• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure?

    2021-09-28 02:18:20ZhengCao曹正QingQiaoFu傅晴俏HuiGu顧輝ZhenTian田震XinbaYaer新巴雅爾JuanJuanXing邢娟娟LeiMiao苗蕾XiaoHuanWang王曉歡HuiMinLiu劉慧敏andJunWang王俊
    Chinese Physics B 2021年9期
    關鍵詞:王俊雅爾

    Zheng Cao(曹正),Qing-Qiao Fu(傅晴俏),Hui Gu(顧輝),Zhen Tian(田震),Xinba Yaer(新巴雅爾),Juan-Juan Xing(邢娟娟),?,Lei Miao(苗蕾),Xiao-Huan Wang(王曉歡),Hui-Min Liu(劉慧敏),and Jun Wang(王俊),§

    1Inner Mongolia Engineering Research Center of Multi-functioanl Copper Based Materials,School of Materials Science and Engineering,Inner Mongolia University of Technology,Hohhot 010051,China

    2School of Materials Science and Engineering,Materials Genome Institute,Shanghai University,Shanghai 200444,China

    3School of Material Science and Engineering,Guilin University of Electronic Technology,Guilin 541004,China

    Keywords:strontium titanate,multiple-doping,multi-scale microstructure,nano-inclusions

    1.Introduction

    Strontium titanate(SrTiO3)is a promising thermoelectric material for applications in electricity generation and sensors like photothermoelectric devices[1]because of its high stability and large Seebeck coefficient(S).[2]A large S and electrical conductivity(σ)and a low thermal conductivity(κ)are needed to obtain a high thermoelectric dimensionless figure of merit,ZT=S2σT/κ.[3]It is expected that a high ZT of SrTiO3can be obtained by reducingκand increasing PF=S2σ;[4]however,the interdependence of S,σ,andκcomplicates control of the thermal electrical transport properties of bulk materials.[5]The ZT of many alloys and inorganic compounds has been improved by separately controlling S,σ,andκthrough band-engineering,[6]component control,[7–9]and structure control.[10–12]Some layerstructured oxides[13,14]and two-dimensional SrTiO3[15,16]exhibit high ZT values because of their intrinsically low thermal conductivity or large PF.SrTiO3thin films with a high ZT have been obtained,but polycrystalline bulk materials are more suitable for thermoelectric applications.The ZT of polycrystalline SrTiO3still falls short of requirements due to its high thermal conductivity and low carrier mobility.Theσ of SrTiO3can be optimized by doping to increase the carrier concentration.[17–24]

    Combining heavy doping and compositing allows the coordinated control of electrical conductivity and thermal conductivity.[25,26]Previous works have shown that La and Nb are effective n-type dopants that can enhance electrical transport properties when used to replace Sr and Ti,respectively.[17,26]But the thermal conductivity of SrTiO3is still higher than other perovskite oxides such as SrCeO3and BaCeO3.[27]If Ce reduces the thermal conductivity,an improved ZT can be expected when Ce,La,and Nb are used to co-dope SrTiO3while maintaining a high power factor;however,there have been few reports on triple-doped SrTiO3thermoelectric materials.In this work,we introduce a highperformance La–Ce–Nb-doped SrTiO3thermoelectric with a low thermal conductivity and a relatively large power factor.

    2.Experimental materials and methods

    2.1.Sample preparation

    Sr1?x?yLaxCeyTi1?zNbzO3(x=0–0.05,y=0–0.05,z=0–0.05)nanoparticles were prepared by a hydrothermal method.NbCl5(Shanghai Macklin Biochemical Co.,Ltd.)was added into a mixture of ethylene glycol(Tianjin Fengchuan Chemical Reagent Co.,Ltd.)and deionized water with a volume ratio of 1:1 and 10%[Ti(OBu)4](Aladdin Industrial Corporation)and mixed via ultrasonic oscillation.An aqueous solution containing 0.6 M Sr(NO3)2and stoichiometric amounts of Ce(NO3)3·6H2O and La(NO3)3·6H2O(Aladdin Industrial Corporation)were added into the above solution,followed by the addition of 6.4 M NaOH(Aladdin Industrial Corporation).The obtained solution was immediately transferred to a 100 mL teflon-lined stainless-steel autoclave and held at 180°C for 24 hours.The obtained powders were washed several times with glacial acetic acid to remove residual organic matter and then dried for 2 hours at 80°C.The obtained nanoparticles were pre-pressed under 4.3 MPa using a hydraulic press,followed by cold isostatic pressing(CIP)under 200 MPa.The samples were then embedded into carbon powders and sintered at 1573 K for 5 hours in a muffle furnace to obtain a black bulk sample,as shown in the process schematic in Fig.1.

    Fig.1.The formation process of La–Ce–Nb-doped SrTiO3.(a)Schematic diagram of the preparation method and(b)photos of obtained bulk samples before and after sintering.

    2.2.Sample characterization

    All specimens were characterized by scanning electron microscopy(SEM,Zeiss,G300),x-ray diffraction(XRD,Rigaku D/Max-2500),and transmission electron microscopy(TEM,JEOL F200).The electrical conductivity and Seebeck coefficient were measured from 300 K to 1000 K in a helium atmosphere using a Linseis LSR-3.Thermal conductivity(κ)was calculated by the equationκ=DCpρ,where the thermal diffusivity D was measured by the laser flash method using a NETZSCH LFA 457,the specific heat Cpwas measured by differential scanning calorimetry using a NETZSCH DSC STA 449F3,and the densityρwas measured by Archimedes method.The Hall coefficients were measured using the van der Pauw method under a reversible magnetic field of 1.5 T.

    3.Results and discussion

    3.1.Phase analysis

    Figure 2 shows the XRD and TEM images of La–Ce–Nb-doped powders.All SrTiO3powders doped with different dopants and doping ratios showed cubic perovskite structures(PDF#73-0661),and no impurity phase peaks were observed in the XRD patterns in Fig.2(a)and the TEM-EDS result in Fig.2(b).A slight broadening of the diffraction peak in Fig.2(a)indicated that the powders had a small grain size,and the grain size distributed in 15 nm–40 nm,as determined from the TEM image(Fig.2(c)).The distance between the two lattice stripes determined from the HRTEM image was 0.278 nm as shown in Fig.2(d),which was consistent with the(110)planar spacing of SrTiO3(PDF#73-0661).The XRD peaks shifted by different degrees as the doping concentration changed,due to the substitution of large Sr2+(144.0 pm)ions at the A-site by smaller La3+(136.0 pm)ions and Ce3+(134.0 pm),as well as the substitution of small Ti4+(60.5 pm)ions at B-site by larger Nb5+(64.0 pm)ions.Moreover,the TEM-EDS analysis showed that La,Ce,and Nb were detected in SrTiO3grains for La5Ce5Nb5,indicating the introduction of dopant elements into the SrTiO3lattice.

    Fig.2.(a)XRD patterns of La,Ce,and Nb co-doped SrTiO3 powders with different doping ratios,(b)TEM-EDS,(c)TEM image and(d)HRTEM image of La5Ce5Nb5 powder.

    As shown in Fig.3,the XRD patterns of bulk samples contained peaks attributed to a secondary phase,along with peaks for the SrTiO3main phase;however,the weak peaks did not match those in the standard XRD pattern,suggesting that the weak peaks appeared due to several kinds of secondary phases.The grains of all samples grew into irregular polyhedrons after sintering,as shown in Fig.4.

    Fig.3.XRD patterns of bulk SrTiO3 samples with different La,Ce,and Nb ratios.

    Fig.4.SEM images of samples(a)Ce3,(b)La3Ce3,(c)La3Ce3Nb3,and(d)La5Ce5Nb5 and the inset of the nano-inclusions and nano-scale grain.

    3.2.Microstructural analysis

    The bulk samples were compacted with relatively high densities as shown in Fig.4,even though several types of grains with different contrasts,shapes,and sizes were observed.Many regular and gray grains were SrTiO3,while the irregular and black grains,randomly distributed in the perovskite matrix were secondary phases.Furthermore,nanoparticles were observed in some secondary phase grains,and some of these particles were completely wrapped in the secondary phases,while the others were only partially wrapped.The grain sizes ranged from the nanoscale to the microscale except for the sample La3Ce3.

    Figures 5(a)and 5(b)showed the SEM images and corresponding EDS element maps of La3Ce3Nb3and La5Ce5Nb5,which showed that La,Ce,Nb,Sr,Ti,and O were evenly distributed in the matrix.Some Ti-rich oxide phase was observed,suggesting that the SrTiO3matrix partially decomposed during sintering.Figure 5(c)shows that La and Ce existed only in the matrix,and Nb was distributed both in the matrix and secondary phase,but there was more in the matrix than in the secondary phase.

    Fig.5.The SEM images and EDS element maps of(a)La3Ce3Nb3 and(b)La5Ce5Nb5,and(c)EDS analysis of La5Ce5Nb5.

    The electron back-scatter diffraction(EBSD)analysis showed that a large amount of Ti–O secondary phase was not TiO2and was in-homogeneously distributed in the SrTiO3polycrystalline matrix(Fig.6).The HRTEM and selected electron diffraction pattern(SAED)pattern analysis(Fig.7)indicated that these secondary phases were TinO2n?1.The formation of the TinO2n?1phase likely formed due to mixedvalence titanium cations already in the powder and the oxygen vacancies generated in a reducing atmosphere,which partially transformed Ti4+into Ti3+.[28]Interestingly,some nano/microscale SrTiO3and TinO2n?1grains were included in each other’s large grains,as shown in Fig.7.

    Fig.6.Microstructural analysis of La5Ce5Nb5 bulk sample:(a)electron back-scatter diffraction(EBSD)image,(b)phase mapping,(c)inverse pole figure(IPF)maps,and(d)–(e)HRTEM images of the secondary phases.

    Fig.7.Low and high resolution TEM images,and SAED pattern of TinO2n?1/SrTiO3 interfaces.(a)SrTiO3 grain with TinO2n?1 inclusions,(b)TinO2n?1 grain with SrTiO3 inclusions.

    The SAED patterns show that the[2 0 2]of TinO2n?1inclusions and[1 0–1]of host SrTiO3grains have the same orientation,showing a coherent relationship(Fig.7(a)),to form an epitaxial-like heterostructure,which reduced the thermal conductivity due to phonon scattering at the interface without reducing the electrical conductivity.[29–31]In addition,the SrTiO3inclusions smoothly connected with the TinO2n?1host grains(Fig.7(b)),which also contributed to the phonon scattering with less electron scattering.

    3.3.Electrical and thermal transport properties

    The measured electrical transport properties as a function of temperature are shown in Fig.8.The electrical conductivity increased until 420 K–470 K and then began to decrease above this temperature range,consistent with Nb-doped and La–Nb co-doped samples.[17,32,33]The lowest electrical conductivity of 23 S·cm?1in sample Ce3was obtained at 1000 K,which increased upon increasing the dopant concentration to 247 S·cm?1in sample La5Ce5Nb5.This again indicated successful lattice doping.The electrical conductivity of a material can be estimated by the formulaσ=neμ,where n,e,andμare the carrier concentration,electronic charge,and carrier mobility,respectively.The Hall carrier concentrations of all samples were constant over the entire measured temperature range,indicating that all free electrons were injected into the conduction band,and no thermal activation of intrinsic carriers occurred within this temperature range.

    The mobilities of all samples showed a temperature dependence that was similar to the electrical conductivity,which increased with temperature up to 400 K–450 K and then decreased above this temperature.These trends are related to the dominant scattering of ionized impurities and phonons at low and high temperatures,respectively.[26]The sample mobility increased with increasing carrier concentration,which is consistent with the grain size trend.Usually,the carrier mobility(μ),which is determined by the effective mass(m?),and relaxation time(τ),is proportional to the electron mean free pass(l),are expressed as follows:

    where kB,T,and e are the Boltzmann constant,absolute temperature,and electron charge,respectively.[34]The reduced effective mass and increased grain size at higher doping concentrations increased the electron mean free path,which is expected to enhance the mobility,resulting in a largeσin La5Ce5Nb5.

    Since the second phase was a Magneli-phase,which has a high electrical conductivity,[35–37]the higher amount of second phase did not significantly affect the electrical conductivity of La3Ce3Nb3and La5Ce5Nb5.The mosaic crystal structure and the epitaxial-like relationship between nano/microscale inclusions and the corresponding host grain also contributed to the electronic transitions at interfaces.[38]

    Figure 9(a)shows the temperature dependence of the Seebeck coefficient.A maximum Seebeck coefficient of 344μV·K?1was obtained in Ce3,which decreased to 207μV·K?1at 1000 K upon increasing doping concentration in La5Ce5Nb5.As shown in Fig.9(b),in contrast with the electrical conductivity,the Seebeck coefficient decreased upon increasing the dopant concentration,suggesting that|S|decreased as n increased.This trend complies with the relationship between S and n,

    where kBis the Boltzmann constant,m?is the carrier’s effective mass,n is the electron concentration,and T is the absolute temperature.

    Fig.8.Temperature-dependent electrical conductivity(a),carrier concentration(b),and mobility(c)of La–Ce–Nb doped SrTiO3.

    Fig.9.Variation of the(a)Seebeck coefficient as a function of temperature,and(b)Seebeck coefficient together with electrical conductivity as a function of carrier concentration.

    Fig.10.Variation of(a)the power factor PF as a function of temperature together with PF reported previously,and(b)PF,carrier concentration,and electrical conductivity as a function of doping concentration.

    Fig.11.Temperature dependence of(a)total thermal conductivity(κtotal),(b)thermal diffusivity(D)and specific heat(inset),(c)lattice thermal conductivity(κL),and(d)electrical thermal conductivity(κe)for present study together with thermal conductivity of SrTiO3,SrCeO3,and BaCeO3 from Ref.[27].

    The Seebeck coefficient only slightly varied between samples La3Ce3and La3Ce3Nb3,even though sample La3Ce3Nb3contained more dopant(3-mol% Nb).This indicates that the enhancement effect of Nb on the effective mass produced a large Seebeck coefficient.[39]As shown in Fig.10(a),the maximum power factor of 1.6 mW·m?1·K2was obtained for La3Ce3Nb3at 529 K,which decreased to 0.96 mW·m?1·K2when the temperature increased to 1000 K.At 1000 K,sample La5Ce5Nb5showed the largest PF of 1.1 mW·m?1·K2,due to its high electrical conductivity,arising from its high carrier concentration and large carrier mobility.The PF values of this work are not significantly different from those of Nb and La-doped SrTiO3previously reported,[19,24,40–42]indicating that Ce did not significantly affect the PF.Because heavy doping promotes second phase precipitation,[17,26,33]the electrical conductivity decreased as the dopant ratio increased to over 15 mol%.This reduced the PF,as shown in Fig.10(b).The doping concentration dependence on carrier concentration measured from 3 mol% to 15 mol%varied nonlinearly,which again demonstrates that the second phase increased with increasing doping concentration(Fig.10(b)).

    Fig.12.The ZT as a function of(a)temperature and(b)β?factor.

    Figure 11 shows the temperature dependence of the thermal transport properties.The total thermal conductivity decreased to a minimum of 2.77 W·m?1·K?1upon increasing the doping concentration in La5Ce5Nb5.Although the value is still larger than that of SrCeO3,and BaCeO3,but lower than pure or La–Nb doped SrTiO3,[17,26]suggesting that the Ce reduced the thermal conductivity.Such a low thermal conductivity may be related to the multiscale architecture with three dopants,nano-inclusions and nano/microsized grains.[43]The thermal diffusivity and lattice thermal conductivity showed the same trend asκtotal,suggesting that the two factors were dominant forκtotal.Compared withκtotal,κLshowed a greater decrease as the doping concentration increased,implying that the dopant,lattice distortion,and multiscale interfaces produced a strong phonon scattering.The low lattice thermal conductivity and relatively large effective mass,together with a higher carrier mobility,produced a large β?=μ(m?/m)3/2/κL,which increased with increasing doping concentration up to 15 mol%.The ZT value increased with the increasingβ?factor,leading to a maximum ZT of around 0.38 at 1000 K with a maximumβ?factor of 10.6 in the La5Ce5Nb5sample(Fig.12).

    4.Conclusion

    In this work,we investigated the microstructure and thermoelectric properties of La,Ce,and Nb-doped SrTiO3.A powder with an average size of 20 nm was obtained using a hydrothermal method,and then La,Ce,and Nb were incorporated into SrTiO3.The crystal grains grew abnormally during sintering and formed a complex microstructure.Co-doping with the three elements and the formation of multi-scale grain boundaries helped improve phonon scattering,which greatly decreased the lattice thermal conductivity to 2.17 W·m?1·K?1at 1000 K.The maximum ZT of 0.38 is one of the highest values reported for SrTiO3,which provides a reference for future research on n-type oxide thermoelectric materials.

    Acknowledgements

    Thanks Yanzhong Pei,Hongxia Liu from Tongji University for valuable discussion and support provided for the Hall effect measurements.Financial supports are given in the footnote on the first page.

    猜你喜歡
    王俊雅爾
    Improving dynamic characteristics for IGBTs by using interleaved trench gate
    腹腔鏡手術與開放手術治療急性闌尾炎的經(jīng)驗
    HeTDSE:A GPU based program to solve the full-dimensional time-dependent Schr¨odinger equation for two-electron helium subjected to strong laser fields*
    簡論蒙古族與星星有關的傳說
    Non-adiabatic quantum dynamical studies of Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction?
    莫·浩斯巴雅爾小說集《人參姑娘》題材的探究
    導數(shù)應用點睛
    巴雅爾吐胡碩地區(qū)50多年氣溫變化特征分析
    王俊看醫(yī)改政府盡快解決三個問題
    High-resolution boosted reconstruction of γ-ray spectra?
    国产成人欧美在线观看| 国产激情偷乱视频一区二区| 国产精品98久久久久久宅男小说| 精品久久久久久,| 天堂动漫精品| 中国美女看黄片| 亚洲免费av在线视频| 看免费av毛片| 麻豆久久精品国产亚洲av| 在线视频色国产色| 久久精品影院6| 麻豆av在线久日| 国产日本99.免费观看| 国内精品久久久久精免费| 国产精品99久久99久久久不卡| 午夜影院日韩av| 日韩三级视频一区二区三区| 欧美成狂野欧美在线观看| 国产精品 欧美亚洲| 超碰成人久久| 一级a爱片免费观看的视频| videosex国产| 狂野欧美白嫩少妇大欣赏| www.熟女人妻精品国产| 亚洲欧美日韩东京热| 久久久久亚洲av毛片大全| АⅤ资源中文在线天堂| 青草久久国产| 淫妇啪啪啪对白视频| 黄色成人免费大全| www日本黄色视频网| 中文字幕熟女人妻在线| 在线观看免费午夜福利视频| 亚洲精品av麻豆狂野| 夜夜看夜夜爽夜夜摸| 久久精品aⅴ一区二区三区四区| 在线观看美女被高潮喷水网站 | 国产人伦9x9x在线观看| 国产精品国产高清国产av| 免费看a级黄色片| 午夜福利免费观看在线| 亚洲人成电影免费在线| 黄色a级毛片大全视频| 黑人巨大精品欧美一区二区mp4| 国产精品香港三级国产av潘金莲| 两个人视频免费观看高清| 亚洲成a人片在线一区二区| 精品高清国产在线一区| 两个人的视频大全免费| 男女床上黄色一级片免费看| 国产熟女午夜一区二区三区| xxx96com| 一进一出抽搐gif免费好疼| 亚洲av美国av| 99精品久久久久人妻精品| 亚洲第一电影网av| 免费无遮挡裸体视频| 巨乳人妻的诱惑在线观看| 欧美性猛交╳xxx乱大交人| 久久香蕉激情| 久久精品国产综合久久久| 18禁观看日本| 最近视频中文字幕2019在线8| 亚洲成人久久爱视频| 欧美国产日韩亚洲一区| 很黄的视频免费| 黑人操中国人逼视频| 黑人巨大精品欧美一区二区mp4| 美女午夜性视频免费| 九九热线精品视视频播放| 欧美色视频一区免费| 国产v大片淫在线免费观看| 成人亚洲精品av一区二区| 久久人妻av系列| 日本熟妇午夜| 女人高潮潮喷娇喘18禁视频| 宅男免费午夜| 国产精品精品国产色婷婷| 97超级碰碰碰精品色视频在线观看| 男男h啪啪无遮挡| 男人舔女人的私密视频| 亚洲av电影在线进入| 亚洲免费av在线视频| 91九色精品人成在线观看| 国产精品综合久久久久久久免费| 国产亚洲精品第一综合不卡| 少妇被粗大的猛进出69影院| 黄色视频,在线免费观看| xxxwww97欧美| 国产乱人伦免费视频| 午夜免费观看网址| 日韩av在线大香蕉| 欧美乱妇无乱码| 欧美日韩一级在线毛片| 波多野结衣巨乳人妻| 好男人电影高清在线观看| 国产精品精品国产色婷婷| 可以免费在线观看a视频的电影网站| 免费在线观看视频国产中文字幕亚洲| 国产精品久久久人人做人人爽| 日本一二三区视频观看| 免费观看精品视频网站| 欧美+亚洲+日韩+国产| 一个人免费在线观看的高清视频| 校园春色视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 丰满的人妻完整版| 日本一二三区视频观看| 久久 成人 亚洲| 日韩精品青青久久久久久| 少妇裸体淫交视频免费看高清 | 日韩av在线大香蕉| 亚洲第一电影网av| 全区人妻精品视频| 国产高清视频在线观看网站| av片东京热男人的天堂| 岛国在线观看网站| 欧美午夜高清在线| 亚洲一卡2卡3卡4卡5卡精品中文| 中文资源天堂在线| 国产真人三级小视频在线观看| 国产精品 国内视频| 正在播放国产对白刺激| 12—13女人毛片做爰片一| 国产三级黄色录像| 欧美色欧美亚洲另类二区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲美女视频黄频| 青草久久国产| 超碰成人久久| 亚洲精品美女久久久久99蜜臀| 一进一出抽搐动态| 国产精品亚洲美女久久久| 亚洲国产看品久久| 日本一二三区视频观看| 真人做人爱边吃奶动态| 精品久久久久久,| 日本 欧美在线| 91老司机精品| 美女大奶头视频| 亚洲精华国产精华精| 久久久久久久久免费视频了| 亚洲自拍偷在线| 亚洲五月天丁香| 50天的宝宝边吃奶边哭怎么回事| 日韩成人在线观看一区二区三区| 日日干狠狠操夜夜爽| 18禁黄网站禁片午夜丰满| 亚洲avbb在线观看| 最新美女视频免费是黄的| 老司机深夜福利视频在线观看| ponron亚洲| 亚洲成人国产一区在线观看| 岛国在线免费视频观看| 国产亚洲欧美98| 啦啦啦韩国在线观看视频| 国产亚洲av高清不卡| 久久99热这里只有精品18| av视频在线观看入口| 国产区一区二久久| 99国产精品99久久久久| 久久久国产欧美日韩av| 国产精品久久视频播放| 丁香六月欧美| 国产精品av视频在线免费观看| 1024手机看黄色片| 国产伦在线观看视频一区| 色噜噜av男人的天堂激情| 高清毛片免费观看视频网站| 国产午夜精品论理片| 99re在线观看精品视频| 香蕉丝袜av| 很黄的视频免费| 精品一区二区三区av网在线观看| 亚洲欧美日韩东京热| 人人妻人人澡欧美一区二区| 19禁男女啪啪无遮挡网站| 久久香蕉激情| 久热爱精品视频在线9| 99热只有精品国产| 99久久无色码亚洲精品果冻| 99久久精品国产亚洲精品| 高潮久久久久久久久久久不卡| 亚洲人成网站在线播放欧美日韩| 国产真人三级小视频在线观看| 制服丝袜大香蕉在线| 成人国语在线视频| 岛国在线观看网站| 黄片小视频在线播放| 99riav亚洲国产免费| 亚洲天堂国产精品一区在线| 丁香欧美五月| 狂野欧美白嫩少妇大欣赏| 手机成人av网站| 亚洲av成人av| 成年女人毛片免费观看观看9| 国产精品亚洲一级av第二区| 精品免费久久久久久久清纯| 可以在线观看毛片的网站| 亚洲国产精品sss在线观看| 在线观看免费日韩欧美大片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品色激情综合| 国产69精品久久久久777片 | 婷婷六月久久综合丁香| 日本一区二区免费在线视频| 国产亚洲精品久久久久久毛片| 久久精品影院6| 欧美成人免费av一区二区三区| 精品国产超薄肉色丝袜足j| 精品国产乱码久久久久久男人| 中文在线观看免费www的网站 | 法律面前人人平等表现在哪些方面| 老熟妇仑乱视频hdxx| 大型av网站在线播放| 精品国产乱子伦一区二区三区| 国产精品久久久av美女十八| 别揉我奶头~嗯~啊~动态视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品美女久久久久99蜜臀| 特大巨黑吊av在线直播| 两个人的视频大全免费| 老鸭窝网址在线观看| 窝窝影院91人妻| 天天躁狠狠躁夜夜躁狠狠躁| 日本一二三区视频观看| www日本在线高清视频| 亚洲熟妇中文字幕五十中出| 日本在线视频免费播放| 精品人妻1区二区| 免费观看人在逋| 日韩大尺度精品在线看网址| 国产91精品成人一区二区三区| 欧美丝袜亚洲另类 | 日韩精品中文字幕看吧| a级毛片在线看网站| 午夜老司机福利片| 精品国内亚洲2022精品成人| 18禁观看日本| 国产亚洲精品久久久久5区| www国产在线视频色| 国产成+人综合+亚洲专区| 97人妻精品一区二区三区麻豆| 这个男人来自地球电影免费观看| 中文字幕久久专区| 午夜影院日韩av| 欧美在线一区亚洲| 国产精品永久免费网站| 熟女电影av网| 九色成人免费人妻av| 欧美色欧美亚洲另类二区| 国产精品,欧美在线| a在线观看视频网站| 怎么达到女性高潮| 国产精品影院久久| 99久久无色码亚洲精品果冻| 正在播放国产对白刺激| 亚洲av成人不卡在线观看播放网| 黄频高清免费视频| 观看免费一级毛片| av中文乱码字幕在线| 国产高清有码在线观看视频 | 又黄又粗又硬又大视频| 男女下面进入的视频免费午夜| 日韩大码丰满熟妇| 欧美一级a爱片免费观看看 | 国产真实乱freesex| 久久国产精品人妻蜜桃| 白带黄色成豆腐渣| 成人三级黄色视频| 黄色视频,在线免费观看| 老司机午夜福利在线观看视频| 成人高潮视频无遮挡免费网站| 久久婷婷人人爽人人干人人爱| 久9热在线精品视频| 国产亚洲精品综合一区在线观看 | 久久久精品大字幕| 国产高清激情床上av| 免费在线观看亚洲国产| 亚洲成人久久性| a级毛片在线看网站| 一本大道久久a久久精品| 国产三级黄色录像| 夜夜躁狠狠躁天天躁| 亚洲美女视频黄频| 精品久久蜜臀av无| 男女午夜视频在线观看| 国产麻豆成人av免费视频| 精品国产超薄肉色丝袜足j| 夜夜爽天天搞| 色老头精品视频在线观看| 最近视频中文字幕2019在线8| 看免费av毛片| 宅男免费午夜| 制服人妻中文乱码| 久久精品夜夜夜夜夜久久蜜豆 | 又粗又爽又猛毛片免费看| 国产精华一区二区三区| 白带黄色成豆腐渣| 久久精品国产亚洲av高清一级| 精品久久久久久久人妻蜜臀av| 宅男免费午夜| 亚洲国产精品久久男人天堂| 久久精品aⅴ一区二区三区四区| 可以免费在线观看a视频的电影网站| 亚洲av成人不卡在线观看播放网| 美女 人体艺术 gogo| 精品国产亚洲在线| 俺也久久电影网| 欧美精品亚洲一区二区| 最近最新中文字幕大全免费视频| 中文字幕高清在线视频| 久久精品影院6| xxx96com| 欧美午夜高清在线| 成人18禁在线播放| 国产不卡一卡二| 日本撒尿小便嘘嘘汇集6| 国产精品综合久久久久久久免费| 亚洲色图 男人天堂 中文字幕| 婷婷精品国产亚洲av| 性色av乱码一区二区三区2| 99久久99久久久精品蜜桃| АⅤ资源中文在线天堂| 啦啦啦观看免费观看视频高清| 久久天堂一区二区三区四区| 最新美女视频免费是黄的| 国产免费av片在线观看野外av| 成熟少妇高潮喷水视频| 国产真人三级小视频在线观看| 欧美黄色淫秽网站| 国产精品影院久久| 精品一区二区三区四区五区乱码| 婷婷精品国产亚洲av在线| 毛片女人毛片| 亚洲成人免费电影在线观看| 成人手机av| 亚洲成人免费电影在线观看| 久久九九热精品免费| 国产精品久久久久久久电影 | 久久人妻福利社区极品人妻图片| 久久久久久久久免费视频了| 巨乳人妻的诱惑在线观看| 桃色一区二区三区在线观看| 伊人久久大香线蕉亚洲五| 亚洲精品中文字幕一二三四区| 亚洲 欧美一区二区三区| 一二三四社区在线视频社区8| 亚洲人成网站高清观看| 中文字幕人妻丝袜一区二区| 夜夜躁狠狠躁天天躁| 99热只有精品国产| 淫妇啪啪啪对白视频| 久久久久久久久久黄片| 午夜久久久久精精品| 久久这里只有精品中国| 高清在线国产一区| 国产免费av片在线观看野外av| 久久伊人香网站| 男人舔女人下体高潮全视频| 熟女少妇亚洲综合色aaa.| 色噜噜av男人的天堂激情| 午夜福利成人在线免费观看| 亚洲美女视频黄频| 国产片内射在线| 免费av毛片视频| 国产片内射在线| 91麻豆精品激情在线观看国产| 日本三级黄在线观看| 日韩精品免费视频一区二区三区| 黄色丝袜av网址大全| 国产高清激情床上av| 午夜成年电影在线免费观看| 黄色女人牲交| 欧美久久黑人一区二区| 国产欧美日韩精品亚洲av| 精品国内亚洲2022精品成人| 90打野战视频偷拍视频| 国产亚洲精品综合一区在线观看 | 亚洲专区国产一区二区| 1024视频免费在线观看| 变态另类成人亚洲欧美熟女| 日韩大码丰满熟妇| 999久久久精品免费观看国产| 一本久久中文字幕| 999精品在线视频| 99在线视频只有这里精品首页| 两个人的视频大全免费| 国产成人av教育| 亚洲 国产 在线| 很黄的视频免费| 欧美日本亚洲视频在线播放| 成熟少妇高潮喷水视频| 亚洲片人在线观看| 黄色丝袜av网址大全| 国产精品,欧美在线| 国产成人av激情在线播放| 国产欧美日韩精品亚洲av| 国产激情欧美一区二区| 国产一区二区三区在线臀色熟女| 欧美 亚洲 国产 日韩一| 大型av网站在线播放| 国产精品99久久99久久久不卡| 一边摸一边抽搐一进一小说| 亚洲 欧美 日韩 在线 免费| 亚洲成人久久爱视频| 人人妻,人人澡人人爽秒播| 亚洲免费av在线视频| 亚洲成人中文字幕在线播放| 高清在线国产一区| 波多野结衣高清作品| 日日摸夜夜添夜夜添小说| 国产三级黄色录像| 亚洲一区二区三区不卡视频| 成人午夜高清在线视频| 国产视频一区二区在线看| 91国产中文字幕| 亚洲中文字幕一区二区三区有码在线看 | 国产精品一区二区三区四区久久| 国产精品电影一区二区三区| 久久中文字幕人妻熟女| 成人永久免费在线观看视频| 最近最新中文字幕大全免费视频| 精品不卡国产一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品一区av在线观看| 欧美丝袜亚洲另类 | 最近最新中文字幕大全免费视频| 在线a可以看的网站| 成年人黄色毛片网站| 午夜视频精品福利| 美女 人体艺术 gogo| 色在线成人网| 色尼玛亚洲综合影院| 88av欧美| 国产精品野战在线观看| 99国产综合亚洲精品| 亚洲最大成人中文| 麻豆av在线久日| 日本黄大片高清| 国产成人av教育| 在线视频色国产色| 精品久久久久久久久久久久久| 日韩欧美三级三区| 国产1区2区3区精品| 嫩草影院精品99| 搞女人的毛片| 99riav亚洲国产免费| 12—13女人毛片做爰片一| 很黄的视频免费| 美女午夜性视频免费| 亚洲欧洲精品一区二区精品久久久| 精品乱码久久久久久99久播| 国产精品野战在线观看| 一夜夜www| 三级男女做爰猛烈吃奶摸视频| 一进一出好大好爽视频| 久久久精品大字幕| av在线天堂中文字幕| 日韩精品中文字幕看吧| 久久九九热精品免费| 亚洲av成人不卡在线观看播放网| 欧美极品一区二区三区四区| 久久精品国产清高在天天线| 真人做人爱边吃奶动态| 两个人视频免费观看高清| 在线观看免费视频日本深夜| 一进一出抽搐动态| 啦啦啦免费观看视频1| 中文在线观看免费www的网站 | 欧美精品啪啪一区二区三区| 日本一二三区视频观看| av天堂在线播放| 亚洲avbb在线观看| 老汉色av国产亚洲站长工具| 国产精品亚洲美女久久久| 色精品久久人妻99蜜桃| 午夜福利高清视频| 特大巨黑吊av在线直播| 五月玫瑰六月丁香| 91在线观看av| 国模一区二区三区四区视频 | 国产精品日韩av在线免费观看| 亚洲自偷自拍图片 自拍| 在线观看午夜福利视频| 波多野结衣高清无吗| 亚洲avbb在线观看| 99在线人妻在线中文字幕| 国产1区2区3区精品| 色综合站精品国产| 国内精品久久久久精免费| 亚洲精品一卡2卡三卡4卡5卡| 国产一区二区三区视频了| 国产成人精品无人区| 日韩精品中文字幕看吧| 欧美黑人巨大hd| 麻豆成人av在线观看| 丝袜人妻中文字幕| 国产精品亚洲一级av第二区| 香蕉国产在线看| 国产高清视频在线播放一区| 后天国语完整版免费观看| 日本黄大片高清| 两性夫妻黄色片| 动漫黄色视频在线观看| 国产69精品久久久久777片 | 男女之事视频高清在线观看| 亚洲熟女毛片儿| 午夜老司机福利片| 久久99热这里只有精品18| 天堂av国产一区二区熟女人妻 | 国产伦在线观看视频一区| 久久久久国内视频| 午夜免费成人在线视频| 成人18禁在线播放| 90打野战视频偷拍视频| 三级男女做爰猛烈吃奶摸视频| 18禁黄网站禁片午夜丰满| 男女下面进入的视频免费午夜| 国产探花在线观看一区二区| 亚洲一码二码三码区别大吗| 午夜视频精品福利| 99热这里只有精品一区 | 久久久久久久精品吃奶| 国产精品综合久久久久久久免费| 熟女少妇亚洲综合色aaa.| 床上黄色一级片| 亚洲一区中文字幕在线| 一级作爱视频免费观看| 国产不卡一卡二| 成人欧美大片| 99久久无色码亚洲精品果冻| 又粗又爽又猛毛片免费看| 国产精品 欧美亚洲| 午夜福利免费观看在线| 在线观看免费视频日本深夜| 亚洲免费av在线视频| 免费在线观看完整版高清| 久久精品国产综合久久久| 十八禁人妻一区二区| 婷婷精品国产亚洲av在线| 天堂影院成人在线观看| 舔av片在线| 亚洲成人免费电影在线观看| 久久久国产成人精品二区| 国产精品免费一区二区三区在线| 又黄又粗又硬又大视频| 最近在线观看免费完整版| 欧美在线黄色| 亚洲av中文字字幕乱码综合| 久久亚洲真实| 99国产极品粉嫩在线观看| 国产av一区在线观看免费| 亚洲性夜色夜夜综合| 亚洲 欧美 日韩 在线 免费| 亚洲第一欧美日韩一区二区三区| 亚洲国产欧洲综合997久久,| 不卡av一区二区三区| 久9热在线精品视频| avwww免费| 国产精品野战在线观看| 久久精品91无色码中文字幕| 午夜福利在线在线| 级片在线观看| 日本免费a在线| 我的老师免费观看完整版| 熟女少妇亚洲综合色aaa.| 视频区欧美日本亚洲| 黑人巨大精品欧美一区二区mp4| 夜夜夜夜夜久久久久| 日韩欧美三级三区| 欧美日韩瑟瑟在线播放| 18禁黄网站禁片午夜丰满| 免费av毛片视频| 国产伦一二天堂av在线观看| 99在线视频只有这里精品首页| 日本 av在线| 一区二区三区国产精品乱码| 高清毛片免费观看视频网站| 搡老岳熟女国产| 免费一级毛片在线播放高清视频| 国模一区二区三区四区视频 | 亚洲精品中文字幕一二三四区| 久久久久久九九精品二区国产 | 九九热线精品视视频播放| 国产亚洲精品久久久久久毛片| 久久草成人影院| 亚洲中文av在线| 欧美成人午夜精品| 久久久久国产一级毛片高清牌| 国产av不卡久久| 一二三四在线观看免费中文在| 老司机午夜十八禁免费视频| 五月玫瑰六月丁香| 老司机在亚洲福利影院| 两人在一起打扑克的视频| 深夜精品福利| cao死你这个sao货| 人人妻,人人澡人人爽秒播| 精品久久久久久久久久免费视频| 国产成人精品无人区| av天堂在线播放| 精品国产乱子伦一区二区三区| 日本 欧美在线| 亚洲美女黄片视频| 国产精品永久免费网站| 老汉色av国产亚洲站长工具| 久久久久免费精品人妻一区二区| 悠悠久久av| 香蕉国产在线看| 99国产极品粉嫩在线观看| 熟女少妇亚洲综合色aaa.| 美女黄网站色视频| 国产探花在线观看一区二区| 色哟哟哟哟哟哟|