• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Strange quark star and the parameter space of the quasi-particle model

    2021-10-12 05:32:36WenHuaCaiandQingWuWang
    Communications in Theoretical Physics 2021年10期

    Wen-Hua Cai and Qing-Wu Wang

    College of physics, Sichuan University, Chengdu 610064, China

    Abstract The properties of strange quark stars are studied within the quasi-particle model.Taking into account chemical equilibrium and charge neutrality, the equation of state (EOS) of(2 +1) -flavor quark matter is obtained.We illustrate the parameter spaces with constraints from two aspects: one is based on the astronomical results of PSRJ0740+ 6620 and GW 170 817 ,and the other is based on the constraints proposed from the theoretical study of a compact star that the EOS must ensure the tidal deformability L1 .4 =and support a maximum mass above1.97 ⊙M.It is found that neither type of constraints can restrict the parameter space of the quasi-particle model in a reliable region and thus we conclude that the low mass compact star cannot be a strange quark star.

    Keywords: strange quark, compact star, tidal deformability, quasi-particle model, neutron star

    1.Introduction

    Quantum chromodynamics(QCD),which has been regarded as the theory to govern the strong interaction, predicts that confined hadronic matter will undergo a deconfinement transition to a new phase at large density and extremely low temperature[1,2].It is believed that the new phase of nuclear matter,as we call it quark–gluon plasma(QGP),may exist within a new kind of compact star – quark stars [3–8].The strange quark matter(SQM) hypothesis indicates that the matter formed by a deconfined u quark, d quark and s quark may be the true ground state of strongly interacting matter [9, 10].This hypothesis supports the presence of a strange quark star.

    In recent years,based on the latest astronomical data,some researchers have argued that many compact stars and pulsars with large mass may be strange quark stars, even including some stars which used to be identified as neutron stars [11].This naturally raises the question of how to discriminate these strange quark stars from other compact stars.At present,due to the lack of astronomical observation data, it may be achieved through analysis of properties,like the mass–radius relation and tidal deformability, which heavily depends on studying the equation of state (EOS)[12, 13].Applying an EOS to the Tolman–Oppenheimer–Volkoff (TOV) equation, the relevant properties and features of the star can be obtained.However,at high density and very low temperature, it is difficult to figure out the EOS of cold deconfined quark matter from first principles.Hence, people study the properties of QGP and strange quark stars based on nonperturbative models like the MIT bag model[14–17],the Nambu?Jona-Lasinio(NJL)model[18–22]and the quasi-particle model [22–24].

    The quasi-particle model is a kind of phenomenological description of QGP which was obtained by the simulation of lattice QCD [25].Via the introduction of thermal mass at finite temperature and finite chemical potential, we can treat the system as made up of free quark gas to avoid the complicated calculation of QCD interactions.Thanks to the increasing data from astrophysical observations, it provides a place to test the applicability of an effective model.The latest astrophysical observation of a pulsar, PSRJ0740+ 6620[26], has provided a maximum mass measurement result so far, which is much larger than the result of PSRJ0348 +0432(M= 2.01 ±0.04M⊙)[27],and thus the soft EOSs which cannot produce such a massive star are supposed to be eliminated.Moreover,according to the gravitational wave observation GW 170 817 [28], the tidal deformability L for 1.4 M⊙star( L1.4) needs to be constricted to smaller than 800 in the low-spin prior case.Recently,some significant conclusions have been drawn via the study of quark matter within compact stars, taking into account both the astronomical observations and theoretical simulations [29].Adopting the speed-of-sound interpolation method, they have succeeded in describing the QCD matter properties of different compact stars with different masses and radii.Their results have been verified by approximately 570 000 EoSs which are built from randomly generated functions.To get such a result, some hypothetical constraints are proposed that the maximum mass should be above 1.97 M⊙a(bǔ)nd the range of tidal deformability should be revised to L1.4=190Recently, some scholars have even claimed that there may exist a compact star with a mass of 2.6 M⊙[30,31],which presents great potential to be a candidate for a strange quark star if it is proven to be true.In this paper, from the perspective of strange quark stars, we intend to study the parameter space of the quasi-particle model with some of the latest astrophysical results.

    This paper is organized as follows.We first introduce the quasi-particle model at finite chemical potential based on statistical mechanics and thermodynamic equilibrium in section 2.By considering chemical equilibrium and charge neutrality, the EOS of SQM is obtained in section 3.Then,making use of the the EOS, the mass–radius and tidal deformability of a strange quark star are explored.Based on the latest astronomical observations and theoretical research,we study the parameter space of the quasi-particle model.Finally, a short summary of our work is given in section 4.

    2.Quasi-particle model at finite chemical potential and zero temperature

    The quasi-particle model,which was first proposed to explain the results in lattice gauge theory (LGT) simulations, is widely used to describe the nonperturbative behavior of QCD.Following the works of Bannur[32–36],the density of quarks at nonzero temperature is given by

    where Ncis the number of colors and subscript i indicates the u, d and s quarks.In addition,

    is the dispersion relation for each kind of quark, wherem i(T,μ)stands for the effective mass of different quarks and has the expression

    The symbol θ in equation (4) stands for the step function.In this case, the thermal massmthin equation (3) reads

    in which the symbol Nfis the number of flavors.The effective coupling constant g can be obtained by the two-loop approximation and has the form

    where ζ is a phenomenological parameter which is related to the nonperturbative effect of QCD [38, 39].Making use of the physical quantities introduced above, all the physical quantities needed to describe the SQM can be derived through the basic thermodynamic relations.

    The relation between number density of quarksρi(μ)and chemical potential μ is presented in figure 1.Owing to the step function in the expression ofρi(μ), it is found that the quark number density vanishes when the chemical potential is below a critical pointμc.That is to say,μ=μ cis a singularity which divides the quark number density into two different regions.This phenomenon is in agreement with the conclusion brought forth in [40], in which researchers pointed out that the existence of some singularity at critical point with zero temperature is a robust and model-independent result based on a universal argument.Similar discussions may also be found in [41, 42].

    Figure 1.Number density ρi ( μ)of u, d and s quarks as functions of chemical potential μ at zero temperature with ζ = 0.065 GeV,0.070 GeV and 0.075 GeV respectively.

    Figure 2.Baryon number densityρB as a function of baryon chemical potentialμB with ζ = 0.065 GeV, 0.070 GeV and 0.075 GeV, respectively.

    3.Structure of strange quark stars with the quasiparticle model

    Recently, research on strange quark stars has attracted increasing attention.The existing theories suggest that strange quark stars have at least two main channels to be produced.First, a number of them may come into being in the early stage of the universe according to the Big Bang theory.Second, they can also be produced by the phase transition within neutron stars [11].Therefore, studying strange quark stars does help to understand the phase transition from confined hadron matter to quark matter.

    To begin with,there exists chemical equilibrium with the compact stars which is established via weak decay

    In consideration of the equilibrium, the electrons and neutrinos have to be included in the system.However,for a stable quark star, we can reasonably assume the neutrinos have enough time to leave the system,which means that there is no need to consider the participation of neutrinos in the chemical equilibrium.To that end, the constraint conditions

    and

    for the chemical potential of u,d,s quarks and electrons have to be met.Moreover, taking electric charge neutrality into account, the number densities of quarks and electrons should be bound to satisfy the relation

    The EOS of quark matter at zero temperature can be derived from statistical mechanics and reads [43, 44]

    whereP(μ)∣μ=0is a negative term.The termP(μ)∣μ=0is the so-called vacuum pressure which is related to the confinement property of QCD.However,due to the lack of comprehensive understanding of QCD interactions,we can neither obtain this term from first principles nor figure out how it is generated.Therefore, we treat the vacuum pressure term as a phenomenological parameter and rewrite it asP(μ)∣μ=0= -B(B>0) in this paper.Then, the energy density can be deduced from the thermodynamic relation

    Combining equation (11) and equation (12) with the discussion taken before, some significant relations can be obtained.

    The influence of parameter ζ, parameter B and baryon chemical potentialμBon the EOS of SQM is presented in figures 4 and 5.We can see that the pressure densityP(μB)and the energy densityε(μB)have similar behaviors: whenμB<μBc,P(μB)andε(μB)remain constant, and the reason for this phenomenon is the disappearance of the quark number density in this region; onceμB>μBc, they becomemonotonically increasing functions of baryon chemical potentialμB.We exhibit the relation between the pressure density and energy density in figure 6.It can be found that the EOS with a larger ζ and a larger B becomes softer.In addition,there is a starting point of the EOS,(-B,B)in the plane of energy–pressure density, which is the consequence of equation (11).

    Figure 3.Proportion of constituent u, d and s quarks and electrons(multiplied by a factor of 20) as functions of the baryon number density (the symbolρsum stands for the total quark number density andρ0 stands for the baryon number density where the s quarks begin to be nonzero).

    Figure 4.Pressure density P( μB)as a function of baryon number densityμB for different ζ and B.

    Figure 5.Energy density ε ( μB)as a function of baryon number densityμB for different ζ and B.

    Utilizing the EOS of SQM, we can get the mass–radius relations (in units ofG=c= 1) by integrating the TOV equations [45–47]

    and

    and the result is exhibited in figure 7.As a comparison, we also show the maximum mass constraints required by PSR J0740 +6620(M=and PSRJ0348 +0432(M= 2.01 ±0.04M⊙),as well as the restriction proposed in[29] in this figure.It is easy to find in figure 7 that a larger maximum mass will be generated with a stiffer EOS.Furthermore, we can find that the EOSs of quasi-particles have the ability to yield a maximum mass larger than the latest observation results.The maximum masses and the corresponding radii of strange quark stars with different ζ and B are calculated, and the results are exhibited in table 1.From this table we can see clearly that the radius of the strange quark star with a mass of near 2 M⊙is close to 12 km.The results are in agreement with the discussions in [48–51].

    Figure 6.Relations between energy density ε and pressure density P for different ζ and B.

    Figure 7.Mass–radius relations of strange quark stars for different ζ and B with the constraints required by PSRJ0740+ 6620,PSRJ0348+ 0432.

    In a binary star system,each star will be deformed by the tidal field of its companion because of the presence of tidal gravity.This phenomenon can be described by the physical quantity ‘tidal deformability,’ which is defined as the ratio between one star’s induced mass quadrupole moment and the tidal field of its companion [47].

    In order to calculate the tidal deformability L, we adopt the relation

    whereC=represents the compactness of a star.Here,the physical quantity k2is the dimensionless tidal Love number for l = 2 which describes the difficulty with which a star can be deformed by an external tidal field, and it can beexpressed as

    Table 1.Radii R and maximum masses Mmax of strange quark stars with different ζ and B.

    In equation (16), the symbol y is defined as

    and is related to metric functionH(r) and surface energy densityε0.Due to the introduction of negative vacuum pressure, there is a nonzero energy density just around the surface of the star as we can see in figure 6.To derive the metric function, it is necessary to integrate the following differential equations:

    where

    The integration will start from the center with the expansionsH(r) =a0r2andβ(r)=2a0ras the radiusr→0.Since our concern is the ratio ofwe can ignore the value of coefficient a0and treat it as 1 for simplicity.

    Combining the discussions above, the properties of strange quark stars with 1.4 M⊙for different ζ and B can be obtained, as presented in table 2.From this table we can see that the strange quark star is less compact with a smaller ζ and a smaller B for a given mass.This result means that such a star is easier to be deformed by an external tidal field.We illustrate in figure 8 the relations between the tidal deformability for a 1.4 M⊙strange quark star( L1.4)and parameters ζ as well as the relations between L1.4and parameter B.For comparison, we also show the constraint required by GW 170 817 that the L1.4should be smaller than 800 in the same figure.We can find in figure 8 that not all the parameter settings satisfy the constraint from gravitational wave observations.

    Figure 8.Tidal deformability as function of parameter ζ and bag constant B.(a)Relations betweenL1.4 and parameter ζ;(b)relations betweenL1.4 and parameter B.

    Table 2.Properties of strange quark stars with a mass of 1.4 M⊙for different ζ and B, including the compactness C =the Love number k2 as well as the tidal deformabilityL1.4.

    Table 2.Properties of strange quark stars with a mass of 1.4 M⊙for different ζ and B, including the compactness C =the Love number k2 as well as the tidal deformabilityL1.4.

    ζ(GeV)B14(GeV)=C M R k2 L1.4 0.120 0.078 0.171 0.187 833.682 0.120 0.079 0.172 0.186 819.215 0.120 0.080 0.173 0.184 787.925 0.121 0.081 0.175 0.181 731.478 0.121 0.082 0.177 0.177 678.982

    In figure 9,we illustrate the parameter space of the quasiparticle model based on the astronomical observations and theoretical results respectively.In panel (a), we constrain the parameters in view of the PSR J0740+ 6620and GW 170 817 , and find that there is no coincident region for the feasible area of PSR J0740 +6620 and the feasible area of GW 170 817.Namely,the constraint of GW 170 817 , which requires L1.4to be smaller than 800 , and the constraint of PSRJ0740 +6620which requires a maximum mass above 2.14 M⊙, cannot be met simultaneously.Considering the uncertainty of the mass,it can fit to the low boundary of mass asζ≤0.06 GeV.Similarly,we draw another parameter space in panel (b), which is based on the requirement proposed in[29].In [29], researchers claimed that the EOS must ensure the tidal deformabilityand support a maximum mass above 1.97 M⊙.It is clear to see from(b)that the two feasible areas do not coincide when ζ is larger than about 0.03 GeV,and in the region ofζ<0.03 GeV,there is a small coincident area for the two constraints, which almost vanishes.However, according to [52], the quasi-particle model we use will work better in the large ζ region in order to fit the LGT data; as for the area of small ζ, the results may be unreliable to some extent, let alone the coincident region which is very small compared to the whole parameter space.

    In figure 9 the parameter space of the quasi-particle model cannot meet the the constraints of PSRJ0740+ 6620and GW 170 817 simultaneously.Meanwhile, the parameter space also cannot restrict the requirement proposed in[29]in a reliable region.Up to now,increasing evidence has indicated that the compact stars of large masses may be strange quark stars[53–56].On the basis of the results in figure 9, we think it is probably improper to regard a compact star with a mass of 1.4 M⊙a(bǔ)s strange quark star.Naturally,we assume that the properties of compact stars with small mass (including 1.4 M⊙) look more like neutron stars formed by hadronic matter rather than strange quark stars.This hypothesis is consistent with the conclusion of[29], in which the researchers claimed that they found quark matter exists within compact stars with 2 M⊙but is not present within compact stars with1.4⊙M.

    Figure 9.Parameter space of the quasi-particle model based on observation results of PSRJ0740 +6620 and GW 170 817 and based on constraints proposed in[29],respectively.

    4.Summary

    In this paper,we have studied the properties of strange quark stars with the quasi-particle model.Taking the chemical equilibrium of the weak interaction and charge neutrality into account,we have obtained the baryon number density and the variation of constituents for different ζ.We have found that the proportions of quarks are irrelevant with ζ.With the introduction of parameter B for the vacuum pressure,we have established the EOS of SQM.With proper choices of B and ζ,it is possible to generate a quark star with a maximum mass larger than2.14⊙M, which matches the results of PSR J0740 +6620and PSRJ0348 +0432(M= 2.01 ±0.04M⊙).We have calculated the properties of a strange quark star with mass of1.4⊙M, including the compactness C, the Love number k2and the tidal deformability L1.4.It is found that a softer EOS corresponds to a more compact quark star, which is more difficult to be deformed.

    Finally, we have illustrated the parameter space of the quasi-particle model based on astronomical observations and theoretical suggestions.It is found that the parameter space cannot meet the constraint of GW 170 817 which requires L1.4smaller than 800 , and the constraint of PSRJ0740+ 6620which requires a maximum mass of at least2.14⊙M, simultaneously.Similarly, the model also cannot satisfy the constraints proposed in [29], in which the researchers claimed that the EOS must ensure the tidal deformabilityand support a maximum mas s above1.97⊙M.

    Early studies on neutron star models are in good agreement with the observed data of low mass stars.However, the EOSs are relatively soft, so it is difficult to get a maximum mass larger than 2⊙M.We can obtain large mass objects based on the EOS of SQM, but cannot obtain correct Λ data for stars with small mass simultaneously.Therefore, in order to meet the Λ data from the present astronomical observations, it is not feasible for the present three flavored quark model.Of course, our conclusion should be understood as model dependent.There may be other possibilities, such as thinking of a pulsar as a three flavored gigantic nucleus which is called a strangeon star [57].In figure 1 of [57], with L( 1.4)=400, the maximum mass of strangeon stars can be larger than3⊙M.Therefore,our calculations as compared with the quark-cluster model of a strangeon star may indicate that the coupling between quarks in a strange star is still very strong so that quarks are localized/confined in strangeons,as is in the case of nucleons for a nucleus.A recent work assuming the SQM is in the color–flavor locked phase has found that the color superconductivity gap is poorly constrained by those observed global properties of a1.4⊙Mstar[58].As such, it is suggested to use a hadronic EOS in exploring the properties of low mass compact stars while using a pure quark EOS or hybrid EOS in studying compact stars with larger mass.

    Acknowledgments

    This work is supported by the Cultivating Plan of Characteristic Direction of Science (2020SCUNL209).

    午夜激情av网站| 中文字幕色久视频| 老熟妇仑乱视频hdxx| 夜夜爽天天搞| 老熟妇乱子伦视频在线观看| 90打野战视频偷拍视频| 可以在线观看毛片的网站| 欧美一级毛片孕妇| 精品久久蜜臀av无| 级片在线观看| 最新美女视频免费是黄的| 99国产精品免费福利视频| 亚洲精品一卡2卡三卡4卡5卡| 动漫黄色视频在线观看| 神马国产精品三级电影在线观看 | 欧美性长视频在线观看| 国产无遮挡羞羞视频在线观看| 国产野战对白在线观看| 1024香蕉在线观看| 天堂√8在线中文| 亚洲aⅴ乱码一区二区在线播放 | 国产欧美日韩一区二区三区在线| 久久人人精品亚洲av| 国产精品爽爽va在线观看网站 | 黄色丝袜av网址大全| 日韩欧美一区二区三区在线观看| 两人在一起打扑克的视频| 无遮挡黄片免费观看| 色综合欧美亚洲国产小说| 欧美在线黄色| 免费av中文字幕在线| 欧美激情 高清一区二区三区| 亚洲在线自拍视频| 99久久综合精品五月天人人| 国产精品一区二区免费欧美| 日韩大尺度精品在线看网址 | aaaaa片日本免费| 国产精品自产拍在线观看55亚洲| 国产不卡一卡二| 精品国产一区二区三区四区第35| 9色porny在线观看| www.999成人在线观看| 人妻丰满熟妇av一区二区三区| 国产精品日韩av在线免费观看 | 亚洲男人的天堂狠狠| 深夜精品福利| 91精品国产国语对白视频| 淫秽高清视频在线观看| 国产一区二区三区综合在线观看| 国产一区二区激情短视频| 99re在线观看精品视频| 亚洲国产欧美日韩在线播放| 又黄又粗又硬又大视频| 最新美女视频免费是黄的| 久久久久精品国产欧美久久久| videosex国产| 97人妻天天添夜夜摸| 久99久视频精品免费| 日韩精品免费视频一区二区三区| 91老司机精品| 丝袜美腿诱惑在线| 国产精品1区2区在线观看.| 中文字幕人妻熟女乱码| 在线观看一区二区三区激情| 国产高清videossex| 亚洲av日韩精品久久久久久密| 欧美 亚洲 国产 日韩一| 久久精品91无色码中文字幕| 纯流量卡能插随身wifi吗| 91字幕亚洲| 男女下面进入的视频免费午夜 | 亚洲av片天天在线观看| 天堂影院成人在线观看| 欧美日韩中文字幕国产精品一区二区三区 | av国产精品久久久久影院| 免费观看人在逋| 亚洲 欧美 日韩 在线 免费| 97超级碰碰碰精品色视频在线观看| 久久亚洲精品不卡| 一级毛片精品| 国产精品久久久久久人妻精品电影| 亚洲一区二区三区色噜噜 | 国产av一区在线观看免费| 色综合站精品国产| 欧美日韩av久久| 国产欧美日韩综合在线一区二区| 在线观看一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 精品无人区乱码1区二区| 国产精品国产av在线观看| 中文字幕人妻熟女乱码| 日本欧美视频一区| 真人一进一出gif抽搐免费| 一二三四在线观看免费中文在| 午夜精品在线福利| 日本欧美视频一区| 一级毛片精品| 亚洲一区二区三区欧美精品| 99久久人妻综合| 两个人看的免费小视频| 少妇裸体淫交视频免费看高清 | 国产黄色免费在线视频| 婷婷精品国产亚洲av在线| 久久国产精品人妻蜜桃| 精品免费久久久久久久清纯| 丝袜在线中文字幕| 国产成人啪精品午夜网站| 欧美激情极品国产一区二区三区| 欧美日韩av久久| 亚洲欧美激情综合另类| 人人妻人人爽人人添夜夜欢视频| 国产精品乱码一区二三区的特点 | 99精国产麻豆久久婷婷| 亚洲中文字幕日韩| 精品久久蜜臀av无| 露出奶头的视频| 不卡一级毛片| 夫妻午夜视频| 国产伦人伦偷精品视频| 老熟妇仑乱视频hdxx| 国产aⅴ精品一区二区三区波| 亚洲九九香蕉| 女人被躁到高潮嗷嗷叫费观| av网站在线播放免费| 久久久精品欧美日韩精品| 身体一侧抽搐| 国产精品永久免费网站| 性色av乱码一区二区三区2| 999久久久国产精品视频| 亚洲欧洲精品一区二区精品久久久| 午夜亚洲福利在线播放| www.自偷自拍.com| 精品国内亚洲2022精品成人| 女警被强在线播放| 一级片'在线观看视频| e午夜精品久久久久久久| 99热国产这里只有精品6| 久久午夜亚洲精品久久| 国产精华一区二区三区| 日韩欧美免费精品| 国产精品久久久av美女十八| 欧美乱码精品一区二区三区| 精品国产一区二区久久| 久久久水蜜桃国产精品网| 精品国产亚洲在线| 欧美久久黑人一区二区| 国产精品久久视频播放| 亚洲精品久久成人aⅴ小说| 欧美激情久久久久久爽电影 | 亚洲av成人一区二区三| 一区二区三区激情视频| 黄网站色视频无遮挡免费观看| 一级a爱视频在线免费观看| 女性被躁到高潮视频| 亚洲专区字幕在线| 国产亚洲精品一区二区www| 一级黄色大片毛片| 丰满迷人的少妇在线观看| 制服诱惑二区| 国产一卡二卡三卡精品| 亚洲欧美激情在线| 久久久久精品国产欧美久久久| 国产精品一区二区免费欧美| 久久99一区二区三区| 国产一区在线观看成人免费| 两性午夜刺激爽爽歪歪视频在线观看 | 岛国在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91| а√天堂www在线а√下载| 欧美在线黄色| 欧美精品啪啪一区二区三区| 成人亚洲精品av一区二区 | 国产99久久九九免费精品| 一区在线观看完整版| 久久香蕉国产精品| 波多野结衣高清无吗| 欧美乱码精品一区二区三区| 首页视频小说图片口味搜索| 91av网站免费观看| 国产真人三级小视频在线观看| 岛国在线观看网站| 久久伊人香网站| 亚洲五月婷婷丁香| 99在线人妻在线中文字幕| 女人被躁到高潮嗷嗷叫费观| 男男h啪啪无遮挡| 精品国产一区二区久久| 丝袜美腿诱惑在线| 精品一区二区三卡| 亚洲色图av天堂| 国产高清videossex| 高清毛片免费观看视频网站 | 大陆偷拍与自拍| 久久狼人影院| 啪啪无遮挡十八禁网站| 99久久久亚洲精品蜜臀av| 热re99久久国产66热| 波多野结衣一区麻豆| 亚洲av电影在线进入| 精品久久久久久,| 成年版毛片免费区| 丰满迷人的少妇在线观看| 99香蕉大伊视频| 亚洲狠狠婷婷综合久久图片| 啦啦啦免费观看视频1| 一级黄色大片毛片| 国产成人av激情在线播放| 无人区码免费观看不卡| 丝袜美腿诱惑在线| 亚洲精品久久成人aⅴ小说| 天堂俺去俺来也www色官网| 免费一级毛片在线播放高清视频 | cao死你这个sao货| 中文字幕人妻丝袜一区二区| 日韩欧美国产一区二区入口| 99国产精品一区二区三区| 精品日产1卡2卡| 国产精品 欧美亚洲| av电影中文网址| 亚洲av片天天在线观看| 操美女的视频在线观看| 人成视频在线观看免费观看| 亚洲av电影在线进入| 宅男免费午夜| 国产精品爽爽va在线观看网站 | 少妇被粗大的猛进出69影院| 国产野战对白在线观看| 精品国产亚洲在线| 午夜精品久久久久久毛片777| 桃红色精品国产亚洲av| 香蕉国产在线看| 久久久久久久久久久久大奶| 一级,二级,三级黄色视频| 亚洲七黄色美女视频| 欧美在线一区亚洲| 一边摸一边抽搐一进一小说| 一边摸一边做爽爽视频免费| 国产精华一区二区三区| 久久性视频一级片| 超色免费av| 欧美日本中文国产一区发布| 国产精品国产av在线观看| 久久久水蜜桃国产精品网| 亚洲一码二码三码区别大吗| 69精品国产乱码久久久| 久99久视频精品免费| 久久久久久亚洲精品国产蜜桃av| 操美女的视频在线观看| 黑人欧美特级aaaaaa片| 中文字幕av电影在线播放| 一区二区三区国产精品乱码| 日韩免费高清中文字幕av| 热99国产精品久久久久久7| 国产精品国产高清国产av| 欧美人与性动交α欧美软件| 午夜两性在线视频| 久久久久久免费高清国产稀缺| 动漫黄色视频在线观看| 999精品在线视频| 99久久久亚洲精品蜜臀av| 丝袜美腿诱惑在线| 国产精品98久久久久久宅男小说| 久久久久久久久免费视频了| 最好的美女福利视频网| 变态另类成人亚洲欧美熟女 | 午夜福利在线观看吧| 久久99一区二区三区| 一边摸一边抽搐一进一小说| 久久天躁狠狠躁夜夜2o2o| av福利片在线| 97超级碰碰碰精品色视频在线观看| 老司机福利观看| 欧美一级毛片孕妇| 精品欧美一区二区三区在线| 熟女少妇亚洲综合色aaa.| 9色porny在线观看| 国产伦一二天堂av在线观看| 亚洲人成网站在线播放欧美日韩| 变态另类成人亚洲欧美熟女 | 精品久久久久久久久久免费视频 | 老熟妇乱子伦视频在线观看| 悠悠久久av| 男女下面进入的视频免费午夜 | 久久精品人人爽人人爽视色| 免费女性裸体啪啪无遮挡网站| 在线看a的网站| а√天堂www在线а√下载| 国产精品自产拍在线观看55亚洲| 十八禁网站免费在线| 国产xxxxx性猛交| 久久人人97超碰香蕉20202| 亚洲成人免费av在线播放| 久久国产精品男人的天堂亚洲| 亚洲全国av大片| 日韩成人在线观看一区二区三区| 精品国产一区二区三区四区第35| 黄片小视频在线播放| 亚洲,欧美精品.| 老汉色av国产亚洲站长工具| 午夜福利,免费看| 在线永久观看黄色视频| 两个人免费观看高清视频| 久久中文字幕人妻熟女| 黄色片一级片一级黄色片| 国产人伦9x9x在线观看| 婷婷精品国产亚洲av在线| 国产在线观看jvid| 国产精品国产高清国产av| 久久精品亚洲精品国产色婷小说| 精品国内亚洲2022精品成人| 国产成人一区二区三区免费视频网站| a在线观看视频网站| 老汉色∧v一级毛片| 日本黄色视频三级网站网址| 亚洲av五月六月丁香网| 热re99久久精品国产66热6| 波多野结衣高清无吗| 一区二区日韩欧美中文字幕| 亚洲精品美女久久av网站| 亚洲欧美一区二区三区黑人| 视频区图区小说| 成人影院久久| 久久精品亚洲熟妇少妇任你| 久久久久久人人人人人| 80岁老熟妇乱子伦牲交| 天堂中文最新版在线下载| 一级作爱视频免费观看| 日韩大尺度精品在线看网址 | 精品久久久久久电影网| 天天躁狠狠躁夜夜躁狠狠躁| 桃色一区二区三区在线观看| 久久久久国产一级毛片高清牌| 国产精品一区二区免费欧美| 九色亚洲精品在线播放| 波多野结衣av一区二区av| videosex国产| 久久久国产成人免费| 免费观看精品视频网站| 丰满饥渴人妻一区二区三| av视频免费观看在线观看| 91av网站免费观看| 亚洲一区高清亚洲精品| 成人永久免费在线观看视频| 亚洲 国产 在线| 亚洲激情在线av| 性色av乱码一区二区三区2| 香蕉国产在线看| 最近最新中文字幕大全电影3 | 午夜免费激情av| 午夜老司机福利片| 日本一区二区免费在线视频| 黄片播放在线免费| 亚洲国产欧美网| 一本大道久久a久久精品| 国产精品一区二区精品视频观看| 婷婷精品国产亚洲av在线| 天天躁狠狠躁夜夜躁狠狠躁| 成年人免费黄色播放视频| 十八禁人妻一区二区| 夜夜夜夜夜久久久久| 丝袜美足系列| 在线观看66精品国产| 亚洲精品美女久久久久99蜜臀| 很黄的视频免费| 老司机亚洲免费影院| 亚洲,欧美精品.| 欧美色视频一区免费| 亚洲国产精品合色在线| 在线免费观看的www视频| a级毛片在线看网站| 免费观看精品视频网站| 国产亚洲精品第一综合不卡| 成年人黄色毛片网站| 黄色怎么调成土黄色| 国产精品1区2区在线观看.| 曰老女人黄片| 亚洲成av片中文字幕在线观看| 亚洲免费av在线视频| 在线十欧美十亚洲十日本专区| 国产91精品成人一区二区三区| 久久久精品国产亚洲av高清涩受| 中文亚洲av片在线观看爽| 国产亚洲欧美在线一区二区| 日本三级黄在线观看| 国产三级在线视频| 午夜精品久久久久久毛片777| www日本在线高清视频| 亚洲av成人av| 黄色丝袜av网址大全| 757午夜福利合集在线观看| 他把我摸到了高潮在线观看| 亚洲五月婷婷丁香| 国产高清videossex| 一个人观看的视频www高清免费观看 | 99精品久久久久人妻精品| 国产精品久久久久久人妻精品电影| 免费av中文字幕在线| 亚洲欧美日韩另类电影网站| 成年人免费黄色播放视频| 在线av久久热| 热re99久久国产66热| 超碰97精品在线观看| 交换朋友夫妻互换小说| 国产日韩一区二区三区精品不卡| av天堂在线播放| av超薄肉色丝袜交足视频| 日日爽夜夜爽网站| 91麻豆精品激情在线观看国产 | 免费看a级黄色片| 久久精品成人免费网站| 亚洲中文日韩欧美视频| 日本 av在线| 女人精品久久久久毛片| 国产99白浆流出| 美女高潮喷水抽搐中文字幕| 十八禁网站免费在线| 久久久久九九精品影院| 精品日产1卡2卡| 黄色 视频免费看| 亚洲七黄色美女视频| 精品第一国产精品| 亚洲美女黄片视频| tocl精华| 9191精品国产免费久久| 亚洲第一av免费看| 99久久国产精品久久久| 9热在线视频观看99| 90打野战视频偷拍视频| 久久国产精品人妻蜜桃| 啦啦啦免费观看视频1| 精品国产一区二区久久| 欧美性长视频在线观看| 啦啦啦 在线观看视频| 久久精品国产99精品国产亚洲性色 | 久久中文字幕人妻熟女| 亚洲 欧美 日韩 在线 免费| 亚洲第一青青草原| 欧美丝袜亚洲另类 | 国产精品99久久99久久久不卡| 宅男免费午夜| av片东京热男人的天堂| 精品一区二区三区视频在线观看免费 | 亚洲 欧美一区二区三区| 亚洲专区中文字幕在线| 精品人妻1区二区| 一区在线观看完整版| 少妇 在线观看| 久久久久久久午夜电影 | 日本五十路高清| 国产成人影院久久av| 看片在线看免费视频| 在线视频色国产色| 久久久国产成人免费| 亚洲熟女毛片儿| 丝袜美腿诱惑在线| 亚洲欧美日韩高清在线视频| 99久久久亚洲精品蜜臀av| 国产av精品麻豆| 最新美女视频免费是黄的| 久久婷婷成人综合色麻豆| 一夜夜www| 亚洲午夜理论影院| 欧美黑人欧美精品刺激| 精品熟女少妇八av免费久了| 欧美日韩亚洲综合一区二区三区_| 精品日产1卡2卡| 亚洲精品国产区一区二| 极品教师在线免费播放| 亚洲精品国产色婷婷电影| 纯流量卡能插随身wifi吗| 亚洲av第一区精品v没综合| 久久人妻av系列| 久久国产精品男人的天堂亚洲| 亚洲欧美精品综合久久99| 亚洲国产毛片av蜜桃av| 日本vs欧美在线观看视频| 18禁观看日本| 69精品国产乱码久久久| 中文亚洲av片在线观看爽| 1024视频免费在线观看| 欧美激情久久久久久爽电影 | 国产精品免费视频内射| 黄色女人牲交| 国产成人影院久久av| 91大片在线观看| 黑人巨大精品欧美一区二区mp4| 男人舔女人下体高潮全视频| 日日干狠狠操夜夜爽| 大码成人一级视频| 亚洲自偷自拍图片 自拍| 91成人精品电影| 嫩草影院精品99| 成年女人毛片免费观看观看9| 搡老熟女国产l中国老女人| 午夜影院日韩av| 欧美成人性av电影在线观看| 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩av久久| 精品人妻在线不人妻| 桃红色精品国产亚洲av| 欧美久久黑人一区二区| 不卡一级毛片| 国产亚洲欧美在线一区二区| 很黄的视频免费| 超碰成人久久| 国产蜜桃级精品一区二区三区| 午夜福利在线观看吧| 久久人人爽av亚洲精品天堂| 亚洲精品中文字幕在线视频| 成人免费观看视频高清| 久久久久久亚洲精品国产蜜桃av| 一本大道久久a久久精品| 亚洲片人在线观看| 男人的好看免费观看在线视频 | 午夜免费激情av| 国产激情欧美一区二区| 亚洲av成人不卡在线观看播放网| 香蕉丝袜av| 免费久久久久久久精品成人欧美视频| 久热爱精品视频在线9| 亚洲aⅴ乱码一区二区在线播放 | 母亲3免费完整高清在线观看| 国内久久婷婷六月综合欲色啪| 日韩国内少妇激情av| 免费av毛片视频| 99精品久久久久人妻精品| 成人永久免费在线观看视频| 一区二区日韩欧美中文字幕| 欧美日韩视频精品一区| 精品高清国产在线一区| 一级a爱片免费观看的视频| 亚洲国产精品一区二区三区在线| 中文字幕最新亚洲高清| 天天躁夜夜躁狠狠躁躁| 狠狠狠狠99中文字幕| 国产99久久九九免费精品| 成人国产一区最新在线观看| а√天堂www在线а√下载| 国产aⅴ精品一区二区三区波| 天天躁夜夜躁狠狠躁躁| 欧美成人性av电影在线观看| xxx96com| 亚洲成人精品中文字幕电影 | 日韩有码中文字幕| 黄色毛片三级朝国网站| 国产一区在线观看成人免费| 超色免费av| 国产亚洲精品一区二区www| 黄色女人牲交| 久久久精品国产亚洲av高清涩受| 欧美不卡视频在线免费观看 | 精品一区二区三区视频在线观看免费 | ponron亚洲| 免费搜索国产男女视频| 精品第一国产精品| 午夜影院日韩av| 成人手机av| 一本综合久久免费| 日韩欧美三级三区| 丝袜美腿诱惑在线| www.熟女人妻精品国产| 男人舔女人的私密视频| 亚洲黑人精品在线| 啦啦啦在线免费观看视频4| 国产三级在线视频| 久久性视频一级片| 欧美乱码精品一区二区三区| 欧美激情 高清一区二区三区| 无人区码免费观看不卡| 变态另类成人亚洲欧美熟女 | 亚洲国产看品久久| 99在线视频只有这里精品首页| 亚洲国产精品合色在线| 亚洲中文av在线| 成人影院久久| 国产精品久久久av美女十八| 成人手机av| 9热在线视频观看99| 淫秽高清视频在线观看| 久久影院123| 亚洲欧美日韩无卡精品| 午夜精品久久久久久毛片777| 九色亚洲精品在线播放| 99国产综合亚洲精品| xxxhd国产人妻xxx| 国产精品久久久人人做人人爽| 久久这里只有精品19| 国产无遮挡羞羞视频在线观看| 黄频高清免费视频| 久久久久久久久免费视频了| av在线播放免费不卡| 性少妇av在线| 少妇粗大呻吟视频| 亚洲五月天丁香| 女人爽到高潮嗷嗷叫在线视频| 日本黄色日本黄色录像| svipshipincom国产片| 亚洲国产精品sss在线观看 | 一级片'在线观看视频| 好男人电影高清在线观看| 国产黄色免费在线视频| 香蕉久久夜色| 国产精品日韩av在线免费观看 | 欧美色视频一区免费| 亚洲精品成人av观看孕妇| 国产伦人伦偷精品视频| 国产亚洲精品综合一区在线观看 | 亚洲欧美日韩另类电影网站| 亚洲欧美一区二区三区黑人| 精品国产国语对白av| 国产一区二区在线av高清观看| 多毛熟女@视频| 久久狼人影院| 少妇的丰满在线观看| 国产男靠女视频免费网站|