• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Visualizing and witnessing first-order coherence,Bell nonlocality and purity by using a quantum steering ellipsoid in the non-inertial frame

    2023-11-02 08:12:30HuanYang楊歡LingLingXing邢玲玲MingMingDu杜明明MinKong孔敏GangZhang張剛andLiuYe葉柳
    Chinese Physics B 2023年10期
    關(guān)鍵詞:張剛

    Huan Yang(楊歡), Ling-Ling Xing(邢玲玲), Ming-Ming Du(杜明明),Min Kong(孔敏), Gang Zhang(張剛),?, and Liu Ye(葉柳)

    1School of Electrical and Photoelectronic Engineering,West Anhui University,Lu’an 237012,China

    2College of Electronic and Optical Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    3School of Physics and Optoelectronic Engineering,Anhui University,Hefei 230039,China

    Keywords: quantum steering ellipsoid,first-order coherence,Bell-nonlocality,purity

    1.Introduction

    As a basic concept in the physical world, coherence arises from quantum superposition and is essential for the quantum information sciences, including quantum interference and multipartite entanglement.[1,2]It also plays a vital part in the fields of quantum metrology,[3]low-temperature thermodynamics,[4-6]solid-state physics[7]and so on.Meanwhile,coherence can also be used to depict the interference capability of interacting fields in quantum optics research.[8-12]Beyond this, there have been various efforts to ascertain the interrelations between coherence and correlations,[13-20]and these relations are essential for predicting the coherent transfer in researched quantum systems.Various coherence measures have been established to quantify coherence.Examples include first-order coherence(FOC)[13](which is a basisindependent measure)and thel1norm of coherence(which is a basis-dependent measure).[21]It should be emphasized that there is a relationship between FOC and thel1norm of coherence.For a single-qubit state, the FOC of a state is equal to thel1norm of coherence quantified on the optimal basis.In principle, quantum correlations include various forms, such as quantum entanglement, Einstein-Podolsky-Rosen (EPR)steering and Bell nonlocality(BN).Among these, BN(quantum entanglement) is the strongest (weakest) quantum correlation.Coherence is one of the important bases for generating quantum correlations; even conceptually, coherence is more fundamental than quantum correlations, including BN.One can detect the BN of a system by violating some Bell-type inequalities,[22-32]especially the Clauser-Horne-Shimony-Holt (CHSH) inequality.[30-34]It deserves to be emphasized that not all entangled states can possess BN.[35]Horodeckiet al.have derived the sufficient and necessary conditions for BN for arbitrary bipartite states.[36]

    In the field of quantum information science, the construction of three-dimensional pictures of different quantum states is an important avenue for investigating quantum correlations.[37]A Bloch vector provides a simple and intuitive representation of any single-qubit state.[37]However,for a two-qubit state, 15 parameters of the state need to be described,introducing amazing complexity and difficulty for the geometric description of a two-qubit state.Fortunately,Jevticet al.[38]proposed a scheme in which a quantum steering ellipsoid (QSE) is used to visualize any two-qubit state.To clarify, there is a remarkable phenomenon in which measuring the subsystem of an entangled state can remotely steer the state of the other subsystem.This phenomenon is called EPR steering.[39,40]If one performs all possible local operations on one qubit,all Bloch vectors of the other qubit’s steered states form a QSE in the Bloch sphere.[38]Any bipartite state can correspond to a QSE.In particular, not all QSEs can faithfully express a two-qubit state.The sufficient and necessary condition for a QSE to denote a bipartite state was derived by Milneet al.[41]It is worth mentioning that the QSE provides an intuitive depiction and indication for quantum correlations.Examples include steered coherence,[42-44]discord,[38,45-47]entanglement[38,41,48]and EPR steering.[49-54]Zhanget al.[55]experimentally verified the QSE of two-qubit states and also demonstrated volume monogamy relations of the QSE.[56]Recently,Duet al.[57]investigated quantum phase transitions in theXXZmodel through a QSE.However,these efforts are limited to inertial systems.[42-45,57]

    The non-inertial frame provides nontrivial tools for understanding relativistic quantum information and black holes,and is a rapidly developing field.[58]Relevant explorations in the non-inertial frame have been widely carried out.[59-74]There has been a lot of effort made to investigate nonlocality under non-inertial frames.[75-78]Friiset al.[75]explored entanglement of accelerated fermions.Smithet al.[76]analyzed tripartite nonlocality of non-inertial observers.Subsequently,Tianet al.[77,78]investigated nonlocality, entanglement and measurement-induced nonlocality under the Unruh effect.Of particular note is that each actual system is inevitably coupled with the surrounding environment.This coupling can accelerate the degeneration of quantum nonlocalities and set obstacles for achieving various quantum information tasks.For this reason, explorations of quantum nonlocalities in non-inertial frames suffering from different noise channels have been extensively performed.[79-86]Nevertheless, use of a QSE to visualize nonlocality under non-inertial frames is still lacking,especially when considering the collective influences of noninertial frames and noise channels in the QSE formalism.Such an investigation may provide a more visual tool to ascertain the influences of relativistic motion and external noise on different quantum correlations.

    Encouraged by this,we visualize the FOC,BN and purity in a non-inertial frame by utilizing a QSE, and also explore them when the particle suffers from a depolarizing channel or a non-coherence-generating channel(NCGC).Our results reveal that FOC, BN and purity can be visualized and detected by the parameters of the QSE.Particle acceleration induces shrinking and movement of the QSE.These peculiarities are responsible for the results that the BN and purity are reduced with increase in the acceleration.Note that FOC can be revived by higher acceleration due to the trait that the QSE can puncture the center of the Bloch sphere under a higher acceleration.The condition of FOC disappearance(or recovery)can be attained through the QSE.The depolarizing channel results in monotonic shrinking of the QSE,and it finally degenerates into a point at the center of the Bloch sphere.The results imply that the coherence,BN and purity monotonously decrease as noise strength increases.Under the influence of the NCGC,the periodic oscillation of the QSE visualizes the periodic oscillations of the BN and purity with growing noise parametersθandφ.The FOC is invariant with different values ofθsince the center of the QSE cannot move with the change ofθ.Moreover, the BN is more fragile after considering the additional effects of a depolarizing channel and NCGC because the depolarizing channel and the NCGC can reduce the size of the QSE.Under the additional influences of a depolarizing channel and NCGC,the conditions for FOC disappearance are invariant because the condition for the QSE to achieve the center of the Bloch sphere cannot be influenced by the depolarizing channel and the NCGC.

    Section 2 of this paper briefly describes QSE theory.In Subsection 3.1,we characterize and capture the FOC,BN and purity of a system in the QSE formalism.The collective influences of the depolarizing channel and the NCGC on the FOC,BN and purity are explored in Subsections 3.2 and 3.3,respectively.Finally,conclusions are drawn.

    2.The QSE

    Alice and Bob collectively possess bipartite statesρ,

    whereIis the identity operator,σ=(σ1,σ2,σ3) denotes the vector of the Pauli matrix.Mnm= Tr(ρσn ?σm) (m,n=1,2,3),a= Tr(ρσ ?I),b= Tr(ρ·I ?σ).According to Ref.[38], if we perform all possible local measurements on Bob,the QSE of Alice(i.e.,?A)can be constructed by all the vectors of Alice’s steered states.One can use center?Aand ellipsoid matrix ?Ato characterize ?A:

    The orientations and lengths of the semiaxes of ?Aare reflected by the eigenvectors of ?Aand the arithmetic square root of eigenvalues of ?A, respectively.One can also obtain the QSE of Bob(?B),namely,

    3.Visualizing and detecting the FOC, BN and purity via the QSE

    3.1.Under the influence of a non-inertial frame

    Of particular note is that the ellipsoid ?Bcannot puncture the Bloch sphere.The maximally obese statescorrespond to the state with the largest ellipsoid volume at the centerc=(0,0,Ξ).can be expressed by

    Its matrix form is

    The maximally obese state is very useful and can bind many quantum nonlocalities for two-qubit states,such as the entanglement and BN.[48]The largest volume ellipsoid of Bob for the centerc=(0,0,Ξ)can be represented as

    Now, let us consider that Alice and Bob (as two observers) collectively possessin Minkowski space-time.Alice remains stationary and Bob moves with uniform acceleration.As a consequence,the Unruh effect will appear.Meanwhile,we assume that Alice possesses a detector which is sensitive only to mode|n〉A(chǔ)(the mode of Minkowski space-time that corresponds to Alice)and Bob possesses another detector which is sensitive only to mode|n〉B(the mode of Minkowski space-time that corresponds to Bob).We then let Alice remain stationary while Bob moves with a uniform acceleration.Considering a fermionic field system, from the accelerated perspective of Bob the Minkowski vacuum state is found to be a two-mode squeezed state[87]

    with acceleration parameterγ=(e-2πωc'/a+1)-1/2.Here,ais the acceleration of Bob,ωis the frequency of the Dirac particle andc'is the speed of light in a vacuum.0<γ <π/4 corresponding to 0<a <∞.{|0〉I}and{|0〉II}indicate Rindler modes in regions I and II,respectively.The only excited state is given by[87]

    Using Eqs.(10) and (11), the state of Eq.(8) is transformed into

    Due to the fact that Bob is causally disconnected from region II, the physically accessible information is encoded in mode A(described by Alice)and mode I(described by Bob).Tracing over the mode in region II,we obtain

    We calculate the QSE of Bob in the form

    The central coordinate of the QSE on thez-axis is

    Thex,yandzsemiaxis lengths of the QSE are ?1,?2and ?3,respectively.Namely,

    The FOC for the bipartite systemρABis

    This result implies that the FOC of the whole bipartite system can be directly visualized by the distance from the center of the QSE ?Bto the center of the Bloch sphere.D2ABdisappears only if ?Breaches the center of the Bloch sphere,which provides an avenue to witness the FOC.We also visualize the maximal CHSH violation[30-33]ofρABthrough ?B,i.e.,

    The BN ofρABisBN(ρAB)=max{0,β(ρAB)-2}.It is revealed that the BN ofρABcan be intuitively characterized and detected by ?1or ?2.Using ?B,one can visualize the purity ofρAB,namely,

    which establishes the connection between purity and the QSE.It is straightforward that the purity can reach 0.25 only if the QSE degenerates into a point at the center of the Bloch sphere.Equation(20)can also be rewritten as

    The results obtained above provide visual tools to investigate and detect the FOC,BN and purity under a non-inertial frame.For clarity, we herein use Fig.1 to depict the geometric parameters of the QSE,FOC,BN and purity with respect to the acceleration parameterγ.Under the Unruh effect, lengths of?1, ?2and ?3degenerate with increasingγ, as shown in Fig.1(a).According to the result of Eq.(19), one can reveal that the shrinkage of ?Bvisually reflects the reduction in BN in Fig.1(b).The BN cannot be detected if the semiaxis of ?BsatisfiesThe critical case corresponds to.In the critical case,the shape of ?BwithΞ=0.4 is plotted in Fig.2(green ellipsoid).

    Fig.1.(a) The dependence of semiaxis length and ΞB on γ.(b) The dependence of the FOC,BN and purity on γ. Ξ =0.4.

    Fig.2.The shape of ?B: (a) stereoscopic view, (b) front perspective.The yellow ellipsoid represents the initial ?B with γ =0.The green QSE and blue QSE are ?B with γ =0.4205 (corresponding to the case when the BN suddenly disappears in Fig.1(b))and γ =0.5639(corresponding to the case when the FOC suddenly disappears in Fig.1(b)),respectively.The red ellipsoid represents the final ?B with γ =π/4. Ξ =0.4.

    As seen in Figs.1(a)and 2,the Unruh effect induces the result that the ?Band its center move along the negative orientation of thez-axis asγincreases.Note that the FOC is only associated with the centerΞBof ?B.Therefore, the movement of the center of the QSE is responsible for the detection of the FOC.Namely,FOC first degenerates and suddenly disappears; subsequently, it revives under the strong Unruh effect.The revival of the FOC in Fig.1(b) due to the center of the ?B,ΞB, can puncture the center of the Bloch sphere in Fig.1(a).The phenomenon is different from the peculiarity of the BN.Using the QSE parameters in Eq.(14), one can see and easily obtain that FOC will suddenly disappear ifγ=arccos[(1-Ξ)/(1+Ξ)]/2 and will revive in the interval of arccos[(1-Ξ)/(1+Ξ)]/2<γ ≤π/4.The blue ellipsoid in Fig.2 is the shape of ?Bcorresponding to the case of FOC disappearance.We also provide the final ?B(corresponding toγ=π/4,as red ellipsoid plotted)under the non-inertial frames in Fig.2.These results indicate that the QSE cannot degenerate into a point under the non-inertial frame as the acceleration parameterγincreases, meaning that the purity ofρABdecays with decreasing ?Band cannot reach 0.25 in Fig.1(b).

    3.2.The collective effects of the non-inertial frames and depolarizing channel

    Exotic environments unavoidably influence the quantum systems in a realistic scenario.Herein,we consider Bob in the state of Eq.(13)coupled to a depolarizing channel,which can be described by the Kraus operators

    andp=1-e-γ0t.Hence,the non-zero matrix elements of the output state ?ρAB-Dread as

    The QSE of Bob has the form

    For each subsystem,FOC is visualized by

    The FOC for bipartite systems is

    Similarly, the maximal CHSH violation and the purity of ?ρAB-Dare visualized by ??B-D,i.e.,

    The BN is BN(?ρAB-D)=max{0,β(?ρAB-D)-2}.Hence,the FOC, BN and purity under a depolarizing channel can be visualized and captured by ??B-D.Equation (30) can also be rewritten as

    Fig.4.The ??B-D corresponding to the case when the BN suddenly disappears under the depolarizing channel: (a)stereoscopic view,(b)front perspective. Ξ =0.4,γ =0.2.

    To visualize and capture the FOC,BN and purity under a depolarizing channel we plot the dependence of the QSE parameters,FOC,BN and purity on the depolarizing channel parameterpin Fig.3.Figure 3(a)shows that the semiaxis lengths linearly degrade with increasingp.This characteristic leads to a linear decrease of the BN in Fig.3(b).The semiaxis length?1-Drapidly shrinks to■which causes a sudden disappearance of the BN in this case,and one can use the traits of the QSE to determine that detection of the BN cannot be realized.Figure 4 visually displays the shape of ??B-Dfor the disappearance of the BN(Ξ=0.4 andγ= 0.2).The center of ??B-Dmoves along the negative orientation of thez-axis aspstrengthens, as displayed in Fig.3(a).It deserves to be emphasized that the center of ??B-Dcannot puncture the center of the Bloch sphere, and ??B-Dfinally degenerates into a point at the center of the Bloch sphere.These traits are different from those in Fig.1(a).According to the characteristics of the QSE,one can conjecture that the purity of ?ρAB-Ddegrades with decreasing ??B-D,finally reaching 0.25 in Fig.3(b).Meanwhile,the system’s FOC monotonously decreases with increasingpand reduces to zero atp=1 in Fig.3(b).One can always witness existence of FOC via the QSE(except atp=1).

    Next let us turn to visualize the influences of the Unruh effect on the FOC,BN and purity when considering a depolarizing channel.We give the QSE parameters,FOC,BN and purity with respect toγin Fig.5.In comparison with the results in Fig.1(without considering the influence of a depolarizing channel),it can be found that the depolarizing channel cannot affect the trends of the QSE,FOC,BN and purity in Fig.5.Of particular note is that the BN more easily disappears(the critical case corresponds toγ=arcsec[2-2Ξ(1-p)])if we additionally consider the effect of the depolarizing channel.The reason for this can be visually explained using the QSE.That is, the size of the QSE is smaller when considering the effect of a depolarizing channel (as revealed in Eqs.(16) and (26))and the semiaxis of ??B-Dmore easily reaches 2/2 under the Unruh effect.In particular,note that the depolarizing channel cannot affect the condition of the disappearance of FOC (the critical case corresponding toγ=arccos[(1-Ξ)/(1+Ξ)]/2)ifp/=1.This phenomenon can be visually interpreted by the fact that the condition for the center of the QSE reaching the center of the Bloch sphere is not affected by the depolarizing channel.

    Fig.5.(a)The dependence of semiaxis lengths and ΞB-D on γ.(b)The dependence of the FOC,BN and purity on γ. Ξ =0.4, p=0.05.

    3.3.The collective influences of the non-inertial frames and the NCGC

    The NCGC is defined as a completely positive tracepreserving map which does not generate quantum coherence from an incoherent state.[88]Incoherent operation is a strict subset of the NCGC.[88]The Kraus operators of a rank-2 NCGC are[88]

    Here,θ,φ,ηandξare all real numbers.For simplicity,ηandξare supposed to be zero in this paper.The channel with the form of Eq.(32) is not an incoherent channel unless sinφcosφsinθcosθ=0.[88]Assuming Bob’s state ofρABcoupled to the NCGC,the final two-qubit state is ?ρAB-N,namely,

    The QSE of Bob is given by

    For each subsystem,the FOC is

    Based on this result,one can attain the FOC of ?ρAB-Nby using the geometrical parameters of ??B-N,namely,

    In the QSE formalism,the maximal CHSH violation of ?ρAB-Nis

    where ?maxand ?secare the longest and the second longest semiaxes of ??B-N, respectly.The BN is BN(?ρAB-N) =max{0,β(?ρAB-N)-2}.The purity of ?ρAB-Nis

    that is,

    To begin with,we visualize and capture the FOC,BN and purity with different channel parametersθin Fig.6.From this figure we can see that the semiaxis lengths ?1-Nand ?3-Nperiodically oscillate under the NCGC.The period of oscillation is equal toπ.However, the length of theysemiaxis?2-Nis invariant withθ.Thereby, ??B-Nperiodically and alternately changes between a three-dimensional ellipsoid and a one-dimensional ellipse.We see that the BN first disappears,then revives and reaches a maximum atθ=nπ(n=0,1,2,...)(corresponding to the maximal lengths of thexandzsemiaxes).It is straightforward to show that the centerΞB-Nof ??B-Nis invariant in this case,and one can always witness the existence and invariance of FOC via the QSE,as described in Fig.6(b).The periodical oscillations of ?1-Nand ?3-Nvisualize a periodic oscillation in the purity of ?ρAB-N.

    Fig.6.The dependence of semiaxis length and ΞB-N on the channel parameter θ.(b) The dependence of the FOC, BN and purity on θ.Ξ =0.4,γ =0.2,and φ =π/20.

    Next, we further visualize the FOC, BN and purity for various values ofφ.One can see from Fig.7 that the length of thexsemiaxis is invariant.?2-Nand ?3-Nperiodically oscillate and achieve a maximum ifφ=nπ/2.Notably, the center of ??B-Nis not invariant with various values ofφ, and the center of ??B-Npunctures the center of the Bloch sphere atφ=nπ/2.One can use the trait of the QSE to visualize and determine that the invariance of the FOC cannot occur, and the FOC periodically oscillates and reaches zero atφ=nπ/2 in Fig.7(b)(the results are remarkably different from those in Fig.6(b)).Also,the tendency of the purity in Fig.7(b)is fully correlated with the trait of FOC due to the periodic oscillations of ?2-N,?3-NandΞB-Nin Fig.7(a).

    Fig.7.(a)The dependence of semiaxis length and ΞB-N on the channel parameter φ.(b)The dependence of the FOC,BN and purity on φ.Ξ =0.4,γ =0.2,and θ =π/20.

    Finally, we direct our attention to explore the influences of the Unruh effect on the FOC, BN and purity under the NCGC.The dependence of the QSE parameters, FOC, BN and purity onγare demonstrated in Fig.8.Comparing Fig.8 with Fig.1, it can be concluded that the NCGC cannot influence the tendencies of the QSE, FOC, BN and purity.However, the NCGC can reduce the size of the QSE (as uncovered in Eqs.(16) and (36)), which means that the BN disappears at a weakerγunder the additional effect of the NCGC,as shown by the green curve in Fig.8(b).Beyond this, one can reveal from Eqs.(15) and (35) and Figs.1 and 8 that the condition ofΞB-N=0 (when the QSE reaches the center of the Bloch sphere) is not influenced by the NCGC if cos2φ/=0.For this reason,the NCGC cannot affect the condition of the disappearance of FOC(the critical case corresponding toγ=arccos[(1-Ξ)/(1+Ξ)]/2)in this scheme.

    4.Conclusions

    We obtain the form of the QSE under the non-inertial frame, and also derive the QSE of the system coupled to the depolarizing channel and the NCGC,respectively.The FOC,BN and purity are visualized and detected via the QSE.To be specific,the distance from the center of the QSE to the center of the Bloch sphere visualizes the FOC of a bipartite system.The lengths of thexandysemiaxes visualize the BN of the system.The shape of the QSE and its position dominate the purity of system.Beyond this, the conditions for the disappearance of the FOC and BN can be directly obtained by the characteristics of the QSE,and one can capture the FOC,BN and purity by using the shape and position of the QSE.That is,FOC will suddenly disappear if and only if the QSE moves to the center of the Bloch sphere, no matter what shape the QSE is.The BN will disappear if and only if the length of thexorysemiaxis is equal to 2/2, no matter where the QSE is in the Bloch sphere.The purity can reach 0.25 if and only if the QSE degenerates into a point at the center of the Bloch sphere.Under a non-inertial frame,the QSE moves along the negative orientation of thez-axis and shrinks with enhancing acceleration.This characteristic visualizes the decrease of the BN and purity.Notably,due to the result that the center of the QSE can puncture the center of the Bloch sphere if the acceleration is strong,the vanished FOC can revive at high acceleration.Considering the depolarizing channel,the QSE monotonically shrinks and finally degenerates into a point at the center of the Bloch sphere.This phenomenon is responsible for the monotonous degeneration of the FOC,BN and purity.Under the effect of the NCGC,the shape of the QSE periodically oscillates with increasing channel parametersθandφ.These traits visualize the periodical oscillations of the BN and purity with increasingθandφ.It deserves to be emphasized that the center of the QSE is invariant with variousθ, which reflects the invariance of FOC.Moreover, our results reveal that the depolarizing channel and NCGC can decrease the size of the QSE,and cannot influence the condition for the QSE reaching the center of the Bloch sphere(ifp/=1 or cos2φ/=0).That is to say, the BN is more fragile when considering the additional effects of a depolarizing channel and the NCGC.The condition for the disappearance of FOC is invariant when considering the depolarizing channel and the NCGC as additional influences.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.12175001), the Natural Science Research Key Project of the Education Department of Anhui Province of China (Grant No.KJ2021A0943), the Research Start-up Funding Project of High Level Talent of West Anhui University(Grant No.WGKQ2021048),an Open Project of the Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes(Grant No.FMDI202106), the University Synergy Innovation Program of Anhui Province(Grant No.GXXT-2021-026)and the Anhui Provincial Natural Science Foundation (Grant Nos.2108085MA18 and 2008085MA20).

    猜你喜歡
    張剛
    Steering quantum nonlocalities of quantum dot system suffering from decoherence
    Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
    2022年高考模擬試題(三)
    層林盡染
    HeTDSE:A GPU based program to solve the full-dimensional time-dependent Schr¨odinger equation for two-electron helium subjected to strong laser fields*
    戀愛(ài)婚姻家庭(2019年8期)2019-08-30 04:45:15
    戀愛(ài)婚姻家庭(2019年22期)2019-07-29 04:05:00
    Implementation Scheme of Two-Photon Post-Quantum Correlations?
    數(shù)列最值問(wèn)題的求解策略
    活用課本習(xí)題
    一区二区三区精品91| 亚洲综合色惰| 99热全是精品| 亚洲欧美精品自产自拍| 三级国产精品片| 丝袜喷水一区| 人体艺术视频欧美日本| 少妇人妻一区二区三区视频| 精品国产乱码久久久久久小说| 日本猛色少妇xxxxx猛交久久| 国产高清有码在线观看视频| 亚洲国产最新在线播放| 欧美日韩国产mv在线观看视频 | 三级国产精品片| 一级爰片在线观看| 大香蕉久久网| 国产精品久久久久久久电影| 精品一区二区免费观看| 色视频在线一区二区三区| 国精品久久久久久国模美| 51国产日韩欧美| 毛片女人毛片| 青春草国产在线视频| 国产男女超爽视频在线观看| 乱系列少妇在线播放| 99热网站在线观看| 成人亚洲精品一区在线观看 | 日韩电影二区| 免费人成在线观看视频色| 久久久欧美国产精品| 伦精品一区二区三区| 精品少妇黑人巨大在线播放| 欧美最新免费一区二区三区| 成年女人在线观看亚洲视频 | 直男gayav资源| 嫩草影院新地址| 肉色欧美久久久久久久蜜桃 | 精品久久久久久久久av| 精品国产乱码久久久久久小说| 最新中文字幕久久久久| 91久久精品国产一区二区三区| 18禁裸乳无遮挡动漫免费视频 | 久久精品国产a三级三级三级| 亚洲图色成人| 国产成人精品一,二区| 亚洲欧美日韩东京热| 永久免费av网站大全| 最近2019中文字幕mv第一页| 最近的中文字幕免费完整| 女的被弄到高潮叫床怎么办| 国产91av在线免费观看| 亚洲三级黄色毛片| 天天一区二区日本电影三级| 国产免费一级a男人的天堂| 亚洲国产av新网站| 欧美性感艳星| 18禁在线无遮挡免费观看视频| 久久99热这里只频精品6学生| 欧美日韩国产mv在线观看视频 | 国产成人aa在线观看| 观看免费一级毛片| 特级一级黄色大片| 纵有疾风起免费观看全集完整版| 精品人妻视频免费看| 国产国拍精品亚洲av在线观看| 啦啦啦中文免费视频观看日本| 在现免费观看毛片| 又爽又黄无遮挡网站| 日日啪夜夜爽| 国产伦理片在线播放av一区| 成人亚洲欧美一区二区av| 国产女主播在线喷水免费视频网站| av国产免费在线观看| 五月玫瑰六月丁香| 在线观看国产h片| 久久综合国产亚洲精品| 在线观看免费高清a一片| 亚洲婷婷狠狠爱综合网| 五月天丁香电影| 久久人人爽人人片av| 久久精品国产a三级三级三级| 午夜精品一区二区三区免费看| 18+在线观看网站| 内射极品少妇av片p| 成年女人看的毛片在线观看| 男的添女的下面高潮视频| 国产一区二区三区av在线| 99久久精品热视频| 又粗又硬又长又爽又黄的视频| 91久久精品国产一区二区成人| 在线观看免费高清a一片| 插逼视频在线观看| 国产av码专区亚洲av| 欧美最新免费一区二区三区| 边亲边吃奶的免费视频| 深夜a级毛片| 日韩不卡一区二区三区视频在线| 看非洲黑人一级黄片| 日日啪夜夜撸| 亚洲第一区二区三区不卡| 成人黄色视频免费在线看| 国产亚洲91精品色在线| 毛片一级片免费看久久久久| 日本黄色片子视频| 男人添女人高潮全过程视频| 麻豆成人av视频| 免费黄网站久久成人精品| 少妇的逼水好多| 日产精品乱码卡一卡2卡三| 中国国产av一级| 国产黄色视频一区二区在线观看| 亚洲在线观看片| 亚洲成人av在线免费| 99热网站在线观看| 亚洲国产精品成人综合色| 一级av片app| 人妻一区二区av| 2022亚洲国产成人精品| 免费不卡的大黄色大毛片视频在线观看| 日本av手机在线免费观看| 午夜激情福利司机影院| 国产免费又黄又爽又色| av天堂中文字幕网| 日韩欧美精品v在线| 大码成人一级视频| 69人妻影院| 水蜜桃什么品种好| 伊人久久国产一区二区| 看黄色毛片网站| 亚洲第一区二区三区不卡| 汤姆久久久久久久影院中文字幕| 欧美国产精品一级二级三级 | 国模一区二区三区四区视频| 亚洲av一区综合| 国产美女午夜福利| 一级爰片在线观看| 插逼视频在线观看| 少妇人妻 视频| av国产精品久久久久影院| 蜜桃亚洲精品一区二区三区| 成人综合一区亚洲| 三级男女做爰猛烈吃奶摸视频| 久久精品人妻少妇| 日韩三级伦理在线观看| 国产免费一区二区三区四区乱码| 中文字幕亚洲精品专区| 午夜免费观看性视频| 肉色欧美久久久久久久蜜桃 | 又黄又爽又刺激的免费视频.| 99视频精品全部免费 在线| 男女下面进入的视频免费午夜| 一级毛片久久久久久久久女| 亚洲精品第二区| 波多野结衣巨乳人妻| 最近中文字幕2019免费版| 久久精品久久久久久噜噜老黄| 欧美zozozo另类| 中文字幕免费在线视频6| 18禁动态无遮挡网站| 日日摸夜夜添夜夜添av毛片| 22中文网久久字幕| 午夜福利在线在线| 日韩大片免费观看网站| 亚洲aⅴ乱码一区二区在线播放| 午夜激情福利司机影院| 国产在线男女| 天堂中文最新版在线下载 | 观看美女的网站| 亚洲国产最新在线播放| 熟妇人妻不卡中文字幕| 亚洲成色77777| 国产精品久久久久久精品电影| 毛片一级片免费看久久久久| 亚洲精品一区蜜桃| 夫妻性生交免费视频一级片| 少妇丰满av| 欧美日韩视频高清一区二区三区二| 在线免费观看不下载黄p国产| 人妻 亚洲 视频| 成年女人看的毛片在线观看| 国产精品av视频在线免费观看| 校园人妻丝袜中文字幕| 麻豆乱淫一区二区| 久久久a久久爽久久v久久| 看黄色毛片网站| 国产男女超爽视频在线观看| 2021天堂中文幕一二区在线观| 欧美日韩精品成人综合77777| 国产欧美另类精品又又久久亚洲欧美| 色哟哟·www| 久久久精品欧美日韩精品| 久久久久精品性色| 国产乱人偷精品视频| 日本熟妇午夜| 国产午夜精品久久久久久一区二区三区| 日韩av免费高清视频| 男插女下体视频免费在线播放| 亚洲av在线观看美女高潮| 国产毛片a区久久久久| 黄片无遮挡物在线观看| a级毛片免费高清观看在线播放| 在现免费观看毛片| 欧美极品一区二区三区四区| 大香蕉久久网| 草草在线视频免费看| 午夜免费鲁丝| 国产精品久久久久久久久免| 又黄又爽又刺激的免费视频.| 精品视频人人做人人爽| 夫妻性生交免费视频一级片| 交换朋友夫妻互换小说| 日韩不卡一区二区三区视频在线| 久久久久久久午夜电影| 国产成人免费无遮挡视频| 亚洲成人久久爱视频| 日韩电影二区| 国产探花极品一区二区| 边亲边吃奶的免费视频| 免费观看a级毛片全部| 中国三级夫妇交换| av国产精品久久久久影院| 免费黄色在线免费观看| 午夜精品国产一区二区电影 | 一个人看的www免费观看视频| av播播在线观看一区| 亚洲精品国产成人久久av| 亚洲欧美中文字幕日韩二区| 久热这里只有精品99| 亚洲av日韩在线播放| 国产精品人妻久久久影院| 97热精品久久久久久| 日韩 亚洲 欧美在线| 婷婷色av中文字幕| 国产成人a区在线观看| 国产一区二区三区综合在线观看 | 少妇 在线观看| 午夜免费观看性视频| 91午夜精品亚洲一区二区三区| av播播在线观看一区| 婷婷色综合大香蕉| 国产欧美另类精品又又久久亚洲欧美| 校园人妻丝袜中文字幕| 简卡轻食公司| 新久久久久国产一级毛片| 免费看光身美女| 久久精品人妻少妇| 国产精品人妻久久久影院| 亚洲精品国产av成人精品| 美女被艹到高潮喷水动态| 神马国产精品三级电影在线观看| 久久精品综合一区二区三区| 禁无遮挡网站| 丝瓜视频免费看黄片| 波野结衣二区三区在线| 欧美日韩在线观看h| 欧美高清成人免费视频www| 22中文网久久字幕| 久久ye,这里只有精品| 天堂俺去俺来也www色官网| 99热全是精品| 国产成人a区在线观看| 99精国产麻豆久久婷婷| av免费观看日本| 亚洲第一区二区三区不卡| av在线亚洲专区| 亚洲av日韩在线播放| 日日撸夜夜添| 三级男女做爰猛烈吃奶摸视频| 国产黄频视频在线观看| 国产成人福利小说| 日韩免费高清中文字幕av| 国产高清三级在线| 91久久精品电影网| 最近最新中文字幕免费大全7| 亚洲,一卡二卡三卡| 成人鲁丝片一二三区免费| 亚洲在线观看片| 夫妻性生交免费视频一级片| 九九久久精品国产亚洲av麻豆| 在线观看免费高清a一片| 日本三级黄在线观看| 国产老妇女一区| 亚洲av.av天堂| 午夜老司机福利剧场| 老师上课跳d突然被开到最大视频| 伦理电影大哥的女人| 久久久成人免费电影| 国产片特级美女逼逼视频| 午夜免费男女啪啪视频观看| 精品人妻偷拍中文字幕| 亚洲精品国产色婷婷电影| 99热全是精品| 国产成人freesex在线| 少妇人妻一区二区三区视频| 69av精品久久久久久| 国产爽快片一区二区三区| 国产av码专区亚洲av| 亚洲精品色激情综合| 国产精品久久久久久精品电影小说 | 97人妻精品一区二区三区麻豆| 69av精品久久久久久| 内地一区二区视频在线| 国产成人精品福利久久| 九九久久精品国产亚洲av麻豆| 午夜福利视频1000在线观看| 欧美潮喷喷水| 日产精品乱码卡一卡2卡三| 一区二区三区免费毛片| 精品久久久噜噜| 91午夜精品亚洲一区二区三区| 嫩草影院精品99| 丝瓜视频免费看黄片| 大话2 男鬼变身卡| 深爱激情五月婷婷| 晚上一个人看的免费电影| 欧美日韩综合久久久久久| 99久久精品热视频| 午夜福利视频1000在线观看| 在线观看一区二区三区激情| av在线蜜桃| 一级a做视频免费观看| 狂野欧美激情性bbbbbb| 国产伦理片在线播放av一区| 欧美日韩视频精品一区| 色视频在线一区二区三区| 女的被弄到高潮叫床怎么办| 国产高清不卡午夜福利| 国产成人免费观看mmmm| 日韩免费高清中文字幕av| 国产成人精品一,二区| 边亲边吃奶的免费视频| 综合色av麻豆| 久久99热6这里只有精品| 一个人看视频在线观看www免费| 久久久成人免费电影| 日韩免费高清中文字幕av| 人妻 亚洲 视频| av在线观看视频网站免费| 青青草视频在线视频观看| 男人狂女人下面高潮的视频| 内射极品少妇av片p| 视频区图区小说| 美女内射精品一级片tv| 中文在线观看免费www的网站| 国产爱豆传媒在线观看| 久久精品综合一区二区三区| 一本一本综合久久| 免费看不卡的av| 免费看a级黄色片| 久久影院123| 欧美3d第一页| 五月开心婷婷网| 又大又黄又爽视频免费| 亚洲婷婷狠狠爱综合网| 精品亚洲乱码少妇综合久久| 欧美日韩综合久久久久久| 亚洲精品色激情综合| 午夜老司机福利剧场| 精品人妻一区二区三区麻豆| 欧美区成人在线视频| 七月丁香在线播放| 亚洲四区av| 联通29元200g的流量卡| av网站免费在线观看视频| 久久久国产一区二区| 亚洲欧美日韩另类电影网站 | 亚洲国产精品成人久久小说| 伦理电影大哥的女人| 精华霜和精华液先用哪个| 久久韩国三级中文字幕| 啦啦啦啦在线视频资源| 亚洲经典国产精华液单| 日本猛色少妇xxxxx猛交久久| 最近的中文字幕免费完整| 色5月婷婷丁香| 我的女老师完整版在线观看| 午夜激情福利司机影院| 黄色配什么色好看| 成人国产av品久久久| 丝袜喷水一区| 在线天堂最新版资源| 一级毛片电影观看| 熟妇人妻不卡中文字幕| 永久网站在线| 搡老乐熟女国产| 别揉我奶头 嗯啊视频| 亚洲精品aⅴ在线观看| 校园人妻丝袜中文字幕| 新久久久久国产一级毛片| 亚洲精品亚洲一区二区| 日日摸夜夜添夜夜爱| 国产 一区 欧美 日韩| 91午夜精品亚洲一区二区三区| 69人妻影院| 欧美97在线视频| 日韩欧美精品v在线| 久久午夜福利片| 精品一区二区三卡| 亚洲精品久久久久久婷婷小说| 插阴视频在线观看视频| 精品久久久噜噜| 国产精品国产三级专区第一集| 欧美激情在线99| a级一级毛片免费在线观看| 国产真实伦视频高清在线观看| 男男h啪啪无遮挡| 免费人成在线观看视频色| 91aial.com中文字幕在线观看| 18禁在线无遮挡免费观看视频| 精品久久久久久久人妻蜜臀av| 久久久久久伊人网av| 一级黄片播放器| 国产高清不卡午夜福利| 99九九线精品视频在线观看视频| 一级爰片在线观看| 黄片无遮挡物在线观看| 国产老妇伦熟女老妇高清| 人妻制服诱惑在线中文字幕| 欧美一区二区亚洲| 午夜精品一区二区三区免费看| 亚洲成人精品中文字幕电影| 五月天丁香电影| 99re6热这里在线精品视频| 搡女人真爽免费视频火全软件| 免费在线观看成人毛片| 成人亚洲欧美一区二区av| 舔av片在线| av线在线观看网站| 91午夜精品亚洲一区二区三区| 欧美日韩视频高清一区二区三区二| 99热这里只有是精品50| 久久久午夜欧美精品| 69av精品久久久久久| 欧美97在线视频| 久久久亚洲精品成人影院| 少妇猛男粗大的猛烈进出视频 | 亚洲av中文av极速乱| 欧美激情在线99| 成人欧美大片| 国产一区二区在线观看日韩| 男人爽女人下面视频在线观看| 欧美+日韩+精品| 亚洲av.av天堂| 99热6这里只有精品| 看免费成人av毛片| 18禁裸乳无遮挡动漫免费视频 | 高清毛片免费看| 我要看日韩黄色一级片| 熟妇人妻不卡中文字幕| 永久免费av网站大全| 嫩草影院入口| 特级一级黄色大片| 精品久久久久久久久av| 欧美成人午夜免费资源| 一区二区三区精品91| 日本欧美国产在线视频| 女人久久www免费人成看片| 欧美少妇被猛烈插入视频| 香蕉精品网在线| 日韩一本色道免费dvd| 欧美xxxx黑人xx丫x性爽| 18+在线观看网站| 一区二区av电影网| 亚洲欧美一区二区三区国产| 亚洲成色77777| 内地一区二区视频在线| 青春草视频在线免费观看| 美女主播在线视频| 国产精品一区www在线观看| 白带黄色成豆腐渣| 啦啦啦中文免费视频观看日本| 欧美+日韩+精品| 久久ye,这里只有精品| 18+在线观看网站| a级毛片免费高清观看在线播放| 亚洲在线观看片| 大码成人一级视频| 97在线人人人人妻| 国产伦精品一区二区三区视频9| 91精品国产九色| 99久久九九国产精品国产免费| 搡老乐熟女国产| 日韩一区二区视频免费看| 97超视频在线观看视频| 午夜精品国产一区二区电影 | 神马国产精品三级电影在线观看| 最后的刺客免费高清国语| 免费大片黄手机在线观看| 精品久久久久久久久av| 亚洲图色成人| 欧美日韩在线观看h| 中文乱码字字幕精品一区二区三区| 黄色一级大片看看| 国产一区二区亚洲精品在线观看| 在线观看人妻少妇| 国产精品秋霞免费鲁丝片| 在线亚洲精品国产二区图片欧美 | 日韩欧美精品v在线| 精品一区二区三区视频在线| 一个人看视频在线观看www免费| 一级片'在线观看视频| 内地一区二区视频在线| 只有这里有精品99| 日韩亚洲欧美综合| 伦理电影大哥的女人| 偷拍熟女少妇极品色| 久久久a久久爽久久v久久| 看非洲黑人一级黄片| 亚洲精品第二区| 国产精品一区二区性色av| 97热精品久久久久久| 一个人看的www免费观看视频| 精品一区在线观看国产| 大又大粗又爽又黄少妇毛片口| av免费观看日本| 久久人人爽人人片av| 免费观看在线日韩| 欧美zozozo另类| 亚洲,欧美,日韩| 日本猛色少妇xxxxx猛交久久| 精品人妻一区二区三区麻豆| 少妇人妻 视频| 成人亚洲精品av一区二区| 汤姆久久久久久久影院中文字幕| 日韩亚洲欧美综合| 三级男女做爰猛烈吃奶摸视频| 女人十人毛片免费观看3o分钟| kizo精华| 一级毛片电影观看| 日韩一区二区视频免费看| 久久精品综合一区二区三区| 成人综合一区亚洲| 成人国产av品久久久| 中文字幕人妻熟人妻熟丝袜美| 国产一区二区在线观看日韩| 欧美成人精品欧美一级黄| 精华霜和精华液先用哪个| 国产亚洲精品久久久com| 老司机影院毛片| 国产av国产精品国产| 看黄色毛片网站| 九色成人免费人妻av| 又黄又爽又刺激的免费视频.| 亚洲怡红院男人天堂| 中文字幕免费在线视频6| 精品国产三级普通话版| 如何舔出高潮| 国产 一区精品| 国产精品久久久久久精品古装| 2021天堂中文幕一二区在线观| 国产精品伦人一区二区| 亚洲激情五月婷婷啪啪| 国产精品国产三级国产专区5o| 蜜臀久久99精品久久宅男| 丝袜脚勾引网站| 身体一侧抽搐| 一级黄片播放器| 日韩欧美精品v在线| 九九爱精品视频在线观看| av免费在线看不卡| 国产 一区 欧美 日韩| 麻豆国产97在线/欧美| 亚洲性久久影院| 男男h啪啪无遮挡| 网址你懂的国产日韩在线| av卡一久久| 欧美日韩一区二区视频在线观看视频在线 | 久久久久精品久久久久真实原创| 超碰97精品在线观看| 亚洲天堂av无毛| 亚洲成人一二三区av| 自拍偷自拍亚洲精品老妇| 最近2019中文字幕mv第一页| 亚洲av欧美aⅴ国产| 亚洲成人久久爱视频| 国产精品国产三级专区第一集| 久久久久性生活片| 中文欧美无线码| a级毛色黄片| 亚洲天堂av无毛| 欧美成人精品欧美一级黄| 亚洲欧美成人综合另类久久久| 亚洲人成网站在线播| 亚洲成人中文字幕在线播放| 99热全是精品| 亚洲精品aⅴ在线观看| 婷婷色综合www| 免费观看av网站的网址| 日本一二三区视频观看| 日本-黄色视频高清免费观看| 禁无遮挡网站| 欧美xxⅹ黑人| 亚洲国产精品成人久久小说| 国产女主播在线喷水免费视频网站| 久久久色成人| 在线观看av片永久免费下载| 欧美xxxx性猛交bbbb| 亚洲精品视频女| 超碰97精品在线观看| 少妇被粗大猛烈的视频| 亚洲图色成人| 97超视频在线观看视频| 夜夜爽夜夜爽视频| 麻豆国产97在线/欧美| 国产午夜精品一二区理论片| 欧美另类一区| 欧美+日韩+精品| 欧美成人a在线观看| 一级毛片黄色毛片免费观看视频| 毛片女人毛片| 边亲边吃奶的免费视频| 少妇 在线观看| 免费看a级黄色片| 美女视频免费永久观看网站| 精品国产乱码久久久久久小说|