婷婷久久久亚洲欧美| 制服丝袜香蕉在线| 免费观看的影片在线观看| 亚洲经典国产精华液单| 国产黄片视频在线免费观看| 一个人看视频在线观看www免费| 成人影院久久| av视频免费观看在线观看| 又粗又硬又长又爽又黄的视频| 伊人久久国产一区二区| 99久久精品热视频| 老熟女久久久| www.色视频.com| 亚洲av不卡在线观看| av在线观看视频网站免费| 精品一区二区三区视频在线| 亚洲欧美一区二区三区黑人 | 老女人水多毛片| 精品久久久久久电影网| 久久精品国产a三级三级三级| 美女主播在线视频| 国产精品伦人一区二区| 国产黄频视频在线观看| 久久精品国产亚洲网站| 国产精品国产三级专区第一集| 国产精品99久久99久久久不卡 | 亚洲欧美一区二区三区国产| 国产免费一级a男人的天堂| 毛片女人毛片| 久久人妻熟女aⅴ| 日韩免费高清中文字幕av| 国产黄片美女视频| 欧美zozozo另类| 欧美激情国产日韩精品一区| 在线观看美女被高潮喷水网站| 国产伦理片在线播放av一区| 少妇裸体淫交视频免费看高清| 久久亚洲国产成人精品v| 免费av中文字幕在线| 精品一区二区三卡| 日本猛色少妇xxxxx猛交久久| 又黄又爽又刺激的免费视频.| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av不卡在线观看| 一区在线观看完整版| 男人狂女人下面高潮的视频| 国产一区二区三区av在线| 美女高潮的动态| 街头女战士在线观看网站| 国产精品一二三区在线看| 日韩av在线免费看完整版不卡| 乱系列少妇在线播放| 久久久久久九九精品二区国产| 国产人妻一区二区三区在| 边亲边吃奶的免费视频| 欧美精品亚洲一区二区| 亚洲精品日韩在线中文字幕| 久久精品国产亚洲网站| 亚洲欧美日韩无卡精品| 在线亚洲精品国产二区图片欧美 | 亚洲精品日韩在线中文字幕| 国产亚洲一区二区精品| 黄片无遮挡物在线观看| 国产精品久久久久久精品古装| 日本与韩国留学比较| 欧美丝袜亚洲另类| 在线观看免费日韩欧美大片 | 国产黄色视频一区二区在线观看| 91午夜精品亚洲一区二区三区| 久久精品夜色国产| 久久99蜜桃精品久久| 婷婷色av中文字幕| 最新中文字幕久久久久| 99久久人妻综合| 久久久久久久久大av| 精品亚洲乱码少妇综合久久| 久久久久视频综合| 亚洲三级黄色毛片| 狂野欧美激情性xxxx在线观看| 日韩成人伦理影院| 黄色怎么调成土黄色| 久久久久国产网址| 六月丁香七月| 国产精品久久久久久久电影| 日韩亚洲欧美综合| 午夜日本视频在线| 91精品国产九色| 男女下面进入的视频免费午夜| 高清毛片免费看| 日本vs欧美在线观看视频 | 高清黄色对白视频在线免费看 | 国产伦精品一区二区三区四那| 激情五月婷婷亚洲| 91狼人影院| 视频中文字幕在线观看| www.av在线官网国产| 亚洲成人手机| 国产免费福利视频在线观看| 国产人妻一区二区三区在| 男女边摸边吃奶| 亚洲精品第二区| 2022亚洲国产成人精品| 亚洲av不卡在线观看| 亚洲怡红院男人天堂| 在线观看人妻少妇| 多毛熟女@视频| 中文资源天堂在线| 久久国产亚洲av麻豆专区| 三级经典国产精品| 国产精品熟女久久久久浪| 国产永久视频网站| 亚洲精品中文字幕在线视频 | 国产亚洲欧美精品永久| 少妇的逼水好多| 在线观看美女被高潮喷水网站| 岛国毛片在线播放| 我要看黄色一级片免费的| 91久久精品电影网| 人妻系列 视频| 五月伊人婷婷丁香| 在线观看人妻少妇| 丰满乱子伦码专区| 亚洲久久久国产精品| 午夜福利视频精品| 亚洲av日韩在线播放| 狂野欧美激情性bbbbbb| 日本午夜av视频| 伊人久久国产一区二区| 日本猛色少妇xxxxx猛交久久| 日韩在线高清观看一区二区三区| 嫩草影院新地址| av福利片在线观看| 五月天丁香电影| 这个男人来自地球电影免费观看 | 日韩一区二区三区影片| 久久精品国产自在天天线| 精品人妻一区二区三区麻豆| 一级a做视频免费观看| 91狼人影院| 毛片一级片免费看久久久久| 亚洲第一区二区三区不卡| 久久久久精品性色| 亚洲熟女精品中文字幕| 久久精品国产鲁丝片午夜精品| 自拍欧美九色日韩亚洲蝌蚪91 | 汤姆久久久久久久影院中文字幕| 中文字幕制服av| 十分钟在线观看高清视频www | 免费大片黄手机在线观看| 一级毛片我不卡| 成人毛片a级毛片在线播放| 久久精品国产亚洲网站| 搡女人真爽免费视频火全软件| 国产亚洲av片在线观看秒播厂| 亚洲欧洲日产国产| 99国产精品免费福利视频| 精品久久久久久久末码| 人妻夜夜爽99麻豆av| 在线免费观看不下载黄p国产| 有码 亚洲区| 国产精品不卡视频一区二区| 免费观看无遮挡的男女| 大话2 男鬼变身卡| 热re99久久精品国产66热6| 日本午夜av视频| 精品亚洲成国产av| 国产精品欧美亚洲77777| 伊人久久精品亚洲午夜| 99久久精品国产国产毛片| 亚洲av国产av综合av卡| 亚洲不卡免费看| 国产亚洲欧美精品永久| 精品少妇黑人巨大在线播放| 最近手机中文字幕大全| 国产亚洲5aaaaa淫片| 国产深夜福利视频在线观看| 精品久久国产蜜桃| 岛国毛片在线播放| 中文乱码字字幕精品一区二区三区| 国产精品偷伦视频观看了| av线在线观看网站| 一级a做视频免费观看| 不卡视频在线观看欧美| 2021少妇久久久久久久久久久| 蜜臀久久99精品久久宅男| 午夜精品国产一区二区电影| 精品午夜福利在线看| 日韩在线高清观看一区二区三区| 王馨瑶露胸无遮挡在线观看| 亚洲激情五月婷婷啪啪| 丝瓜视频免费看黄片| 精品久久久久久久久av| 不卡视频在线观看欧美| 老司机影院成人| 亚洲真实伦在线观看| 久久久久久久久久久丰满| 一边亲一边摸免费视频| 在线精品无人区一区二区三 | 蜜臀久久99精品久久宅男| 99久久人妻综合| 夫妻午夜视频| h日本视频在线播放| 黄色视频在线播放观看不卡| 日韩精品有码人妻一区| 日韩电影二区| 国产成人免费无遮挡视频| 交换朋友夫妻互换小说| 精品99又大又爽又粗少妇毛片| 五月玫瑰六月丁香| 一个人看视频在线观看www免费| 国产精品久久久久成人av| 免费高清在线观看视频在线观看| 国产久久久一区二区三区| 国产亚洲午夜精品一区二区久久| 性高湖久久久久久久久免费观看| 水蜜桃什么品种好| 一区二区av电影网| 国产成人午夜福利电影在线观看| 男男h啪啪无遮挡| 欧美精品一区二区大全| 蜜桃久久精品国产亚洲av| 久久久国产一区二区| 九草在线视频观看| 精品人妻熟女av久视频| 日本wwww免费看| 国产午夜精品一二区理论片| videossex国产| 日产精品乱码卡一卡2卡三| av在线app专区| 99九九线精品视频在线观看视频| 日本免费在线观看一区| 国产精品久久久久久精品古装| 日韩中文字幕视频在线看片 | 毛片女人毛片| 亚洲成人中文字幕在线播放| 久久精品熟女亚洲av麻豆精品| 免费观看性生交大片5| 成年美女黄网站色视频大全免费 | 久久精品国产亚洲网站| 国产精品一及| 尾随美女入室| 国产精品熟女久久久久浪| av国产免费在线观看| 黄色欧美视频在线观看| 91久久精品国产一区二区成人| 中文字幕av成人在线电影| 久久精品国产鲁丝片午夜精品| 中国国产av一级| 欧美三级亚洲精品| 亚洲成人一二三区av| 一级片'在线观看视频| 久久鲁丝午夜福利片| 国产 精品1| 日韩制服骚丝袜av| 免费看不卡的av| 亚洲精品国产av成人精品| 国产一区二区三区av在线| 欧美一级a爱片免费观看看| 国精品久久久久久国模美| 国产女主播在线喷水免费视频网站| 中文字幕免费在线视频6| a级毛片免费高清观看在线播放| 色网站视频免费| 欧美3d第一页| 国产亚洲欧美精品永久| 人人妻人人澡人人爽人人夜夜| 人妻系列 视频| 亚洲自偷自拍三级| 精品酒店卫生间| 亚洲欧美日韩另类电影网站 | 欧美日韩亚洲高清精品| 黑人猛操日本美女一级片| 欧美区成人在线视频| 男人狂女人下面高潮的视频| 九色成人免费人妻av| av福利片在线观看| 超碰97精品在线观看| 国产男女内射视频| 黑丝袜美女国产一区| 男人狂女人下面高潮的视频| 精品久久久久久久久av| 成人亚洲欧美一区二区av| 亚洲精品中文字幕在线视频 | 国产高清有码在线观看视频| 亚洲精品aⅴ在线观看| 欧美高清性xxxxhd video| 一级二级三级毛片免费看| 永久网站在线| 高清毛片免费看| 国产综合精华液| 永久免费av网站大全| 亚洲精品一区蜜桃| 亚洲精品久久午夜乱码| 日韩av不卡免费在线播放| 新久久久久国产一级毛片| 久久99热这里只频精品6学生| 国产高潮美女av| 中文字幕人妻熟人妻熟丝袜美| 免费大片18禁| 国产爱豆传媒在线观看| 最近最新中文字幕大全电影3| 女人十人毛片免费观看3o分钟| 午夜福利在线在线|