• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    HeTDSE:A GPU based program to solve the full-dimensional time-dependent Schr¨odinger equation for two-electron helium subjected to strong laser fields*

    2021-07-30 07:37:30XiZhao趙曦GangtaiZhang張剛臺(tái)TingtingBai白婷婷JunWang王俊andWeiWeiYu于偉威
    Chinese Physics B 2021年7期
    關(guān)鍵詞:張剛王俊

    Xi Zhao(趙曦) Gangtai Zhang(張剛臺(tái)) Tingting Bai(白婷婷)Jun Wang(王俊) and Wei-Wei Yu(于偉威)

    1School of Physics and Information Technology,Shaanxi Normal University,Xi’an 710062,China

    2College of Physics and Optoelectronics Technology,Baoji University of Arts and Sciences,Baoji 721016,China

    3College of Mathematics and Information Science,Baoji University of Arts and Sciences,Baoji 721013,China

    4Institute of Atomic and Molecular Physics,Jilin University,Changchun 130012,China

    5Department of Physics,Kansas State University,Manhattan,KS 66506,USA

    6School of Physics and Electronics,Qiannan Normal College for Nationalities,Duyun 558000,China

    7School of Physics and Electronic Technology,Liaoning Normal University,Dalian 116029,China

    Keywords: strong field physics,TDSE,OPENACC,GPU,electron correlation,helium

    1. Introduction

    The rapid development in laser technologies opens a way for scientists to probe and even control the fundamental dynamics of electron correlations.[1-21]As the simplest multi-electron atom, helium is an idea starting point for exploring electron correlation dynamics in multi-electron systerms.[14,25-41]However,due to its six degrees of freedom,the response of helium to strong fields is considerably more complicated than that of single-electron atoms, which poses great theoretical and computational challenge. To overcome this difficulty, a set of conventional CPU parallel computing techniques have been developed to numerically solve the time-dependent Schr¨odinger equation(TDSE)of helium subjected to a laser pulse. Penget al.investigated the electron correlation effects in two-photon-double-ionization(TPDI)of helium by the finite-element-discrete-variable-representation(FEDVR) method.[39]Parkeret al.used the finite-difference method to calculate the above-threshold ionization (ATI)process.[40]Pirauxet al.investigated the electron correlation effect using the Gauss-Sturman function.[30]All of these simulations are very likely a numerical virtual experiment on the servers (about 200 to 1000 CPU cores are used in Refs. [39,40]). Thus, more efficient algorithm is needed to further promote the numerical simulations of helium (and even more complex multi-electron systems beyond helium)in strong laser field investigations. One of the potential solution is the graphic processing unit(GPU)programming,which is the most powerful high performance computing tool so far and widely applied in both science and engineering numerical studies.[43-50]

    GPU contains hundreds of computing cores and is originally designed for highly parallel process of graphic rendering.[43,44]Compared with CPU, the computing performance of GPU can be increased by tens of times with proper optimizing.[43-50]To do this, a so-called “Compute Unified Device Architecture (CUDA)” GPU programming model is present.[44]However,porting of legacy CPU-based codes with CUDA often necessitates explicit compute and data management, thus requiring significant structural changes to existing applications.[45]Therefore, we make the choice to use OpenACC, which gives an alternative model as a GPU programming scheme.[51]OpenACC is a set of directive-based extensions to C,C++and Fortran that allow programmers to annotate regions of code and data for offloading from a CPU host to an attached GPU,without requiring modification to the underlying CPU code itself. Programmers simply insert OpenACC directives before specific code sections to engage the GPU to accelerate the code. This approach enables the compiler to target and optimize parallelism automatically. More example programs and detailed description of openACC can be found in openACC official website.[51]

    In this work, we present a GPU based openACC fortran program HeTDSE,which is an efficient tool to investigate the non-perturbative electronic dynamics of helium subjected to a strong laser pulse by solving full-dimensional two-electron TDSE. It goes beyond the single-electron-approximation(SEA) approach and includes the response to the field of all two electrons. To build helium wavefunction, B-spline basis sets, which were widely used in computational atomic and molecular physics,[21,52-62]are used to construct the radial part of the wavefunction,while spherical harmonic functions are used to express for the angular part. The reason why we use B-spline basis sets to expand helium radial wavefunction is that B-spline function has great advantages of describing both bound and continue states with small number basis sets.[52,53,55]Adams algorithm is employed for the time propagation.[63]Another advantage of using B-spline basis sets and Adams method is that it is easy to parallelize the code and will get an excellent paralleling scaling with openACC.

    The rest of this paper is organized as follows: In Section 2,we present the theoretical background on HeTDSE.In Section 3 we exhibit an overview of the package structure, the input,output files and the code parallelizing. In Section 4 we show several test applications of HeTDSE. The parallel efficiency is given in Section 5. We present our conclusions in Section 6. Atomic units are used throughout, unless stated otherwise.

    2. Mathematical setup and algorithm

    2.1. B-spline function

    B-splines are functions designed to generalize polynomials for the purpose of approximating arbitrary functions, we use B-spline basis sets to construct the helium wavefunction in HeTDSE.Thus,we begin this section with a brief description of B-spline function,very details of B-spline function can be found in Ref.[55].

    A B-spline function is defined by the orderkand a set of the breakpoints{tj},

    This sequence tends to a linear sequence asγ →0 while all points exponentially accumulate close torminasγ →∞.

    The third is a linear-parabolic sequence. A useful sequence adapted to a good description of both the bound and the continuum states associates to a linear spreading at large distances with a quadratic sequence close to the origin.[55]

    The B-spline function orderk=7 is used throughout this work, so we do not write outkin B-spline functions for simplification.

    2.2. Time independent Schr¨odinger equation

    The helium eigenstateφn(r1,r2) and its corresponding eigenvalueEnis the solution to the time-independent Schr¨odinger Eq.(TISE)of helium:

    withH0(r1,r2)being the laser-free Hamiltonian

    whereNis the number of the B-spline basis sets for each timeindependent wavefunctionφn(r1,r2),l1(l2) denotes the angular momenta for electron 1(2),Lis the total orbital angular momentum,Mis itsz-component,Sis the total spin,{ci}is the expansion coefficient, and eachicorresponds to a set of{n1,l1,n2,l2}. Coupled spherical harmonic functions are used to express for the angular part of the time-independent wavefunction:

    wherem1(m2)is thez-component ofl1(l2),andYlm(?r)is usual spherical harmonic functions.

    The wavefunctionφn(r1,r2), eigenvalueEnas well as the expansion coefficient{ci}in Eq. (8) can be obtained by directly diagonalizing Eq. (6). For this purpose, there are a set of matrix integrals that would be performed: the kinetic energy integral matrix element

    Ki j,PijandOi jare straightforward to discretize and to be calculated. However,the calculation ofCi jis different. To calculateCijwe expand the electron-electron correlation term in a truncated multipole series:

    Thus, each of the terms is handled in a similar manner to the one-electron operators.[53]In HeTDSE, all the integrals are carried by the Gauss-Lagrange integration method,which has been widely used in other works.[41]

    2.3. The time-dependent Schr¨odinger equation

    We solve the helium TDSE within the dipole approximation and length gauge. The full-dimension TDSE of helium can be written as

    Here ?εis the laser polarization direction,ωandφare the frequency and the carrier envelope phase,respectively; andf(t)is the temporal envelope.

    The total time-dependent wavefunctionΨ(r1,r2,t) can be expanded in terms of the field-free atomic eigenfunctions:

    which can be solved with the Adams method. Details of this algorithm can be found in Ref. [63]. The energy differenceEmn=Em-Enand the transition dipole element between〈φn(r1,r2)|and|φm(r1,r2)〉,

    can be calculated from the solution to Eq.(6).

    2.4. Absorbing boundary

    An absorbing layerA(r1,r2) is used to smoothly bring down the wavefunction and to prevent the unphysical reflection from the boundary. The absorbing function has the following form:

    Thus,there are two interpretations of the ionization yield.First,we directly calculate the single(double)ionization yield by summing all the possibilities of the wavefunction with an eigenvalue larger than-2.0(0.0):

    Alternatively,the ionization probability is calculated by

    Although we have used an absorbing to avoid the nonphysical reflecting,the simulation box still needs to be set big enough so that the physical system is not perturbed by the absorbing boundaries.

    3. Description of the package

    HeTDSE code package contains 9 fortran files and 4 input files. The fortran driver programs,functions,subroutines,input and output files are all introduced briefly in this section.

    3.1. Fortran program files

    These fortran codes should be run one by one: Firstly,runningeigen-equation.fto solve Eq. (6) to get wavefunctionφn(r1,r2), eigenvalueEnas well as the expansion coefficient{ci}. Then, with the output files ofeigenequation.f,runningdipole.f90to get the transition dipoles element〈φn(r1,r2)|(r1Y10(?r1)+r2Y10(?r2))|φm(r1,r2)〉. Next,runningmatrix.f90to prepare input files fortdse.f90. Finally,runningtdse.f90to solve Eq. (20) to get the time-dependent wavefunctionΨ(r1,r2,t).

    There are other five fortran programsorder.f,rsg.f,wig.f,angl16.f90andSUBROUTINE.f90in HeTDSE. These five programs are the ”support codes”, we DO NOT suggest the users to modulate them.

    3.2. Lower-level functions and subroutines

    The lower-level functions and subroutines in this program are:

    PREQUAN: Get the index of the one electron functionsBn(r)Ylmfrom 1 ton×(lmax+1).

    QUAN2012: Select the basis sets that satisfies physics considerations: the one electron angular momental1,l2should satisfy|l1-l2|≤L ≤|l1+l2| and the wavefunctionΨ(r1,r2)/=0.

    gauleg: Calculate the Gauss-Lagrange integration.

    DBSP2: Calculate the second derivative of the B-spline function d2Bn(r)/dr2.

    DBSP1:Calculate the first derivative of the B-spline function dBn(r)/dr.

    RKTSQ:Set the breakpoints distribution.

    Bspline2006: Calculate the B-spline functionBn(r).

    SingleInteg2012: Calculate the integrationPij,KijorOij.

    DmultiInteg2012:Calculate the electron-electron integrationCij.

    HAMILTON2012: Construct the Hamiltonian.

    RSG: Diagonalize the matrix, get the energy level and wavefunctions.

    ANG: Calculate the angle part of transition dipole element.

    3.3. Input files

    There are totally four input files in HeTDSE,eigenequation.input,dipole.input,matrix.inputandtdse.input,which contain input parameters used byeigne-equation.f,dipole.f90,matrix.f90andtdse.f90, respectively. In this subsection,we present how to set these parameters in these input files one by one.

    Eigen-equation.input

    Line 1: Set total angular momentumLin Eq.(8).

    Line 2: Set total spin in Eq.(8).

    Line 3: Set max angular momentum for each electron

    lmax.

    Line 4: Set the order of the B-spline functionk.

    Line 5: Set number of B-SPLINE function breakpoints,that is to say,nin Eqs.(2),(3),and(4).

    Line 6:Set total number of the basis sets for the He wavefunctionNin Eq.(8).

    Line 7:i0in Eq.(4).

    Line 8: Set the simulation box size in radial direction,rmax.

    Dipole.input

    Line 1:Set total angular momentumLof〈φn(r1,r2)|and|φm(r1,r2)〉in Eq.(8),respectively.

    Line 2: Set total spinMof〈φn(r1,r2)|and|φm(r1,r2)〉in Eq.(8),respectively.

    Lines 3-8 indipole.inputare the same as lines 3-8 in

    eigen-equation.input.

    Matrix.input

    First values in lines 1,2,3 and 4: The numbers of the basis sets used in TDSE of states areL=0,L=1,L=2,L=3 andL=4,respectively.

    Second values in lines 1, 2, 3 and 4: The total numbers of the basis sets of states areL=0,L=1,L=2,L=3 andL=4,respectively.

    The default max total angular momentum isL=4,larger total angular momentums can be added in this input file, if needed.

    Tdse.input

    User should not change lines 1 and 2 intdse.input,so we skip them and begin with line 3.

    Line 3:The maximum number of time steps allowed.Default value is 600000.

    Line 4: Frequency of the electric field in atomic unit.

    Line 5: Number of the laser cycles.

    Line 6: Intensity of the electronic laser field in atomic unit.

    Line 7: Relative and absolute errors. Default values are 10-7and 10-7,respectively.

    3.4. Output files

    Output files of eigen-equation.f:

    There are two output files after runningeigen-equation.f:the coefficientci(i=1,...,N)of the wavefunctionφn(r1,r2),and the eigenvalueEn.

    1.S.dat: This file stores the coefficientciin Eq.(6). The file name would change toP.dat,D.dat,F.datandG.datifL=1,2,3,4,respectively.

    2.OMEGA-S.dat: This file stores the eigenvalueEnof states withφn(r1,r2). The file name would change toOMEGA-P.dat,OMEGA-D.dat,OMEGA-F.dat,OMEGAG.datifL=1,2,3,4,respectively.

    Output files of dipole.f90

    There is one output file after runningdipole.f90: the transition dipole moment elements between a pair of states with neighbouring total angular momentumsLandL+1.

    Output files of matrix.f90:

    There are three output files after runningmatrix.f90:

    1.eigenval.out: This file stores all the eigenvalues in the orderL=0,1,2,3,4.

    2.HI.dat: This files stores all the dipole matrix elements.

    3.OMEGA.dat: This files stores all the energy differences.

    Output files of tdse.f90

    There are four output files after runningtdse.f90:1.laser.dat: This file stores laser fieldE(t).

    2.single-ion.dat: This file stores the single ionization yieldIs(t).

    3.double-ion.dat: This file stores the double ionization yieldId(t).

    4.c.dat: This file stores the solutionan(t) (n=1,...,Ntotal)to the coupled partial differential equation(20)at each time step.In principle,if we obtainan(t),all the physical information can be retrieved.

    3.5. OpenACC parallelizing implementation

    In this subsection, we detailedly explain the OpenACC implementation in HeTDSE.In HeTDSE package,more than 99% computation time would be paid to calculate transition dipole momentdmnand time propagation. Thus,we focus on accelerating the two calculations with openACC.Indipole.f90programs, four do-loops are needed to get all the transition dipole moment elementsdmn(see Eq. (21) for mathematical expression),and each loop would run 2000-10000 times. The code and corresponding openACC accelerated implementation is shown below:

    Although the computing scale is large, the code structure itself is really simple(nothing but a sum calculation)and openACC can achieve a high performance parallelizing scaling. All four do-loops are parallelized directly by inserting the OpenACC directive “!$ACC KERNELS”, then the data transfer between the host and the GPU memory is automatically executed. The calculation in the area (line 2 to line 12)of directive is executed and accelerated on GPU.Optimization for time propagation is similar, here is the Adams time propagation code at each time step and corresponding openACC accelerated implementation:

    As we know,the data transfer between the host and GPU memory affects the computational time. To further minimize the cost of data transfer,we use the OpenACC“DATA COPY”before time propagating starts,and“END DATA”is used to release the GPU memory at the end of time propagating:

    The datacopy (namelist) is the directive that copies the data from host to GPU memory,then data on GPU memory is used without the data transfer back and forth between the host and GPU every time step. Clearly, by inserting datacopy, the calculational time is much saved.

    The advantages of using B-spline basis set and Adams method in HeTDSE are emphasized again at the end of this section: First, it is convenient to implement openACC. Second, the parallelizing scaling has a high performance, which will be shown in Section 5.

    4. Sample results

    In order to verify the accuracy of our program, we compare our results with previous literatures. In the calculations,the radius of the cavity isrmax=70,rmin=0 for both electrons and it is described by 30 B-spline functions of order 7.We useli=1,2=0,1,2,3,4 andL=0,1,2,3,4 in below simulation examples. Linear-parabolic breakpoints sequence is chosen. Total number of basis setsNtotal=11000 are used during the time-dependent simulations.rmaskin absorbing boundary is set tormask=60. It should mention here that choosing such parameters is because we can get a convergence in the ionization calculation in Subsection 4.3. For the other calculations,such as ground/bound states calculations and excited states dynamics simulations,we do not need to use a radius as large as 70.

    4.1. Ground and bound states calculation of helium

    In Table 1, we show the eigenvalues of few low bound states for different total angular momenta. Table 1 shows that,for all the calculated levels, at least the accuracy up to two digits after the decimal point has been obtained. Specifically,we compare our ground state eigenvalue with a more accurate method from Ref. [22]. In Ref. [22], Kinoshita used 39 parameters and finally obtained a eignvalue of-2.9037225,which is only 0.0036935 of difference from our result. This small difference indicates that the accuracy from our method is acceptable.

    Table 1. The energy level of some bound states.

    Fig.1. The density distributions of some bound states in coordinate space.

    The effects of two-electron correlation coming from electron-electron repulsion have been a important subject from the early days of quantum mechanics,the relative positionr12of two electrons are even more important than their absolute positions for some purposes. Thus it is necessary to reduce the two-electron density further. The first specific calculation in respect of this was performed by Coulson and Neilson who deduced the expression for the distribution function of the interelectronic distancer12,[23]

    Fig.2. The intracule density fc(r12)as a function of r12.

    4.2. Excited states dynamics

    Now we turn to the second example: excited states dynamics. We focus on the carrier-envelope phase (CEP) effect on band-band state transition induced by a laser pulse.The CEP is a crucial parameter in describing the characteristics of a laser pulse, we can control the dynamic process of matter-laser interaction by measuring or adjusting the CEP.[64-69]Especially, the CEP effect on the bound-bound transition of an atom has been investigated theoretically and experimentally.[64-69]Here we try to reproduce the result from Ref.[67]. In Ref.[67],the authors used Hylleraas coordinates to reconstruct the wavefunction of helium,and they introduced a parameterMto quantify the CEP effect:

    whereP(φmax) andP(φmin) are, respectively, the maximum and minimum populations for a given excited state. A large value ofMcorresponds to a strong CEP effect. In this simulation,the laser parameters are the same as those in Ref.[67].We use HeTDSE to obtain the valueMfor1Dstate after the laser ends, as shown in Fig 3. Our result matches well with that in Fig.1(b)from Ref.[67].

    Fig. 3. The CEP parameter M vs the laser frequency for 31D state of helium.

    4.3. Excitation and ionization yields

    Next, we calculate the excitation and ionization yields of helium in a strong laser pulse. Our basis sets covers the energy range located beyond the double-ionization threshold. The initial state is the ground state of helium1S2〉.The laser pulse has a duration of 3.8 fs and the peak intensity of 2.97×1014W/cm2, which is the same as those in Refs.[54,59]. The present results in Fig.4 are accordant with the data from Hasbani[54]and Scrinzi,[59]which certifies the accuracy of our code.

    Fig. 4. Excitation and ionization probabilities, for the helium atom,with a pulse duration of 3.8 fs (fixed) and a peak intensity of 2.96×1014 W/cm2.

    Fig.5. Ionization yields for different simulation box R=80(red line),70(blue dotted line),and 60(cyan dotted line),for the helium atom,the laser parameters are the same as those in Fig.4.

    The convergence of the radius is checked in Fig. 5. In Fig.5,we choose three different simulation boxesrmax=80,rmax=70 andrmax=60,the absorbing boundary is set to 70,60 and 50, respectively. In Fig. 5, we can see that ionization yields fromrmax=80 andrmax=70 are almost same,in the meantime, the ionization yields fromrmax=60 are much larger than those in thermax=80 andrmax=70 cases. This result indicate that under such laser parameters,we can obtain a convergence with the radius equal to 70.

    4.4. Electrons wavepacket dynamics

    Using the time-dependent wave function,the density distribution of the electrons in coordinate space can be obtained by

    HereΩ1(2)is the angular part of the electron 1(2). The density distribution of continuous states in coordinate space is shown in Fig.6(a)at the timeTend(which is labeled in Fig.6(b)). We can see that there are evident single ionization characteristics from this figure.

    Once the wavefunction at timetis obtained,we can also calculate the momentum distribution of the wavefunction with momentumk1andk2by Fourier transform

    ,In order to check the accuracy of our code,we employ a twocolor laser field with an intensity ofI=1.0×1012W/cm2,the central energies are 36 eV and 80 eV,respectively, we calculate the momentum distribution after the laser ends in Fig. 7,the result coincides with the result from Ref.[21].

    Fig.6. The distributions of the continuum state in the coordinate space ω =1.0,FWHM=2 OC,intensity I=1.0×1013 W/cm2 when the laser is ended.

    Fig. 7. The two-electron momentum distribution. We use a two-color laser field,in which the central energies are 36 eV and 80 eV,both the intensities are I=1.0×1012 W/cm2.

    5. Parallel scaling

    To test the parallel efficiency of HeTDSE, we compare the serial CPU program(runs at Intel xeon E5-2640 CPU with 2.5GHz clock speed and 15MB L3 cache) and parallel GPU implementations(runs at NVIDIA K20 GPU with 2493 cores).The speedup factor for four simulation cases is shown in Table 2.The larger the basis number,the larger computation cost needs. All the simulations are carried out with PGI fortran compiler, the laser is 3.8 fs (which contains about 4000 time steps)and the simulation box isRmax=70. A speed up of 147 is achieved if 4300 basis sets are used. It indicates that as the simulation system size increases, this improvement becomes more and more pronounced.

    Table 2. The efficiency of our GPU program.

    6. Conclusion

    In this work, we have presented a program which solves the full-dimension-TDSE of helium using OpenACC+GPU simulation acceleration environment. We introduce how to convert the full-dimension-TDSE into coupled partial differential equations.These partial differential equations are solved by the Adams method. Our program has two advantages:Firstly, the codes are easily parallelled by adding few detectives and have a speed up of 147 on GPU, HeTDSE does not have to use a super computer or a computer cluster, even a desktop computer with an openACC-enable GPU can run HeTDSE efficiently. Secondly,we can transplant our program to other accelerators without rewriting the codes. By comparing with literature of the excited state dynamics and ionization yield of helium,the accuracy of our program has been verified.Our codes can be used to investigate the non-perturbative electronic dynamics of helium subjected to a strong laser pulse. In addition,for the programming for accelerators such as CUDA is difficult, we hope HeTDSE to be an example to help more researchers to handle the GPU calculation more easily using OpenACC.

    猜你喜歡
    張剛王俊
    Visualizing and witnessing first-order coherence,Bell nonlocality and purity by using a quantum steering ellipsoid in the non-inertial frame
    Steering quantum nonlocalities of quantum dot system suffering from decoherence
    Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
    2022年高考模擬試題(三)
    導(dǎo)數(shù)應(yīng)用點(diǎn)睛
    王俊看醫(yī)改政府盡快解決三個(gè)問(wèn)題
    High-resolution boosted reconstruction of γ-ray spectra?
    The flow characteristics of fluid in micro-channels of different shapes?
    日韩制服丝袜自拍偷拍| 亚洲熟女毛片儿| 99热国产这里只有精品6| 男人添女人高潮全过程视频| 丝袜脚勾引网站| 午夜福利影视在线免费观看| 777米奇影视久久| 国产又爽黄色视频| 精品一区二区三区av网在线观看 | 久久精品久久精品一区二区三区| 欧美日韩成人在线一区二区| 免费黄网站久久成人精品| 搡老乐熟女国产| 色精品久久人妻99蜜桃| 国产精品二区激情视频| 亚洲熟女毛片儿| 免费久久久久久久精品成人欧美视频| 老司机影院毛片| 欧美黄色片欧美黄色片| 麻豆乱淫一区二区| 国产精品秋霞免费鲁丝片| 久久亚洲国产成人精品v| 女的被弄到高潮叫床怎么办| 久久精品国产综合久久久| 亚洲精品,欧美精品| 日韩欧美一区视频在线观看| 一边摸一边抽搐一进一出视频| 观看美女的网站| 日韩av在线免费看完整版不卡| 在线观看一区二区三区激情| av女优亚洲男人天堂| 国产99久久九九免费精品| 视频在线观看一区二区三区| 国产淫语在线视频| 亚洲五月色婷婷综合| 丝袜美足系列| 国产欧美日韩综合在线一区二区| 十八禁网站网址无遮挡| 亚洲专区中文字幕在线 | 久热这里只有精品99| 老汉色∧v一级毛片| 亚洲 欧美一区二区三区| 国产精品无大码| 亚洲视频免费观看视频| 午夜精品国产一区二区电影| 国产99久久九九免费精品| 大香蕉久久成人网| 人人妻人人爽人人添夜夜欢视频| 日韩欧美一区视频在线观看| 五月天丁香电影| 一边亲一边摸免费视频| 操出白浆在线播放| 国产av码专区亚洲av| 韩国精品一区二区三区| 99久久99久久久精品蜜桃| 国产成人啪精品午夜网站| 亚洲精品久久久久久婷婷小说| 国产av一区二区精品久久| 少妇人妻精品综合一区二区| 人妻人人澡人人爽人人| 日日撸夜夜添| 大陆偷拍与自拍| 男女床上黄色一级片免费看| 国产乱人偷精品视频| 大片免费播放器 马上看| 99久久精品国产亚洲精品| 欧美日韩成人在线一区二区| 高清视频免费观看一区二区| 日韩一区二区三区影片| 久久久久久久精品精品| www.熟女人妻精品国产| 电影成人av| 久久狼人影院| 妹子高潮喷水视频| 热99国产精品久久久久久7| 中文字幕色久视频| 成人毛片60女人毛片免费| 精品国产露脸久久av麻豆| 亚洲少妇的诱惑av| av电影中文网址| 中文字幕色久视频| 亚洲欧美成人综合另类久久久| 久久精品人人爽人人爽视色| 97在线人人人人妻| 十八禁高潮呻吟视频| 日韩精品免费视频一区二区三区| 国产精品嫩草影院av在线观看| 久久久久久人妻| 久久久久人妻精品一区果冻| 亚洲天堂av无毛| 中文字幕人妻熟女乱码| 欧美在线一区亚洲| av免费观看日本| 国产精品免费大片| 热re99久久国产66热| 亚洲五月色婷婷综合| 国产淫语在线视频| 成人亚洲精品一区在线观看| 亚洲av日韩在线播放| 亚洲欧洲国产日韩| 亚洲国产中文字幕在线视频| 91精品国产国语对白视频| 一区二区三区激情视频| 久久精品aⅴ一区二区三区四区| 国产熟女欧美一区二区| 亚洲精品自拍成人| 操出白浆在线播放| av片东京热男人的天堂| 又粗又硬又长又爽又黄的视频| 一级片'在线观看视频| 免费久久久久久久精品成人欧美视频| 欧美日韩亚洲国产一区二区在线观看 | 中文字幕人妻熟女乱码| 国产成人免费观看mmmm| 国产亚洲最大av| av卡一久久| 一边摸一边抽搐一进一出视频| 久久久精品区二区三区| 国产野战对白在线观看| 国产又爽黄色视频| 国产精品二区激情视频| 51午夜福利影视在线观看| 91aial.com中文字幕在线观看| 国产成人免费观看mmmm| svipshipincom国产片| 校园人妻丝袜中文字幕| 久久韩国三级中文字幕| 我的亚洲天堂| 亚洲欧洲精品一区二区精品久久久 | 国产精品偷伦视频观看了| 操出白浆在线播放| 狂野欧美激情性xxxx| 2018国产大陆天天弄谢| 国产激情久久老熟女| www.精华液| 丰满乱子伦码专区| 黄色怎么调成土黄色| 欧美乱码精品一区二区三区| 热re99久久国产66热| 曰老女人黄片| 如何舔出高潮| 熟妇人妻不卡中文字幕| 黑人巨大精品欧美一区二区蜜桃| 久久久久久人人人人人| 欧美av亚洲av综合av国产av | 午夜av观看不卡| 亚洲欧美成人综合另类久久久| 亚洲国产欧美在线一区| 制服人妻中文乱码| 国产日韩一区二区三区精品不卡| 午夜免费鲁丝| 又黄又粗又硬又大视频| 狂野欧美激情性bbbbbb| 国产亚洲av高清不卡| 婷婷色av中文字幕| 乱人伦中国视频| 日韩欧美一区视频在线观看| 宅男免费午夜| 99国产综合亚洲精品| 亚洲激情五月婷婷啪啪| 国产麻豆69| 少妇人妻久久综合中文| 国产成人啪精品午夜网站| 久久热在线av| 好男人视频免费观看在线| 亚洲综合精品二区| 少妇 在线观看| 嫩草影视91久久| 秋霞伦理黄片| 啦啦啦 在线观看视频| 欧美最新免费一区二区三区| 久久精品国产亚洲av高清一级| 观看av在线不卡| 亚洲国产欧美在线一区| 精品第一国产精品| 午夜日韩欧美国产| 大片免费播放器 马上看| 一级毛片我不卡| 免费黄色在线免费观看| 18禁观看日本| 嫩草影视91久久| 一区二区日韩欧美中文字幕| 亚洲人成77777在线视频| 日韩av不卡免费在线播放| 亚洲美女黄色视频免费看| 久久久精品国产亚洲av高清涩受| 一级片'在线观看视频| 国产99久久九九免费精品| 国产黄色视频一区二区在线观看| 婷婷色综合www| 精品亚洲成a人片在线观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品国产av蜜桃| 丝袜喷水一区| 另类亚洲欧美激情| 成人亚洲精品一区在线观看| 精品国产一区二区三区久久久樱花| 国产黄色免费在线视频| 久久精品久久久久久噜噜老黄| 菩萨蛮人人尽说江南好唐韦庄| 欧美少妇被猛烈插入视频| 搡老乐熟女国产| 2021少妇久久久久久久久久久| 狂野欧美激情性bbbbbb| 久久久久久人人人人人| 考比视频在线观看| 国产有黄有色有爽视频| 国产精品久久久久久人妻精品电影 | 亚洲专区中文字幕在线 | 精品久久久久久电影网| 青春草亚洲视频在线观看| 好男人视频免费观看在线| 热re99久久精品国产66热6| 极品少妇高潮喷水抽搐| 少妇被粗大的猛进出69影院| 一本一本久久a久久精品综合妖精| 国产成人一区二区在线| 永久免费av网站大全| 国产一区二区在线观看av| 在线观看三级黄色| 91精品国产国语对白视频| 丝袜脚勾引网站| 丁香六月天网| 美女中出高潮动态图| 十八禁网站网址无遮挡| 国产成人精品无人区| 国产 一区精品| av网站在线播放免费| 国产成人av激情在线播放| 中文字幕高清在线视频| 多毛熟女@视频| 亚洲av电影在线观看一区二区三区| 中文字幕最新亚洲高清| 最近手机中文字幕大全| 999精品在线视频| 国产精品久久久人人做人人爽| 91精品三级在线观看| 精品国产一区二区三区久久久樱花| 丝袜人妻中文字幕| 精品午夜福利在线看| 久久国产亚洲av麻豆专区| 老司机亚洲免费影院| 国产精品蜜桃在线观看| 亚洲精品一二三| 国产伦人伦偷精品视频| av免费观看日本| 亚洲国产中文字幕在线视频| 一区二区三区乱码不卡18| 亚洲精品日本国产第一区| 97在线人人人人妻| 一本一本久久a久久精品综合妖精| 亚洲国产精品一区二区三区在线| 亚洲激情五月婷婷啪啪| 中文字幕色久视频| av卡一久久| 中文字幕制服av| 日韩精品免费视频一区二区三区| 欧美激情高清一区二区三区 | 超碰成人久久| 秋霞在线观看毛片| 精品亚洲成国产av| 欧美黑人欧美精品刺激| 欧美日韩综合久久久久久| 欧美日韩成人在线一区二区| 男女边吃奶边做爰视频| 2021少妇久久久久久久久久久| 悠悠久久av| 国产精品久久久人人做人人爽| 精品免费久久久久久久清纯 | 久久久久网色| 韩国高清视频一区二区三区| 一级爰片在线观看| 一级毛片黄色毛片免费观看视频| 青草久久国产| 成年女人毛片免费观看观看9 | 亚洲欧美日韩另类电影网站| 国产野战对白在线观看| 黄色视频不卡| 母亲3免费完整高清在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 高清av免费在线| 啦啦啦视频在线资源免费观看| 欧美日韩国产mv在线观看视频| 99久久人妻综合| 国产一区二区三区综合在线观看| 亚洲av国产av综合av卡| 亚洲精品国产一区二区精华液| netflix在线观看网站| 亚洲欧美激情在线| av线在线观看网站| av有码第一页| 看非洲黑人一级黄片| 国产成人啪精品午夜网站| 国产精品一区二区精品视频观看| 亚洲人成网站在线观看播放| av在线观看视频网站免费| 2018国产大陆天天弄谢| av国产久精品久网站免费入址| 妹子高潮喷水视频| 80岁老熟妇乱子伦牲交| 久久精品国产亚洲av高清一级| 99热国产这里只有精品6| 91老司机精品| 激情视频va一区二区三区| 国产精品久久久人人做人人爽| 久久99一区二区三区| 久久久久国产一级毛片高清牌| 免费日韩欧美在线观看| 999久久久国产精品视频| 另类亚洲欧美激情| 香蕉丝袜av| 精品国产一区二区久久| 亚洲精品av麻豆狂野| 丝袜在线中文字幕| 1024香蕉在线观看| 国产成人精品无人区| 爱豆传媒免费全集在线观看| 99久久99久久久精品蜜桃| 在线亚洲精品国产二区图片欧美| 看免费成人av毛片| 久久性视频一级片| 午夜免费鲁丝| 天堂俺去俺来也www色官网| 男女午夜视频在线观看| 国产伦理片在线播放av一区| 永久免费av网站大全| 国产精品人妻久久久影院| 女性被躁到高潮视频| 日韩 欧美 亚洲 中文字幕| 男的添女的下面高潮视频| 久久综合国产亚洲精品| 人人妻,人人澡人人爽秒播 | 天天影视国产精品| 香蕉丝袜av| 在线观看国产h片| 少妇人妻精品综合一区二区| 性高湖久久久久久久久免费观看| xxx大片免费视频| 啦啦啦啦在线视频资源| 欧美xxⅹ黑人| 欧美中文综合在线视频| a级毛片黄视频| 秋霞伦理黄片| 亚洲av欧美aⅴ国产| 国产精品亚洲av一区麻豆 | 精品人妻在线不人妻| 精品免费久久久久久久清纯 | 国产精品久久久久久久久免| 久久久精品免费免费高清| 国产福利在线免费观看视频| 亚洲一级一片aⅴ在线观看| 久久精品久久精品一区二区三区| 亚洲五月色婷婷综合| 成人午夜精彩视频在线观看| 欧美在线一区亚洲| 国产亚洲欧美精品永久| 又黄又粗又硬又大视频| 日本91视频免费播放| 精品国产露脸久久av麻豆| 久久精品久久久久久噜噜老黄| 亚洲,一卡二卡三卡| 麻豆乱淫一区二区| 国产不卡av网站在线观看| a级毛片在线看网站| 国产精品欧美亚洲77777| a 毛片基地| 人妻 亚洲 视频| 色精品久久人妻99蜜桃| 夫妻午夜视频| 国产 精品1| 在线观看免费视频网站a站| 纵有疾风起免费观看全集完整版| 国产男人的电影天堂91| 亚洲一区中文字幕在线| 一区福利在线观看| 亚洲av欧美aⅴ国产| svipshipincom国产片| 久热爱精品视频在线9| 国产成人午夜福利电影在线观看| 婷婷色麻豆天堂久久| 国产高清国产精品国产三级| 青春草国产在线视频| 亚洲成av片中文字幕在线观看| 成年av动漫网址| 国产精品一国产av| 日本av手机在线免费观看| 国产无遮挡羞羞视频在线观看| 国产精品香港三级国产av潘金莲 | 日韩一区二区视频免费看| 美女脱内裤让男人舔精品视频| 日本午夜av视频| 亚洲 欧美一区二区三区| 日韩中文字幕欧美一区二区 | 亚洲少妇的诱惑av| 亚洲av日韩精品久久久久久密 | 精品视频人人做人人爽| 国产极品天堂在线| 免费久久久久久久精品成人欧美视频| 亚洲熟女毛片儿| 久久婷婷青草| 母亲3免费完整高清在线观看| 国产男人的电影天堂91| av电影中文网址| 久久久国产欧美日韩av| 亚洲av电影在线进入| 精品一区二区三区四区五区乱码 | 18在线观看网站| 亚洲国产精品一区三区| 国产乱来视频区| 久久精品aⅴ一区二区三区四区| 欧美精品一区二区大全| 中文精品一卡2卡3卡4更新| 国产乱来视频区| 热99久久久久精品小说推荐| 国产欧美日韩综合在线一区二区| 综合色丁香网| 老汉色∧v一级毛片| 高清视频免费观看一区二区| av在线观看视频网站免费| 黄片播放在线免费| 妹子高潮喷水视频| 免费观看av网站的网址| 亚洲av男天堂| 欧美日韩av久久| 日韩精品免费视频一区二区三区| 天天操日日干夜夜撸| 又粗又硬又长又爽又黄的视频| 国产精品嫩草影院av在线观看| 久久婷婷青草| 天天躁夜夜躁狠狠久久av| 亚洲,一卡二卡三卡| 久久久久久人人人人人| 香蕉丝袜av| 久久久久国产一级毛片高清牌| 99久国产av精品国产电影| 在线观看免费视频网站a站| 精品福利永久在线观看| 久久人人爽av亚洲精品天堂| 丁香六月天网| 亚洲美女视频黄频| 亚洲熟女毛片儿| 在线看a的网站| 天天影视国产精品| 99re6热这里在线精品视频| 观看av在线不卡| 久久韩国三级中文字幕| 亚洲成人免费av在线播放| 欧美日韩一区二区视频在线观看视频在线| 青青草视频在线视频观看| 999精品在线视频| 久久久久久久久久久免费av| 亚洲国产av新网站| 国语对白做爰xxxⅹ性视频网站| 美女中出高潮动态图| 日韩av在线免费看完整版不卡| 99久久综合免费| 欧美精品高潮呻吟av久久| 电影成人av| 2018国产大陆天天弄谢| 亚洲国产成人一精品久久久| 久久久久久久久久久免费av| 亚洲免费av在线视频| 97精品久久久久久久久久精品| 亚洲第一青青草原| 亚洲av福利一区| 少妇人妻精品综合一区二区| 欧美黑人欧美精品刺激| 少妇人妻 视频| av不卡在线播放| 不卡视频在线观看欧美| 久久久精品国产亚洲av高清涩受| 久久久久网色| 深夜精品福利| 精品一区二区免费观看| 一级a爱视频在线免费观看| 深夜精品福利| xxx大片免费视频| 国产日韩欧美视频二区| 欧美激情极品国产一区二区三区| 日日撸夜夜添| 狂野欧美激情性bbbbbb| 在线天堂最新版资源| 国产精品欧美亚洲77777| 久久久久久免费高清国产稀缺| 在线天堂最新版资源| 欧美另类一区| 新久久久久国产一级毛片| 交换朋友夫妻互换小说| 国产成人av激情在线播放| 在线观看人妻少妇| 久久久亚洲精品成人影院| 一区二区三区乱码不卡18| avwww免费| 午夜av观看不卡| 老司机影院成人| 午夜福利,免费看| 一本—道久久a久久精品蜜桃钙片| 少妇 在线观看| 午夜福利免费观看在线| 天堂8中文在线网| videos熟女内射| 免费高清在线观看视频在线观看| 日韩欧美精品免费久久| 欧美变态另类bdsm刘玥| 日韩大片免费观看网站| 国产精品国产三级国产专区5o| 免费高清在线观看日韩| 看免费av毛片| 巨乳人妻的诱惑在线观看| 国产 一区精品| 777久久人妻少妇嫩草av网站| 成年人免费黄色播放视频| 午夜激情久久久久久久| 国产精品久久久久久久久免| 亚洲欧美精品自产自拍| 国产成人免费无遮挡视频| 久久狼人影院| 免费观看a级毛片全部| 超碰成人久久| 亚洲精品美女久久av网站| av天堂久久9| 亚洲成人免费av在线播放| 久久性视频一级片| 久热爱精品视频在线9| 波野结衣二区三区在线| 国产人伦9x9x在线观看| 亚洲国产毛片av蜜桃av| 亚洲天堂av无毛| 亚洲欧美一区二区三区国产| 色94色欧美一区二区| 久久久久精品国产欧美久久久 | 熟女av电影| 狂野欧美激情性xxxx| 国产在线一区二区三区精| 亚洲精品久久久久久婷婷小说| 美国免费a级毛片| 美女高潮到喷水免费观看| www.精华液| 日日啪夜夜爽| 日本一区二区免费在线视频| 久久久久国产精品人妻一区二区| 精品国产一区二区三区久久久樱花| 最近中文字幕高清免费大全6| 欧美97在线视频| 桃花免费在线播放| 悠悠久久av| 这个男人来自地球电影免费观看 | www.av在线官网国产| 精品一区在线观看国产| 一区二区日韩欧美中文字幕| 性少妇av在线| 欧美成人精品欧美一级黄| 香蕉国产在线看| 激情五月婷婷亚洲| 97在线人人人人妻| 99久久精品国产亚洲精品| 亚洲av综合色区一区| 日韩人妻精品一区2区三区| 我要看黄色一级片免费的| 伦理电影大哥的女人| 在线观看国产h片| 80岁老熟妇乱子伦牲交| 狂野欧美激情性xxxx| 丝瓜视频免费看黄片| 国产一区二区三区av在线| 9热在线视频观看99| av.在线天堂| 国产免费一区二区三区四区乱码| 在线精品无人区一区二区三| av天堂久久9| 国产精品二区激情视频| 综合色丁香网| 国产成人精品福利久久| 久久影院123| 亚洲色图综合在线观看| 午夜福利,免费看| 国产片内射在线| 国产精品香港三级国产av潘金莲 | 国产 一区精品| 国产精品一二三区在线看| 久久久久久久久久久久大奶| 热99国产精品久久久久久7| 美女脱内裤让男人舔精品视频| 久久国产亚洲av麻豆专区| 亚洲精品美女久久久久99蜜臀 | 在线观看三级黄色| 在线观看一区二区三区激情| 免费不卡黄色视频| 亚洲美女搞黄在线观看| 日本一区二区免费在线视频| 女的被弄到高潮叫床怎么办| 香蕉国产在线看| 天堂俺去俺来也www色官网| 亚洲av国产av综合av卡| 国产 精品1| 美女大奶头黄色视频| a级毛片黄视频| 天堂中文最新版在线下载| 夜夜骑夜夜射夜夜干| 精品国产乱码久久久久久男人| 精品国产国语对白av| 午夜福利免费观看在线| 国语对白做爰xxxⅹ性视频网站| 90打野战视频偷拍视频| av卡一久久| 狠狠婷婷综合久久久久久88av| netflix在线观看网站| 夫妻性生交免费视频一级片| 好男人视频免费观看在线| 亚洲av电影在线进入| 王馨瑶露胸无遮挡在线观看| 夫妻性生交免费视频一级片| 女人爽到高潮嗷嗷叫在线视频| 天天添夜夜摸| 美国免费a级毛片|