• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Visualizing and witnessing first-order coherence,Bell nonlocality and purity by using a quantum steering ellipsoid in the non-inertial frame

    2023-11-02 08:12:30HuanYang楊歡LingLingXing邢玲玲MingMingDu杜明明MinKong孔敏GangZhang張剛andLiuYe葉柳
    Chinese Physics B 2023年10期
    關(guān)鍵詞:張剛

    Huan Yang(楊歡), Ling-Ling Xing(邢玲玲), Ming-Ming Du(杜明明),Min Kong(孔敏), Gang Zhang(張剛),?, and Liu Ye(葉柳)

    1School of Electrical and Photoelectronic Engineering,West Anhui University,Lu’an 237012,China

    2College of Electronic and Optical Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    3School of Physics and Optoelectronic Engineering,Anhui University,Hefei 230039,China

    Keywords: quantum steering ellipsoid,first-order coherence,Bell-nonlocality,purity

    1.Introduction

    As a basic concept in the physical world, coherence arises from quantum superposition and is essential for the quantum information sciences, including quantum interference and multipartite entanglement.[1,2]It also plays a vital part in the fields of quantum metrology,[3]low-temperature thermodynamics,[4-6]solid-state physics[7]and so on.Meanwhile,coherence can also be used to depict the interference capability of interacting fields in quantum optics research.[8-12]Beyond this, there have been various efforts to ascertain the interrelations between coherence and correlations,[13-20]and these relations are essential for predicting the coherent transfer in researched quantum systems.Various coherence measures have been established to quantify coherence.Examples include first-order coherence(FOC)[13](which is a basisindependent measure)and thel1norm of coherence(which is a basis-dependent measure).[21]It should be emphasized that there is a relationship between FOC and thel1norm of coherence.For a single-qubit state, the FOC of a state is equal to thel1norm of coherence quantified on the optimal basis.In principle, quantum correlations include various forms, such as quantum entanglement, Einstein-Podolsky-Rosen (EPR)steering and Bell nonlocality(BN).Among these, BN(quantum entanglement) is the strongest (weakest) quantum correlation.Coherence is one of the important bases for generating quantum correlations; even conceptually, coherence is more fundamental than quantum correlations, including BN.One can detect the BN of a system by violating some Bell-type inequalities,[22-32]especially the Clauser-Horne-Shimony-Holt (CHSH) inequality.[30-34]It deserves to be emphasized that not all entangled states can possess BN.[35]Horodeckiet al.have derived the sufficient and necessary conditions for BN for arbitrary bipartite states.[36]

    In the field of quantum information science, the construction of three-dimensional pictures of different quantum states is an important avenue for investigating quantum correlations.[37]A Bloch vector provides a simple and intuitive representation of any single-qubit state.[37]However,for a two-qubit state, 15 parameters of the state need to be described,introducing amazing complexity and difficulty for the geometric description of a two-qubit state.Fortunately,Jevticet al.[38]proposed a scheme in which a quantum steering ellipsoid (QSE) is used to visualize any two-qubit state.To clarify, there is a remarkable phenomenon in which measuring the subsystem of an entangled state can remotely steer the state of the other subsystem.This phenomenon is called EPR steering.[39,40]If one performs all possible local operations on one qubit,all Bloch vectors of the other qubit’s steered states form a QSE in the Bloch sphere.[38]Any bipartite state can correspond to a QSE.In particular, not all QSEs can faithfully express a two-qubit state.The sufficient and necessary condition for a QSE to denote a bipartite state was derived by Milneet al.[41]It is worth mentioning that the QSE provides an intuitive depiction and indication for quantum correlations.Examples include steered coherence,[42-44]discord,[38,45-47]entanglement[38,41,48]and EPR steering.[49-54]Zhanget al.[55]experimentally verified the QSE of two-qubit states and also demonstrated volume monogamy relations of the QSE.[56]Recently,Duet al.[57]investigated quantum phase transitions in theXXZmodel through a QSE.However,these efforts are limited to inertial systems.[42-45,57]

    The non-inertial frame provides nontrivial tools for understanding relativistic quantum information and black holes,and is a rapidly developing field.[58]Relevant explorations in the non-inertial frame have been widely carried out.[59-74]There has been a lot of effort made to investigate nonlocality under non-inertial frames.[75-78]Friiset al.[75]explored entanglement of accelerated fermions.Smithet al.[76]analyzed tripartite nonlocality of non-inertial observers.Subsequently,Tianet al.[77,78]investigated nonlocality, entanglement and measurement-induced nonlocality under the Unruh effect.Of particular note is that each actual system is inevitably coupled with the surrounding environment.This coupling can accelerate the degeneration of quantum nonlocalities and set obstacles for achieving various quantum information tasks.For this reason, explorations of quantum nonlocalities in non-inertial frames suffering from different noise channels have been extensively performed.[79-86]Nevertheless, use of a QSE to visualize nonlocality under non-inertial frames is still lacking,especially when considering the collective influences of noninertial frames and noise channels in the QSE formalism.Such an investigation may provide a more visual tool to ascertain the influences of relativistic motion and external noise on different quantum correlations.

    Encouraged by this,we visualize the FOC,BN and purity in a non-inertial frame by utilizing a QSE, and also explore them when the particle suffers from a depolarizing channel or a non-coherence-generating channel(NCGC).Our results reveal that FOC, BN and purity can be visualized and detected by the parameters of the QSE.Particle acceleration induces shrinking and movement of the QSE.These peculiarities are responsible for the results that the BN and purity are reduced with increase in the acceleration.Note that FOC can be revived by higher acceleration due to the trait that the QSE can puncture the center of the Bloch sphere under a higher acceleration.The condition of FOC disappearance(or recovery)can be attained through the QSE.The depolarizing channel results in monotonic shrinking of the QSE,and it finally degenerates into a point at the center of the Bloch sphere.The results imply that the coherence,BN and purity monotonously decrease as noise strength increases.Under the influence of the NCGC,the periodic oscillation of the QSE visualizes the periodic oscillations of the BN and purity with growing noise parametersθandφ.The FOC is invariant with different values ofθsince the center of the QSE cannot move with the change ofθ.Moreover, the BN is more fragile after considering the additional effects of a depolarizing channel and NCGC because the depolarizing channel and the NCGC can reduce the size of the QSE.Under the additional influences of a depolarizing channel and NCGC,the conditions for FOC disappearance are invariant because the condition for the QSE to achieve the center of the Bloch sphere cannot be influenced by the depolarizing channel and the NCGC.

    Section 2 of this paper briefly describes QSE theory.In Subsection 3.1,we characterize and capture the FOC,BN and purity of a system in the QSE formalism.The collective influences of the depolarizing channel and the NCGC on the FOC,BN and purity are explored in Subsections 3.2 and 3.3,respectively.Finally,conclusions are drawn.

    2.The QSE

    Alice and Bob collectively possess bipartite statesρ,

    whereIis the identity operator,σ=(σ1,σ2,σ3) denotes the vector of the Pauli matrix.Mnm= Tr(ρσn ?σm) (m,n=1,2,3),a= Tr(ρσ ?I),b= Tr(ρ·I ?σ).According to Ref.[38], if we perform all possible local measurements on Bob,the QSE of Alice(i.e.,?A)can be constructed by all the vectors of Alice’s steered states.One can use center?Aand ellipsoid matrix ?Ato characterize ?A:

    The orientations and lengths of the semiaxes of ?Aare reflected by the eigenvectors of ?Aand the arithmetic square root of eigenvalues of ?A, respectively.One can also obtain the QSE of Bob(?B),namely,

    3.Visualizing and detecting the FOC, BN and purity via the QSE

    3.1.Under the influence of a non-inertial frame

    Of particular note is that the ellipsoid ?Bcannot puncture the Bloch sphere.The maximally obese statescorrespond to the state with the largest ellipsoid volume at the centerc=(0,0,Ξ).can be expressed by

    Its matrix form is

    The maximally obese state is very useful and can bind many quantum nonlocalities for two-qubit states,such as the entanglement and BN.[48]The largest volume ellipsoid of Bob for the centerc=(0,0,Ξ)can be represented as

    Now, let us consider that Alice and Bob (as two observers) collectively possessin Minkowski space-time.Alice remains stationary and Bob moves with uniform acceleration.As a consequence,the Unruh effect will appear.Meanwhile,we assume that Alice possesses a detector which is sensitive only to mode|n〉A(chǔ)(the mode of Minkowski space-time that corresponds to Alice)and Bob possesses another detector which is sensitive only to mode|n〉B(the mode of Minkowski space-time that corresponds to Bob).We then let Alice remain stationary while Bob moves with a uniform acceleration.Considering a fermionic field system, from the accelerated perspective of Bob the Minkowski vacuum state is found to be a two-mode squeezed state[87]

    with acceleration parameterγ=(e-2πωc'/a+1)-1/2.Here,ais the acceleration of Bob,ωis the frequency of the Dirac particle andc'is the speed of light in a vacuum.0<γ <π/4 corresponding to 0<a <∞.{|0〉I}and{|0〉II}indicate Rindler modes in regions I and II,respectively.The only excited state is given by[87]

    Using Eqs.(10) and (11), the state of Eq.(8) is transformed into

    Due to the fact that Bob is causally disconnected from region II, the physically accessible information is encoded in mode A(described by Alice)and mode I(described by Bob).Tracing over the mode in region II,we obtain

    We calculate the QSE of Bob in the form

    The central coordinate of the QSE on thez-axis is

    Thex,yandzsemiaxis lengths of the QSE are ?1,?2and ?3,respectively.Namely,

    The FOC for the bipartite systemρABis

    This result implies that the FOC of the whole bipartite system can be directly visualized by the distance from the center of the QSE ?Bto the center of the Bloch sphere.D2ABdisappears only if ?Breaches the center of the Bloch sphere,which provides an avenue to witness the FOC.We also visualize the maximal CHSH violation[30-33]ofρABthrough ?B,i.e.,

    The BN ofρABisBN(ρAB)=max{0,β(ρAB)-2}.It is revealed that the BN ofρABcan be intuitively characterized and detected by ?1or ?2.Using ?B,one can visualize the purity ofρAB,namely,

    which establishes the connection between purity and the QSE.It is straightforward that the purity can reach 0.25 only if the QSE degenerates into a point at the center of the Bloch sphere.Equation(20)can also be rewritten as

    The results obtained above provide visual tools to investigate and detect the FOC,BN and purity under a non-inertial frame.For clarity, we herein use Fig.1 to depict the geometric parameters of the QSE,FOC,BN and purity with respect to the acceleration parameterγ.Under the Unruh effect, lengths of?1, ?2and ?3degenerate with increasingγ, as shown in Fig.1(a).According to the result of Eq.(19), one can reveal that the shrinkage of ?Bvisually reflects the reduction in BN in Fig.1(b).The BN cannot be detected if the semiaxis of ?BsatisfiesThe critical case corresponds to.In the critical case,the shape of ?BwithΞ=0.4 is plotted in Fig.2(green ellipsoid).

    Fig.1.(a) The dependence of semiaxis length and ΞB on γ.(b) The dependence of the FOC,BN and purity on γ. Ξ =0.4.

    Fig.2.The shape of ?B: (a) stereoscopic view, (b) front perspective.The yellow ellipsoid represents the initial ?B with γ =0.The green QSE and blue QSE are ?B with γ =0.4205 (corresponding to the case when the BN suddenly disappears in Fig.1(b))and γ =0.5639(corresponding to the case when the FOC suddenly disappears in Fig.1(b)),respectively.The red ellipsoid represents the final ?B with γ =π/4. Ξ =0.4.

    As seen in Figs.1(a)and 2,the Unruh effect induces the result that the ?Band its center move along the negative orientation of thez-axis asγincreases.Note that the FOC is only associated with the centerΞBof ?B.Therefore, the movement of the center of the QSE is responsible for the detection of the FOC.Namely,FOC first degenerates and suddenly disappears; subsequently, it revives under the strong Unruh effect.The revival of the FOC in Fig.1(b) due to the center of the ?B,ΞB, can puncture the center of the Bloch sphere in Fig.1(a).The phenomenon is different from the peculiarity of the BN.Using the QSE parameters in Eq.(14), one can see and easily obtain that FOC will suddenly disappear ifγ=arccos[(1-Ξ)/(1+Ξ)]/2 and will revive in the interval of arccos[(1-Ξ)/(1+Ξ)]/2<γ ≤π/4.The blue ellipsoid in Fig.2 is the shape of ?Bcorresponding to the case of FOC disappearance.We also provide the final ?B(corresponding toγ=π/4,as red ellipsoid plotted)under the non-inertial frames in Fig.2.These results indicate that the QSE cannot degenerate into a point under the non-inertial frame as the acceleration parameterγincreases, meaning that the purity ofρABdecays with decreasing ?Band cannot reach 0.25 in Fig.1(b).

    3.2.The collective effects of the non-inertial frames and depolarizing channel

    Exotic environments unavoidably influence the quantum systems in a realistic scenario.Herein,we consider Bob in the state of Eq.(13)coupled to a depolarizing channel,which can be described by the Kraus operators

    andp=1-e-γ0t.Hence,the non-zero matrix elements of the output state ?ρAB-Dread as

    The QSE of Bob has the form

    For each subsystem,FOC is visualized by

    The FOC for bipartite systems is

    Similarly, the maximal CHSH violation and the purity of ?ρAB-Dare visualized by ??B-D,i.e.,

    The BN is BN(?ρAB-D)=max{0,β(?ρAB-D)-2}.Hence,the FOC, BN and purity under a depolarizing channel can be visualized and captured by ??B-D.Equation (30) can also be rewritten as

    Fig.4.The ??B-D corresponding to the case when the BN suddenly disappears under the depolarizing channel: (a)stereoscopic view,(b)front perspective. Ξ =0.4,γ =0.2.

    To visualize and capture the FOC,BN and purity under a depolarizing channel we plot the dependence of the QSE parameters,FOC,BN and purity on the depolarizing channel parameterpin Fig.3.Figure 3(a)shows that the semiaxis lengths linearly degrade with increasingp.This characteristic leads to a linear decrease of the BN in Fig.3(b).The semiaxis length?1-Drapidly shrinks to■which causes a sudden disappearance of the BN in this case,and one can use the traits of the QSE to determine that detection of the BN cannot be realized.Figure 4 visually displays the shape of ??B-Dfor the disappearance of the BN(Ξ=0.4 andγ= 0.2).The center of ??B-Dmoves along the negative orientation of thez-axis aspstrengthens, as displayed in Fig.3(a).It deserves to be emphasized that the center of ??B-Dcannot puncture the center of the Bloch sphere, and ??B-Dfinally degenerates into a point at the center of the Bloch sphere.These traits are different from those in Fig.1(a).According to the characteristics of the QSE,one can conjecture that the purity of ?ρAB-Ddegrades with decreasing ??B-D,finally reaching 0.25 in Fig.3(b).Meanwhile,the system’s FOC monotonously decreases with increasingpand reduces to zero atp=1 in Fig.3(b).One can always witness existence of FOC via the QSE(except atp=1).

    Next let us turn to visualize the influences of the Unruh effect on the FOC,BN and purity when considering a depolarizing channel.We give the QSE parameters,FOC,BN and purity with respect toγin Fig.5.In comparison with the results in Fig.1(without considering the influence of a depolarizing channel),it can be found that the depolarizing channel cannot affect the trends of the QSE,FOC,BN and purity in Fig.5.Of particular note is that the BN more easily disappears(the critical case corresponds toγ=arcsec[2-2Ξ(1-p)])if we additionally consider the effect of the depolarizing channel.The reason for this can be visually explained using the QSE.That is, the size of the QSE is smaller when considering the effect of a depolarizing channel (as revealed in Eqs.(16) and (26))and the semiaxis of ??B-Dmore easily reaches 2/2 under the Unruh effect.In particular,note that the depolarizing channel cannot affect the condition of the disappearance of FOC (the critical case corresponding toγ=arccos[(1-Ξ)/(1+Ξ)]/2)ifp/=1.This phenomenon can be visually interpreted by the fact that the condition for the center of the QSE reaching the center of the Bloch sphere is not affected by the depolarizing channel.

    Fig.5.(a)The dependence of semiaxis lengths and ΞB-D on γ.(b)The dependence of the FOC,BN and purity on γ. Ξ =0.4, p=0.05.

    3.3.The collective influences of the non-inertial frames and the NCGC

    The NCGC is defined as a completely positive tracepreserving map which does not generate quantum coherence from an incoherent state.[88]Incoherent operation is a strict subset of the NCGC.[88]The Kraus operators of a rank-2 NCGC are[88]

    Here,θ,φ,ηandξare all real numbers.For simplicity,ηandξare supposed to be zero in this paper.The channel with the form of Eq.(32) is not an incoherent channel unless sinφcosφsinθcosθ=0.[88]Assuming Bob’s state ofρABcoupled to the NCGC,the final two-qubit state is ?ρAB-N,namely,

    The QSE of Bob is given by

    For each subsystem,the FOC is

    Based on this result,one can attain the FOC of ?ρAB-Nby using the geometrical parameters of ??B-N,namely,

    In the QSE formalism,the maximal CHSH violation of ?ρAB-Nis

    where ?maxand ?secare the longest and the second longest semiaxes of ??B-N, respectly.The BN is BN(?ρAB-N) =max{0,β(?ρAB-N)-2}.The purity of ?ρAB-Nis

    that is,

    To begin with,we visualize and capture the FOC,BN and purity with different channel parametersθin Fig.6.From this figure we can see that the semiaxis lengths ?1-Nand ?3-Nperiodically oscillate under the NCGC.The period of oscillation is equal toπ.However, the length of theysemiaxis?2-Nis invariant withθ.Thereby, ??B-Nperiodically and alternately changes between a three-dimensional ellipsoid and a one-dimensional ellipse.We see that the BN first disappears,then revives and reaches a maximum atθ=nπ(n=0,1,2,...)(corresponding to the maximal lengths of thexandzsemiaxes).It is straightforward to show that the centerΞB-Nof ??B-Nis invariant in this case,and one can always witness the existence and invariance of FOC via the QSE,as described in Fig.6(b).The periodical oscillations of ?1-Nand ?3-Nvisualize a periodic oscillation in the purity of ?ρAB-N.

    Fig.6.The dependence of semiaxis length and ΞB-N on the channel parameter θ.(b) The dependence of the FOC, BN and purity on θ.Ξ =0.4,γ =0.2,and φ =π/20.

    Next, we further visualize the FOC, BN and purity for various values ofφ.One can see from Fig.7 that the length of thexsemiaxis is invariant.?2-Nand ?3-Nperiodically oscillate and achieve a maximum ifφ=nπ/2.Notably, the center of ??B-Nis not invariant with various values ofφ, and the center of ??B-Npunctures the center of the Bloch sphere atφ=nπ/2.One can use the trait of the QSE to visualize and determine that the invariance of the FOC cannot occur, and the FOC periodically oscillates and reaches zero atφ=nπ/2 in Fig.7(b)(the results are remarkably different from those in Fig.6(b)).Also,the tendency of the purity in Fig.7(b)is fully correlated with the trait of FOC due to the periodic oscillations of ?2-N,?3-NandΞB-Nin Fig.7(a).

    Fig.7.(a)The dependence of semiaxis length and ΞB-N on the channel parameter φ.(b)The dependence of the FOC,BN and purity on φ.Ξ =0.4,γ =0.2,and θ =π/20.

    Finally, we direct our attention to explore the influences of the Unruh effect on the FOC, BN and purity under the NCGC.The dependence of the QSE parameters, FOC, BN and purity onγare demonstrated in Fig.8.Comparing Fig.8 with Fig.1, it can be concluded that the NCGC cannot influence the tendencies of the QSE, FOC, BN and purity.However, the NCGC can reduce the size of the QSE (as uncovered in Eqs.(16) and (36)), which means that the BN disappears at a weakerγunder the additional effect of the NCGC,as shown by the green curve in Fig.8(b).Beyond this, one can reveal from Eqs.(15) and (35) and Figs.1 and 8 that the condition ofΞB-N=0 (when the QSE reaches the center of the Bloch sphere) is not influenced by the NCGC if cos2φ/=0.For this reason,the NCGC cannot affect the condition of the disappearance of FOC(the critical case corresponding toγ=arccos[(1-Ξ)/(1+Ξ)]/2)in this scheme.

    4.Conclusions

    We obtain the form of the QSE under the non-inertial frame, and also derive the QSE of the system coupled to the depolarizing channel and the NCGC,respectively.The FOC,BN and purity are visualized and detected via the QSE.To be specific,the distance from the center of the QSE to the center of the Bloch sphere visualizes the FOC of a bipartite system.The lengths of thexandysemiaxes visualize the BN of the system.The shape of the QSE and its position dominate the purity of system.Beyond this, the conditions for the disappearance of the FOC and BN can be directly obtained by the characteristics of the QSE,and one can capture the FOC,BN and purity by using the shape and position of the QSE.That is,FOC will suddenly disappear if and only if the QSE moves to the center of the Bloch sphere, no matter what shape the QSE is.The BN will disappear if and only if the length of thexorysemiaxis is equal to 2/2, no matter where the QSE is in the Bloch sphere.The purity can reach 0.25 if and only if the QSE degenerates into a point at the center of the Bloch sphere.Under a non-inertial frame,the QSE moves along the negative orientation of thez-axis and shrinks with enhancing acceleration.This characteristic visualizes the decrease of the BN and purity.Notably,due to the result that the center of the QSE can puncture the center of the Bloch sphere if the acceleration is strong,the vanished FOC can revive at high acceleration.Considering the depolarizing channel,the QSE monotonically shrinks and finally degenerates into a point at the center of the Bloch sphere.This phenomenon is responsible for the monotonous degeneration of the FOC,BN and purity.Under the effect of the NCGC,the shape of the QSE periodically oscillates with increasing channel parametersθandφ.These traits visualize the periodical oscillations of the BN and purity with increasingθandφ.It deserves to be emphasized that the center of the QSE is invariant with variousθ, which reflects the invariance of FOC.Moreover, our results reveal that the depolarizing channel and NCGC can decrease the size of the QSE,and cannot influence the condition for the QSE reaching the center of the Bloch sphere(ifp/=1 or cos2φ/=0).That is to say, the BN is more fragile when considering the additional effects of a depolarizing channel and the NCGC.The condition for the disappearance of FOC is invariant when considering the depolarizing channel and the NCGC as additional influences.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.12175001), the Natural Science Research Key Project of the Education Department of Anhui Province of China (Grant No.KJ2021A0943), the Research Start-up Funding Project of High Level Talent of West Anhui University(Grant No.WGKQ2021048),an Open Project of the Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes(Grant No.FMDI202106), the University Synergy Innovation Program of Anhui Province(Grant No.GXXT-2021-026)and the Anhui Provincial Natural Science Foundation (Grant Nos.2108085MA18 and 2008085MA20).

    猜你喜歡
    張剛
    Steering quantum nonlocalities of quantum dot system suffering from decoherence
    Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
    2022年高考模擬試題(三)
    層林盡染
    HeTDSE:A GPU based program to solve the full-dimensional time-dependent Schr¨odinger equation for two-electron helium subjected to strong laser fields*
    戀愛(ài)婚姻家庭(2019年8期)2019-08-30 04:45:15
    戀愛(ài)婚姻家庭(2019年22期)2019-07-29 04:05:00
    Implementation Scheme of Two-Photon Post-Quantum Correlations?
    數(shù)列最值問(wèn)題的求解策略
    活用課本習(xí)題
    日本欧美国产在线视频| 九九爱精品视频在线观看| 丝袜喷水一区| 99视频精品全部免费 在线| 国产午夜精品久久久久久一区二区三区| 日韩大片免费观看网站| 卡戴珊不雅视频在线播放| 韩国av在线不卡| 男人添女人高潮全过程视频| 亚洲电影在线观看av| 99热国产这里只有精品6| 亚洲精品国产色婷婷电影| 色婷婷久久久亚洲欧美| 国产 一区 欧美 日韩| 欧美变态另类bdsm刘玥| 人人妻人人添人人爽欧美一区卜 | 汤姆久久久久久久影院中文字幕| 久久精品国产a三级三级三级| 国产精品久久久久久精品电影小说 | 国产精品国产三级国产专区5o| 国产 精品1| av线在线观看网站| 国产成人freesex在线| 久久热精品热| 在线观看一区二区三区| 大片电影免费在线观看免费| 夫妻午夜视频| 一区二区三区免费毛片| 香蕉精品网在线| 极品教师在线视频| 熟妇人妻不卡中文字幕| 久久久久久久久久久丰满| 99久久人妻综合| 国产 一区 欧美 日韩| 老司机影院毛片| 国内揄拍国产精品人妻在线| 18禁在线无遮挡免费观看视频| 中文字幕免费在线视频6| 内射极品少妇av片p| 午夜日本视频在线| 国产精品女同一区二区软件| 女的被弄到高潮叫床怎么办| h日本视频在线播放| 亚洲欧美成人综合另类久久久| 国产高清有码在线观看视频| 久久精品国产鲁丝片午夜精品| 国产白丝娇喘喷水9色精品| 男女下面进入的视频免费午夜| 啦啦啦中文免费视频观看日本| 久久久久性生活片| 国产亚洲一区二区精品| 亚洲成色77777| 亚洲中文av在线| 亚洲成人中文字幕在线播放| 日韩成人av中文字幕在线观看| 三级国产精品片| 亚洲欧美成人精品一区二区| 中文欧美无线码| 偷拍熟女少妇极品色| 麻豆精品久久久久久蜜桃| 日韩在线高清观看一区二区三区| 色哟哟·www| 国产淫片久久久久久久久| 国产色婷婷99| 日韩一本色道免费dvd| 日韩制服骚丝袜av| 欧美另类一区| 能在线免费看毛片的网站| 久久久久性生活片| 久久久a久久爽久久v久久| 丝袜喷水一区| 啦啦啦视频在线资源免费观看| 女人十人毛片免费观看3o分钟| 日本一二三区视频观看| av女优亚洲男人天堂| av在线app专区| 免费av不卡在线播放| 精品久久久久久久久亚洲| 青青草视频在线视频观看| 99热6这里只有精品| 国产在线男女| 人妻夜夜爽99麻豆av| 26uuu在线亚洲综合色| 日日撸夜夜添| 亚洲国产精品一区三区| 亚洲av电影在线观看一区二区三区| 国产免费视频播放在线视频| 国产精品一二三区在线看| 在线观看免费视频网站a站| 在线天堂最新版资源| 日韩制服骚丝袜av| 国产免费一区二区三区四区乱码| 免费黄网站久久成人精品| 高清视频免费观看一区二区| 国内少妇人妻偷人精品xxx网站| 一级毛片 在线播放| 王馨瑶露胸无遮挡在线观看| 中文字幕制服av| 久久久久久久久久成人| 午夜福利在线在线| a级毛片免费高清观看在线播放| 99久久精品国产国产毛片| 欧美高清性xxxxhd video| 伦精品一区二区三区| 日韩,欧美,国产一区二区三区| av天堂中文字幕网| 2022亚洲国产成人精品| 日本av免费视频播放| 99热国产这里只有精品6| av免费在线看不卡| 国产精品一及| 男女边吃奶边做爰视频| 日本av手机在线免费观看| 久久97久久精品| 最后的刺客免费高清国语| 韩国高清视频一区二区三区| 国产高清三级在线| 国产精品99久久久久久久久| 男的添女的下面高潮视频| 中国三级夫妇交换| 精品一区二区三区视频在线| 国产一区二区三区综合在线观看 | 久久久久性生活片| 夫妻性生交免费视频一级片| 男女边吃奶边做爰视频| 中文字幕免费在线视频6| 成人亚洲欧美一区二区av| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产色片| 老师上课跳d突然被开到最大视频| 黄色配什么色好看| 少妇人妻久久综合中文| 91在线精品国自产拍蜜月| 亚洲人成网站在线播| 99视频精品全部免费 在线| 大片电影免费在线观看免费| 韩国高清视频一区二区三区| 夜夜看夜夜爽夜夜摸| 精品久久久久久久久av| 如何舔出高潮| 成年美女黄网站色视频大全免费 | 久久99热这里只有精品18| 亚洲四区av| 欧美变态另类bdsm刘玥| av免费观看日本| 好男人视频免费观看在线| 亚洲国产毛片av蜜桃av| 欧美精品一区二区免费开放| 日本一二三区视频观看| 伊人久久精品亚洲午夜| 日韩三级伦理在线观看| 在线免费观看不下载黄p国产| 欧美+日韩+精品| 99久久精品热视频| 少妇熟女欧美另类| 熟女电影av网| 深爱激情五月婷婷| 精品一区二区三卡| 亚洲美女视频黄频| 少妇 在线观看| 日本黄色日本黄色录像| 亚洲内射少妇av| 成年免费大片在线观看| 身体一侧抽搐| 嫩草影院新地址| 涩涩av久久男人的天堂| 亚洲精品久久久久久婷婷小说| 黄色怎么调成土黄色| av在线app专区| 日韩av不卡免费在线播放| 嫩草影院新地址| 久久久a久久爽久久v久久| 亚洲av日韩在线播放| 国产精品精品国产色婷婷| 亚洲美女搞黄在线观看| 免费高清在线观看视频在线观看| 中文字幕精品免费在线观看视频 | 久久97久久精品| 国产一区有黄有色的免费视频| 国产黄色免费在线视频| 夜夜骑夜夜射夜夜干| 国产在线男女| 搡女人真爽免费视频火全软件| 女性被躁到高潮视频| 久久久久久久久久成人| 国产男人的电影天堂91| 热re99久久精品国产66热6| 欧美区成人在线视频| 一级毛片电影观看| av黄色大香蕉| 国产精品偷伦视频观看了| 美女脱内裤让男人舔精品视频| 黑人猛操日本美女一级片| 欧美 日韩 精品 国产| 岛国毛片在线播放| 美女主播在线视频| 国产av国产精品国产| 亚洲精品456在线播放app| 伦理电影免费视频| 爱豆传媒免费全集在线观看| 婷婷色综合www| 亚洲美女搞黄在线观看| 国产精品.久久久| 日日啪夜夜撸| 久久6这里有精品| 老女人水多毛片| 人妻夜夜爽99麻豆av| 丰满乱子伦码专区| 久热久热在线精品观看| 网址你懂的国产日韩在线| 免费不卡的大黄色大毛片视频在线观看| 国产精品久久久久成人av| 中文字幕亚洲精品专区| 色综合色国产| 日韩三级伦理在线观看| 午夜激情福利司机影院| 亚洲人成网站在线观看播放| 我的老师免费观看完整版| 一本色道久久久久久精品综合| 亚洲色图综合在线观看| 亚洲精品中文字幕在线视频 | 一本久久精品| av黄色大香蕉| 国产av码专区亚洲av| 日本vs欧美在线观看视频 | 久久久色成人| 亚洲第一av免费看| 我的老师免费观看完整版| 亚洲精品色激情综合| 国产老妇伦熟女老妇高清| 国产色婷婷99| 交换朋友夫妻互换小说| 色哟哟·www| 天堂俺去俺来也www色官网| 国产熟女欧美一区二区| 亚洲精品久久午夜乱码| 国产av一区二区精品久久 | 18禁动态无遮挡网站| 制服丝袜香蕉在线| 久久97久久精品| 午夜免费观看性视频| 久久久成人免费电影| 一级黄片播放器| 全区人妻精品视频| 免费观看性生交大片5| 99久久精品一区二区三区| 亚洲怡红院男人天堂| 久久久久性生活片| 国产乱人视频| 一本一本综合久久| 成人亚洲欧美一区二区av| 国产综合精华液| 日韩视频在线欧美| 18禁裸乳无遮挡动漫免费视频| 久热久热在线精品观看| av播播在线观看一区| 热99国产精品久久久久久7| 国产在线免费精品| 国产精品女同一区二区软件| 国产成人午夜福利电影在线观看| 有码 亚洲区| videos熟女内射| 一区在线观看完整版| a 毛片基地| av天堂中文字幕网| 国产黄片视频在线免费观看| av视频免费观看在线观看| 最近最新中文字幕免费大全7| 美女视频免费永久观看网站| 免费高清在线观看视频在线观看| 国产黄色视频一区二区在线观看| 亚洲av日韩在线播放| 大片免费播放器 马上看| 日日摸夜夜添夜夜添av毛片| 精品午夜福利在线看| 国产91av在线免费观看| 久久国产乱子免费精品| 少妇人妻精品综合一区二区| 日韩欧美 国产精品| 久久青草综合色| 国产在线一区二区三区精| 男女免费视频国产| 国产男人的电影天堂91| 亚洲欧美一区二区三区国产| 久热这里只有精品99| 欧美性感艳星| 国产精品熟女久久久久浪| 久久久精品免费免费高清| 亚洲一区二区三区欧美精品| 激情 狠狠 欧美| 国产v大片淫在线免费观看| 欧美区成人在线视频| 狂野欧美激情性xxxx在线观看| 亚洲成人一二三区av| 亚洲色图av天堂| 国产精品av视频在线免费观看| 成人无遮挡网站| 免费人成在线观看视频色| 国产乱人视频| 少妇猛男粗大的猛烈进出视频| 韩国高清视频一区二区三区| 亚洲欧美成人精品一区二区| 亚洲精品久久久久久婷婷小说| 啦啦啦在线观看免费高清www| 一本久久精品| 成人综合一区亚洲| 街头女战士在线观看网站| 女性被躁到高潮视频| 人体艺术视频欧美日本| 王馨瑶露胸无遮挡在线观看| 久久女婷五月综合色啪小说| 美女内射精品一级片tv| 黄色日韩在线| 嫩草影院入口| 黄色日韩在线| 一区二区三区免费毛片| 亚洲成人av在线免费| 久久精品久久精品一区二区三区| 亚洲国产精品999| 国产精品免费大片| 久久这里有精品视频免费| 精品午夜福利在线看| 涩涩av久久男人的天堂| 最近最新中文字幕免费大全7| 高清毛片免费看| 22中文网久久字幕| 校园人妻丝袜中文字幕| 亚洲国产毛片av蜜桃av| 中文欧美无线码| 久久人人爽人人片av| 91久久精品电影网| 亚洲欧美中文字幕日韩二区| 欧美精品一区二区大全| 国产美女午夜福利| 亚洲精品视频女| 国产人妻一区二区三区在| 永久网站在线| 男人爽女人下面视频在线观看| 日本-黄色视频高清免费观看| 丰满少妇做爰视频| 国产精品久久久久久久电影| 毛片女人毛片| 亚洲av日韩在线播放| 网址你懂的国产日韩在线| 日本av手机在线免费观看| 人妻一区二区av| 成人漫画全彩无遮挡| 亚洲精华国产精华液的使用体验| 国产精品精品国产色婷婷| 欧美高清成人免费视频www| 成人特级av手机在线观看| 午夜免费观看性视频| 2018国产大陆天天弄谢| 久热这里只有精品99| 一边亲一边摸免费视频| 精品一品国产午夜福利视频| 激情五月婷婷亚洲| 亚洲精品一二三| 搡老乐熟女国产| 国产又色又爽无遮挡免| 亚洲av电影在线观看一区二区三区| 18+在线观看网站| 成人特级av手机在线观看| 午夜视频国产福利| 国产精品一区二区在线不卡| 亚洲,欧美,日韩| 少妇裸体淫交视频免费看高清| 欧美人与善性xxx| 视频中文字幕在线观看| 大香蕉久久网| 国模一区二区三区四区视频| 一级毛片黄色毛片免费观看视频| 女性被躁到高潮视频| 在线看a的网站| 日韩亚洲欧美综合| 国产高潮美女av| 成年人午夜在线观看视频| 制服丝袜香蕉在线| 熟女人妻精品中文字幕| 日产精品乱码卡一卡2卡三| 丝袜脚勾引网站| 久久热精品热| 国产亚洲一区二区精品| 日韩中字成人| 尤物成人国产欧美一区二区三区| 久久久久视频综合| 中文字幕久久专区| 国产亚洲最大av| 18+在线观看网站| 国产精品精品国产色婷婷| 麻豆成人av视频| 亚洲精品久久午夜乱码| 亚洲成色77777| 成人无遮挡网站| 肉色欧美久久久久久久蜜桃| 国产人妻一区二区三区在| 久久热精品热| 热re99久久精品国产66热6| 亚洲熟女精品中文字幕| 免费黄网站久久成人精品| 99久久精品热视频| 精品久久久噜噜| 少妇的逼好多水| av视频免费观看在线观看| 国产高清国产精品国产三级 | 国产精品免费大片| 日韩成人伦理影院| 亚洲,一卡二卡三卡| 女性生殖器流出的白浆| 亚洲va在线va天堂va国产| 制服丝袜香蕉在线| 亚洲精品第二区| 黄片无遮挡物在线观看| 在线亚洲精品国产二区图片欧美 | 亚洲欧美精品专区久久| 欧美 日韩 精品 国产| 搡女人真爽免费视频火全软件| 国产日韩欧美亚洲二区| 又粗又硬又长又爽又黄的视频| 在线观看免费视频网站a站| 日韩强制内射视频| 看免费成人av毛片| 一本久久精品| 天天躁夜夜躁狠狠久久av| 三级国产精品片| 免费观看a级毛片全部| 99热这里只有精品一区| 中国三级夫妇交换| 人妻 亚洲 视频| 国产精品一区二区在线不卡| 国产在线免费精品| 国产亚洲精品久久久com| 男的添女的下面高潮视频| 麻豆乱淫一区二区| 久久久久精品久久久久真实原创| 老女人水多毛片| 高清av免费在线| 97超碰精品成人国产| 日本爱情动作片www.在线观看| 亚洲av二区三区四区| 国产亚洲精品久久久com| 欧美精品人与动牲交sv欧美| 亚洲av综合色区一区| 日韩不卡一区二区三区视频在线| 国产一区有黄有色的免费视频| 亚洲国产欧美人成| 一个人看视频在线观看www免费| 美女福利国产在线 | 免费观看无遮挡的男女| 高清午夜精品一区二区三区| 国产精品一区www在线观看| 国产精品偷伦视频观看了| 中文字幕免费在线视频6| 十分钟在线观看高清视频www | 久久鲁丝午夜福利片| 97热精品久久久久久| 午夜福利网站1000一区二区三区| 欧美丝袜亚洲另类| 亚洲欧洲国产日韩| 黄色欧美视频在线观看| 久久综合国产亚洲精品| 亚洲成人av在线免费| 国产精品久久久久久精品电影小说 | 一个人免费看片子| 黑人高潮一二区| 久久久精品免费免费高清| 色视频在线一区二区三区| .国产精品久久| 国产淫片久久久久久久久| 免费人妻精品一区二区三区视频| 国产精品久久久久久久久免| 我的女老师完整版在线观看| 国产av一区二区精品久久 | 亚洲精华国产精华液的使用体验| 少妇猛男粗大的猛烈进出视频| 精品熟女少妇av免费看| 日韩一区二区三区影片| 亚洲国产av新网站| 久久久精品免费免费高清| 精品少妇久久久久久888优播| 色网站视频免费| 亚洲国产精品成人久久小说| 亚洲精品日韩av片在线观看| 在线观看人妻少妇| 亚洲精品国产成人久久av| www.av在线官网国产| 我要看黄色一级片免费的| 国产高潮美女av| 免费看日本二区| 日韩大片免费观看网站| 在线播放无遮挡| 嫩草影院入口| 日韩一本色道免费dvd| 18禁动态无遮挡网站| 一级毛片 在线播放| 另类亚洲欧美激情| 六月丁香七月| 男女边摸边吃奶| 国产91av在线免费观看| 九色成人免费人妻av| 在线精品无人区一区二区三 | 亚洲av中文av极速乱| 熟妇人妻不卡中文字幕| 日本猛色少妇xxxxx猛交久久| 国产探花极品一区二区| 日本一二三区视频观看| 国产精品成人在线| 极品少妇高潮喷水抽搐| 亚洲精品国产成人久久av| 三级经典国产精品| 熟女人妻精品中文字幕| 国内揄拍国产精品人妻在线| 久久这里有精品视频免费| 国产高清有码在线观看视频| 我的老师免费观看完整版| 亚洲精品456在线播放app| 黑人高潮一二区| 久久久久久久久久成人| 午夜福利影视在线免费观看| 日本与韩国留学比较| videos熟女内射| 狂野欧美激情性xxxx在线观看| 少妇高潮的动态图| 简卡轻食公司| 少妇被粗大猛烈的视频| 成人综合一区亚洲| 嫩草影院新地址| 日本黄大片高清| 欧美丝袜亚洲另类| 日韩大片免费观看网站| 日韩成人伦理影院| 最后的刺客免费高清国语| 国产精品国产三级专区第一集| 亚洲人成网站在线播| 国产亚洲午夜精品一区二区久久| 色综合色国产| 人妻少妇偷人精品九色| 精品国产三级普通话版| 人妻 亚洲 视频| 91在线精品国自产拍蜜月| 成人毛片60女人毛片免费| 特大巨黑吊av在线直播| 麻豆国产97在线/欧美| 国产成人精品福利久久| 精品午夜福利在线看| 高清视频免费观看一区二区| 免费观看的影片在线观看| 午夜福利在线在线| 老女人水多毛片| 超碰av人人做人人爽久久| 日本-黄色视频高清免费观看| 男人狂女人下面高潮的视频| 2018国产大陆天天弄谢| 亚洲色图av天堂| 亚洲精品第二区| 亚洲av.av天堂| 91狼人影院| 2021少妇久久久久久久久久久| 亚洲熟女精品中文字幕| 成人一区二区视频在线观看| 国产精品久久久久久av不卡| 2022亚洲国产成人精品| 久久久a久久爽久久v久久| 久久久久久久精品精品| 欧美精品一区二区大全| 99久久人妻综合| 丰满迷人的少妇在线观看| 免费观看在线日韩| 18禁动态无遮挡网站| 国国产精品蜜臀av免费| av天堂中文字幕网| 热re99久久精品国产66热6| xxx大片免费视频| 黄色一级大片看看| 亚洲欧美日韩另类电影网站 | 九九爱精品视频在线观看| 久久ye,这里只有精品| 全区人妻精品视频| 晚上一个人看的免费电影| 九色成人免费人妻av| 欧美最新免费一区二区三区| 久久精品久久久久久久性| 亚洲av福利一区| 久久久久久久久久久免费av| 麻豆精品久久久久久蜜桃| 在线观看三级黄色| 看十八女毛片水多多多| 天堂俺去俺来也www色官网| 国产亚洲91精品色在线| 亚洲av二区三区四区| 性色av一级| 免费久久久久久久精品成人欧美视频 | 亚洲真实伦在线观看| 国产色爽女视频免费观看| 国产av国产精品国产| 亚洲精品视频女| 亚洲人成网站高清观看| 国产免费视频播放在线视频| 国产亚洲5aaaaa淫片| 黄色欧美视频在线观看| 欧美成人a在线观看| 蜜臀久久99精品久久宅男| 黄色欧美视频在线观看| 99久久综合免费| 街头女战士在线观看网站| 久久精品熟女亚洲av麻豆精品| 亚洲婷婷狠狠爱综合网| 欧美日韩在线观看h| h视频一区二区三区| 插阴视频在线观看视频| 3wmmmm亚洲av在线观看| 97超碰精品成人国产| 久久久久网色| 少妇人妻久久综合中文| 国产成人freesex在线|