• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    HeTDSE:A GPU based program to solve the full-dimensional time-dependent Schr¨odinger equation for two-electron helium subjected to strong laser fields*

    2021-07-30 07:37:30XiZhao趙曦GangtaiZhang張剛臺(tái)TingtingBai白婷婷JunWang王俊andWeiWeiYu于偉威
    Chinese Physics B 2021年7期
    關(guān)鍵詞:張剛王俊

    Xi Zhao(趙曦) Gangtai Zhang(張剛臺(tái)) Tingting Bai(白婷婷)Jun Wang(王俊) and Wei-Wei Yu(于偉威)

    1School of Physics and Information Technology,Shaanxi Normal University,Xi’an 710062,China

    2College of Physics and Optoelectronics Technology,Baoji University of Arts and Sciences,Baoji 721016,China

    3College of Mathematics and Information Science,Baoji University of Arts and Sciences,Baoji 721013,China

    4Institute of Atomic and Molecular Physics,Jilin University,Changchun 130012,China

    5Department of Physics,Kansas State University,Manhattan,KS 66506,USA

    6School of Physics and Electronics,Qiannan Normal College for Nationalities,Duyun 558000,China

    7School of Physics and Electronic Technology,Liaoning Normal University,Dalian 116029,China

    Keywords: strong field physics,TDSE,OPENACC,GPU,electron correlation,helium

    1. Introduction

    The rapid development in laser technologies opens a way for scientists to probe and even control the fundamental dynamics of electron correlations.[1-21]As the simplest multi-electron atom, helium is an idea starting point for exploring electron correlation dynamics in multi-electron systerms.[14,25-41]However,due to its six degrees of freedom,the response of helium to strong fields is considerably more complicated than that of single-electron atoms, which poses great theoretical and computational challenge. To overcome this difficulty, a set of conventional CPU parallel computing techniques have been developed to numerically solve the time-dependent Schr¨odinger equation(TDSE)of helium subjected to a laser pulse. Penget al.investigated the electron correlation effects in two-photon-double-ionization(TPDI)of helium by the finite-element-discrete-variable-representation(FEDVR) method.[39]Parkeret al.used the finite-difference method to calculate the above-threshold ionization (ATI)process.[40]Pirauxet al.investigated the electron correlation effect using the Gauss-Sturman function.[30]All of these simulations are very likely a numerical virtual experiment on the servers (about 200 to 1000 CPU cores are used in Refs. [39,40]). Thus, more efficient algorithm is needed to further promote the numerical simulations of helium (and even more complex multi-electron systems beyond helium)in strong laser field investigations. One of the potential solution is the graphic processing unit(GPU)programming,which is the most powerful high performance computing tool so far and widely applied in both science and engineering numerical studies.[43-50]

    GPU contains hundreds of computing cores and is originally designed for highly parallel process of graphic rendering.[43,44]Compared with CPU, the computing performance of GPU can be increased by tens of times with proper optimizing.[43-50]To do this, a so-called “Compute Unified Device Architecture (CUDA)” GPU programming model is present.[44]However,porting of legacy CPU-based codes with CUDA often necessitates explicit compute and data management, thus requiring significant structural changes to existing applications.[45]Therefore, we make the choice to use OpenACC, which gives an alternative model as a GPU programming scheme.[51]OpenACC is a set of directive-based extensions to C,C++and Fortran that allow programmers to annotate regions of code and data for offloading from a CPU host to an attached GPU,without requiring modification to the underlying CPU code itself. Programmers simply insert OpenACC directives before specific code sections to engage the GPU to accelerate the code. This approach enables the compiler to target and optimize parallelism automatically. More example programs and detailed description of openACC can be found in openACC official website.[51]

    In this work, we present a GPU based openACC fortran program HeTDSE,which is an efficient tool to investigate the non-perturbative electronic dynamics of helium subjected to a strong laser pulse by solving full-dimensional two-electron TDSE. It goes beyond the single-electron-approximation(SEA) approach and includes the response to the field of all two electrons. To build helium wavefunction, B-spline basis sets, which were widely used in computational atomic and molecular physics,[21,52-62]are used to construct the radial part of the wavefunction,while spherical harmonic functions are used to express for the angular part. The reason why we use B-spline basis sets to expand helium radial wavefunction is that B-spline function has great advantages of describing both bound and continue states with small number basis sets.[52,53,55]Adams algorithm is employed for the time propagation.[63]Another advantage of using B-spline basis sets and Adams method is that it is easy to parallelize the code and will get an excellent paralleling scaling with openACC.

    The rest of this paper is organized as follows: In Section 2,we present the theoretical background on HeTDSE.In Section 3 we exhibit an overview of the package structure, the input,output files and the code parallelizing. In Section 4 we show several test applications of HeTDSE. The parallel efficiency is given in Section 5. We present our conclusions in Section 6. Atomic units are used throughout, unless stated otherwise.

    2. Mathematical setup and algorithm

    2.1. B-spline function

    B-splines are functions designed to generalize polynomials for the purpose of approximating arbitrary functions, we use B-spline basis sets to construct the helium wavefunction in HeTDSE.Thus,we begin this section with a brief description of B-spline function,very details of B-spline function can be found in Ref.[55].

    A B-spline function is defined by the orderkand a set of the breakpoints{tj},

    This sequence tends to a linear sequence asγ →0 while all points exponentially accumulate close torminasγ →∞.

    The third is a linear-parabolic sequence. A useful sequence adapted to a good description of both the bound and the continuum states associates to a linear spreading at large distances with a quadratic sequence close to the origin.[55]

    The B-spline function orderk=7 is used throughout this work, so we do not write outkin B-spline functions for simplification.

    2.2. Time independent Schr¨odinger equation

    The helium eigenstateφn(r1,r2) and its corresponding eigenvalueEnis the solution to the time-independent Schr¨odinger Eq.(TISE)of helium:

    withH0(r1,r2)being the laser-free Hamiltonian

    whereNis the number of the B-spline basis sets for each timeindependent wavefunctionφn(r1,r2),l1(l2) denotes the angular momenta for electron 1(2),Lis the total orbital angular momentum,Mis itsz-component,Sis the total spin,{ci}is the expansion coefficient, and eachicorresponds to a set of{n1,l1,n2,l2}. Coupled spherical harmonic functions are used to express for the angular part of the time-independent wavefunction:

    wherem1(m2)is thez-component ofl1(l2),andYlm(?r)is usual spherical harmonic functions.

    The wavefunctionφn(r1,r2), eigenvalueEnas well as the expansion coefficient{ci}in Eq. (8) can be obtained by directly diagonalizing Eq. (6). For this purpose, there are a set of matrix integrals that would be performed: the kinetic energy integral matrix element

    Ki j,PijandOi jare straightforward to discretize and to be calculated. However,the calculation ofCi jis different. To calculateCijwe expand the electron-electron correlation term in a truncated multipole series:

    Thus, each of the terms is handled in a similar manner to the one-electron operators.[53]In HeTDSE, all the integrals are carried by the Gauss-Lagrange integration method,which has been widely used in other works.[41]

    2.3. The time-dependent Schr¨odinger equation

    We solve the helium TDSE within the dipole approximation and length gauge. The full-dimension TDSE of helium can be written as

    Here ?εis the laser polarization direction,ωandφare the frequency and the carrier envelope phase,respectively; andf(t)is the temporal envelope.

    The total time-dependent wavefunctionΨ(r1,r2,t) can be expanded in terms of the field-free atomic eigenfunctions:

    which can be solved with the Adams method. Details of this algorithm can be found in Ref. [63]. The energy differenceEmn=Em-Enand the transition dipole element between〈φn(r1,r2)|and|φm(r1,r2)〉,

    can be calculated from the solution to Eq.(6).

    2.4. Absorbing boundary

    An absorbing layerA(r1,r2) is used to smoothly bring down the wavefunction and to prevent the unphysical reflection from the boundary. The absorbing function has the following form:

    Thus,there are two interpretations of the ionization yield.First,we directly calculate the single(double)ionization yield by summing all the possibilities of the wavefunction with an eigenvalue larger than-2.0(0.0):

    Alternatively,the ionization probability is calculated by

    Although we have used an absorbing to avoid the nonphysical reflecting,the simulation box still needs to be set big enough so that the physical system is not perturbed by the absorbing boundaries.

    3. Description of the package

    HeTDSE code package contains 9 fortran files and 4 input files. The fortran driver programs,functions,subroutines,input and output files are all introduced briefly in this section.

    3.1. Fortran program files

    These fortran codes should be run one by one: Firstly,runningeigen-equation.fto solve Eq. (6) to get wavefunctionφn(r1,r2), eigenvalueEnas well as the expansion coefficient{ci}. Then, with the output files ofeigenequation.f,runningdipole.f90to get the transition dipoles element〈φn(r1,r2)|(r1Y10(?r1)+r2Y10(?r2))|φm(r1,r2)〉. Next,runningmatrix.f90to prepare input files fortdse.f90. Finally,runningtdse.f90to solve Eq. (20) to get the time-dependent wavefunctionΨ(r1,r2,t).

    There are other five fortran programsorder.f,rsg.f,wig.f,angl16.f90andSUBROUTINE.f90in HeTDSE. These five programs are the ”support codes”, we DO NOT suggest the users to modulate them.

    3.2. Lower-level functions and subroutines

    The lower-level functions and subroutines in this program are:

    PREQUAN: Get the index of the one electron functionsBn(r)Ylmfrom 1 ton×(lmax+1).

    QUAN2012: Select the basis sets that satisfies physics considerations: the one electron angular momental1,l2should satisfy|l1-l2|≤L ≤|l1+l2| and the wavefunctionΨ(r1,r2)/=0.

    gauleg: Calculate the Gauss-Lagrange integration.

    DBSP2: Calculate the second derivative of the B-spline function d2Bn(r)/dr2.

    DBSP1:Calculate the first derivative of the B-spline function dBn(r)/dr.

    RKTSQ:Set the breakpoints distribution.

    Bspline2006: Calculate the B-spline functionBn(r).

    SingleInteg2012: Calculate the integrationPij,KijorOij.

    DmultiInteg2012:Calculate the electron-electron integrationCij.

    HAMILTON2012: Construct the Hamiltonian.

    RSG: Diagonalize the matrix, get the energy level and wavefunctions.

    ANG: Calculate the angle part of transition dipole element.

    3.3. Input files

    There are totally four input files in HeTDSE,eigenequation.input,dipole.input,matrix.inputandtdse.input,which contain input parameters used byeigne-equation.f,dipole.f90,matrix.f90andtdse.f90, respectively. In this subsection,we present how to set these parameters in these input files one by one.

    Eigen-equation.input

    Line 1: Set total angular momentumLin Eq.(8).

    Line 2: Set total spin in Eq.(8).

    Line 3: Set max angular momentum for each electron

    lmax.

    Line 4: Set the order of the B-spline functionk.

    Line 5: Set number of B-SPLINE function breakpoints,that is to say,nin Eqs.(2),(3),and(4).

    Line 6:Set total number of the basis sets for the He wavefunctionNin Eq.(8).

    Line 7:i0in Eq.(4).

    Line 8: Set the simulation box size in radial direction,rmax.

    Dipole.input

    Line 1:Set total angular momentumLof〈φn(r1,r2)|and|φm(r1,r2)〉in Eq.(8),respectively.

    Line 2: Set total spinMof〈φn(r1,r2)|and|φm(r1,r2)〉in Eq.(8),respectively.

    Lines 3-8 indipole.inputare the same as lines 3-8 in

    eigen-equation.input.

    Matrix.input

    First values in lines 1,2,3 and 4: The numbers of the basis sets used in TDSE of states areL=0,L=1,L=2,L=3 andL=4,respectively.

    Second values in lines 1, 2, 3 and 4: The total numbers of the basis sets of states areL=0,L=1,L=2,L=3 andL=4,respectively.

    The default max total angular momentum isL=4,larger total angular momentums can be added in this input file, if needed.

    Tdse.input

    User should not change lines 1 and 2 intdse.input,so we skip them and begin with line 3.

    Line 3:The maximum number of time steps allowed.Default value is 600000.

    Line 4: Frequency of the electric field in atomic unit.

    Line 5: Number of the laser cycles.

    Line 6: Intensity of the electronic laser field in atomic unit.

    Line 7: Relative and absolute errors. Default values are 10-7and 10-7,respectively.

    3.4. Output files

    Output files of eigen-equation.f:

    There are two output files after runningeigen-equation.f:the coefficientci(i=1,...,N)of the wavefunctionφn(r1,r2),and the eigenvalueEn.

    1.S.dat: This file stores the coefficientciin Eq.(6). The file name would change toP.dat,D.dat,F.datandG.datifL=1,2,3,4,respectively.

    2.OMEGA-S.dat: This file stores the eigenvalueEnof states withφn(r1,r2). The file name would change toOMEGA-P.dat,OMEGA-D.dat,OMEGA-F.dat,OMEGAG.datifL=1,2,3,4,respectively.

    Output files of dipole.f90

    There is one output file after runningdipole.f90: the transition dipole moment elements between a pair of states with neighbouring total angular momentumsLandL+1.

    Output files of matrix.f90:

    There are three output files after runningmatrix.f90:

    1.eigenval.out: This file stores all the eigenvalues in the orderL=0,1,2,3,4.

    2.HI.dat: This files stores all the dipole matrix elements.

    3.OMEGA.dat: This files stores all the energy differences.

    Output files of tdse.f90

    There are four output files after runningtdse.f90:1.laser.dat: This file stores laser fieldE(t).

    2.single-ion.dat: This file stores the single ionization yieldIs(t).

    3.double-ion.dat: This file stores the double ionization yieldId(t).

    4.c.dat: This file stores the solutionan(t) (n=1,...,Ntotal)to the coupled partial differential equation(20)at each time step.In principle,if we obtainan(t),all the physical information can be retrieved.

    3.5. OpenACC parallelizing implementation

    In this subsection, we detailedly explain the OpenACC implementation in HeTDSE.In HeTDSE package,more than 99% computation time would be paid to calculate transition dipole momentdmnand time propagation. Thus,we focus on accelerating the two calculations with openACC.Indipole.f90programs, four do-loops are needed to get all the transition dipole moment elementsdmn(see Eq. (21) for mathematical expression),and each loop would run 2000-10000 times. The code and corresponding openACC accelerated implementation is shown below:

    Although the computing scale is large, the code structure itself is really simple(nothing but a sum calculation)and openACC can achieve a high performance parallelizing scaling. All four do-loops are parallelized directly by inserting the OpenACC directive “!$ACC KERNELS”, then the data transfer between the host and the GPU memory is automatically executed. The calculation in the area (line 2 to line 12)of directive is executed and accelerated on GPU.Optimization for time propagation is similar, here is the Adams time propagation code at each time step and corresponding openACC accelerated implementation:

    As we know,the data transfer between the host and GPU memory affects the computational time. To further minimize the cost of data transfer,we use the OpenACC“DATA COPY”before time propagating starts,and“END DATA”is used to release the GPU memory at the end of time propagating:

    The datacopy (namelist) is the directive that copies the data from host to GPU memory,then data on GPU memory is used without the data transfer back and forth between the host and GPU every time step. Clearly, by inserting datacopy, the calculational time is much saved.

    The advantages of using B-spline basis set and Adams method in HeTDSE are emphasized again at the end of this section: First, it is convenient to implement openACC. Second, the parallelizing scaling has a high performance, which will be shown in Section 5.

    4. Sample results

    In order to verify the accuracy of our program, we compare our results with previous literatures. In the calculations,the radius of the cavity isrmax=70,rmin=0 for both electrons and it is described by 30 B-spline functions of order 7.We useli=1,2=0,1,2,3,4 andL=0,1,2,3,4 in below simulation examples. Linear-parabolic breakpoints sequence is chosen. Total number of basis setsNtotal=11000 are used during the time-dependent simulations.rmaskin absorbing boundary is set tormask=60. It should mention here that choosing such parameters is because we can get a convergence in the ionization calculation in Subsection 4.3. For the other calculations,such as ground/bound states calculations and excited states dynamics simulations,we do not need to use a radius as large as 70.

    4.1. Ground and bound states calculation of helium

    In Table 1, we show the eigenvalues of few low bound states for different total angular momenta. Table 1 shows that,for all the calculated levels, at least the accuracy up to two digits after the decimal point has been obtained. Specifically,we compare our ground state eigenvalue with a more accurate method from Ref. [22]. In Ref. [22], Kinoshita used 39 parameters and finally obtained a eignvalue of-2.9037225,which is only 0.0036935 of difference from our result. This small difference indicates that the accuracy from our method is acceptable.

    Table 1. The energy level of some bound states.

    Fig.1. The density distributions of some bound states in coordinate space.

    The effects of two-electron correlation coming from electron-electron repulsion have been a important subject from the early days of quantum mechanics,the relative positionr12of two electrons are even more important than their absolute positions for some purposes. Thus it is necessary to reduce the two-electron density further. The first specific calculation in respect of this was performed by Coulson and Neilson who deduced the expression for the distribution function of the interelectronic distancer12,[23]

    Fig.2. The intracule density fc(r12)as a function of r12.

    4.2. Excited states dynamics

    Now we turn to the second example: excited states dynamics. We focus on the carrier-envelope phase (CEP) effect on band-band state transition induced by a laser pulse.The CEP is a crucial parameter in describing the characteristics of a laser pulse, we can control the dynamic process of matter-laser interaction by measuring or adjusting the CEP.[64-69]Especially, the CEP effect on the bound-bound transition of an atom has been investigated theoretically and experimentally.[64-69]Here we try to reproduce the result from Ref.[67]. In Ref.[67],the authors used Hylleraas coordinates to reconstruct the wavefunction of helium,and they introduced a parameterMto quantify the CEP effect:

    whereP(φmax) andP(φmin) are, respectively, the maximum and minimum populations for a given excited state. A large value ofMcorresponds to a strong CEP effect. In this simulation,the laser parameters are the same as those in Ref.[67].We use HeTDSE to obtain the valueMfor1Dstate after the laser ends, as shown in Fig 3. Our result matches well with that in Fig.1(b)from Ref.[67].

    Fig. 3. The CEP parameter M vs the laser frequency for 31D state of helium.

    4.3. Excitation and ionization yields

    Next, we calculate the excitation and ionization yields of helium in a strong laser pulse. Our basis sets covers the energy range located beyond the double-ionization threshold. The initial state is the ground state of helium1S2〉.The laser pulse has a duration of 3.8 fs and the peak intensity of 2.97×1014W/cm2, which is the same as those in Refs.[54,59]. The present results in Fig.4 are accordant with the data from Hasbani[54]and Scrinzi,[59]which certifies the accuracy of our code.

    Fig. 4. Excitation and ionization probabilities, for the helium atom,with a pulse duration of 3.8 fs (fixed) and a peak intensity of 2.96×1014 W/cm2.

    Fig.5. Ionization yields for different simulation box R=80(red line),70(blue dotted line),and 60(cyan dotted line),for the helium atom,the laser parameters are the same as those in Fig.4.

    The convergence of the radius is checked in Fig. 5. In Fig.5,we choose three different simulation boxesrmax=80,rmax=70 andrmax=60,the absorbing boundary is set to 70,60 and 50, respectively. In Fig. 5, we can see that ionization yields fromrmax=80 andrmax=70 are almost same,in the meantime, the ionization yields fromrmax=60 are much larger than those in thermax=80 andrmax=70 cases. This result indicate that under such laser parameters,we can obtain a convergence with the radius equal to 70.

    4.4. Electrons wavepacket dynamics

    Using the time-dependent wave function,the density distribution of the electrons in coordinate space can be obtained by

    HereΩ1(2)is the angular part of the electron 1(2). The density distribution of continuous states in coordinate space is shown in Fig.6(a)at the timeTend(which is labeled in Fig.6(b)). We can see that there are evident single ionization characteristics from this figure.

    Once the wavefunction at timetis obtained,we can also calculate the momentum distribution of the wavefunction with momentumk1andk2by Fourier transform

    ,In order to check the accuracy of our code,we employ a twocolor laser field with an intensity ofI=1.0×1012W/cm2,the central energies are 36 eV and 80 eV,respectively, we calculate the momentum distribution after the laser ends in Fig. 7,the result coincides with the result from Ref.[21].

    Fig.6. The distributions of the continuum state in the coordinate space ω =1.0,FWHM=2 OC,intensity I=1.0×1013 W/cm2 when the laser is ended.

    Fig. 7. The two-electron momentum distribution. We use a two-color laser field,in which the central energies are 36 eV and 80 eV,both the intensities are I=1.0×1012 W/cm2.

    5. Parallel scaling

    To test the parallel efficiency of HeTDSE, we compare the serial CPU program(runs at Intel xeon E5-2640 CPU with 2.5GHz clock speed and 15MB L3 cache) and parallel GPU implementations(runs at NVIDIA K20 GPU with 2493 cores).The speedup factor for four simulation cases is shown in Table 2.The larger the basis number,the larger computation cost needs. All the simulations are carried out with PGI fortran compiler, the laser is 3.8 fs (which contains about 4000 time steps)and the simulation box isRmax=70. A speed up of 147 is achieved if 4300 basis sets are used. It indicates that as the simulation system size increases, this improvement becomes more and more pronounced.

    Table 2. The efficiency of our GPU program.

    6. Conclusion

    In this work, we have presented a program which solves the full-dimension-TDSE of helium using OpenACC+GPU simulation acceleration environment. We introduce how to convert the full-dimension-TDSE into coupled partial differential equations.These partial differential equations are solved by the Adams method. Our program has two advantages:Firstly, the codes are easily parallelled by adding few detectives and have a speed up of 147 on GPU, HeTDSE does not have to use a super computer or a computer cluster, even a desktop computer with an openACC-enable GPU can run HeTDSE efficiently. Secondly,we can transplant our program to other accelerators without rewriting the codes. By comparing with literature of the excited state dynamics and ionization yield of helium,the accuracy of our program has been verified.Our codes can be used to investigate the non-perturbative electronic dynamics of helium subjected to a strong laser pulse. In addition,for the programming for accelerators such as CUDA is difficult, we hope HeTDSE to be an example to help more researchers to handle the GPU calculation more easily using OpenACC.

    猜你喜歡
    張剛王俊
    Visualizing and witnessing first-order coherence,Bell nonlocality and purity by using a quantum steering ellipsoid in the non-inertial frame
    Steering quantum nonlocalities of quantum dot system suffering from decoherence
    Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
    2022年高考模擬試題(三)
    導(dǎo)數(shù)應(yīng)用點(diǎn)睛
    王俊看醫(yī)改政府盡快解決三個(gè)問(wèn)題
    High-resolution boosted reconstruction of γ-ray spectra?
    The flow characteristics of fluid in micro-channels of different shapes?
    熟妇人妻不卡中文字幕| 性色av一级| 韩国精品一区二区三区 | 精品久久久久久电影网| 国产av国产精品国产| 国产精品99久久99久久久不卡 | 超碰97精品在线观看| 国产色爽女视频免费观看| 亚洲少妇的诱惑av| 久久久久国产网址| 国产日韩欧美亚洲二区| 精品一区二区三卡| 成人午夜精彩视频在线观看| 欧美老熟妇乱子伦牲交| 少妇高潮的动态图| 亚洲一码二码三码区别大吗| 99热网站在线观看| 婷婷色综合www| 伊人久久国产一区二区| 人体艺术视频欧美日本| 亚洲精品色激情综合| 亚洲高清免费不卡视频| 久久精品国产鲁丝片午夜精品| 国产在线免费精品| 亚洲av成人精品一二三区| 成人漫画全彩无遮挡| 亚洲人与动物交配视频| 国产精品人妻久久久久久| 天天躁夜夜躁狠狠久久av| 777米奇影视久久| 一本久久精品| 欧美人与性动交α欧美软件 | 亚洲久久久国产精品| 老司机亚洲免费影院| 少妇熟女欧美另类| 丝袜喷水一区| 自线自在国产av| 国产又色又爽无遮挡免| 亚洲成色77777| 国产熟女欧美一区二区| 1024视频免费在线观看| 亚洲欧美成人综合另类久久久| 欧美精品av麻豆av| 大香蕉97超碰在线| 黑人巨大精品欧美一区二区蜜桃 | videosex国产| 熟女电影av网| 男女啪啪激烈高潮av片| 一边摸一边做爽爽视频免费| 丝袜喷水一区| 免费在线观看完整版高清| 亚洲经典国产精华液单| 欧美日韩一区二区视频在线观看视频在线| 国产精品国产三级专区第一集| 69精品国产乱码久久久| 色婷婷av一区二区三区视频| 各种免费的搞黄视频| 国产精品三级大全| 卡戴珊不雅视频在线播放| 亚洲综合精品二区| 啦啦啦啦在线视频资源| 日韩欧美一区视频在线观看| 久久免费观看电影| 亚洲精品久久午夜乱码| 国产日韩欧美亚洲二区| 久久免费观看电影| 狂野欧美激情性xxxx在线观看| 侵犯人妻中文字幕一二三四区| 国产色婷婷99| 欧美最新免费一区二区三区| 搡女人真爽免费视频火全软件| 国产精品久久久久久av不卡| 国产又爽黄色视频| 免费人妻精品一区二区三区视频| 啦啦啦视频在线资源免费观看| 久久久久久人人人人人| 日本免费在线观看一区| 男女高潮啪啪啪动态图| 狂野欧美激情性bbbbbb| 欧美97在线视频| 亚洲精品aⅴ在线观看| 日本猛色少妇xxxxx猛交久久| 午夜激情av网站| 亚洲人成网站在线观看播放| 亚洲精品日韩在线中文字幕| 一级a做视频免费观看| 51国产日韩欧美| 亚洲欧美成人精品一区二区| 久久99精品国语久久久| 一二三四中文在线观看免费高清| 亚洲第一av免费看| 一级片免费观看大全| 国产片内射在线| 性色av一级| 在线天堂中文资源库| 26uuu在线亚洲综合色| 精品少妇内射三级| 久久婷婷青草| 亚洲精品aⅴ在线观看| 成人国语在线视频| 亚洲精品第二区| 亚洲性久久影院| 日韩中字成人| 国产精品嫩草影院av在线观看| 国产淫语在线视频| 汤姆久久久久久久影院中文字幕| 美女福利国产在线| 自线自在国产av| 亚洲在久久综合| 这个男人来自地球电影免费观看 | av福利片在线| 国内精品宾馆在线| 午夜免费男女啪啪视频观看| 国产极品粉嫩免费观看在线| 在现免费观看毛片| 91精品三级在线观看| 26uuu在线亚洲综合色| 日韩欧美精品免费久久| 亚洲第一av免费看| 日本色播在线视频| 亚洲四区av| 80岁老熟妇乱子伦牲交| 亚洲av成人精品一二三区| 一区二区三区乱码不卡18| 夜夜爽夜夜爽视频| 亚洲精品,欧美精品| 丰满乱子伦码专区| 男人爽女人下面视频在线观看| 久久久a久久爽久久v久久| 色网站视频免费| 啦啦啦在线观看免费高清www| 免费日韩欧美在线观看| 久久久久久久亚洲中文字幕| 22中文网久久字幕| 美女福利国产在线| av视频免费观看在线观看| 日本色播在线视频| 亚洲国产色片| 久久毛片免费看一区二区三区| 一级片免费观看大全| 日本黄色日本黄色录像| 日韩三级伦理在线观看| 丰满饥渴人妻一区二区三| 赤兔流量卡办理| 只有这里有精品99| 一本大道久久a久久精品| 一区二区日韩欧美中文字幕 | 啦啦啦在线观看免费高清www| 女性被躁到高潮视频| 国产精品国产av在线观看| 波多野结衣一区麻豆| 精品少妇内射三级| 两个人免费观看高清视频| 国产 一区精品| 精品国产国语对白av| 十八禁高潮呻吟视频| 欧美最新免费一区二区三区| 狂野欧美激情性xxxx在线观看| 久久久久久人人人人人| 亚洲国产精品一区二区三区在线| 国产片内射在线| 午夜精品国产一区二区电影| 国产欧美亚洲国产| 亚洲成国产人片在线观看| 国产精品熟女久久久久浪| 蜜桃在线观看..| 最新中文字幕久久久久| 亚洲四区av| 尾随美女入室| 精品久久蜜臀av无| 欧美丝袜亚洲另类| 男女下面插进去视频免费观看 | 色网站视频免费| 国产精品三级大全| 精品亚洲乱码少妇综合久久| 黄片无遮挡物在线观看| 一本大道久久a久久精品| 亚洲欧美成人精品一区二区| 亚洲精品色激情综合| 三级国产精品片| 国产白丝娇喘喷水9色精品| 少妇被粗大的猛进出69影院 | 亚洲国产精品成人久久小说| 精品酒店卫生间| 国产一区亚洲一区在线观看| 在线亚洲精品国产二区图片欧美| 中文天堂在线官网| 美女内射精品一级片tv| 日韩在线高清观看一区二区三区| av免费在线看不卡| 麻豆精品久久久久久蜜桃| 亚洲经典国产精华液单| 成人漫画全彩无遮挡| 十八禁高潮呻吟视频| 视频在线观看一区二区三区| 性色avwww在线观看| 亚洲精品一二三| 国产麻豆69| 51国产日韩欧美| videosex国产| 最近最新中文字幕免费大全7| 一本久久精品| 国产又爽黄色视频| 男女边摸边吃奶| 欧美日韩视频高清一区二区三区二| 乱人伦中国视频| 男女啪啪激烈高潮av片| 国产精品久久久久成人av| 色5月婷婷丁香| 99久久中文字幕三级久久日本| 最近的中文字幕免费完整| videosex国产| 观看美女的网站| 久久国产精品男人的天堂亚洲 | 国产亚洲av片在线观看秒播厂| 2022亚洲国产成人精品| 久久久久网色| 免费大片黄手机在线观看| 成人国产麻豆网| 美女福利国产在线| 国产精品麻豆人妻色哟哟久久| 国产精品偷伦视频观看了| 亚洲综合精品二区| av有码第一页| 午夜免费鲁丝| 欧美成人午夜免费资源| 女性生殖器流出的白浆| 国产国拍精品亚洲av在线观看| 一级黄片播放器| 90打野战视频偷拍视频| 久久ye,这里只有精品| 极品少妇高潮喷水抽搐| 又大又黄又爽视频免费| a级毛色黄片| 亚洲成人av在线免费| 国产激情久久老熟女| 婷婷成人精品国产| a级毛片在线看网站| 精品国产国语对白av| 亚洲性久久影院| 亚洲综合色网址| 亚洲精品国产av蜜桃| 亚洲精品视频女| 91精品伊人久久大香线蕉| 欧美变态另类bdsm刘玥| 一级片'在线观看视频| 男人舔女人的私密视频| 亚洲天堂av无毛| a级毛片黄视频| 波野结衣二区三区在线| 91在线精品国自产拍蜜月| 在线观看免费视频网站a站| 亚洲国产av新网站| 女人被躁到高潮嗷嗷叫费观| 日本与韩国留学比较| 国产精品熟女久久久久浪| 黄色一级大片看看| 在线观看美女被高潮喷水网站| 欧美97在线视频| 亚洲国产av影院在线观看| a 毛片基地| 大香蕉久久网| 久久精品久久精品一区二区三区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩三级伦理在线观看| 久久精品国产鲁丝片午夜精品| 国产精品成人在线| 99热全是精品| 交换朋友夫妻互换小说| 国内精品宾馆在线| 中文字幕另类日韩欧美亚洲嫩草| av卡一久久| 国产精品人妻久久久久久| 黑人高潮一二区| 纯流量卡能插随身wifi吗| 2022亚洲国产成人精品| 最近的中文字幕免费完整| 狠狠婷婷综合久久久久久88av| 啦啦啦视频在线资源免费观看| 97超碰精品成人国产| 在线观看三级黄色| 少妇精品久久久久久久| 99久久中文字幕三级久久日本| 秋霞在线观看毛片| 国产又爽黄色视频| 免费观看a级毛片全部| 免费日韩欧美在线观看| 99re6热这里在线精品视频| 女人精品久久久久毛片| 国产爽快片一区二区三区| 日产精品乱码卡一卡2卡三| 日本欧美国产在线视频| 天堂中文最新版在线下载| 黑人猛操日本美女一级片| 韩国精品一区二区三区 | 免费黄频网站在线观看国产| 人人妻人人澡人人看| 妹子高潮喷水视频| 成人手机av| 九色亚洲精品在线播放| 国产免费福利视频在线观看| 欧美 亚洲 国产 日韩一| 人人妻人人澡人人爽人人夜夜| 9色porny在线观看| 国产亚洲精品第一综合不卡 | 亚洲伊人色综图| 国产精品一国产av| 亚洲精品456在线播放app| 汤姆久久久久久久影院中文字幕| 在线免费观看不下载黄p国产| 国产免费福利视频在线观看| 免费日韩欧美在线观看| 亚洲国产精品一区二区三区在线| 免费日韩欧美在线观看| 大话2 男鬼变身卡| 大片免费播放器 马上看| 欧美变态另类bdsm刘玥| 黑人高潮一二区| 亚洲国产精品国产精品| 亚洲国产av新网站| 亚洲精品一区蜜桃| 国产国语露脸激情在线看| 国产成人欧美| 日本午夜av视频| 天堂俺去俺来也www色官网| 久久免费观看电影| 亚洲欧美一区二区三区国产| 亚洲国产日韩一区二区| 黑人高潮一二区| 中文字幕亚洲精品专区| 日韩中字成人| 天天躁夜夜躁狠狠躁躁| 国产欧美日韩综合在线一区二区| 久久久久久久大尺度免费视频| 国产精品无大码| 国产亚洲一区二区精品| 两性夫妻黄色片 | 国产福利在线免费观看视频| www日本在线高清视频| 成年美女黄网站色视频大全免费| 老司机影院成人| 在线天堂最新版资源| 一二三四中文在线观看免费高清| 男女无遮挡免费网站观看| 美女国产视频在线观看| av在线app专区| 精品一区二区免费观看| 国产日韩欧美亚洲二区| videosex国产| 人人妻人人添人人爽欧美一区卜| 国产精品久久久av美女十八| 久久久久精品久久久久真实原创| 国产精品99久久99久久久不卡 | 侵犯人妻中文字幕一二三四区| 亚洲av电影在线进入| 国产日韩一区二区三区精品不卡| 免费黄频网站在线观看国产| 亚洲美女黄色视频免费看| a 毛片基地| 国产有黄有色有爽视频| 亚洲色图综合在线观看| 久久婷婷青草| 精品一区二区三区四区五区乱码 | 国产乱人偷精品视频| 免费高清在线观看视频在线观看| 激情视频va一区二区三区| av在线观看视频网站免费| 一边摸一边做爽爽视频免费| 黄片无遮挡物在线观看| 亚洲av综合色区一区| 国产一区二区三区av在线| 99热这里只有是精品在线观看| 久久久久久久久久久久大奶| 少妇熟女欧美另类| 亚洲熟女精品中文字幕| 九九爱精品视频在线观看| 国产国语露脸激情在线看| 九九爱精品视频在线观看| 日本wwww免费看| 亚洲精品一区蜜桃| 精品午夜福利在线看| 夜夜爽夜夜爽视频| 精品一区在线观看国产| 尾随美女入室| 日日摸夜夜添夜夜爱| 看十八女毛片水多多多| 91在线精品国自产拍蜜月| 日韩成人伦理影院| 久久影院123| 久久av网站| 天堂8中文在线网| 99国产精品免费福利视频| av国产精品久久久久影院| 亚洲精品美女久久av网站| 久久 成人 亚洲| 亚洲成色77777| 午夜老司机福利剧场| 国产熟女欧美一区二区| 美女国产高潮福利片在线看| 一级,二级,三级黄色视频| 久久人人爽人人片av| 超色免费av| 国产精品一二三区在线看| 婷婷色麻豆天堂久久| 精品一区二区三区视频在线| 精品人妻偷拍中文字幕| 天堂俺去俺来也www色官网| 国产 一区精品| 精品99又大又爽又粗少妇毛片| 搡女人真爽免费视频火全软件| av在线app专区| 国产一区亚洲一区在线观看| 赤兔流量卡办理| 美女xxoo啪啪120秒动态图| 国产一区二区三区综合在线观看 | 永久免费av网站大全| 黄色视频在线播放观看不卡| 街头女战士在线观看网站| 女的被弄到高潮叫床怎么办| 少妇人妻久久综合中文| 国产色婷婷99| 国产日韩一区二区三区精品不卡| 国产一区二区激情短视频 | 久久国内精品自在自线图片| 日韩,欧美,国产一区二区三区| 欧美另类一区| 国产色婷婷99| 99热网站在线观看| 欧美亚洲日本最大视频资源| 蜜臀久久99精品久久宅男| 韩国av在线不卡| 日韩av不卡免费在线播放| 国产在视频线精品| videosex国产| 91精品伊人久久大香线蕉| 久久久国产精品麻豆| av国产精品久久久久影院| 欧美+日韩+精品| 黑人猛操日本美女一级片| 亚洲精品久久成人aⅴ小说| 在线观看三级黄色| 午夜影院在线不卡| 成人国产av品久久久| av.在线天堂| 王馨瑶露胸无遮挡在线观看| 亚洲成av片中文字幕在线观看 | 精品一区二区免费观看| 中文字幕亚洲精品专区| 国产精品国产三级专区第一集| 水蜜桃什么品种好| 精品国产露脸久久av麻豆| 亚洲,一卡二卡三卡| 精品国产一区二区三区四区第35| 成人国产麻豆网| 国产成人欧美| 欧美日韩成人在线一区二区| 国产 精品1| 全区人妻精品视频| 18禁在线无遮挡免费观看视频| 岛国毛片在线播放| 免费大片18禁| 亚洲精品一二三| 男女国产视频网站| 国产淫语在线视频| 国产一区亚洲一区在线观看| 国产亚洲精品第一综合不卡 | 乱人伦中国视频| 99香蕉大伊视频| 丰满饥渴人妻一区二区三| 亚洲精品自拍成人| 最新的欧美精品一区二区| 97人妻天天添夜夜摸| 如日韩欧美国产精品一区二区三区| 精品99又大又爽又粗少妇毛片| 亚洲欧洲国产日韩| 男人舔女人的私密视频| 啦啦啦在线观看免费高清www| a级片在线免费高清观看视频| 久久97久久精品| 中文字幕人妻丝袜制服| 黄网站色视频无遮挡免费观看| 看非洲黑人一级黄片| tube8黄色片| www.熟女人妻精品国产 | 日本欧美国产在线视频| 国产精品偷伦视频观看了| 99热这里只有是精品在线观看| 亚洲精品,欧美精品| 高清毛片免费看| 亚洲综合色网址| 高清视频免费观看一区二区| 午夜老司机福利剧场| 男女边摸边吃奶| 中文字幕免费在线视频6| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美成人精品一区二区| 久久午夜福利片| 欧美精品人与动牲交sv欧美| 中文字幕制服av| 爱豆传媒免费全集在线观看| 亚洲性久久影院| 丰满少妇做爰视频| 亚洲精品视频女| 免费黄网站久久成人精品| 又粗又硬又长又爽又黄的视频| 免费在线观看完整版高清| av国产久精品久网站免费入址| 永久免费av网站大全| 黄色 视频免费看| 亚洲成国产人片在线观看| 日韩成人伦理影院| 美国免费a级毛片| 免费看不卡的av| 国产精品.久久久| 综合色丁香网| 亚洲精品美女久久av网站| 精品久久久久久电影网| 少妇的逼水好多| 精品少妇内射三级| 亚洲精品乱码久久久久久按摩| 久久久久久人妻| 一级a做视频免费观看| www.av在线官网国产| 国产老妇伦熟女老妇高清| av免费观看日本| 日本欧美视频一区| av国产精品久久久久影院| 国产免费福利视频在线观看| 丝袜在线中文字幕| 99热网站在线观看| 免费少妇av软件| 成人影院久久| 熟女电影av网| 一二三四在线观看免费中文在 | 男女下面插进去视频免费观看 | 国产探花极品一区二区| 男女免费视频国产| 欧美xxⅹ黑人| 狠狠婷婷综合久久久久久88av| xxx大片免费视频| 女的被弄到高潮叫床怎么办| 男女边摸边吃奶| 黄色毛片三级朝国网站| 午夜影院在线不卡| 超色免费av| av卡一久久| 国产探花极品一区二区| 制服人妻中文乱码| 欧美97在线视频| 亚洲国产av新网站| 99热6这里只有精品| 日本-黄色视频高清免费观看| 黄色毛片三级朝国网站| 熟女av电影| 黑人猛操日本美女一级片| 久久久国产欧美日韩av| 日本午夜av视频| a级毛色黄片| 母亲3免费完整高清在线观看 | 中国三级夫妇交换| 九九爱精品视频在线观看| 在线观看免费日韩欧美大片| 晚上一个人看的免费电影| 大片电影免费在线观看免费| 国产欧美亚洲国产| 久久久久精品性色| 日韩伦理黄色片| 国产精品久久久av美女十八| 久久综合国产亚洲精品| 免费观看av网站的网址| 韩国高清视频一区二区三区| 爱豆传媒免费全集在线观看| 久久久久久久久久成人| 婷婷色综合www| 国产一区二区三区av在线| 国产成人精品一,二区| xxxhd国产人妻xxx| 成人毛片a级毛片在线播放| 成年av动漫网址| 九色成人免费人妻av| av有码第一页| 51国产日韩欧美| 色婷婷av一区二区三区视频| 日韩在线高清观看一区二区三区| 人妻人人澡人人爽人人| 久久99精品国语久久久| 国产一区有黄有色的免费视频| 久久精品久久精品一区二区三区| 亚洲精品aⅴ在线观看| 天天躁夜夜躁狠狠躁躁| 一级毛片电影观看| 人体艺术视频欧美日本| 妹子高潮喷水视频| 午夜激情久久久久久久| 日韩熟女老妇一区二区性免费视频| 狂野欧美激情性bbbbbb| av片东京热男人的天堂| 91成人精品电影| 亚洲av.av天堂| 三级国产精品片| 欧美精品高潮呻吟av久久| 两性夫妻黄色片 | 人妻少妇偷人精品九色| 日韩,欧美,国产一区二区三区| 激情五月婷婷亚洲| 成年女人在线观看亚洲视频| 我的女老师完整版在线观看| 亚洲图色成人| 成人国产麻豆网| 国产在线一区二区三区精| 亚洲欧洲国产日韩| 国产爽快片一区二区三区| 美女主播在线视频| 999精品在线视频| av福利片在线|