• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-dimensional massive Kiselev AdS black hole and its thermodynamics

    2021-10-12 05:32:54YuanZhangCuiandWeiXu
    Communications in Theoretical Physics 2021年10期

    Yuan-Zhang Cui and Wei Xu

    School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China

    Abstract We present an exact three-dimensional massive Kiselev AdS black hole solution.This Kiselev black hole is neither perfectly fluid,nor is it the quintessential solution,but the BTZ black hole modified by the anisotropic matter.This black hole possesses an essential singularity at its radial origin and a single horizon whose radius will increase monotonically when the parameter of the anisotropic matter field ω decreases.We calculate all thermodynamic quantities and find that the first law of thermodynamics of this massive Kiselev AdS black hole can be protected,while the consistent Smarr formula is only held in the extended thermodynamic phase space.After examining the sign of free energy, we conclude that there is no Hawking-Page transition since the massive Kiselev AdS black hole phase is always thermodynamically favored.Moreover,we study the phase transition between the Kiselev AdS black hole and BTZ black hole by considering the matchings for their temperature.We find that the Kiselev AdS black hole is still a thermodynamically more preferred phase,because it always has a smaller amount of free energy than the BTZ black hole, which seems to indicate that the anisotropic matter field may emerge naturally in BTZ black hole spacetime under some thermal fluctuations.We also show a first order phase transition between the Kiselev AdS black hole phase with - 1 < ω< and the black hole phase with < ω<0.As the Kiselev AdS black hole has some notable features on the phase transition of black holes in three dimensions, it provides important clues to further investigate these both surprising and similar behaviors in four and higher dimensions.

    Keywords: Kiselev black hole, black hole thermodynamics, three dimensions

    1.Introduction

    In the present day, it is a well-established fact that black hole thermodynamics could connect gravity and quantum mechanics closely.This has been a fascinating area of theoretical investigation in recent decades, in order to explore more clues on quantum gravity and its property.In particular, black hole thermodynamics continues to be a focus area for researchers,inspired by the previous prominent discoveries, i.e.the Hawking-Page transition between thermal AdS vacuum and Schwarzschild AdS black hole in four-dimensional Einstein gravity [1].This famous phase transition is interpreted as the confinement/deconfinement phase transition in gauge theory[2] inspired by the AdS/CFT correspondence [3–5].The research of black hole thermodynamics has been greatly improved because of this pioneering work by Hawking-Page.

    This paper will focus on the Kiselev black hole solution and its thermodynamics.The Kiselev black hole is an extremely popular toy model[6],which has accumulated over 300 citations, with most of the citing articles being published.Originally, the Kiselev black hole solution was used to explain the spacetime surrounded by quintessence dark energy [7].The matter field of the Kiselev black hole has an equation of state=ωρ, wherethe average pressure, ρ is the energy density and ω is the state parameter, hence it seems that the Kiselev black hole reflects some features about the spacetime surrounded by quintessence dark energy, in a sense.Recently Matt Visser pointed out that, the Kiselev black hole is neither perfect fluid, nor is it quintessence [8],while it is actually a spacetime surrounded by anisotropic matter field.The anisotropy of the stress-energy supporting the Kiselev black hole is discussed in detail in [9].Despite this terminological issue, the Kiselev black hole does have some interesting physical and mathematical properties.Besides, the Kiselev black hole has a great generality, since the w = 0 limit of former corresponds to the Schwarzschild black hole,itsw=limit reduces to the Reissner-Nordstrom black hole, and its w = -1 limit corresponds to the Schwarzschild-(A)dS black hole.Therefore the Kiselev black hole could be used as a useful theoretical laboratory for studying black hole physics.Recently, it was found that, the anisotropic matter field in the Kiselev black hole spacetime changes no matter the spacetime structure of black hole [6,10–17], but also black hole thermodynamics [17–26], which has consequently attracted considerable interest [6, 10–29].

    The main purpose of this paper is generalizing the discussion to three dimensions,studying the Kiselev black hole solution and thermodynamics in(2 + 1)dimensions.It is often much easier to obtain black hole solutions and analyze their thermodynamics in three dimensions than in four and other dimensions.Initiated in the early 1980s, gravity in (2 + 1)-dimensional spacetime has been a stirring topics of gravitational physics.Especially the discovery of the Banados-Teitelboim-Zanelli (BTZ) black hole[30]led to an increased interest in three-dimensional gravity,not only because black hole solutions exist, but also because such theories are ideal theoretical laboratories for studying AdS/CFT[31–35].Besides, the study of the three-dimensional massive Kiselev AdS black hole solution and its thermodynamics,is also expected to shed some lights on the understanding of more realistic or complicated cases of four-dimensional gravities, and a further understanding of the relationship between anisotropic matter and black holes.Moreover, considering black hole thermodynamics and phase transitions of the BTZ black hole modified by anisotropic matter,could also improve the understanding of the quantum and holographic properties of gravity,and induce many applications about the mutual study on particle physics[31,32]and the condensed-matter theory[33–35]in the spirit of the AdS/CFT correspondence.

    Actually, three-dimensional massive Kiselev AdS black hole solution is neither perfect fluid, nor is it quintessence,which is consistent with the case in four dimensions.It just corresponds to the BTZ black hole surrounded by an anisotropic matter field.On the other hand, it is shown that, the parameter ω of anisotropic matter field brings a notable effect on the spacetime structure and black hole thermodynamics in three dimensions,especially for the phase transitions.It is found that the spacetime of BTZ solution is greatly modified by anisotropic matter,where an essential singularity at r = 0 emerges and there is a single horizon with its radius increasing monotonically when ω decreases from 0 to-1.There is no Hawking-Page transition, since the free energy of BTZ black hole modified by anisotropic matter is negative, which indicates that the Kiselev black hole phase is always thermodynamically favored.Beside,a possible phase transition between the massive Kiselev AdS black hole and BTZ black hole could be arisen under some thermal fluctuations.After considering the matchings for black hole temperature,we show that the massive Kiselev AdS black hole is a thermodynamically more preferred phase, since it always has smaller free energy than the BTZ black hole.We also find an unexpected first order phase transition between the Kiselev AdS black hole phase with - 1 <ω<-and the Kiselev AdS black hole phase withOne can expect that a natural generalization for these phase transitions between the four-dimensional Kiselev AdS black hole and Schwarzschild AdS black hole may exist.

    The paper is organized as follows.In section 2, we will present the three-dimensional massive Kiselev AdS black hole solution.In section 3,we obtain thermodynamics of this black hole, including the thermodynamical quantities and laws.In section 4, we discuss the phase transitions between this three-dimensional Kiselev AdS black hole and BTZ black hole.Finally some concluding remarks are given in section 5.

    2.Three-dimensional massive Kiselev AdS black hole solution

    We begin with the metric ansatz for a black hole solution in three dimensions

    Einstein’s field equations in three-dimensional AdS spacetime with non-vanishing matter field should be

    where M is the black hole mass as calculated in next section.

    Then substituting the above equation into Einstein’s field equations, it is easy to derive

    For the average pressure, one can obtain=ωρ.However, such an average pressure can always be defined,other than refer in particular to the spacetime surrounded by quintessence.Indeed, for the pressure ratio and relative pressure anisotropy, we have The matter field is distinctly not isotropic whenω≠-11The case with ω = -1 is just the BTZ black hole with an un-renormalized cosmological constant., so it is not a perfect fluid.Therefore the three-dimensional massive Kiselev black hole does characterize the BTZ black hole surrounded by anisotropic matter.This is consistent with the case of the Kiselev black hole in four dimensions [8, 9].

    Since the energy density should be positive, it results in aω < 0.Without loss of generality, we choose a > 0.Then the parameter ω < 0 is needed.As shown later, the solution equations (1), (3) describes the three-dimensional massive Kiselev AdS black hole solution.In particular, this solution with a = 0 reduces to the well known BTZ black hole [30].For the parameter ω, since the asymptotic AdS solution requires thatshould be the leading term of f(r) at ther→+∞limit, there exists an additional constraint-2ω < 2,namely,-1 < ω < 0.Noting that the limit ω = 0 corresponds to the BTZ black hole with an un-renormalized black hole mass, and the limit ω = -1 corresponds to the BTZ black hole with an un-renormalized cosmological constant.This is consistent with the discussion about the energy conditions.One can get that

    For the case discussed in this paper, i.e.

    the null energy condition and the weak energy condition are both satisfied, while the strong energy condition leads to a stronger constraint<ω<0.

    Now we present the Ricci scalar as an example of the geometric quantities of this solution

    which shows that the solution under the condition equation (7) has an essential singularity at r = 0 whenevera≠0.As we are interested in black hole solutions, this solution needs to contain one event horizon to surround the singularity.We consider the metric function equation (3) to study the horizon structure.After a little calculation, one can find that there is a zero point for f′(r),which corresponds to a minimum of f(r).This indicates that f(r) will decrease from f(0) = -M to a minimum, and then increase tof(+∞) = +∞in the region r > 0, which replies that the curve for f(r) will cross the horizontal axes one time,corresponding to a single horizon, i.e.the event horizon r = r+.One can see figure 1 for a clear understanding about the horizon structure.From figure 1,one can also find that the radius of the event horizon r+will increase monotonically when ω decreases from 0 to -1.

    Figure 1.Horizon structure for the three-dimensional massive Kiselev AdS black holes with different ω.The solid curve denotes the BTZ black hole case with ω = 0.The values of ω for the curves decrease from left to right in the first quadrant.

    3.Thermodynamics of three-dimensional massive Kiselev AdS black hole

    For this Kiselev AdS black hole, the mass can be calculated by adopting the Brown-York method [36].One can find the quasilocal mass m(r) at r taking the form [36–38]whereis the quasilocal energy at r, andc orresponds to a background metric function(i.e.the massless BTZ spacetime)that determines the zero of the energy.As a result, one can take the following limit to obtain the black hole mass:limr→∞m(r) =M.Since f(r+) = 0, from equation (3) we can derive another form of the black hole mass, i.e.

    The black hole entropy follows the area law and should be

    where AHis the area of the event horizon.The temperature of this three-dimensional massive Kiselev AdS black hole can be derived as

    ForT≥ 0,we can obtain a lower bound for the radius of the Kiselev AdS black hole

    where rexdenotes the horizon of the extremal black hole.After combining these quantities, M, T, and S, we can verify that the first law of thermodynamics

    holds.For the Smarr formula, we give an additional discussion in the appendix since the main aim of this paper is the thermodynamics and phase transitions of the massive Kiselev AdS black hole in the non-extended thermodynamic phase space.

    In the rest of this paper, in order to study the global thermodynamic stability and phase transitions of the threedimensional massive Kiselev AdS black hole, it is necessary to work with the free energy

    Then we focus on the existence of the Hawking-Page transition, which means that the case with a negative F should be regarded as the Kiselev AdS black hole solution being thermodynamically favored over the background spacetime; and the case with vanishing F just corresponds to the famous Hawking-Page transition point,which characterizes the phase transition between the Kiselev AdS black hole phase and the background spacetime phase.

    From equation (14), it is clear that for black holes withthe free energies are always negative;while the free energies have zero for black holes withThis seems to suggest the existence of the Hawking-Page transition of three-dimensional massive Kiselev AdS black hole.However, we depict the free energies for the Kiselev AdS black holes with different ω in figure 2, which always shows some negative free energies.In fact, this can be understood naturally as the zero free energy phase for black holes withcorresponds to a negative temperature which is unacceptable physically.Now we derive directly the sign of free energies for massive Kiselev AdS black holes with different ω ∈ (-1, 0).The free energy can be rewritten asFrom equation(12),we can obtain(2ω+ 1)a=a(ω+ 1) >0, hence F < 0 for Kiselev black holes with ω ∈ (-1,0).Finally,we can conclude that the free energy of three-dimensional massive Kiselev AdS black hole is always negative; this Kiselev AdS black hole is thermodynamically favored over the background spacetime and there is no Hawking-Page transition.

    Figure 2.Free energies for three-dimensional Kiselev AdS black holes with different ω.For the curves of free energy,the values of ω decrease from left to right.

    4.Phase transitions between three-dimensional Kiselev AdS black hole and BTZ black hole

    In this section, we compare the free energies for a threedimensional Kiselev AdS black hole and the BTZ black hole,in order to find the more stable one.In the vanishing-matter limit, i.e.a→0, the Einstein equations equation (2) admit the BTZ black hole [30]

    Then the thermodynamic quantities of the BTZ black hole are given by

    To compare the free energies of the BTZ black hole and the Kiselev black hole, we need to match the temperature=Tof these two black holes, i.e.

    In figure 3,we plot the free energies F of BTZ black hole and three-dimensional Kiselev AdS black holes with different values of ω.We find that the free energies F of the threedimensional Kiselev AdS black holes are always smaller than that of the BTZ black hole when T > 0.

    Then we derive the above result analytically and directly.It is easy to obtain the free energyof the BTZ black hole as a function of the temperaturei.e.

    where the temperature=Tof black holes are matched.After inserting equations(11),(14)and equation(17),we can compare the free energies of the BTZ black hole and Kiselev black hole

    Figure 3.F–T diagram for three-dimensional Kiselev AdS black holes with different ω.The values of ω for the curves decrease from left to right.The red solid curve corresponds to the BTZ case.

    To find the sign of△F, we introduce its derivative

    Hence the discussion is divided into two cases:

    Now we can conclude that>Ffor Kiselev AdS black holes with≤ω<0.

    · When - 1 <ω<we can find that △F′(r+)has a single zero point located at(2ωq+1)aω q?2, which corresponds to the minimum of△F; and when r+> r0, the value of△Falso increases monotonically.Since r+> rex> r0, one can find again that△F>△F∣r+=rex>0, and>Ffor Kiselev AdS black holes with.

    Now it is clear thatF?>Fwhen ω ∈ (-1,0),i.e.the free energies of the Kiselev AdS black holes are really always smaller than that of BTZ black hole.The relationship between the free energies of the BTZ black hole and the threedimensional Kiselev AdS black hole is not affected by the values of the parameter ω ∈ (-1,0)of the anisotropic matter.This means that the three-dimensional massive Kiselev AdS black hole is more thermodynamically preferred.A possible thermodynamical phase transition for the BTZ black hole becoming the Kiselev black hole exists, provided that there are some thermal fluctuations.This indicates that, in the thermodynamic frame, the anisotropic matter field seems to emerge naturally in the BTZ black hole spacetime under some thermal fluctuations.This is different from the cases in the BTZ black hole spacetime modified by other matter fields.For example, it is found that the BTZ black hole always has smaller free energy than the three-dimensional scalar black hole, indicating the BTZ black hole is a thermodynamically more preferred phase [39].

    Finally, for massive Kiselev AdS black holes with ω ∈ (-1, 0), it is also interesting to study: which black hole phase with ω is more thermodynamically preferred? We match the temperature of the Kiselev AdS black holes with different ω as well,and plot their F–T diagrams in figure 4.In this figure, ω of curves increase from up to down at low temperature; while ω of curves decrease from up to down at high temperature.One can find that the Kiselev AdS black hole phase withhas smaller free energy and is more thermodynamic stable globally when the temperature is low, while the Kiselev AdS black hole phase withhas smaller free energy and is more thermodynamic stable globally when the temperature is high.The Kiselev AdS black hole phase withω=always has bigger free energy and is not thermodynamic stable globally no matter whether the temperature is low or high.At the medium temperature, a possible phase transition between the Kiselev AdS black holes with different ω exists.It seems that when the temperature increases, the Kiselev AdS black hole phase with<ω<0changes into the Kiselev AdS black hole phase withunder a first order phase transition.However, it is difficult to discuss the phase diagram of this first order phase transition, since the function F(T) for Kiselev AdS black holes with different ω have very complicated forms.

    Figure 4.Phase transition between three-dimensional massive Kiselev AdS black holes with different ω.

    5.Conclusion

    In this paper, we present the three-dimensional massive Kiselev AdS black hole solution with the parameter ω ∈(-1,0).It is stated that this black hole is neither perfect fluid,nor is it quintessence, but just the BTZ solution modified by anisotropic matter.After examining the geometric quantities of this solution, it is found that an essential singularity at r = 0 exists.We also studied the horizon structure of the Kiselev solution, and found an event horizon whose radius will increase monotonically when ω decreases from 0 to -1.Then we studied the thermodynamics of the massive Kiselev AdS black hole in three dimensions,gave the thermodynamic quantities, including the black hole mass, entropy, temperature and others, and found that the first law of thermodynamics of this massive Kiselev AdS black hole can be protected, while the consistent Smarr formula is only held in the extended thermodynamic phase space.We also disclosed that there is no Hawking-Page transition between the massive Kiselev AdS black hole and the background spacetime.Since the free energy of three-dimensional Kiselev AdS black hole is negative,the black hole phase is always thermodynamically favored.

    On the other hand, we found that a possible phase transition between the massive Kiselev AdS black hole and BTZ black hole under some thermal fluctuations exists.Considering the matchings for the temperature, we find that the massive Kiselev AdS black hole is a thermodynamically more preferred phase, since it always has smaller free energy than the BTZ black hole.In this sense,we argued that,in the thermodynamic frame, the anisotropic matter seems to emerge naturally in the BTZ black hole spacetime under some thermal fluctuations.Moreover, we discussed which black hole phase with different ω is more thermodynamically preferred.After comparing their free energies in the F–T diagram, it shows that when the temperature increases, the Kiselev AdS black hole phase withchanges into the Kiselev AdS black hole phase withunder a first order phase transition.

    In conclusion, the Kiselev black hole contains some notable features on the black hole thermodynamics in three dimensions, especially for the phase transition.Hence it would be of great importance to investigate the theoretical properties and thermodynamics of the Kiselev black holes.Besides,since the properties of three-dimensional black holes are found always to be similar to those of four-dimensional solutions, it is a natural generalization to explore the phase transitions between the four-dimensional Kiselev AdS black hole and the Schwarzschild black hole.This is left to a future task.

    Acknowledgments

    Wei Xu was supported by the National Natural Science Foundation of China (NSFC) and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan).

    Appendix.Thermodynamical quantities and the consistent Smarr formula in the extended thermodynamic phase space

    The Smarr formula, together with the first law of black hole thermodynamics,play an important role in black hole physics.We firstly consider the Smarr formula in the non-extended thermodynamic phase space by supposing M = xTS, which can be simplified asHowever, it is easy to see that the Smarr formulaTSonly holds for the cases with ω = -1 or a = 0, which are both BTZ black hole as shown in section 2.This indicates that it is impossible to maintain the first law and the Smarr formula for threedimensional Kiselev AdS black hole simultaneously in the non-extended thermodynamic phase space.This is consistent with all previous discussions for black holes in general dimensions.

    Actually, for black hole solutions with a non-vanishing cosmological constant, in order to maintain the scaling relation of the Smarr formula, the cosmological constant should be treated as thermodynamic pressure [40–45]

    Meanwhile the black hole mass,which is usually regarded as analogous thermal internal energy in black hole thermodynamics, should be interpreted as a gravitational analog of thermodynamic enthalpy [46], i.e.M ≡ H.These have been investigated for many different situations (see some recent reviews in [47, 48] and references therein), and then the consistent expressions for the Smarr formula and the first law could been constructed.

    In the extended thermodynamic phase space, thermodynamic quantities can be re-expressed as

    The consistent first law of thermodynamics could be generalized as

    where the conjugate thermodynamic variables can be obtain by

    In order to obtain the correct Smarr formula, we now make some scaling arguments (see, e.g.[43, 46]).Since the black hole enthalpy H is a homogeneous function of entropy S, thermodynamic pressures P and variable a, and that M scales as [length]0, S scales as [length]1, P scales as[length]-2, and a scales as [length]2ω, we find that the Smarr formula for the black hole under consideration reads

    which is easy to check that it is really correct.

    Finally, one should note that, in the extended thermodynamic phase space,people always work with the Gibbs free energy G = H - TS to study the global thermodynamic stability and phase transitions of black hole, which takes actually the same value with the free energy F = M - TS in the non-extended thermodynamic phase space since M ≡ H.This means that the existence of Hawking-Page transition and other phase transitions of AdS black holes will have the same behavior in these two frames.One can find some examples in[49–51].

    久久精品综合一区二区三区| 日韩一区二区视频免费看| 精品久久久精品久久久| 国产成人精品婷婷| 久久久午夜欧美精品| 亚洲国产高清在线一区二区三| 赤兔流量卡办理| 极品少妇高潮喷水抽搐| 99久国产av精品国产电影| 亚洲精品久久午夜乱码| 精品一区在线观看国产| 搡女人真爽免费视频火全软件| 男女啪啪激烈高潮av片| 亚洲成色77777| 18+在线观看网站| 免费少妇av软件| 亚洲不卡免费看| 最近的中文字幕免费完整| 在线观看免费高清a一片| 丰满乱子伦码专区| 国产精品人妻久久久影院| 菩萨蛮人人尽说江南好唐韦庄| 美女脱内裤让男人舔精品视频| 在线观看人妻少妇| 欧美3d第一页| 久久精品国产亚洲网站| 午夜老司机福利剧场| 天美传媒精品一区二区| 麻豆国产97在线/欧美| 各种免费的搞黄视频| 国产一区二区在线观看日韩| 亚洲精品自拍成人| 国产午夜福利久久久久久| 色网站视频免费| 久久久久久久久久成人| 免费看不卡的av| 免费黄频网站在线观看国产| 久热久热在线精品观看| av女优亚洲男人天堂| 97热精品久久久久久| 国产综合精华液| 久久久久久国产a免费观看| 97超视频在线观看视频| 久久久午夜欧美精品| 国产爱豆传媒在线观看| 人妻夜夜爽99麻豆av| 九九在线视频观看精品| av在线亚洲专区| 免费看不卡的av| 国产欧美日韩精品一区二区| 国产久久久一区二区三区| 如何舔出高潮| 亚洲精品成人av观看孕妇| 精品一区二区三区视频在线| 欧美xxxx黑人xx丫x性爽| 国产高清有码在线观看视频| 国精品久久久久久国模美| 青春草亚洲视频在线观看| 国产男女内射视频| 在线观看三级黄色| 国产一区亚洲一区在线观看| 亚洲美女视频黄频| 国产一区二区在线观看日韩| av国产免费在线观看| 汤姆久久久久久久影院中文字幕| 亚洲精品乱码久久久久久按摩| 国内少妇人妻偷人精品xxx网站| 免费观看av网站的网址| 十八禁网站网址无遮挡 | 亚洲av在线观看美女高潮| 久久久久精品性色| 亚洲综合精品二区| 在现免费观看毛片| 91久久精品国产一区二区三区| 亚洲国产欧美人成| av一本久久久久| 日韩成人av中文字幕在线观看| 成人无遮挡网站| 最近2019中文字幕mv第一页| 99热这里只有精品一区| 男人添女人高潮全过程视频| 内射极品少妇av片p| 肉色欧美久久久久久久蜜桃 | av女优亚洲男人天堂| 久久久久久久大尺度免费视频| 又黄又爽又刺激的免费视频.| 91精品一卡2卡3卡4卡| 大陆偷拍与自拍| av在线观看视频网站免费| 18禁裸乳无遮挡动漫免费视频 | 久久鲁丝午夜福利片| 深夜a级毛片| 久久精品久久精品一区二区三区| 亚洲国产精品国产精品| 欧美精品一区二区大全| 国产成人福利小说| 水蜜桃什么品种好| 搞女人的毛片| 免费av毛片视频| 亚洲精品影视一区二区三区av| 国产久久久一区二区三区| 最近中文字幕2019免费版| 亚洲综合色惰| 国产高清有码在线观看视频| 午夜福利视频1000在线观看| 在线看a的网站| 久久久亚洲精品成人影院| 欧美bdsm另类| 亚洲内射少妇av| 男男h啪啪无遮挡| 国产免费一区二区三区四区乱码| 国产69精品久久久久777片| 欧美 日韩 精品 国产| 亚洲av在线观看美女高潮| 99re6热这里在线精品视频| 国产高潮美女av| 国产真实伦视频高清在线观看| 搡女人真爽免费视频火全软件| 国产精品女同一区二区软件| 男人爽女人下面视频在线观看| 欧美3d第一页| 香蕉精品网在线| 在线观看人妻少妇| 高清视频免费观看一区二区| 成人免费观看视频高清| 亚洲国产高清在线一区二区三| 日韩欧美精品v在线| 精品午夜福利在线看| 黄色怎么调成土黄色| 国产老妇伦熟女老妇高清| 亚洲av不卡在线观看| 秋霞伦理黄片| 亚洲av二区三区四区| 男女啪啪激烈高潮av片| 国产精品秋霞免费鲁丝片| 亚洲精品国产成人久久av| 美女cb高潮喷水在线观看| 亚洲三级黄色毛片| 欧美日韩在线观看h| 一区二区三区四区激情视频| 欧美成人午夜免费资源| 交换朋友夫妻互换小说| 综合色av麻豆| 美女视频免费永久观看网站| 亚洲国产高清在线一区二区三| 色哟哟·www| 建设人人有责人人尽责人人享有的 | av免费观看日本| 少妇猛男粗大的猛烈进出视频 | 激情五月婷婷亚洲| 欧美极品一区二区三区四区| 国产高潮美女av| 99九九线精品视频在线观看视频| videos熟女内射| 国产免费一级a男人的天堂| 国产亚洲最大av| 免费看av在线观看网站| 精品国产一区二区三区久久久樱花 | 午夜日本视频在线| 国产免费一区二区三区四区乱码| 国产又色又爽无遮挡免| 美女国产视频在线观看| 国产亚洲一区二区精品| 国产av码专区亚洲av| 午夜激情久久久久久久| 18禁动态无遮挡网站| 老司机影院毛片| 国产欧美另类精品又又久久亚洲欧美| 男人狂女人下面高潮的视频| 亚洲av日韩在线播放| 久久影院123| 熟妇人妻不卡中文字幕| 日韩一本色道免费dvd| 日韩成人av中文字幕在线观看| 别揉我奶头 嗯啊视频| 大话2 男鬼变身卡| 亚洲aⅴ乱码一区二区在线播放| 国产 一区 欧美 日韩| 纵有疾风起免费观看全集完整版| 免费观看无遮挡的男女| 精品一区二区三卡| 视频区图区小说| 大香蕉97超碰在线| 国产成人freesex在线| 免费av毛片视频| 国产美女午夜福利| 欧美区成人在线视频| 亚洲国产欧美人成| 亚洲av在线观看美女高潮| 91久久精品电影网| 国产成人a∨麻豆精品| 夜夜爽夜夜爽视频| 视频区图区小说| 国产片特级美女逼逼视频| 91狼人影院| 免费av毛片视频| 欧美xxxx性猛交bbbb| 尾随美女入室| 只有这里有精品99| 亚洲国产欧美人成| 97在线人人人人妻| 亚洲成人精品中文字幕电影| 精品一区二区三区视频在线| 网址你懂的国产日韩在线| 亚洲av福利一区| 欧美丝袜亚洲另类| 成人免费观看视频高清| 国产av不卡久久| 欧美 日韩 精品 国产| 亚洲国产高清在线一区二区三| 噜噜噜噜噜久久久久久91| 中文字幕免费在线视频6| 午夜福利在线观看免费完整高清在| 国产精品精品国产色婷婷| 日日啪夜夜爽| 亚洲天堂av无毛| 99久国产av精品国产电影| 麻豆成人av视频| 成人国产av品久久久| 国产毛片a区久久久久| 国产男人的电影天堂91| 久久精品国产亚洲av天美| 午夜福利高清视频| 国语对白做爰xxxⅹ性视频网站| 国产又色又爽无遮挡免| 精品一区二区免费观看| 久热久热在线精品观看| 男人舔奶头视频| 亚洲精品影视一区二区三区av| 80岁老熟妇乱子伦牲交| 免费不卡的大黄色大毛片视频在线观看| 秋霞在线观看毛片| 国产免费福利视频在线观看| 欧美zozozo另类| 日韩电影二区| 国产成人91sexporn| 一级黄片播放器| 大陆偷拍与自拍| 嫩草影院精品99| 97在线人人人人妻| 黄片wwwwww| 丰满少妇做爰视频| 成人综合一区亚洲| 久久99热这里只有精品18| 国产成人aa在线观看| 亚洲成色77777| 久久ye,这里只有精品| 久久精品国产鲁丝片午夜精品| 久久久久久九九精品二区国产| 少妇猛男粗大的猛烈进出视频 | 69人妻影院| 免费少妇av软件| 3wmmmm亚洲av在线观看| 久久99热6这里只有精品| 亚洲第一区二区三区不卡| 黄色怎么调成土黄色| 国产探花在线观看一区二区| 最近最新中文字幕免费大全7| 久久99热6这里只有精品| 亚洲电影在线观看av| 国产精品女同一区二区软件| 欧美变态另类bdsm刘玥| 久久人人爽人人爽人人片va| 99热这里只有精品一区| 欧美亚洲 丝袜 人妻 在线| 亚洲精品国产av成人精品| 国产探花极品一区二区| 国产黄a三级三级三级人| 国产在线一区二区三区精| 蜜臀久久99精品久久宅男| 毛片女人毛片| 精品国产一区二区三区久久久樱花 | 九九久久精品国产亚洲av麻豆| 亚洲精品第二区| 最近中文字幕2019免费版| 少妇裸体淫交视频免费看高清| 国产探花在线观看一区二区| 97超视频在线观看视频| 性色av一级| 国产成人精品福利久久| freevideosex欧美| 国产成人午夜福利电影在线观看| 天堂中文最新版在线下载 | 草草在线视频免费看| 久久午夜福利片| 老师上课跳d突然被开到最大视频| 国产精品久久久久久久电影| 亚洲内射少妇av| 51国产日韩欧美| 亚洲国产精品999| 久久国产乱子免费精品| 男男h啪啪无遮挡| 久久久a久久爽久久v久久| 午夜福利网站1000一区二区三区| 一级a做视频免费观看| 麻豆乱淫一区二区| 特级一级黄色大片| 亚洲综合色惰| 嘟嘟电影网在线观看| 日韩av不卡免费在线播放| 日本一二三区视频观看| 大陆偷拍与自拍| av在线播放精品| 久久亚洲国产成人精品v| 又粗又硬又长又爽又黄的视频| 亚洲精品一区蜜桃| 日本wwww免费看| 蜜桃亚洲精品一区二区三区| 深夜a级毛片| 久久久久国产精品人妻一区二区| 欧美精品一区二区大全| 男人爽女人下面视频在线观看| 99精国产麻豆久久婷婷| 成人无遮挡网站| 黄色一级大片看看| 舔av片在线| 蜜桃亚洲精品一区二区三区| 亚洲一区二区三区欧美精品 | 夜夜看夜夜爽夜夜摸| 有码 亚洲区| 国产大屁股一区二区在线视频| 欧美日韩精品成人综合77777| 三级国产精品片| 亚洲av欧美aⅴ国产| 国产亚洲av嫩草精品影院| 欧美最新免费一区二区三区| 欧美成人a在线观看| 特级一级黄色大片| 黄色怎么调成土黄色| 国产精品不卡视频一区二区| 久久影院123| 国产伦精品一区二区三区四那| 国产欧美另类精品又又久久亚洲欧美| 国产精品麻豆人妻色哟哟久久| 精品国产三级普通话版| 免费黄网站久久成人精品| 亚洲精品日韩av片在线观看| 久久精品久久久久久久性| 亚洲一区二区三区欧美精品 | av免费观看日本| 99热这里只有是精品在线观看| 纵有疾风起免费观看全集完整版| 国产淫片久久久久久久久| 欧美三级亚洲精品| 免费观看的影片在线观看| av福利片在线观看| 一级毛片我不卡| 国产精品一区二区在线观看99| 欧美zozozo另类| 国产精品99久久久久久久久| 少妇裸体淫交视频免费看高清| 国产精品不卡视频一区二区| 久久人人爽av亚洲精品天堂 | 男女啪啪激烈高潮av片| av女优亚洲男人天堂| 国产成人精品久久久久久| 亚洲综合精品二区| .国产精品久久| 久久ye,这里只有精品| 韩国高清视频一区二区三区| 亚洲精品日本国产第一区| 欧美潮喷喷水| 国产精品成人在线| 亚洲av福利一区| 国产成人aa在线观看| av专区在线播放| 日本午夜av视频| 一本一本综合久久| 午夜视频国产福利| eeuss影院久久| 国产亚洲精品久久久com| 80岁老熟妇乱子伦牲交| 日本午夜av视频| 99久国产av精品国产电影| 波多野结衣巨乳人妻| 日韩不卡一区二区三区视频在线| 精品一区二区三区视频在线| 国产精品99久久久久久久久| 日韩大片免费观看网站| 国产69精品久久久久777片| 一级毛片黄色毛片免费观看视频| 男女国产视频网站| 久久精品国产a三级三级三级| 中文字幕av成人在线电影| 王馨瑶露胸无遮挡在线观看| 久久久久久久久久久免费av| 精品久久久精品久久久| 国产成人精品久久久久久| 一本一本综合久久| 天天躁夜夜躁狠狠久久av| 最近2019中文字幕mv第一页| 免费看a级黄色片| 国产亚洲一区二区精品| 亚洲天堂av无毛| 国产v大片淫在线免费观看| 日本午夜av视频| 欧美 日韩 精品 国产| eeuss影院久久| 亚洲人成网站在线播| 日韩不卡一区二区三区视频在线| 国产日韩欧美亚洲二区| 国产一区亚洲一区在线观看| 免费人成在线观看视频色| 精品久久国产蜜桃| 国产精品不卡视频一区二区| 国产黄片视频在线免费观看| 欧美激情久久久久久爽电影| 好男人视频免费观看在线| 夫妻性生交免费视频一级片| 国语对白做爰xxxⅹ性视频网站| 你懂的网址亚洲精品在线观看| 亚洲欧美清纯卡通| 亚洲av欧美aⅴ国产| 最近2019中文字幕mv第一页| 久久99蜜桃精品久久| 男人狂女人下面高潮的视频| 少妇人妻 视频| 久久久久久久久久久丰满| 99久久中文字幕三级久久日本| 免费黄频网站在线观看国产| 有码 亚洲区| 国产精品人妻久久久久久| 国产精品精品国产色婷婷| 搞女人的毛片| 王馨瑶露胸无遮挡在线观看| 亚洲欧美一区二区三区黑人 | 国产一区亚洲一区在线观看| 久热这里只有精品99| 国产一区二区亚洲精品在线观看| 亚洲性久久影院| 国产高清有码在线观看视频| 亚洲成人av在线免费| 亚洲四区av| 国内少妇人妻偷人精品xxx网站| 少妇 在线观看| 国产精品成人在线| 欧美成人午夜免费资源| 大码成人一级视频| 国产成人午夜福利电影在线观看| 久久99热这里只频精品6学生| 久久久久国产网址| 精品久久久精品久久久| 欧美精品人与动牲交sv欧美| 久久99热6这里只有精品| 亚洲精品成人久久久久久| 丝瓜视频免费看黄片| 中国三级夫妇交换| 久久久久久久亚洲中文字幕| 日韩伦理黄色片| 国产亚洲av嫩草精品影院| 欧美日韩视频高清一区二区三区二| 国产91av在线免费观看| 国内精品美女久久久久久| 国产视频首页在线观看| 亚洲一级一片aⅴ在线观看| 国产精品一二三区在线看| 日韩av不卡免费在线播放| 热99国产精品久久久久久7| 日韩在线高清观看一区二区三区| 熟女电影av网| 亚洲色图综合在线观看| 人妻制服诱惑在线中文字幕| 亚洲国产欧美人成| 国产色婷婷99| 哪个播放器可以免费观看大片| 国产人妻一区二区三区在| 欧美最新免费一区二区三区| 我要看日韩黄色一级片| 国产高清三级在线| 日韩制服骚丝袜av| 蜜桃亚洲精品一区二区三区| 亚洲精品久久久久久婷婷小说| 亚洲国产色片| 亚洲电影在线观看av| 国产免费视频播放在线视频| 一个人看视频在线观看www免费| 嫩草影院精品99| 久久久精品免费免费高清| 中文精品一卡2卡3卡4更新| 直男gayav资源| 黄片wwwwww| 美女视频免费永久观看网站| 2021天堂中文幕一二区在线观| 国产美女午夜福利| 成人毛片60女人毛片免费| 国产精品一区www在线观看| 国产亚洲5aaaaa淫片| 亚洲国产成人一精品久久久| 亚洲自偷自拍三级| 色5月婷婷丁香| 好男人视频免费观看在线| 纵有疾风起免费观看全集完整版| 欧美3d第一页| 我的女老师完整版在线观看| 赤兔流量卡办理| 国产av国产精品国产| 插逼视频在线观看| 少妇熟女欧美另类| 日本wwww免费看| 国产淫语在线视频| 日本爱情动作片www.在线观看| 99视频精品全部免费 在线| 国产精品99久久99久久久不卡 | 黄色视频在线播放观看不卡| av国产免费在线观看| 久久久a久久爽久久v久久| 亚洲精品国产成人久久av| 久久鲁丝午夜福利片| 日韩免费高清中文字幕av| 亚洲欧美一区二区三区黑人 | 国产高清三级在线| 免费电影在线观看免费观看| 中文在线观看免费www的网站| 亚洲伊人久久精品综合| 高清在线视频一区二区三区| 国产精品久久久久久精品电影| 精品99又大又爽又粗少妇毛片| 看非洲黑人一级黄片| 男人狂女人下面高潮的视频| 亚洲成人精品中文字幕电影| 欧美3d第一页| 亚洲熟女精品中文字幕| 免费看av在线观看网站| 国产一区二区三区av在线| 婷婷色av中文字幕| 黄片无遮挡物在线观看| 女人被狂操c到高潮| 久久99蜜桃精品久久| 国产精品久久久久久精品古装| 亚洲精品日韩av片在线观看| 特大巨黑吊av在线直播| 亚洲自拍偷在线| 女的被弄到高潮叫床怎么办| 国产一区二区三区av在线| 超碰97精品在线观看| 精品人妻视频免费看| 免费看日本二区| 国产精品福利在线免费观看| 亚洲最大成人手机在线| 免费黄色在线免费观看| 女人被狂操c到高潮| 久久精品久久久久久噜噜老黄| videos熟女内射| 自拍欧美九色日韩亚洲蝌蚪91 | 精品久久国产蜜桃| 欧美变态另类bdsm刘玥| 久久综合国产亚洲精品| 免费大片黄手机在线观看| 一个人观看的视频www高清免费观看| 人人妻人人澡人人爽人人夜夜| 久久6这里有精品| 五月开心婷婷网| 一级毛片我不卡| 全区人妻精品视频| 精品一区二区三区视频在线| 国产永久视频网站| 久久精品久久久久久久性| 精华霜和精华液先用哪个| 欧美高清性xxxxhd video| www.色视频.com| 国产色婷婷99| 国产亚洲午夜精品一区二区久久 | 九色成人免费人妻av| 80岁老熟妇乱子伦牲交| 综合色av麻豆| 国产伦在线观看视频一区| 国产成人免费无遮挡视频| 女人久久www免费人成看片| 女人十人毛片免费观看3o分钟| 99久久九九国产精品国产免费| 久久精品久久精品一区二区三区| 欧美最新免费一区二区三区| 日韩亚洲欧美综合| 边亲边吃奶的免费视频| 国产精品99久久99久久久不卡 | 青春草视频在线免费观看| 一本色道久久久久久精品综合| 国产色爽女视频免费观看| 又粗又硬又长又爽又黄的视频| 欧美97在线视频| 久久久精品欧美日韩精品| 国产成人freesex在线| 欧美国产精品一级二级三级 | 亚洲av电影在线观看一区二区三区 | 欧美三级亚洲精品| 色婷婷久久久亚洲欧美| 亚洲av日韩在线播放| 亚洲欧美一区二区三区国产| 黄片无遮挡物在线观看| 亚洲人成网站在线播| 最近最新中文字幕免费大全7| 欧美97在线视频| 综合色av麻豆| 国产一区二区三区综合在线观看 | 最近最新中文字幕免费大全7| 国产色爽女视频免费观看| 777米奇影视久久| 内地一区二区视频在线| 色吧在线观看| 国产色婷婷99| 国产成人福利小说| 成人午夜精彩视频在线观看| 我要看日韩黄色一级片| 国产精品伦人一区二区| 伦精品一区二区三区| 久久97久久精品| 网址你懂的国产日韩在线| 婷婷色综合www| 久久久久久九九精品二区国产| 国产精品国产三级国产专区5o| 26uuu在线亚洲综合色| 国产乱人偷精品视频| 日韩av免费高清视频| 欧美老熟妇乱子伦牲交| 国产成人a∨麻豆精品|