• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Visualizing and witnessing first-order coherence,Bell nonlocality and purity by using a quantum steering ellipsoid in the non-inertial frame

    2023-11-02 08:12:30HuanYang楊歡LingLingXing邢玲玲MingMingDu杜明明MinKong孔敏GangZhang張剛andLiuYe葉柳
    Chinese Physics B 2023年10期
    關(guān)鍵詞:張剛

    Huan Yang(楊歡), Ling-Ling Xing(邢玲玲), Ming-Ming Du(杜明明),Min Kong(孔敏), Gang Zhang(張剛),?, and Liu Ye(葉柳)

    1School of Electrical and Photoelectronic Engineering,West Anhui University,Lu’an 237012,China

    2College of Electronic and Optical Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    3School of Physics and Optoelectronic Engineering,Anhui University,Hefei 230039,China

    Keywords: quantum steering ellipsoid,first-order coherence,Bell-nonlocality,purity

    1.Introduction

    As a basic concept in the physical world, coherence arises from quantum superposition and is essential for the quantum information sciences, including quantum interference and multipartite entanglement.[1,2]It also plays a vital part in the fields of quantum metrology,[3]low-temperature thermodynamics,[4-6]solid-state physics[7]and so on.Meanwhile,coherence can also be used to depict the interference capability of interacting fields in quantum optics research.[8-12]Beyond this, there have been various efforts to ascertain the interrelations between coherence and correlations,[13-20]and these relations are essential for predicting the coherent transfer in researched quantum systems.Various coherence measures have been established to quantify coherence.Examples include first-order coherence(FOC)[13](which is a basisindependent measure)and thel1norm of coherence(which is a basis-dependent measure).[21]It should be emphasized that there is a relationship between FOC and thel1norm of coherence.For a single-qubit state, the FOC of a state is equal to thel1norm of coherence quantified on the optimal basis.In principle, quantum correlations include various forms, such as quantum entanglement, Einstein-Podolsky-Rosen (EPR)steering and Bell nonlocality(BN).Among these, BN(quantum entanglement) is the strongest (weakest) quantum correlation.Coherence is one of the important bases for generating quantum correlations; even conceptually, coherence is more fundamental than quantum correlations, including BN.One can detect the BN of a system by violating some Bell-type inequalities,[22-32]especially the Clauser-Horne-Shimony-Holt (CHSH) inequality.[30-34]It deserves to be emphasized that not all entangled states can possess BN.[35]Horodeckiet al.have derived the sufficient and necessary conditions for BN for arbitrary bipartite states.[36]

    In the field of quantum information science, the construction of three-dimensional pictures of different quantum states is an important avenue for investigating quantum correlations.[37]A Bloch vector provides a simple and intuitive representation of any single-qubit state.[37]However,for a two-qubit state, 15 parameters of the state need to be described,introducing amazing complexity and difficulty for the geometric description of a two-qubit state.Fortunately,Jevticet al.[38]proposed a scheme in which a quantum steering ellipsoid (QSE) is used to visualize any two-qubit state.To clarify, there is a remarkable phenomenon in which measuring the subsystem of an entangled state can remotely steer the state of the other subsystem.This phenomenon is called EPR steering.[39,40]If one performs all possible local operations on one qubit,all Bloch vectors of the other qubit’s steered states form a QSE in the Bloch sphere.[38]Any bipartite state can correspond to a QSE.In particular, not all QSEs can faithfully express a two-qubit state.The sufficient and necessary condition for a QSE to denote a bipartite state was derived by Milneet al.[41]It is worth mentioning that the QSE provides an intuitive depiction and indication for quantum correlations.Examples include steered coherence,[42-44]discord,[38,45-47]entanglement[38,41,48]and EPR steering.[49-54]Zhanget al.[55]experimentally verified the QSE of two-qubit states and also demonstrated volume monogamy relations of the QSE.[56]Recently,Duet al.[57]investigated quantum phase transitions in theXXZmodel through a QSE.However,these efforts are limited to inertial systems.[42-45,57]

    The non-inertial frame provides nontrivial tools for understanding relativistic quantum information and black holes,and is a rapidly developing field.[58]Relevant explorations in the non-inertial frame have been widely carried out.[59-74]There has been a lot of effort made to investigate nonlocality under non-inertial frames.[75-78]Friiset al.[75]explored entanglement of accelerated fermions.Smithet al.[76]analyzed tripartite nonlocality of non-inertial observers.Subsequently,Tianet al.[77,78]investigated nonlocality, entanglement and measurement-induced nonlocality under the Unruh effect.Of particular note is that each actual system is inevitably coupled with the surrounding environment.This coupling can accelerate the degeneration of quantum nonlocalities and set obstacles for achieving various quantum information tasks.For this reason, explorations of quantum nonlocalities in non-inertial frames suffering from different noise channels have been extensively performed.[79-86]Nevertheless, use of a QSE to visualize nonlocality under non-inertial frames is still lacking,especially when considering the collective influences of noninertial frames and noise channels in the QSE formalism.Such an investigation may provide a more visual tool to ascertain the influences of relativistic motion and external noise on different quantum correlations.

    Encouraged by this,we visualize the FOC,BN and purity in a non-inertial frame by utilizing a QSE, and also explore them when the particle suffers from a depolarizing channel or a non-coherence-generating channel(NCGC).Our results reveal that FOC, BN and purity can be visualized and detected by the parameters of the QSE.Particle acceleration induces shrinking and movement of the QSE.These peculiarities are responsible for the results that the BN and purity are reduced with increase in the acceleration.Note that FOC can be revived by higher acceleration due to the trait that the QSE can puncture the center of the Bloch sphere under a higher acceleration.The condition of FOC disappearance(or recovery)can be attained through the QSE.The depolarizing channel results in monotonic shrinking of the QSE,and it finally degenerates into a point at the center of the Bloch sphere.The results imply that the coherence,BN and purity monotonously decrease as noise strength increases.Under the influence of the NCGC,the periodic oscillation of the QSE visualizes the periodic oscillations of the BN and purity with growing noise parametersθandφ.The FOC is invariant with different values ofθsince the center of the QSE cannot move with the change ofθ.Moreover, the BN is more fragile after considering the additional effects of a depolarizing channel and NCGC because the depolarizing channel and the NCGC can reduce the size of the QSE.Under the additional influences of a depolarizing channel and NCGC,the conditions for FOC disappearance are invariant because the condition for the QSE to achieve the center of the Bloch sphere cannot be influenced by the depolarizing channel and the NCGC.

    Section 2 of this paper briefly describes QSE theory.In Subsection 3.1,we characterize and capture the FOC,BN and purity of a system in the QSE formalism.The collective influences of the depolarizing channel and the NCGC on the FOC,BN and purity are explored in Subsections 3.2 and 3.3,respectively.Finally,conclusions are drawn.

    2.The QSE

    Alice and Bob collectively possess bipartite statesρ,

    whereIis the identity operator,σ=(σ1,σ2,σ3) denotes the vector of the Pauli matrix.Mnm= Tr(ρσn ?σm) (m,n=1,2,3),a= Tr(ρσ ?I),b= Tr(ρ·I ?σ).According to Ref.[38], if we perform all possible local measurements on Bob,the QSE of Alice(i.e.,?A)can be constructed by all the vectors of Alice’s steered states.One can use center?Aand ellipsoid matrix ?Ato characterize ?A:

    The orientations and lengths of the semiaxes of ?Aare reflected by the eigenvectors of ?Aand the arithmetic square root of eigenvalues of ?A, respectively.One can also obtain the QSE of Bob(?B),namely,

    3.Visualizing and detecting the FOC, BN and purity via the QSE

    3.1.Under the influence of a non-inertial frame

    Of particular note is that the ellipsoid ?Bcannot puncture the Bloch sphere.The maximally obese statescorrespond to the state with the largest ellipsoid volume at the centerc=(0,0,Ξ).can be expressed by

    Its matrix form is

    The maximally obese state is very useful and can bind many quantum nonlocalities for two-qubit states,such as the entanglement and BN.[48]The largest volume ellipsoid of Bob for the centerc=(0,0,Ξ)can be represented as

    Now, let us consider that Alice and Bob (as two observers) collectively possessin Minkowski space-time.Alice remains stationary and Bob moves with uniform acceleration.As a consequence,the Unruh effect will appear.Meanwhile,we assume that Alice possesses a detector which is sensitive only to mode|n〉A(chǔ)(the mode of Minkowski space-time that corresponds to Alice)and Bob possesses another detector which is sensitive only to mode|n〉B(the mode of Minkowski space-time that corresponds to Bob).We then let Alice remain stationary while Bob moves with a uniform acceleration.Considering a fermionic field system, from the accelerated perspective of Bob the Minkowski vacuum state is found to be a two-mode squeezed state[87]

    with acceleration parameterγ=(e-2πωc'/a+1)-1/2.Here,ais the acceleration of Bob,ωis the frequency of the Dirac particle andc'is the speed of light in a vacuum.0<γ <π/4 corresponding to 0<a <∞.{|0〉I}and{|0〉II}indicate Rindler modes in regions I and II,respectively.The only excited state is given by[87]

    Using Eqs.(10) and (11), the state of Eq.(8) is transformed into

    Due to the fact that Bob is causally disconnected from region II, the physically accessible information is encoded in mode A(described by Alice)and mode I(described by Bob).Tracing over the mode in region II,we obtain

    We calculate the QSE of Bob in the form

    The central coordinate of the QSE on thez-axis is

    Thex,yandzsemiaxis lengths of the QSE are ?1,?2and ?3,respectively.Namely,

    The FOC for the bipartite systemρABis

    This result implies that the FOC of the whole bipartite system can be directly visualized by the distance from the center of the QSE ?Bto the center of the Bloch sphere.D2ABdisappears only if ?Breaches the center of the Bloch sphere,which provides an avenue to witness the FOC.We also visualize the maximal CHSH violation[30-33]ofρABthrough ?B,i.e.,

    The BN ofρABisBN(ρAB)=max{0,β(ρAB)-2}.It is revealed that the BN ofρABcan be intuitively characterized and detected by ?1or ?2.Using ?B,one can visualize the purity ofρAB,namely,

    which establishes the connection between purity and the QSE.It is straightforward that the purity can reach 0.25 only if the QSE degenerates into a point at the center of the Bloch sphere.Equation(20)can also be rewritten as

    The results obtained above provide visual tools to investigate and detect the FOC,BN and purity under a non-inertial frame.For clarity, we herein use Fig.1 to depict the geometric parameters of the QSE,FOC,BN and purity with respect to the acceleration parameterγ.Under the Unruh effect, lengths of?1, ?2and ?3degenerate with increasingγ, as shown in Fig.1(a).According to the result of Eq.(19), one can reveal that the shrinkage of ?Bvisually reflects the reduction in BN in Fig.1(b).The BN cannot be detected if the semiaxis of ?BsatisfiesThe critical case corresponds to.In the critical case,the shape of ?BwithΞ=0.4 is plotted in Fig.2(green ellipsoid).

    Fig.1.(a) The dependence of semiaxis length and ΞB on γ.(b) The dependence of the FOC,BN and purity on γ. Ξ =0.4.

    Fig.2.The shape of ?B: (a) stereoscopic view, (b) front perspective.The yellow ellipsoid represents the initial ?B with γ =0.The green QSE and blue QSE are ?B with γ =0.4205 (corresponding to the case when the BN suddenly disappears in Fig.1(b))and γ =0.5639(corresponding to the case when the FOC suddenly disappears in Fig.1(b)),respectively.The red ellipsoid represents the final ?B with γ =π/4. Ξ =0.4.

    As seen in Figs.1(a)and 2,the Unruh effect induces the result that the ?Band its center move along the negative orientation of thez-axis asγincreases.Note that the FOC is only associated with the centerΞBof ?B.Therefore, the movement of the center of the QSE is responsible for the detection of the FOC.Namely,FOC first degenerates and suddenly disappears; subsequently, it revives under the strong Unruh effect.The revival of the FOC in Fig.1(b) due to the center of the ?B,ΞB, can puncture the center of the Bloch sphere in Fig.1(a).The phenomenon is different from the peculiarity of the BN.Using the QSE parameters in Eq.(14), one can see and easily obtain that FOC will suddenly disappear ifγ=arccos[(1-Ξ)/(1+Ξ)]/2 and will revive in the interval of arccos[(1-Ξ)/(1+Ξ)]/2<γ ≤π/4.The blue ellipsoid in Fig.2 is the shape of ?Bcorresponding to the case of FOC disappearance.We also provide the final ?B(corresponding toγ=π/4,as red ellipsoid plotted)under the non-inertial frames in Fig.2.These results indicate that the QSE cannot degenerate into a point under the non-inertial frame as the acceleration parameterγincreases, meaning that the purity ofρABdecays with decreasing ?Band cannot reach 0.25 in Fig.1(b).

    3.2.The collective effects of the non-inertial frames and depolarizing channel

    Exotic environments unavoidably influence the quantum systems in a realistic scenario.Herein,we consider Bob in the state of Eq.(13)coupled to a depolarizing channel,which can be described by the Kraus operators

    andp=1-e-γ0t.Hence,the non-zero matrix elements of the output state ?ρAB-Dread as

    The QSE of Bob has the form

    For each subsystem,FOC is visualized by

    The FOC for bipartite systems is

    Similarly, the maximal CHSH violation and the purity of ?ρAB-Dare visualized by ??B-D,i.e.,

    The BN is BN(?ρAB-D)=max{0,β(?ρAB-D)-2}.Hence,the FOC, BN and purity under a depolarizing channel can be visualized and captured by ??B-D.Equation (30) can also be rewritten as

    Fig.4.The ??B-D corresponding to the case when the BN suddenly disappears under the depolarizing channel: (a)stereoscopic view,(b)front perspective. Ξ =0.4,γ =0.2.

    To visualize and capture the FOC,BN and purity under a depolarizing channel we plot the dependence of the QSE parameters,FOC,BN and purity on the depolarizing channel parameterpin Fig.3.Figure 3(a)shows that the semiaxis lengths linearly degrade with increasingp.This characteristic leads to a linear decrease of the BN in Fig.3(b).The semiaxis length?1-Drapidly shrinks to■which causes a sudden disappearance of the BN in this case,and one can use the traits of the QSE to determine that detection of the BN cannot be realized.Figure 4 visually displays the shape of ??B-Dfor the disappearance of the BN(Ξ=0.4 andγ= 0.2).The center of ??B-Dmoves along the negative orientation of thez-axis aspstrengthens, as displayed in Fig.3(a).It deserves to be emphasized that the center of ??B-Dcannot puncture the center of the Bloch sphere, and ??B-Dfinally degenerates into a point at the center of the Bloch sphere.These traits are different from those in Fig.1(a).According to the characteristics of the QSE,one can conjecture that the purity of ?ρAB-Ddegrades with decreasing ??B-D,finally reaching 0.25 in Fig.3(b).Meanwhile,the system’s FOC monotonously decreases with increasingpand reduces to zero atp=1 in Fig.3(b).One can always witness existence of FOC via the QSE(except atp=1).

    Next let us turn to visualize the influences of the Unruh effect on the FOC,BN and purity when considering a depolarizing channel.We give the QSE parameters,FOC,BN and purity with respect toγin Fig.5.In comparison with the results in Fig.1(without considering the influence of a depolarizing channel),it can be found that the depolarizing channel cannot affect the trends of the QSE,FOC,BN and purity in Fig.5.Of particular note is that the BN more easily disappears(the critical case corresponds toγ=arcsec[2-2Ξ(1-p)])if we additionally consider the effect of the depolarizing channel.The reason for this can be visually explained using the QSE.That is, the size of the QSE is smaller when considering the effect of a depolarizing channel (as revealed in Eqs.(16) and (26))and the semiaxis of ??B-Dmore easily reaches 2/2 under the Unruh effect.In particular,note that the depolarizing channel cannot affect the condition of the disappearance of FOC (the critical case corresponding toγ=arccos[(1-Ξ)/(1+Ξ)]/2)ifp/=1.This phenomenon can be visually interpreted by the fact that the condition for the center of the QSE reaching the center of the Bloch sphere is not affected by the depolarizing channel.

    Fig.5.(a)The dependence of semiaxis lengths and ΞB-D on γ.(b)The dependence of the FOC,BN and purity on γ. Ξ =0.4, p=0.05.

    3.3.The collective influences of the non-inertial frames and the NCGC

    The NCGC is defined as a completely positive tracepreserving map which does not generate quantum coherence from an incoherent state.[88]Incoherent operation is a strict subset of the NCGC.[88]The Kraus operators of a rank-2 NCGC are[88]

    Here,θ,φ,ηandξare all real numbers.For simplicity,ηandξare supposed to be zero in this paper.The channel with the form of Eq.(32) is not an incoherent channel unless sinφcosφsinθcosθ=0.[88]Assuming Bob’s state ofρABcoupled to the NCGC,the final two-qubit state is ?ρAB-N,namely,

    The QSE of Bob is given by

    For each subsystem,the FOC is

    Based on this result,one can attain the FOC of ?ρAB-Nby using the geometrical parameters of ??B-N,namely,

    In the QSE formalism,the maximal CHSH violation of ?ρAB-Nis

    where ?maxand ?secare the longest and the second longest semiaxes of ??B-N, respectly.The BN is BN(?ρAB-N) =max{0,β(?ρAB-N)-2}.The purity of ?ρAB-Nis

    that is,

    To begin with,we visualize and capture the FOC,BN and purity with different channel parametersθin Fig.6.From this figure we can see that the semiaxis lengths ?1-Nand ?3-Nperiodically oscillate under the NCGC.The period of oscillation is equal toπ.However, the length of theysemiaxis?2-Nis invariant withθ.Thereby, ??B-Nperiodically and alternately changes between a three-dimensional ellipsoid and a one-dimensional ellipse.We see that the BN first disappears,then revives and reaches a maximum atθ=nπ(n=0,1,2,...)(corresponding to the maximal lengths of thexandzsemiaxes).It is straightforward to show that the centerΞB-Nof ??B-Nis invariant in this case,and one can always witness the existence and invariance of FOC via the QSE,as described in Fig.6(b).The periodical oscillations of ?1-Nand ?3-Nvisualize a periodic oscillation in the purity of ?ρAB-N.

    Fig.6.The dependence of semiaxis length and ΞB-N on the channel parameter θ.(b) The dependence of the FOC, BN and purity on θ.Ξ =0.4,γ =0.2,and φ =π/20.

    Next, we further visualize the FOC, BN and purity for various values ofφ.One can see from Fig.7 that the length of thexsemiaxis is invariant.?2-Nand ?3-Nperiodically oscillate and achieve a maximum ifφ=nπ/2.Notably, the center of ??B-Nis not invariant with various values ofφ, and the center of ??B-Npunctures the center of the Bloch sphere atφ=nπ/2.One can use the trait of the QSE to visualize and determine that the invariance of the FOC cannot occur, and the FOC periodically oscillates and reaches zero atφ=nπ/2 in Fig.7(b)(the results are remarkably different from those in Fig.6(b)).Also,the tendency of the purity in Fig.7(b)is fully correlated with the trait of FOC due to the periodic oscillations of ?2-N,?3-NandΞB-Nin Fig.7(a).

    Fig.7.(a)The dependence of semiaxis length and ΞB-N on the channel parameter φ.(b)The dependence of the FOC,BN and purity on φ.Ξ =0.4,γ =0.2,and θ =π/20.

    Finally, we direct our attention to explore the influences of the Unruh effect on the FOC, BN and purity under the NCGC.The dependence of the QSE parameters, FOC, BN and purity onγare demonstrated in Fig.8.Comparing Fig.8 with Fig.1, it can be concluded that the NCGC cannot influence the tendencies of the QSE, FOC, BN and purity.However, the NCGC can reduce the size of the QSE (as uncovered in Eqs.(16) and (36)), which means that the BN disappears at a weakerγunder the additional effect of the NCGC,as shown by the green curve in Fig.8(b).Beyond this, one can reveal from Eqs.(15) and (35) and Figs.1 and 8 that the condition ofΞB-N=0 (when the QSE reaches the center of the Bloch sphere) is not influenced by the NCGC if cos2φ/=0.For this reason,the NCGC cannot affect the condition of the disappearance of FOC(the critical case corresponding toγ=arccos[(1-Ξ)/(1+Ξ)]/2)in this scheme.

    4.Conclusions

    We obtain the form of the QSE under the non-inertial frame, and also derive the QSE of the system coupled to the depolarizing channel and the NCGC,respectively.The FOC,BN and purity are visualized and detected via the QSE.To be specific,the distance from the center of the QSE to the center of the Bloch sphere visualizes the FOC of a bipartite system.The lengths of thexandysemiaxes visualize the BN of the system.The shape of the QSE and its position dominate the purity of system.Beyond this, the conditions for the disappearance of the FOC and BN can be directly obtained by the characteristics of the QSE,and one can capture the FOC,BN and purity by using the shape and position of the QSE.That is,FOC will suddenly disappear if and only if the QSE moves to the center of the Bloch sphere, no matter what shape the QSE is.The BN will disappear if and only if the length of thexorysemiaxis is equal to 2/2, no matter where the QSE is in the Bloch sphere.The purity can reach 0.25 if and only if the QSE degenerates into a point at the center of the Bloch sphere.Under a non-inertial frame,the QSE moves along the negative orientation of thez-axis and shrinks with enhancing acceleration.This characteristic visualizes the decrease of the BN and purity.Notably,due to the result that the center of the QSE can puncture the center of the Bloch sphere if the acceleration is strong,the vanished FOC can revive at high acceleration.Considering the depolarizing channel,the QSE monotonically shrinks and finally degenerates into a point at the center of the Bloch sphere.This phenomenon is responsible for the monotonous degeneration of the FOC,BN and purity.Under the effect of the NCGC,the shape of the QSE periodically oscillates with increasing channel parametersθandφ.These traits visualize the periodical oscillations of the BN and purity with increasingθandφ.It deserves to be emphasized that the center of the QSE is invariant with variousθ, which reflects the invariance of FOC.Moreover, our results reveal that the depolarizing channel and NCGC can decrease the size of the QSE,and cannot influence the condition for the QSE reaching the center of the Bloch sphere(ifp/=1 or cos2φ/=0).That is to say, the BN is more fragile when considering the additional effects of a depolarizing channel and the NCGC.The condition for the disappearance of FOC is invariant when considering the depolarizing channel and the NCGC as additional influences.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.12175001), the Natural Science Research Key Project of the Education Department of Anhui Province of China (Grant No.KJ2021A0943), the Research Start-up Funding Project of High Level Talent of West Anhui University(Grant No.WGKQ2021048),an Open Project of the Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes(Grant No.FMDI202106), the University Synergy Innovation Program of Anhui Province(Grant No.GXXT-2021-026)and the Anhui Provincial Natural Science Foundation (Grant Nos.2108085MA18 and 2008085MA20).

    猜你喜歡
    張剛
    Steering quantum nonlocalities of quantum dot system suffering from decoherence
    Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
    2022年高考模擬試題(三)
    層林盡染
    HeTDSE:A GPU based program to solve the full-dimensional time-dependent Schr¨odinger equation for two-electron helium subjected to strong laser fields*
    戀愛(ài)婚姻家庭(2019年8期)2019-08-30 04:45:15
    戀愛(ài)婚姻家庭(2019年22期)2019-07-29 04:05:00
    Implementation Scheme of Two-Photon Post-Quantum Correlations?
    數(shù)列最值問(wèn)題的求解策略
    活用課本習(xí)題
    国产亚洲精品综合一区在线观看| 亚洲人与动物交配视频| 精品日产1卡2卡| 久久久久久久亚洲中文字幕| 国内精品一区二区在线观看| 国产一区二区三区av在线 | 国产高清视频在线播放一区| 日日撸夜夜添| 男女视频在线观看网站免费| 韩国av在线不卡| 欧美3d第一页| 春色校园在线视频观看| 久久久久久久精品吃奶| 日日撸夜夜添| 免费电影在线观看免费观看| 午夜a级毛片| 亚洲精品日韩av片在线观看| 色噜噜av男人的天堂激情| 搡老岳熟女国产| 在线观看一区二区三区| 国产主播在线观看一区二区| 国产蜜桃级精品一区二区三区| 99热只有精品国产| 国产精品人妻久久久影院| 日韩强制内射视频| 最近中文字幕高清免费大全6 | 一个人看的www免费观看视频| 国产av在哪里看| 亚洲精品粉嫩美女一区| 国产精华一区二区三区| 乱人视频在线观看| 中亚洲国语对白在线视频| 亚洲欧美精品综合久久99| 在线观看舔阴道视频| 日韩一本色道免费dvd| 日本精品一区二区三区蜜桃| 国产成人影院久久av| 1024手机看黄色片| 人妻久久中文字幕网| 国产成年人精品一区二区| 亚洲最大成人中文| 亚洲成av人片在线播放无| 天天一区二区日本电影三级| 国产精品亚洲一级av第二区| 国产爱豆传媒在线观看| 午夜福利18| 久久婷婷人人爽人人干人人爱| 欧美精品国产亚洲| 超碰av人人做人人爽久久| a在线观看视频网站| 嫁个100分男人电影在线观看| 别揉我奶头~嗯~啊~动态视频| 99久国产av精品| 久久久久精品国产欧美久久久| 国产在线精品亚洲第一网站| 国产av麻豆久久久久久久| 韩国av一区二区三区四区| 亚洲经典国产精华液单| 日韩中文字幕欧美一区二区| 亚洲av.av天堂| 国产高清有码在线观看视频| 精品午夜福利视频在线观看一区| 国产精品国产高清国产av| 人人妻人人澡欧美一区二区| 在线观看美女被高潮喷水网站| 精品无人区乱码1区二区| 成人欧美大片| 欧美日韩黄片免| 国产免费av片在线观看野外av| 偷拍熟女少妇极品色| 18禁黄网站禁片午夜丰满| 99热6这里只有精品| 欧洲精品卡2卡3卡4卡5卡区| 国产精品乱码一区二三区的特点| 男女下面进入的视频免费午夜| 国产一区二区三区在线臀色熟女| 欧美色视频一区免费| 国产精品永久免费网站| 国产高清不卡午夜福利| 成人国产麻豆网| 狂野欧美激情性xxxx在线观看| 久久天躁狠狠躁夜夜2o2o| 欧美极品一区二区三区四区| 内射极品少妇av片p| av中文乱码字幕在线| 亚洲无线在线观看| 国内精品久久久久久久电影| 欧美激情久久久久久爽电影| 99热网站在线观看| 亚洲精华国产精华精| 精品日产1卡2卡| 日韩国内少妇激情av| 国产精品福利在线免费观看| 99九九线精品视频在线观看视频| 91精品国产九色| 亚洲欧美日韩东京热| 精品久久久久久,| 免费大片18禁| 内地一区二区视频在线| 国产视频一区二区在线看| 日韩欧美一区二区三区在线观看| 美女cb高潮喷水在线观看| 国产在视频线在精品| .国产精品久久| 精品一区二区免费观看| 一区二区三区免费毛片| 亚洲av成人精品一区久久| 国产精品久久久久久久电影| 久久精品影院6| 午夜精品久久久久久毛片777| 国产色婷婷99| 国产精品久久久久久亚洲av鲁大| 男女之事视频高清在线观看| 国内久久婷婷六月综合欲色啪| .国产精品久久| 一进一出好大好爽视频| 禁无遮挡网站| 啦啦啦韩国在线观看视频| ponron亚洲| 男女边吃奶边做爰视频| 三级毛片av免费| 国产在线男女| av国产免费在线观看| 日本爱情动作片www.在线观看 | 亚洲国产精品久久男人天堂| 亚洲第一区二区三区不卡| 热99在线观看视频| 欧美日韩中文字幕国产精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 午夜福利视频1000在线观看| 特大巨黑吊av在线直播| 韩国av一区二区三区四区| 91久久精品电影网| 久久久久久久久久黄片| 欧美xxxx黑人xx丫x性爽| 久久久国产成人精品二区| 赤兔流量卡办理| 国产高清视频在线播放一区| 亚州av有码| 国产伦人伦偷精品视频| 国产日本99.免费观看| 免费一级毛片在线播放高清视频| 亚洲国产高清在线一区二区三| 免费看a级黄色片| 久久久久久久午夜电影| 别揉我奶头~嗯~啊~动态视频| 九色国产91popny在线| 国产精品98久久久久久宅男小说| 亚洲成人中文字幕在线播放| 级片在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲va日本ⅴa欧美va伊人久久| 一区二区三区高清视频在线| 精品一区二区免费观看| 欧美成人性av电影在线观看| 能在线免费观看的黄片| 成熟少妇高潮喷水视频| 国产av麻豆久久久久久久| 日本-黄色视频高清免费观看| 一a级毛片在线观看| 综合色av麻豆| 熟女人妻精品中文字幕| 欧美一级a爱片免费观看看| 国产老妇女一区| 91av网一区二区| 综合色av麻豆| 亚洲七黄色美女视频| av女优亚洲男人天堂| 亚洲人成网站高清观看| 欧美激情国产日韩精品一区| 成年女人看的毛片在线观看| 香蕉av资源在线| 嫩草影院精品99| 久久久久久久精品吃奶| 男人的好看免费观看在线视频| 免费看av在线观看网站| av在线老鸭窝| 色综合色国产| 婷婷色综合大香蕉| 亚洲欧美日韩卡通动漫| 97超级碰碰碰精品色视频在线观看| 中文字幕久久专区| 欧美区成人在线视频| 久久亚洲精品不卡| 99精品在免费线老司机午夜| 99久久精品国产国产毛片| 成熟少妇高潮喷水视频| 窝窝影院91人妻| 网址你懂的国产日韩在线| 村上凉子中文字幕在线| 国产男人的电影天堂91| 亚洲欧美日韩卡通动漫| 干丝袜人妻中文字幕| 色综合婷婷激情| 动漫黄色视频在线观看| 亚洲国产精品sss在线观看| 国产精品,欧美在线| 两个人视频免费观看高清| 国产精品久久久久久久久免| 久久久久久久久久成人| 亚洲精品在线观看二区| 精品国产三级普通话版| 深爱激情五月婷婷| 久久久国产成人免费| 又爽又黄a免费视频| 国语自产精品视频在线第100页| 国产一区二区在线观看日韩| av视频在线观看入口| 国产v大片淫在线免费观看| 在线播放无遮挡| 日日啪夜夜撸| 国产精品女同一区二区软件 | 国内精品一区二区在线观看| 久久久久性生活片| 亚洲精华国产精华液的使用体验 | 欧美激情国产日韩精品一区| 国产精品日韩av在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 国产高潮美女av| 欧美zozozo另类| 中文字幕久久专区| 男人舔女人下体高潮全视频| 成人av在线播放网站| 亚洲国产精品合色在线| av在线天堂中文字幕| 国产成人a区在线观看| 91av网一区二区| 国产淫片久久久久久久久| 日韩,欧美,国产一区二区三区 | 日韩欧美精品v在线| 在线观看av片永久免费下载| 日韩精品有码人妻一区| 香蕉av资源在线| 欧美激情在线99| 成人无遮挡网站| 亚洲男人的天堂狠狠| 日日夜夜操网爽| 最近最新中文字幕大全电影3| 中文在线观看免费www的网站| 成熟少妇高潮喷水视频| 黄色欧美视频在线观看| 伦精品一区二区三区| 国产免费男女视频| 伦精品一区二区三区| 久久精品国产亚洲网站| 男人的好看免费观看在线视频| 国产真实乱freesex| 久久精品国产亚洲网站| 尤物成人国产欧美一区二区三区| 直男gayav资源| 精品无人区乱码1区二区| 欧美日韩亚洲国产一区二区在线观看| av在线亚洲专区| 久久香蕉精品热| 日韩亚洲欧美综合| 男插女下体视频免费在线播放| 中文字幕久久专区| 99精品在免费线老司机午夜| 黄色日韩在线| 亚洲欧美日韩东京热| 精品久久久久久久久亚洲 | 久久久久国内视频| 乱码一卡2卡4卡精品| 亚洲欧美日韩东京热| 我要搜黄色片| 国产精品一及| 淫秽高清视频在线观看| 干丝袜人妻中文字幕| 小蜜桃在线观看免费完整版高清| 国产高清不卡午夜福利| 99久久久亚洲精品蜜臀av| 熟女电影av网| 色在线成人网| www.www免费av| 成年女人毛片免费观看观看9| 国产成人一区二区在线| 精品人妻视频免费看| 久久久久久大精品| 午夜福利视频1000在线观看| 欧美最黄视频在线播放免费| av黄色大香蕉| 日韩欧美在线乱码| 波野结衣二区三区在线| 22中文网久久字幕| 久久久久久国产a免费观看| www.www免费av| 最新在线观看一区二区三区| 色5月婷婷丁香| 国产亚洲精品久久久久久毛片| 亚洲欧美日韩无卡精品| 在线观看午夜福利视频| 成年免费大片在线观看| 男女那种视频在线观看| 看片在线看免费视频| 一个人看的www免费观看视频| 村上凉子中文字幕在线| 色综合亚洲欧美另类图片| 国产成人影院久久av| 久久久国产成人精品二区| 久久久久久久久中文| 亚洲精品成人久久久久久| 欧美性猛交黑人性爽| 色精品久久人妻99蜜桃| 别揉我奶头 嗯啊视频| 亚洲美女搞黄在线观看 | a级毛片免费高清观看在线播放| 性插视频无遮挡在线免费观看| 桃红色精品国产亚洲av| 成人美女网站在线观看视频| 久久久久免费精品人妻一区二区| 亚洲最大成人中文| 中文字幕av成人在线电影| 久久久久久大精品| 俺也久久电影网| 免费看日本二区| 婷婷亚洲欧美| 色在线成人网| 舔av片在线| 桃色一区二区三区在线观看| 久久精品国产亚洲av天美| 啦啦啦观看免费观看视频高清| av在线老鸭窝| 国产一区二区三区视频了| 精品久久国产蜜桃| 极品教师在线视频| 成人欧美大片| 我的老师免费观看完整版| 久久精品综合一区二区三区| 男女之事视频高清在线观看| 亚洲国产色片| 国产精品久久电影中文字幕| h日本视频在线播放| 噜噜噜噜噜久久久久久91| 天堂动漫精品| 国产精品精品国产色婷婷| 我要搜黄色片| 男女视频在线观看网站免费| 国产人妻一区二区三区在| 一本精品99久久精品77| 熟妇人妻久久中文字幕3abv| 白带黄色成豆腐渣| 国产高清激情床上av| 深爱激情五月婷婷| 好男人在线观看高清免费视频| 成人精品一区二区免费| av在线蜜桃| 午夜免费成人在线视频| 波多野结衣高清作品| 校园人妻丝袜中文字幕| 国产一区二区在线av高清观看| 丰满的人妻完整版| 成年女人永久免费观看视频| 一夜夜www| 性色avwww在线观看| 色视频www国产| 中文字幕免费在线视频6| 亚洲在线自拍视频| 免费一级毛片在线播放高清视频| 国产精品乱码一区二三区的特点| 国产熟女欧美一区二区| 午夜福利高清视频| 亚洲精品一区av在线观看| 久久精品夜夜夜夜夜久久蜜豆| 欧美三级亚洲精品| 日韩中文字幕欧美一区二区| 成人国产一区最新在线观看| 久久国产乱子免费精品| 久久久久久大精品| av视频在线观看入口| 嫩草影院入口| 色哟哟·www| 午夜亚洲福利在线播放| 亚洲国产色片| 成年女人毛片免费观看观看9| 99热这里只有是精品50| netflix在线观看网站| 在线观看66精品国产| 三级国产精品欧美在线观看| 久久人人精品亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品国产成人久久av| 99久久精品国产国产毛片| 老女人水多毛片| 精品人妻1区二区| 88av欧美| 精品一区二区三区视频在线| av黄色大香蕉| 日本熟妇午夜| 麻豆成人av在线观看| 国产精品久久久久久精品电影| 国产麻豆成人av免费视频| 欧美日韩瑟瑟在线播放| 亚洲美女黄片视频| 性插视频无遮挡在线免费观看| 老司机午夜福利在线观看视频| 日韩,欧美,国产一区二区三区 | eeuss影院久久| 狂野欧美激情性xxxx在线观看| 亚洲男人的天堂狠狠| 欧美高清成人免费视频www| 精品一区二区三区人妻视频| 色哟哟·www| 毛片一级片免费看久久久久 | 久久精品国产99精品国产亚洲性色| 免费在线观看日本一区| 老熟妇仑乱视频hdxx| 婷婷六月久久综合丁香| 中亚洲国语对白在线视频| 成人美女网站在线观看视频| 久久久久国产精品人妻aⅴ院| 精品人妻1区二区| 日本a在线网址| 久久久久性生活片| 免费一级毛片在线播放高清视频| 婷婷亚洲欧美| 自拍偷自拍亚洲精品老妇| 欧美黑人欧美精品刺激| 亚洲精品影视一区二区三区av| 麻豆一二三区av精品| 99久久久亚洲精品蜜臀av| 色哟哟·www| 午夜精品久久久久久毛片777| 国产精品一区二区免费欧美| 亚洲精华国产精华液的使用体验 | 日韩欧美精品v在线| a级毛片a级免费在线| 别揉我奶头~嗯~啊~动态视频| 欧美国产日韩亚洲一区| 不卡视频在线观看欧美| 亚洲成人久久性| 亚洲一级一片aⅴ在线观看| 午夜福利在线观看吧| 欧美极品一区二区三区四区| 成人永久免费在线观看视频| 99久久久亚洲精品蜜臀av| 亚州av有码| 在线观看午夜福利视频| 91精品国产九色| 搡老熟女国产l中国老女人| 日本黄大片高清| 国内揄拍国产精品人妻在线| 有码 亚洲区| a在线观看视频网站| 一级av片app| 91狼人影院| 无遮挡黄片免费观看| 欧美黑人欧美精品刺激| 啪啪无遮挡十八禁网站| 国产精品嫩草影院av在线观看 | 成年女人永久免费观看视频| 国产高清有码在线观看视频| 搡女人真爽免费视频火全软件 | 一区二区三区高清视频在线| 国产精品福利在线免费观看| 欧美日韩中文字幕国产精品一区二区三区| 少妇猛男粗大的猛烈进出视频 | 成人美女网站在线观看视频| 高清在线国产一区| 中文字幕av在线有码专区| 亚洲中文字幕一区二区三区有码在线看| 男女下面进入的视频免费午夜| av在线天堂中文字幕| 人妻少妇偷人精品九色| 观看免费一级毛片| 老熟妇乱子伦视频在线观看| 国语自产精品视频在线第100页| 日本成人三级电影网站| 国产一区二区三区av在线 | 一个人看的www免费观看视频| 国产三级在线视频| 黄色女人牲交| 听说在线观看完整版免费高清| 成人无遮挡网站| 亚洲不卡免费看| 亚洲色图av天堂| 他把我摸到了高潮在线观看| 丝袜美腿在线中文| 午夜激情福利司机影院| 亚洲欧美日韩高清在线视频| 一区二区三区高清视频在线| 夜夜爽天天搞| 国产av一区在线观看免费| netflix在线观看网站| 在线免费观看的www视频| 日韩 亚洲 欧美在线| 精品久久久噜噜| 色哟哟哟哟哟哟| 亚洲熟妇熟女久久| 99九九线精品视频在线观看视频| 亚洲第一电影网av| 亚洲av二区三区四区| 久久久久久久久久黄片| 成人性生交大片免费视频hd| 成年版毛片免费区| 99在线视频只有这里精品首页| 99热精品在线国产| 亚洲专区中文字幕在线| 日韩强制内射视频| 国产在线精品亚洲第一网站| 悠悠久久av| 夜夜爽天天搞| 淫妇啪啪啪对白视频| 两个人的视频大全免费| 国产精品久久视频播放| 久久精品国产鲁丝片午夜精品 | 成人无遮挡网站| 女的被弄到高潮叫床怎么办 | 成人国产综合亚洲| АⅤ资源中文在线天堂| 亚洲人与动物交配视频| 搞女人的毛片| 欧美黑人欧美精品刺激| 在线播放国产精品三级| 亚洲专区中文字幕在线| 久久国内精品自在自线图片| 啦啦啦观看免费观看视频高清| 中文字幕av成人在线电影| 俺也久久电影网| 国产av麻豆久久久久久久| 搡老岳熟女国产| aaaaa片日本免费| 亚洲av二区三区四区| 亚洲精品色激情综合| 国产久久久一区二区三区| 夜夜看夜夜爽夜夜摸| 丰满乱子伦码专区| 麻豆成人午夜福利视频| 亚洲午夜理论影院| 日韩人妻高清精品专区| 嫁个100分男人电影在线观看| 精品久久久久久久久久免费视频| 国产不卡一卡二| 真人一进一出gif抽搐免费| 亚洲午夜理论影院| 国产一区二区在线av高清观看| 国产成人aa在线观看| 国产探花极品一区二区| 女生性感内裤真人,穿戴方法视频| 夜夜夜夜夜久久久久| 国产精品1区2区在线观看.| 我的女老师完整版在线观看| 校园春色视频在线观看| 麻豆成人av在线观看| 国产亚洲91精品色在线| 夜夜夜夜夜久久久久| 国产精品乱码一区二三区的特点| eeuss影院久久| 欧美中文日本在线观看视频| 99久久九九国产精品国产免费| 国产一区二区在线观看日韩| 女人被狂操c到高潮| .国产精品久久| 亚洲精品粉嫩美女一区| 天堂网av新在线| 少妇人妻一区二区三区视频| 欧美xxxx黑人xx丫x性爽| 人妻制服诱惑在线中文字幕| 国产精品久久久久久精品电影| 亚洲成人久久爱视频| 亚洲中文字幕一区二区三区有码在线看| 一级毛片久久久久久久久女| 色视频www国产| 亚洲专区中文字幕在线| 99国产精品一区二区蜜桃av| 麻豆一二三区av精品| 亚洲精品粉嫩美女一区| 国内精品久久久久久久电影| 伦精品一区二区三区| 他把我摸到了高潮在线观看| 男人狂女人下面高潮的视频| 两人在一起打扑克的视频| 黄色一级大片看看| 国产精品三级大全| av专区在线播放| 男人舔女人下体高潮全视频| 久久久久国内视频| 变态另类成人亚洲欧美熟女| 搡老妇女老女人老熟妇| 日韩欧美在线乱码| 国产精品人妻久久久影院| 日本一本二区三区精品| 国产午夜精品久久久久久一区二区三区 | 成人三级黄色视频| 少妇人妻精品综合一区二区 | 午夜久久久久精精品| 午夜a级毛片| 美女 人体艺术 gogo| 熟妇人妻久久中文字幕3abv| 深爱激情五月婷婷| 好男人在线观看高清免费视频| 日韩一区二区视频免费看| 国产91精品成人一区二区三区| 国产色婷婷99| 99久久中文字幕三级久久日本| 久久国产精品人妻蜜桃| 村上凉子中文字幕在线| 国产精品伦人一区二区| 国产一级毛片七仙女欲春2| 国内毛片毛片毛片毛片毛片| 欧美日韩亚洲国产一区二区在线观看| 男女下面进入的视频免费午夜| 午夜激情欧美在线| 伦理电影大哥的女人| 亚洲五月天丁香| 熟妇人妻久久中文字幕3abv| 精品乱码久久久久久99久播| 国产成人a区在线观看| 午夜a级毛片| 久久久久精品国产欧美久久久| 精品人妻1区二区| 男人狂女人下面高潮的视频| 国产乱人视频| 色视频www国产| 日韩欧美 国产精品| 欧美在线一区亚洲|