• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A universal protocol for bidirectional controlled teleportation with network coding

    2021-10-12 05:32:28MengYaoHeSongYaMaandKunPengKang
    Communications in Theoretical Physics 2021年10期

    Meng-Yao He, Song-Ya Ma,2,3 and Kun-Peng Kang

    1 School of Mathematics and Statistics, Henan University, Kaifeng 475004, China

    2 Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

    3 Henan Engineering Research Center for Artificial Intelligence Theory and Algorithms,Henan University,Kaifeng 475004, China

    Abstract We investigate bidirectional teleportation that works in a fair and efficient manner.Two explicit protocols are proposed to realize bidirectional teleportation with a controller.One is a symmetric protocol for two-qubit states.The other is an asymmetric protocol for single- and two-qubit states.We then devise a universal protocol for arbitrary n1- and n2-qubit states via a(2n1+2n2+1)-qubit entangled state, where n1 ≤n2.The receiver only needs to perform the single-qubit recovery operation, which is derived by a general expression.Moreover, a(2n1+1)-bit classical communication cost can be saved within the controller’s broadcast channel by the use of network coding technology.

    Keywords: bidirectional controlled teleportation, network coding, projective measurement,recovery operation

    1.Introduction

    Quantum entanglement has been exploited as a fundamental resource for the implementation of quantum informationprocessing tasks.For example, Gong et al [1] proposed a quantum network dialogue protocol based on continuousvariable Greenberger-Home-Zeilinger (GHZ) states.Zhou et al [2] proposed a semi-quantum key distribution protocol with four-particle cluster states.Ma et al [3] investigated probabilistic quantum network coding over a butterfly network via non-maximal entanglement.In 1993, Bennett et al[4] first presented a remarkable protocol called quantum teleportation (QT) that securely transmits an unknown qubit state based on the dual use of classical and quantum channels.A different kind of QT scheme, controlled quantum teleportation (CQT) was introduced by Karlsson et al [5] to realize teleportation under the supervision of a controller.Although the controlling party does not own the teleported state, he decides whether the state can be recovered by the receiver.In addition, theoretical generalizations have been proposed, such as probabilistic QT, [6] hierarchical QT,[7] QT in noisy environments, [8, 9] etc.Meanwhile, experimental implementations of QT have also been reported [10, 11].

    In addition to one-way QT, for a practical quantum network that contains many processors working far apart, an exchange of information states between two parties may be required.This is possible simply by switching on two sets of independent QT equipment in opposite directions.Since standard QT needs to send a classical message about the measurement result from the sender to the receiver,a situation may arise in which Alice’s state has been teleported to Bob,but Bob decides not to tell Alice about his measurement result.This leads to an insecure or dishonest quantum communication.Therefore, it is necessary to investigate bidirectional quantum teleportation that works in a fair manner.Mishra et al [12] presented a controlled communication scheme which can simultaneously exchange two unknown single-qubit states via a six-qubit entangled channel.Nevertheless, Alice and Bob cannot recover the target states in a deterministic way.Zha et al[13]investigated the bidirectional controlled quantum teleportation (BCQT) of arbitrary singlequbit states using a five-qubit cluster state as the entangled resource with unit success probability.Because of its potential application in quantum network communication, BCQT has recently acquired a lot of attention.[14–27] Jiang et al [14]developed a deterministic BCQT scheme for single-qubit states utilizing a five-qubit non-maximally entangled channel.[17–19] accomplished the BCQT of two-qubit states via different entangled resources.Apart from the symmetric protocols, [14–19] there are many asymmetric BCQT protocols [20–25].For example, [20–24] describe the BCQT of arbitrary single-and two-qubit states.Thapliya et al[26]gave a general method for selecting a quantum channel for BCQT.To our knowledge, few universal protocols have been described for arbitrary qubit states.Savaghad-Moghaddam et al [27] attempted to investigate the BCQT of m- and n-qubit states.Regretfully, they did not explicitly give the relationship between the recovery operations, the collapsed states, and the measurement results.A question may be naturally raised: is it possible to devise a universal and efficient BCQT protocol for arbitrary qubit states and give a general formula for the recovery operations?

    In this paper, under the assumption that classical communication is not allowed between senders and that the controller has a broadcast channel, we propose a universal protocol to realize the two-way teleportation of arbitrary n1-and n2-qubit states with the help of the controller via a(2n1+2n2+1)-qubit maximally entangled state.Without loss of generality, we assume n1≤n2.After the the sender’s projective measurement using the Bell basis and the controller’s single-qubit measurement using the Z basis, the receiver performs single-qubit Pauli operations and gets the target state deterministically.Through rigorous deduction,we give the general expression for the recovery operators.Network coding, a new paradigm that allows information to be duplicated and mixed in the intermediate nodes, has demonstrated a significant throughput advantage over traditional routing algorithms in classical networks [28].It is found that if network coding is applied at the controller’s site, a(2n1+1)-bit classical communication cost (CCC) will be saved in the broadcast channel.This means that our protocol is more efficient than without network coding.

    The remaining parts of this paper are arranged as follows.In section 2, an explicit symmetric BCQT protocol is proposed to realize the two-way teleportation of two-qubit states.In section 3, an asymmetric BCQT protocol is described for single- and two-qubit states.In section 4, we further extend our discussion to a universal BCQT protocol for arbitrary n1-and n2-qubit states by using a (2n1+2n2+1)-qubit state as the entangled channel.Some discussions and comparisons are given in section 5.The last section offers the conclusions.

    2.The symmetric BCQT protocol for two-qubit states

    In this section,we construct a controlled protocol that leads to the simultaneous exchange of arbitrary two-qubit states.There are three participants: Alice, Bob, and Charlie.Alice and Bob are not only senders but also receivers,while Charlie is the controller.

    Suppose Alice intends to teleport an arbitrary two-qubit state∣φ〉A(chǔ)1A2to Bob.At the same time,Bob wishes to teleport an unknown two-qubit state∣ψ〉B1B2to Alice’s site.

    The quantum channel shared amongst the three participants is the nine-qubit entangled state

    where

    Qubits(1,3,5,7)belong to Alice,qubits(2,4,6,8)belong to Bob, and qubit 9 is held by Charlie.

    Hence,the initial state of the whole system can be written as

    The complete process of the symmetric protocol is described as follows.

    Step 1.Alice (Bob) performs joint projective measurements on her(his)qubits(A1,1)and(A2,3),((B1,6)and(B2,8)) using the Bell basis

    After the measurements, Alice announces her measurement resultsto Charlie in the form of classical messages pjqj.Similarly, Bob sends four-bit classical information sjtjto Charlie corresponding to his measurement outcomesHere, pj, qj, sj, tj=0, 1, j=1, 2.

    Based on the measurement bases, the joint system in equation (4) can be expressed as

    Table 1.The expressions for and the recovery operations (RO).

    Table 1.The expressions for and the recovery operations (RO).

    p1q1, p2q2 l p1q1, p2q2 l 〉fp q p q l 1 1 2 2∣RO 00,00 0 10,10 1 α0|00〉+α1|01〉+α2|10〉+α3|11〉 I ?I 00,01 0 10,11 1 α0|01〉+α1|00〉+α2|11〉+α3|10〉 I ?X 00,10 0 10,00 1 α0|00〉?α1|01〉+α2|10〉?α3|11〉 I ?Z 00,11 0 10,01 1 α0|01〉?α1|00〉+α2|11〉?α3|10〉 I ?(ZX)01,00 0 11,10 1 α0|10〉+α1|11〉+α2|00〉+α3|01〉 X ?I 01,01 0 11,11 1 α0|11〉+α1|10〉+α2|01〉+α3|00〉 X ?X 01,10 0 11,00 1 α0|10〉?α1|11〉+α2|00〉?α3|01〉 X ?Z 01,11 0 11,01 1 α0|11〉?α1|10〉+α2|01〉?α3|00〉 X ?(ZX)10,00 0 00,10 1 α0|00〉+α1|01〉?α2|10〉?α3|11〉 Z ?I 10,01 0 00,11 1 α0|01〉+α1|00〉?α2|11〉?α3|10〉 Z ?X 10,10 0 00,00 1 α0|00〉?α1|01〉?α2|10〉+α3|11〉 Z ?Z 10,11 0 00,01 1 α0|01〉?α1|00〉?α2|11〉+α3|10〉 Z ?(ZX)11,00 0 01,10 1 α0|10〉+α1|11〉?α2|00〉?α3|01〉 (ZX)?I 11,01 0 01,11 1 α0|11〉+α1|10〉?α2|01〉?α3|00〉 (ZX)?X 11,10 0 01,00 1 α0|10〉?α1|11〉?α2|00〉+α3|01〉 (ZX)?Z 11,11 0 01,01 1 α0|11〉?α1|10〉?α2|01〉+α3|00〉 (ZX)?(ZX)

    At this moment,Alice and Bob cannot obtain the original states without the controller’s (Charlie’s) help.

    Step 2.If Charlie would like to provide assistance, he makes a single-qubit measurement of his qubit 9 using the Z basis {|0〉, |1〉} and broadcasts a classical message to Alice and Bob.

    It seems that Alice and Bob need to obtain the measurement results s1t1s2t2l and p1q1p2q2l to recover the teleported states, respectively.This means that Charlie has to broadcast nine-bit classical messages.Using the technology of network coding, Charlie just broadcasts the four-bit classical information(pj⊕sj⊕l,qj⊕tj)to Alice and Bob(j=1,2).Here ⊕means plus mod 2.

    Step 3.According to the received classical messages and her (his) own measurement results pjqj(sjtj), Alice calculates[pj⊕(pj⊕sj⊕l), qj⊕(qj⊕tj)] and gets [sj⊕l, tj].Bob computes [sj⊕(pj⊕sj⊕l), tj⊕(qj⊕tj)] and obtains [pj⊕l,qj].Then Alice performs the recovery operation,

    on her qubits (5, 7) and gets |ψ〉.Similarly, Bob carries out the appropriate operation,

    on his qubits(2,4)and recovers the two-qubit state|φ〉.Here X, Z are Pauli operations and X0, Z0denote identity operations.In detail, Alice’s and Bob’s recovery operations conditioned on the measurement results are listed in table 1.

    To illustrate the protocol more clearly, we assume that Alice’s measurement results are |ξ01〉|ξ10〉 (p1q1=01,p2q2=10) and Bob’s measurement results are |ξ00〉|ξ11〉(s1t1=00, s2t2=11).If Charlie’s measurement result is |1〉,then the qubits (5, 7, 2, 4) collapse into:

    Charlie broadcasts the four-bit classical information(p1⊕s1⊕l, p2⊕s2⊕l, q1⊕t1, q2⊕t2)=1111.Together with their own measurement results,Alice and Bob can obtain(s1⊕l, s2⊕l, t1, t2)=1001 and (p1⊕l, p2⊕l, q1,q2)=1010, respectively.Alice performs a Z5X7operation on her collapsed qubits(β0∣0 1〉 +β1∣0 0〉 -β2∣1 1〉 -β3∣ 1 0〉)57and Bob carries out (ZX)2I4on his collapsed qubits(α0∣1 0〉 +α1∣1 1〉 -α2∣0 0〉 -α3∣ 0 1〉)24.As a result, the desired states |φ〉, |ψ〉 are simultaneously teleported.

    3.The asymmetric BCQT protocol for single- and two-qubit states

    In this section, we demonstrate an asymmetric BCQT protocol.Alice wants to teleport an arbitrary single-qubit state|φ〉A(chǔ)to Bob, while Bob hopes to transmit an arbitrary two-qubit state∣ψ〉B1B2to Alice.

    The coefficients of the teleported states are all complex numbers, and satisfy the normalization condition=1.

    A seven-qubit entangled state,

    serves as the quantum channel.Alice has qubits(1,3,5)and Bob processes qubits(2, 4,6),while qubit 7 is possessed by Charlie.

    Table 2.Expressions forand the RO.

    Table 2.Expressions forand the RO.

    p1q1 l p1q1 l f 〉p q l 1 1∣RO 00 0 10 1 α0|0〉+α1|1〉 I 01 0 11 1 α0|1〉+α1|0〉 X 10 0 00 1 α0|0〉?α1|1〉 Z 11 0 01 1 α0|1〉?α1|0〉 ZX

    The compound state is

    The detailed process of the asymmetric protocol is shown below.

    Step 1.Alice (Bob) carries out a Bell basis measurement on her (his) qubits (A, 1) ((B1, 4) and (B2, 6)).If Alice’s (Bob’s)measurement result isshe(he)sends the classical bits p1q1(sjtj) to Charlie through the classical channel.

    The whole system in equation (12) can be rewritten as

    Step 2.Charlie measures his qubit 7 in the Z basis.In order to recover the teleported state, Alice and Bob need to obtain the measurement results s1t1s2t2l and p1q1l, respectively.With the aid of network coding,Charlie broadcasts the four-bit classical information (s1⊕p1⊕l, t1⊕q1, s2⊕l, t2).

    Step 3.According to the received classical messages and her (his) own measurement result p1q1(s1t1, s2t2), Alice gets[s1⊕l, t1, s2⊕l, t2] by calculating [p1⊕(s1⊕p1⊕l),q1⊕(t1⊕q1)].Similarly, Bob computes [s1⊕(s1⊕p1⊕l),t1⊕(t1⊕q1)] and acquires [p1⊕l, q1].Alice applies the recovery operation,

    on her qubits (3, 5) and gets |ψ〉 in equation (10).Bob can recover the teleported state |φ〉 by performing the unitary operation,

    on his collapsed particle 2.

    An example is given below to clarify the protocol.Suppose that Alice’s measurement outcome is |ξ01〉(p1q1=01) and Bob’s measurement outcomes are |ξ01〉|ξ10〉(s1t1=01, s2t2=10).If Charlie’s measurement result is |0〉,he broadcasts the four-bit classical information (s1⊕p1⊕l,t1⊕q1,s2⊕l,t2)=0010.Alice and Bob can then get(s1⊕l,t1,s2⊕l,t2)=0110 and(p1⊕l,q1)=01,respectively.Alice and Bob separately perform the recovery operations X3Z5and X2on the collapsed state:

    In the end,the desired states are two-way teleported with unit success probability.

    4.The universal BCQT protocol

    In this section,we generalize the two explicit protocols given above to a universal BCQT protocol that can realize the simultaneous teleportation of arbitrary n1-and n2-qubit states.

    Alice(Bob)has an unknown n1(n2)-qubit state in this form:

    We take a (2n1+2n2+1)-qubit entangled state,

    as the quantum channel.The construction process of the channel is similar to that given in [29].The qubits(1, …,2n1?1, 2n1+1, …,2n1+2n2?1) belong to Alice,the qubits (2, …,2n1, 2n1+2, …,2n1+2n2) belong to Bob,and the controller Charlie possesses the qubit 2n1+2n2+1.

    The initial state of the whole system is given by

    In order to complete the task, the three participants are required to perform appropriate measurements and corresponding recovery operations.The process of our universal BCQT protocol is shown in figure 1.

    Figure 1.Process of our universal BCQT protocol.Black solid points represent Alice’s particles,white points represent Bob’s particles,and the gray point represents Charlie’s particle.The dotted ellipses indicate Bell-state measurements, and the solid circle is a single-qubit measurement.The solid rectangle indicates the recovery operation.

    Then, Alice (Bob) sends the classical bits piqi(sjtj) to Charlie, representing the Bell-state measurement outcomes.

    The compound system in equation(19)can be rewritten as

    Since

    one can get

    and

    At this time, Alice and Bob are still unable to complete the task without Charlie’s assistance, since their qubits are entangled with Charlie’s qubit 2n1+2n2+1.

    The controller’s operation.If Charlie consents to help them, he executes a single-qubit projective measurement using the Z basis.

    This means that a (2n1+1)-bit CCC is saved.

    Table 3.Comparison of the symmetric protocol for two-qubit states(n1=n2=2).

    The receiver’s operation.According to the classical messages received from Charlie and her (his) own measurement results, Alice calculates

    Together withsn1+1⊕l, … ,sn2⊕l,tn1+1,…,tn2, Alice gets[sj⊕l, tj], j=1,..., n2.Bob computes

    and gains [pi⊕l, qi], i=1…n1.Using equations (22) and(23), Alice and Bob perform the recovery operations RAand RBon their qubits, which can be summarized as

    Accordingly, the BCQT is achieved with a success probability of 100%.

    5.Discussion and comparisons

    In this section, we first discuss the intrinsic efficiency [18]and the necessary operations of our universal protocol.Then,some comparisons with other protocols are given.

    Table 4.Comparison of the asymmetric BCQT protocol for single- and two-qubit states (n1=1, n2=2).

    The intrinsic efficiency is an important factor for evaluating the performance of a protocol, which is defined by

    where qsrepresents the number of qubits to be transmitted,quis the number of particles used in the quantum channel,and btrepresents the classical bits that need to be transmitted.

    As mentioned above, we propose a universal BCQT protocol for arbitrary n1-and n2-qubit states,which can be realized deterministically.The (2n1+2n2+1)-qubit entangled state is chosen as the quantum channel.Alice and Bob respectively transmit 2n1and 2n2bits to the controller Charlie.Charlie encodes his classical information corresponding to his measurement result with the classical messages he received,and then broadcasts the encoded result to Alice and Bob.The CCC in the controller’s broadcast channel is 2n2bits.The total CCC is 2n1+4n2bits.Therefore,the intrinsic efficiency of our universal protocol is

    In our symmetric BCQT protocol for arbitrary two-qubit states(n1=n2=2), the intrinsic effciiency is≈19.05%.In our asymmetric BCQT protocol for arbitrary single- and twoqubit states (n1=1, n2=2), the intrinsic efficiency is≈17.65%.

    If network coding is not applied, the total CCC is 4n1+4n2+1 bits.The intrinsic efficiency of the universal protocol will be

    which is smaller than the intrinsic efficiency in equation(31).In this case, the intrinsic efficiency of the symmetric BCQT protocol is≈15.39%.When n1=1 and n2=2, the intrinsic efficiency is≈15%.This reveals that the use of network coding technology can reduce the CCC and improve the intrinsic efficiency.

    In the following, we give some comparisons with other BCQT protocols.To make the comparison convictive, we only choose some specific values of n1, n2.The results of comparisons with previous symmetric and asymmetric protocols are given in tables 3 and 4, respectively.A detailed explanation of the abbreviations is as follows: QC (quantum channel), ES (entangled state), BO (basic operation), UO(unitary operation), RUO (recovery unitary operation), BSM(Bell-state measurement), SQM (single-qubit measurement),TQM (two-qubit measurement), FQM (four-qubit measurement), CNOT (controlled-NOT), NQT (number of the teleported qubits).

    From tables 3 and 4, one can see that the intrinsic efficiencies of [17–24] are all greater than ours.The reason for this is that the classical channel model they use is different from ours.Classical channel models are clearly shown in figure 2, where (a) represents the model of [17–24], and (b)represents our model.As well as the unfavorable aspects,our scheme also has favorable aspects.The classical channel models in [17–24] assume that each sender broadcasts her measurement result.In other words,everyone has a broadcast channel.This may reduce the CCC and improve the intrinsic efficiency;however,the establishment of a broadcast channel is much more difficult than that of a one-way classical channel.For an actual communication network with multiple users and a control center, it is not realistic to set up a broadcast channel for each user.In our model, each sender only has one classical channel with the controller, which greatly reduces the requirement for classical channels.Moreover,our model may be more applicable and safer in the case that direct classical communication is not allowed between different users,and the role of the controller is to be a transmission relay or trusted third party.

    Figure 2.Classical channel models.(a) The usual model; (b)our model.A solid line with one arrow denotes a one-way broadcast channel,while a dotted line with one arrow denotes a one-way classical channel.

    6.Conclusions

    Assuming that the two senders cannot transmit classical messages to each other and that the controller has a broadcast channel, we have devised a universal protocol for the twoway teleportation of arbitrary n1- and n2-qubit states.The proposed scheme has the following advantages.(i) Through strict derivation, the recovery operator is given by a general formula which clearly reveals the relationship with the measurement results.(ii) Network coding is performed at the site of the controller.It is easy to see if the network coding is not applied; a (2n1+2n2+1)-bit CCC is required for Charlie’s broadcast channel.Therefore,a(2n1+1)-bit CCC is saved.It may be helpful to realize secure quantum distributed transmission tasks with a reduced CCC.We also believe that network coding may be useful for saving resources in various quantum network information-processing tasks.

    The construction of the quantum channel only needs H and CNOT gate operations on the auxiliary particles with an initial state of ∣0 0 … 0〉1…2n1+2n2+1.The process of the universal protocol requires Bell-basis measurement, Z-basis measurement, and single-qubit local Pauli operations.These are feasible with the current experimental technology.It should be noted that quantum entanglement is indispensable in most existing BCQT schemes.However, from a practical point of view, entanglements are often very vulnerable and may suffer from destructive influences, or even disappear completely.Therefore, the effects of noise should be taken into account.Similarly to [8, 9], we can envisage the proposed scheme in a noisy environment.Fortunately, some mature anti-noise techniques, such as entanglement purification and entanglement concentration, can be employed to improve the fidelity of the transmitted quantum signals and reduce the effects of noise.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (Grant Nos.61 201 253, 61 572 246),the Open Foundation of State Key Laboratory of Networking and Switching Technology (Beijing University of Posts and Telecommunications) (Grant No.SKLNST-2020-2-02), and the Open Foundation of Guangxi Key Laboratory of Trusted Software (Grant No.KX202040).

    国产69精品久久久久777片| 国产精品国产av在线观看| 一区二区三区四区激情视频| av在线观看视频网站免费| 日产精品乱码卡一卡2卡三| 啦啦啦在线观看免费高清www| 免费久久久久久久精品成人欧美视频 | 中文字幕最新亚洲高清| 高清欧美精品videossex| 九九爱精品视频在线观看| 熟女av电影| 边亲边吃奶的免费视频| 五月玫瑰六月丁香| 春色校园在线视频观看| av在线老鸭窝| 全区人妻精品视频| 精品午夜福利在线看| 咕卡用的链子| 亚洲伊人色综图| 日韩,欧美,国产一区二区三区| 男女啪啪激烈高潮av片| 中国国产av一级| 最近2019中文字幕mv第一页| 亚洲精品久久成人aⅴ小说| 在线看a的网站| 桃花免费在线播放| 咕卡用的链子| 男人添女人高潮全过程视频| 亚洲激情五月婷婷啪啪| 欧美日韩视频高清一区二区三区二| 亚洲av免费高清在线观看| 久久久久久久国产电影| 久久国产精品大桥未久av| 免费在线观看黄色视频的| 久久青草综合色| 亚洲成人一二三区av| 熟女av电影| 免费高清在线观看视频在线观看| 国产视频首页在线观看| 在线观看www视频免费| 亚洲精品一二三| 亚洲精品乱码久久久久久按摩| 黑人高潮一二区| 亚洲国产最新在线播放| 久久国产精品男人的天堂亚洲 | 在线 av 中文字幕| 夜夜爽夜夜爽视频| 亚洲精品自拍成人| 观看美女的网站| 欧美3d第一页| 五月开心婷婷网| 久久精品久久久久久噜噜老黄| 中国国产av一级| 久久人人爽人人片av| 80岁老熟妇乱子伦牲交| 蜜臀久久99精品久久宅男| 男女国产视频网站| 国产成人欧美| 久久女婷五月综合色啪小说| xxx大片免费视频| 国内精品宾馆在线| 久久精品aⅴ一区二区三区四区 | 蜜臀久久99精品久久宅男| 久久久久人妻精品一区果冻| 亚洲精品成人av观看孕妇| 另类亚洲欧美激情| av免费观看日本| av在线播放精品| 欧美成人精品欧美一级黄| 成年人免费黄色播放视频| 欧美人与性动交α欧美精品济南到 | 美女国产视频在线观看| 老司机影院成人| 国产免费又黄又爽又色| freevideosex欧美| 国产视频首页在线观看| 久久久久久久大尺度免费视频| 免费在线观看完整版高清| 中文欧美无线码| 欧美日韩视频高清一区二区三区二| 国产精品国产三级国产专区5o| 免费人成在线观看视频色| 纵有疾风起免费观看全集完整版| 一级毛片电影观看| 飞空精品影院首页| 精品国产一区二区三区久久久樱花| 中文字幕人妻熟女乱码| 亚洲婷婷狠狠爱综合网| 侵犯人妻中文字幕一二三四区| 老熟女久久久| 不卡视频在线观看欧美| 亚洲av国产av综合av卡| 国产免费视频播放在线视频| 国语对白做爰xxxⅹ性视频网站| 天天躁夜夜躁狠狠躁躁| 最近中文字幕2019免费版| 我的女老师完整版在线观看| 欧美精品亚洲一区二区| 亚洲成av片中文字幕在线观看 | 精品一区二区免费观看| 国内精品宾馆在线| 午夜福利,免费看| 少妇被粗大猛烈的视频| 热99国产精品久久久久久7| 亚洲三级黄色毛片| 视频在线观看一区二区三区| 9色porny在线观看| av线在线观看网站| 亚洲av欧美aⅴ国产| 欧美另类一区| 亚洲av综合色区一区| 国产成人精品福利久久| 一本色道久久久久久精品综合| 亚洲综合精品二区| 欧美变态另类bdsm刘玥| 免费在线观看黄色视频的| 99九九在线精品视频| 国产高清三级在线| 免费高清在线观看视频在线观看| 黄色怎么调成土黄色| 韩国精品一区二区三区 | 久久久久精品性色| 亚洲成av片中文字幕在线观看 | 视频区图区小说| 最后的刺客免费高清国语| 亚洲欧美色中文字幕在线| 国产精品 国内视频| 两个人看的免费小视频| 精品亚洲成a人片在线观看| 男女下面插进去视频免费观看 | 国产探花极品一区二区| av免费在线看不卡| 麻豆精品久久久久久蜜桃| 尾随美女入室| 少妇人妻 视频| 国产精品久久久久久av不卡| 韩国精品一区二区三区 | 高清不卡的av网站| 九九爱精品视频在线观看| 人人妻人人澡人人爽人人夜夜| 中文字幕人妻熟女乱码| 高清欧美精品videossex| 久久国产精品男人的天堂亚洲 | 午夜福利影视在线免费观看| 日韩精品免费视频一区二区三区 | 国产精品人妻久久久影院| 夜夜骑夜夜射夜夜干| 伊人久久国产一区二区| 成人毛片60女人毛片免费| 亚洲欧洲日产国产| 丝袜在线中文字幕| 插逼视频在线观看| 一级毛片电影观看| 18禁观看日本| 亚洲第一区二区三区不卡| 国产精品国产三级国产av玫瑰| 一级毛片我不卡| tube8黄色片| 亚洲第一区二区三区不卡| 黑人猛操日本美女一级片| 大片免费播放器 马上看| 久久久久国产精品人妻一区二区| 我要看黄色一级片免费的| 嫩草影院入口| 九色成人免费人妻av| 黑人欧美特级aaaaaa片| 精品久久久精品久久久| 天堂俺去俺来也www色官网| 久久久久久久大尺度免费视频| 三级国产精品片| 性色av一级| 精品视频人人做人人爽| 久久人妻熟女aⅴ| 蜜臀久久99精品久久宅男| 成人影院久久| 亚洲欧美一区二区三区国产| 亚洲三级黄色毛片| 亚洲成色77777| 国产黄频视频在线观看| av又黄又爽大尺度在线免费看| 黑人欧美特级aaaaaa片| 日本wwww免费看| 久久综合国产亚洲精品| 高清不卡的av网站| 男人爽女人下面视频在线观看| 欧美3d第一页| 国产伦理片在线播放av一区| 永久免费av网站大全| 各种免费的搞黄视频| 国产免费一区二区三区四区乱码| 久久精品久久久久久久性| 国产精品人妻久久久久久| 国产女主播在线喷水免费视频网站| 免费播放大片免费观看视频在线观看| 久久午夜综合久久蜜桃| 成年人午夜在线观看视频| 少妇精品久久久久久久| 老司机影院毛片| 成人黄色视频免费在线看| av卡一久久| 精品国产一区二区三区四区第35| 制服诱惑二区| 久久精品夜色国产| 久久久久久久久久人人人人人人| 一级a做视频免费观看| 亚洲精品456在线播放app| 精品国产一区二区三区久久久樱花| 精品久久蜜臀av无| 日韩制服丝袜自拍偷拍| 最新的欧美精品一区二区| 99九九在线精品视频| 蜜桃在线观看..| 少妇人妻久久综合中文| 成人二区视频| 22中文网久久字幕| 国产精品久久久久成人av| 欧美人与善性xxx| 国产欧美另类精品又又久久亚洲欧美| 成人二区视频| 亚洲精品乱码久久久久久按摩| 最近中文字幕高清免费大全6| av线在线观看网站| 午夜av观看不卡| av不卡在线播放| 在线观看人妻少妇| 亚洲激情五月婷婷啪啪| 99久国产av精品国产电影| 亚洲成av片中文字幕在线观看 | 亚洲精品乱久久久久久| 三上悠亚av全集在线观看| 高清黄色对白视频在线免费看| 成人18禁高潮啪啪吃奶动态图| 丰满饥渴人妻一区二区三| 熟女电影av网| 国产免费视频播放在线视频| 亚洲久久久国产精品| 又粗又硬又长又爽又黄的视频| 免费看av在线观看网站| 亚洲激情五月婷婷啪啪| 国产老妇伦熟女老妇高清| 亚洲精品美女久久av网站| 高清av免费在线| 亚洲av在线观看美女高潮| 亚洲一区二区三区欧美精品| 亚洲精品日本国产第一区| 看免费成人av毛片| 久久影院123| 久久久久久久亚洲中文字幕| 草草在线视频免费看| 侵犯人妻中文字幕一二三四区| 久久久久久久久久久免费av| 观看美女的网站| 日韩电影二区| 亚洲精品乱久久久久久| 国产深夜福利视频在线观看| av免费观看日本| 97人妻天天添夜夜摸| 亚洲人成77777在线视频| 亚洲情色 制服丝袜| 国产色婷婷99| 国产成人免费观看mmmm| 亚洲美女搞黄在线观看| 超色免费av| 欧美人与性动交α欧美软件 | 精品国产国语对白av| 熟女av电影| 国产国拍精品亚洲av在线观看| 亚洲国产欧美日韩在线播放| 黄片无遮挡物在线观看| 欧美精品亚洲一区二区| 最近最新中文字幕大全免费视频 | 国产免费福利视频在线观看| 国产综合精华液| 美女福利国产在线| 黄网站色视频无遮挡免费观看| 曰老女人黄片| 在线观看免费视频网站a站| 母亲3免费完整高清在线观看 | 美女脱内裤让男人舔精品视频| 最黄视频免费看| 丝袜美足系列| 国产高清三级在线| a级毛片在线看网站| 亚洲国产精品一区三区| 蜜桃国产av成人99| 日韩熟女老妇一区二区性免费视频| 最黄视频免费看| 99久久综合免费| 亚洲美女搞黄在线观看| 免费高清在线观看视频在线观看| www日本在线高清视频| 色94色欧美一区二区| 综合色丁香网| 日韩在线高清观看一区二区三区| www.色视频.com| 亚洲精品456在线播放app| 亚洲av中文av极速乱| 国产亚洲精品久久久com| 五月开心婷婷网| 观看美女的网站| 国产又色又爽无遮挡免| 亚洲精品国产色婷婷电影| 精品国产一区二区三区四区第35| 亚洲av成人精品一二三区| 丰满饥渴人妻一区二区三| 天天躁夜夜躁狠狠久久av| 美国免费a级毛片| 久久精品人人爽人人爽视色| 毛片一级片免费看久久久久| 成人亚洲精品一区在线观看| 国产免费视频播放在线视频| 成人免费观看视频高清| 美女福利国产在线| 亚洲成色77777| av在线播放精品| 午夜福利,免费看| www.熟女人妻精品国产 | 久久午夜综合久久蜜桃| 亚洲精华国产精华液的使用体验| 亚洲av福利一区| 18禁观看日本| 亚洲欧洲国产日韩| 熟妇人妻不卡中文字幕| 久久精品国产自在天天线| 黄网站色视频无遮挡免费观看| 最近最新中文字幕大全免费视频 | 国产永久视频网站| 97人妻天天添夜夜摸| 国产免费福利视频在线观看| 在线 av 中文字幕| 成人毛片a级毛片在线播放| 春色校园在线视频观看| 午夜福利在线观看免费完整高清在| 国产av国产精品国产| 午夜福利,免费看| 欧美精品av麻豆av| 18+在线观看网站| 大片电影免费在线观看免费| 亚洲丝袜综合中文字幕| 一级a做视频免费观看| 国产又爽黄色视频| 高清av免费在线| 国产色婷婷99| 亚洲欧洲日产国产| 18+在线观看网站| 男女国产视频网站| 熟女av电影| 中文字幕最新亚洲高清| 午夜免费男女啪啪视频观看| 狂野欧美激情性xxxx在线观看| 国产成人精品一,二区| 色吧在线观看| 国产成人精品一,二区| 亚洲国产精品专区欧美| 欧美日韩av久久| videosex国产| 亚洲欧美色中文字幕在线| 99精国产麻豆久久婷婷| 一级片'在线观看视频| 一二三四在线观看免费中文在 | 久久鲁丝午夜福利片| 国产成人91sexporn| 999精品在线视频| 一级毛片黄色毛片免费观看视频| 免费久久久久久久精品成人欧美视频 | www日本在线高清视频| 日韩熟女老妇一区二区性免费视频| 亚洲一级一片aⅴ在线观看| 99热这里只有是精品在线观看| 国产午夜精品一二区理论片| 日韩中文字幕视频在线看片| 成人二区视频| 国产成人精品无人区| 亚洲高清免费不卡视频| 久久这里有精品视频免费| 日日撸夜夜添| 一级毛片 在线播放| 人妻人人澡人人爽人人| 国产毛片在线视频| 亚洲欧洲日产国产| 日韩制服丝袜自拍偷拍| 久久99蜜桃精品久久| 王馨瑶露胸无遮挡在线观看| 熟女av电影| 欧美精品国产亚洲| 在现免费观看毛片| 亚洲精品美女久久av网站| 女人精品久久久久毛片| 国产精品久久久久久久久免| 午夜日本视频在线| 色婷婷久久久亚洲欧美| 99视频精品全部免费 在线| 啦啦啦中文免费视频观看日本| 亚洲国产精品国产精品| freevideosex欧美| 五月天丁香电影| 少妇高潮的动态图| 国产精品欧美亚洲77777| 极品少妇高潮喷水抽搐| 日韩中字成人| 99热全是精品| 一级片免费观看大全| 一本久久精品| 免费看光身美女| 国产激情久久老熟女| 午夜影院在线不卡| 国产成人免费观看mmmm| 丰满饥渴人妻一区二区三| 日韩人妻精品一区2区三区| 一区二区三区乱码不卡18| 免费看光身美女| 97在线视频观看| 巨乳人妻的诱惑在线观看| 久久99蜜桃精品久久| 咕卡用的链子| 免费看光身美女| 精品一区在线观看国产| 午夜影院在线不卡| 22中文网久久字幕| 人人澡人人妻人| 国产日韩欧美在线精品| 两性夫妻黄色片 | 久热久热在线精品观看| 精品福利永久在线观看| 日韩免费高清中文字幕av| 久久久国产精品麻豆| 欧美性感艳星| 精品国产一区二区三区四区第35| 国产精品秋霞免费鲁丝片| 美女视频免费永久观看网站| 国产黄频视频在线观看| 最近的中文字幕免费完整| 永久网站在线| 美国免费a级毛片| 国产成人一区二区在线| 精品久久蜜臀av无| 乱人伦中国视频| 欧美人与性动交α欧美精品济南到 | 午夜日本视频在线| 色婷婷久久久亚洲欧美| 黑丝袜美女国产一区| 少妇猛男粗大的猛烈进出视频| 国产成人午夜福利电影在线观看| 亚洲一级一片aⅴ在线观看| 乱人伦中国视频| 久久精品久久久久久噜噜老黄| 水蜜桃什么品种好| 中文天堂在线官网| 91精品伊人久久大香线蕉| h视频一区二区三区| 日韩不卡一区二区三区视频在线| 最近手机中文字幕大全| 久久av网站| 狂野欧美激情性xxxx在线观看| 性色av一级| 日本黄大片高清| 一本久久精品| 久久久久久久久久人人人人人人| 天美传媒精品一区二区| 中国美白少妇内射xxxbb| av天堂久久9| 国产精品国产av在线观看| 夫妻午夜视频| 国产免费又黄又爽又色| 亚洲天堂av无毛| 妹子高潮喷水视频| 亚洲av国产av综合av卡| 久久免费观看电影| 久久韩国三级中文字幕| 国产欧美亚洲国产| 久久精品久久精品一区二区三区| 人妻 亚洲 视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品国产av蜜桃| 免费在线观看黄色视频的| 女人被躁到高潮嗷嗷叫费观| 成人手机av| 性色av一级| 日本av免费视频播放| 韩国高清视频一区二区三区| 亚洲精品日韩在线中文字幕| 久久久久精品性色| 91午夜精品亚洲一区二区三区| 欧美人与性动交α欧美软件 | 两个人看的免费小视频| 18禁国产床啪视频网站| www.熟女人妻精品国产 | 又粗又硬又长又爽又黄的视频| 国产在线一区二区三区精| 日韩精品有码人妻一区| 纯流量卡能插随身wifi吗| 观看av在线不卡| 久久久久久久大尺度免费视频| 大香蕉久久成人网| 黄网站色视频无遮挡免费观看| 成人毛片a级毛片在线播放| www日本在线高清视频| 男女免费视频国产| 女性被躁到高潮视频| 成人毛片60女人毛片免费| 久久久久网色| 午夜福利网站1000一区二区三区| 丰满少妇做爰视频| 久久国产精品大桥未久av| 久久精品国产综合久久久 | 一区二区三区四区激情视频| 亚洲久久久国产精品| 天堂8中文在线网| 午夜福利,免费看| 色视频在线一区二区三区| 亚洲,欧美,日韩| 青青草视频在线视频观看| 精品少妇黑人巨大在线播放| 人人妻人人添人人爽欧美一区卜| 另类亚洲欧美激情| 欧美精品av麻豆av| 欧美激情 高清一区二区三区| 黑人猛操日本美女一级片| av视频免费观看在线观看| 国产亚洲午夜精品一区二区久久| 亚洲第一av免费看| 国产成人精品婷婷| 秋霞伦理黄片| 精品一区在线观看国产| 欧美激情 高清一区二区三区| 久久久精品94久久精品| 另类亚洲欧美激情| 成人漫画全彩无遮挡| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美亚洲 丝袜 人妻 在线| 在线观看www视频免费| 亚洲熟女精品中文字幕| 三上悠亚av全集在线观看| 精品国产一区二区久久| 涩涩av久久男人的天堂| 女人精品久久久久毛片| 又黄又爽又刺激的免费视频.| 日本vs欧美在线观看视频| 91成人精品电影| 高清av免费在线| 美女中出高潮动态图| 国产精品欧美亚洲77777| 18+在线观看网站| 国产精品女同一区二区软件| 国产成人一区二区在线| av在线播放精品| 国产免费现黄频在线看| 最后的刺客免费高清国语| 欧美xxⅹ黑人| 99久国产av精品国产电影| 欧美精品一区二区大全| 人妻少妇偷人精品九色| av网站免费在线观看视频| 日韩 亚洲 欧美在线| 18在线观看网站| 丝袜在线中文字幕| 亚洲av成人精品一二三区| 老女人水多毛片| 精品午夜福利在线看| 考比视频在线观看| 在线观看国产h片| 久久久久精品人妻al黑| 王馨瑶露胸无遮挡在线观看| 欧美xxⅹ黑人| 少妇 在线观看| 久久99蜜桃精品久久| 亚洲精品国产av蜜桃| 中国三级夫妇交换| 国产淫语在线视频| av天堂久久9| 国产成人精品福利久久| 人妻人人澡人人爽人人| 亚洲av欧美aⅴ国产| 激情视频va一区二区三区| 日韩精品有码人妻一区| 国产一区有黄有色的免费视频| 国产男人的电影天堂91| 热99久久久久精品小说推荐| 天美传媒精品一区二区| 亚洲av电影在线进入| 又黄又粗又硬又大视频| av网站免费在线观看视频| 热re99久久精品国产66热6| 视频区图区小说| 国产又爽黄色视频| 狂野欧美激情性xxxx在线观看| 亚洲,欧美精品.| 亚洲成人手机| 男女下面插进去视频免费观看 | 日韩人妻精品一区2区三区| 欧美3d第一页| 国产成人91sexporn| 精品一区二区三卡| 国产日韩一区二区三区精品不卡| 午夜福利,免费看| 王馨瑶露胸无遮挡在线观看| 亚洲av日韩在线播放| 韩国高清视频一区二区三区| 日韩不卡一区二区三区视频在线| 涩涩av久久男人的天堂| 一级毛片电影观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲国产精品专区欧美| 久久狼人影院| 青青草视频在线视频观看| 亚洲成人av在线免费| 亚洲国产精品成人久久小说| 国产黄频视频在线观看| 精品亚洲乱码少妇综合久久| 免费久久久久久久精品成人欧美视频 | 蜜桃在线观看..| 在线观看免费高清a一片| 国产免费福利视频在线观看| 日韩一区二区三区影片| 亚洲欧洲国产日韩|