• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises

    2022-08-31 09:56:08GangZhang張剛YuJieZeng曾玉潔andZhongJunJiang蔣忠均
    Chinese Physics B 2022年8期
    關(guān)鍵詞:張剛

    Gang Zhang(張剛) Yu-Jie Zeng(曾玉潔) and Zhong-Jun Jiang(蔣忠均)

    1School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications(CQUPT),Chongqing 400065,China

    2Cyberspace Administration of Guizhou Province,Guiyang 550000,China

    Keywords: bearing fault detection,weak signal detection,piecewise linear symmetric tri-stable system,output signal-noise-ratio,adaptive genetic algorithm

    1. Introduction

    With the rapid development of mechanical fault detection technology,weak signal detection has become an important means of extracting fault characteristic signals,[1,2]but in many practical applications, fault signals are completely submerged in strong background noise. The low signal-tonoise ratio (SNR) makes traditional fault detection methods ineffective. Therefore,the effective extraction of fault signals in strong background noise is of great significance for practical engineering applications.[3,4]Traditional signal detection methods include wavelet decomposition,[5]ensemble empirical mode decomposition,[6]singular value decomposition,[7]etc. These methods are used mainly to detect signals by removing or suppressing noise, but the signals themselves are also suppressed to a certain extent at the same time. In view of this, the stochastic resonance(SR) first proposed by Benziet al.,[8]in 1981 can convert noise energy into signal energy without damaging the signal. Therefore,the SR has become a typical noise-enhancing signal method,which has been widely used in weak signal detection so far.[9]

    In recent years, many scholars have conducted extensive researches of the classical bistable stochastic resonance system(CBSR)and achieved remarkable results,but the CBSR is only suitable for small parameters that satisfy the adiabatic approximation conditions.[10]In practical applications, the adiabatic approximation conditions cannot be satisfied because most of signals are large parameters and submerged in strong background noise. In order to achieve the better detection results and solve the practical problems in engineering applications, many scholars have conducted in-depth researches of SR systems. Lenget al.[11]proposed a second-sampling SR method, which compresses the collected signal and realizes SR through a nonlinear system. Wanget al.[12]proposed a detection method to reduce the correlation among system parameters through a special construction. The tri-stable model proposed by Zhanget al.[13]and Wanget al.[14]is applicable to the case of high noise in weak signal detection, and can better detect the early faults of rotating machinery under strong background noise conditions. Qiaoet al.[15]proposed an improved fractional-order SR model that can not only suppress the multiscale noise embedded in the signal,but also better characterize performance. An unsaturated piecewise system that solves the problem of system output saturation was proposed.[16–18]An SR system was applied to the bearing fault detection,and it was found that system parameters have great influence on system performance.[19–22]Hanet al.[23]derived the escape rate for particles by means of first passage time(MFPT).The system parameters are optimized by genetic algorithm in Refs.[24,25].

    Moreover, most of the noise detected by weak signals is ideal Gaussian white noise, which cannot represent the random noise generated by non-anthropogenic activities in nature,[26]and its waveform has significant impulsive and trailing characteristics. In order to accurately simulate noise in various fields, stochastic resonance induced by Levy noise has attracted the attention of scholars in recent years. Jiaoet al.[27]studied the stochastic resonance phenomenon of asymmetric monostable systems under different Levy stable noise environments. Guet al.[28]systematically analyzed the mean first-passage time of asymmetric bistable system under Levy noise.

    Although some research progress of weak signal detection as mentioned above has been made,further analysis shows that these systems only achieve single performance improvement by increasing the number of steady states or changing the structure of the potential function. Therefore, in order to solve the problem of output saturation and improve the output SNR of the system,a piecewise linear symmetric tri-stable random resonant system is proposed in this work. Firstly,under the premise of the adiabatic approximation theory, the SNR is deduced, and the influence of each parameter of the system on the SNR is analyzed,which is helpful in achieving the optimal detection effect. Then,in order to verify the practicality of the project,numerical simulation is introduced,and the simulation result is compared with that from the classical tristable stochastic resonance system(CTSR).In order to optimize the system parameters, an adaptive genetic algorithm is used to optimize the system parameters globally. Finally,the PLSTSR is applied to the bearing fault detection in Gaussian white noise and Levy noise,and the detection results are compared with the CTSR.

    The rest of this paper is organized as follows. In Section 2 the CTSR and the PLSTSR proposed in this paper are described, and their saturation characteristics are discussed.In Section 3,the Kramers escape rate,MFPT and SNR of the PLSTSR are deduced and the effects of parameters on them are analyzed. Also the unsaturation of PLSTSR is proven and the adaptive genetic algorithm is introduced. In Section 4,the ability of PLSTSR to detect low-frequency, high-frequency,and multi-frequency signals in Gaussian white noise environment are verified. In Section 5, the practicability of the PLSTSR detection technology is verified through two bearing experiments under Gaussian white noise. In Section 6 the bearing fault detection capability of PLSTSR under Levy noise is proved, and its engineering application value is verified.In Section 7 some conclusions are drawn from the present research.

    2. PLSTSR model

    The dynamic equation of the classic stochastic resonance system is shown below.

    Fig.1. Potential function of CTSR.

    It can be seen from Fig. 2, the system parameters exert large influences on the shape of the potential function. The changing ofm1,k1, andm2affect the change inU2,L2,U1respectively. Since the potential function of the PLSTSR is composed of 6 straight lines,the steepness of the barrier wall can be adjusted arbitrarily according to the system parameters.AsU(x)increases,xalso increases linearly,so the system does not saturate.

    Fig.2. Potential function of PLSTSR.

    A cosine signals(t)=0.2cos(2π×0.01t) is simulated under no noise, and the output signal waveform of the CTSR and the PLSTSR are shown in Fig.3 and Fig.4 respectively.

    It can be seen from Fig. 3 that when the value ofAincreases from 0.2 to 0.4,the amplitude of the output signal increases significantly, and whenA>0.4, with the increase ofA,the amplitude of the output signal does not increase significantly, and it is maintained at around 1.5, the system is saturated. Figure 4 shows that as the input signal amplitude increases, the output signal amplitude increases proportionally,thus avoiding output saturation. Comparing Fig.3 with Fig.4,under the same input signal amplitude, the output signal amplitude of Fig.4 is much larger than that of Fig.3,indicating that the PLSTSR has better signal amplification capabilities than the CTSR.

    Fig.4. Output signal of PLSTSR.

    3. SNR of PLSTSR

    The output SNR is the method that is most commonly used to evaluate the performance of stochastic resonance system. Kramers escape rate and adiabatic approximation theory are used to derive the SNR of PLSTSR.Thep1(t),p2(t),andp3(t) are the residence probabilities of Brownian particles at the three stable points at timet. Ther12(t),r21(t),r23(t),andr32(t)are Kramers escape rates between stable points,respectively.TheT12,T21,T23,andT32represent the MFPTs of particles between two stable points respectively.[23]TheR12(t),R21(t),R23(t), andR32(t) are the probabilities of the particle transition between stable points at timet, respectively. According to Refs.[29,30],Taylor series expansion is performed on them under the condition of adiabatic approximation and the first term is taken as shown in Eqs.(6)and(7).

    The MFPT can describe the difficulty of particle transition between potential wells,which can affect the occurrence of SR.Equation(6)shows thatT12andT32are only related tom2,m3,k1,andk2;T21,andT23are only related tom1andk1,;the curves of MFPT under parametersm1,m2,m3,k1,andk2are shown in Figs.5 and 6

    Fig.5. Variations of MFPT(v1 →v2)with D: (a)lnT12 changes with m2,(b)lnT12 changes with m3,(c)lnT12 changes with k1,(d)lnT12 changes with k2.

    Fig.6. Variations of MFPT(v2 →v1)with D: (a)lnT21 changes with m1,(b)lnT21 changes with k1.

    It can be seen from Figs. 5 and 6 that with the increase of noise intensity,the MFPT first gradually decreases and then tends to be stable,which indicates that the noise intensity can promote the transition of particles between potential wells,thereby generating stochastic resonance. Figure 5 show that MFPT(v1→v2)increases with the increase ofm2andk2and decreases with the increase ofm3andk1,indicating that the appropriate reduction ofm2andk2or appropriate increase ofm3andk1can promote the potential of particles from both sides.In Fig.6 that with the increase ofm1andk1,MFPT(v1→v2)increases, indicating that the appropriate reduction ofm2andk2can promote the transition of particles from the middle potential well to the potential wells on both sides.[30]

    Equations(6)and(7)can be expressed by Eq.(8)and Eq.(9)respectively.

    Substituting Eqs.(10)and(11)into Eq.(9),the linear ordinary differential method is used to solve the three-way homogeneous differential equation as given below

    From Eq.(12),using the conditional probability theorem,the conditional probability shown in Eq.(14)can be obtained below.

    According to the properties of transition probability in a symmetric system,equation(16)can be obtained as

    The output power of the signal can be obtained by the Fourier transform of autocorrelation function Eq.(18)below

    3.1. Parameter selection

    According to Eq.(20),the parameters can exert great influence on the value of SNR and determine the performance of the system. So it is necessary to study the influence of system parameters on the system. Lets(t)=0.2cos(2π×0.01t),then the relationship between SNR,noise intensity and system parameters will be shown in Figs.7–12.

    In Fig.7,the PLSTSR has the characteristics of the classical stochastic resonance system. Given other parameters are fixed,with the increase of the noise intensity,the SNR shows a trend first increasing and then decreasing,where the appearing of the peak indicates that the stochastic resonance has occurred.

    Fig.7. The change of SNR in PLSTSR with D.

    Fig.8. SNR versus D and m1.

    Fig.9. SNR versus D and m2.

    Fig.10. SNR versus D and m3.

    It can be seen from Figs. 8–10, and 12 that withDand some parameters fixed,the SNR of the PLSTSR first increases and then decreases with any of the parametersm1,m2,m3,k2increasing, and its peak value also increases as parameterDincreases. Figure 11 shows that the SNR first increases and then decreases with the increase of parameterk1,which means that there is a traditional SR phenomenon. Unlike the changes of other parameters, the SNR increases with parameterk1increasing, but the position and size of the peak do not change as shown in Fig.9.

    Fig.11. SNR versus D and k1.

    Fig.12. SNR versus D and k2.

    3.2. Adaptive genetic algorithm(GA)

    The above conclusions are all analyzed and discussed with part of the parameters fixed, but the coordinates of system parameters can also affect the performance of the system.Therefore, it is necessary to optimize these parameters. For example,many optimization algorithms such as adaptive iterative algorithm are only suitable for optimizing a small number of parameters. If there are too many parameters, then problems of insufficient precision and too high a computational complexity appear. However,the PLSTSR has 5 parameters,which is not suitable for the adaptive iterative algorithm.The adaptive genetic algorithm that simulates the biological genetic process has the advantages of multi-parameter optimization and high parameter accuracy.[24,25]Therefore,in this work the adaptive genetic algorithm is adopted to optimize the parameters. The SNR is used as the fitness function and the crossover operators such as those described Eq.(21)are used to construct the exclusive operator inX′=X+?.

    The flowchart of GA is shown in Fig.11. Subsequent parameter optimization is based on a population size of 400, a genetic generation of 200, and a crossover probability of 0.4.The mutation probability of the PLSTSR is 0.1 and the mutation probability of the CTSR is 0.4.

    Fig.13. Flowchart of adaptive genetic algorithm.

    4. Numerical simulation

    4.1. Comparative analysis

    In order to further prove the performance of PLSTSR,the fourth-order Runge–Kutta algorithm is used to simulate the periodic signals(t) = 0.2cos(2π×0.01t) in the Gaussian white noise environment, and the SNR is used as a measure.[32]Its definition is shown as follows:

    The optimal parameters of the PLSTSR are obtained by using the adaptive genetic algorithm:m1=2,m2=3,m3=3.5,k1=1,andk2=2. The optimal parameters of the CTSR area1=1,b1=2,andc1=0.1. After the 10th degree polynomial fitting,the SNR curve is obtained as shown in Fig.14.In Fig.14,with the increase ofD,the SNR for each of the two systems shows a trend first increasing and then decreasing,indicating a typical stochastic resonance phenomenon, but the peak value of the PLSTSR is larger,no matter whether the ambient noise is strong or weak,the value of SNR is larger than that of the CTSR,which proves the superiority of the PLSTSR.

    Fig.14. Comparison of SNR between PLSTSR and CTSR.

    4.2. Weak signal detection

    In order to further verify the performance of PLSTSR in signal detection,single-frequency signals(low-frequency signal and high-frequency signal)and multi-frequency signals are input into PLSTSR respectively, and the time-domain waveform and spectrum of the output signal are observed and compared with those in the case of CTSR.

    4.2.1. Single-frequency signal detection

    4.2.1.1. Low-frequency signal detection

    The low-frequency signals(t)=0.2cos(2π×0.01t)and the Gaussian white noise ofD= 0.8 are used. The optimal parameters of the CTSR are given below:a1=0.4819,b1= 1.0028, andc1= 0.4003. The optimal parameters of the PLSTSR arem1= 0.0085,m2= 0.0489,m3= 0.1605,k1=0.2539,andk2=0.3316. Figures 15 and 16 are the time domains and spectrum waveforms of the input and output signals,respectively.

    Fig.15. Time domain waveforms of input and output signals: (a)low-frequency cosine input signal,(b)low-frequency cosine input signal with noise,(c)CTSR output signal,(d)PLSTSR output signal.

    Fig. 16. Powers spectrum of input signal and output signals: (a) low-frequency cosine input signal, (b) low-frequency cosine input signal with noise, (c)CTSR output signal,(d)PLSTSR output signal.

    4.2.1.2. High-frequency signal detection

    The high-frequency signals(t)=0.2cos(2π×11.5t) and the Gaussian white noise ofD=0.8 are used. The optimal parameters of CTSR area1=1.3007,b1=0.5162, andc1=0.0418. The optimal parameters of PLSTSR arem1=0.0651,m2=0.6589,m3=0.4605,k1=0.2653,andk2=0.4816. Figures 17 and 18 are the time domains and spectrum waveforms of the input and output signals,respectively.

    Fig.17. Time domain waveforms of input and output signals. (a)High-frequency cosine input signal,(b)high-frequency cosine input signal with noise,(c)CTSR output signal,(d)PLSTSR output signal.

    Fig.18.Power spectra of input signal and output signals:(a)high-frequency cosine input signal,(b)high-frequency cosine input signal with noise,(c)CTSR output signal,(d)PLSTSR output signal.

    4.2.2. Multi-frequency signal detection

    The multi-frequency signals(t)=0.1cos(2π×0.01t)+0.2cos(2π×0.03t)+0.3cos(2π×0.05t)and the Gaussian white noise ofD=0.8 are used. The optimal parameters of CTSR area1=0.2819,b1=0.7632, andc1=0.5118. The optimal parameters of PLSTSR arem1=0.0158,m2=0.0169,m3=0.3558,k1=0.2169,andk2=0.4308. Figures 19 and 20 are the time domains and spectrum waveforms of the input and output signals,respectively.

    Fig.19. Time domain waveforms of input and output signals: (a)multi-frequency input signal,(b)multi-frequency input signal with noise,(c)CTSR output signal,(d)PLSTSR output signal.

    Fig. 20. Power spectra of input signal and output signals: (a) multi-frequency input signal, (b) multi-frequency input signal with noise, (c) CTSR output signal,(d)PLSTSR output signal.

    4.2.3. Summary

    As can be seen from Figs.15–20,the PLSTSR can detect low-frequency,high-frequency,and multi-frequency signals well,indicating wide range of applications. Compared with the CTSR,the PLSTSR has very high output signal amplitude and signalto-noise ratio as shown in Tables 1 and 2.

    Table 1. Comparison of performance between different systems in weak signal detection.

    Table 2. Comparison of SNR between different systems in weak signal detection.

    5. Bearing fault detection under Gaussian white noise

    5.1. Bearing the fault detection for 6205-2RS JEM SKF model

    To prove the great potential of the PLSTSR proposed in this paper in practical engineering applications,the CTSR and PLSTSR are used to detect the bearing fault data of Case Western Reserve University(CWRU).The bearing model is 6205-2RS JEM SKF, and the experimental workbench is shown in Fig. 21. The main parameters are shown in Table 3.[33,34]Since the adiabatic approximation theory needs to satisfy the condition of small parameters,the stochastic resonance is generated by the method of second-sampling. The sampling frequency isfs=12000 Hz, the number of sampling points isN=10000, and the secondary sampling frequency isfsr=5 Hz. In order to improve the fault detection performance of the system,an adaptive genetic algorithm is used to obtain the optimal parameters. By comparing the consistency between the characteristic frequency and the detection frequency,it can be judged whether a fault occurs. The calculation of the characteristic frequency is shown in Eq.(23).

    wherefr=29.9 Hz is the rotational frequency of the bearing. By substituting the data in Table 3 into Eq. (23), the fault frequencies of the inner and outer rings of the bearing can be calculated to befBPFI=162.2 Hz andfBPFO=107.3 Hz,respectively. Secondly, the sampling frequency is set to befs=12000 Hz, the sampling pointN=10000 and the secondary sampling frequencyfsr=5 Hz to preprocess the fault signal so as to meet the adiabatic approximation condition.

    Fig.21. 6205-2RS JEM SKF deep groove ball bearing test device.

    5.1.1. Inner ring fault detection

    Figures 22(a)and 23(a)show the time–frequency diagram of the 6205-2RS JEM SKF inner ring bearing fault signal. Figures 22(b)and 23(b)are time–frequency diagrams of the fault signal after adding Gaussian white noise. Figures 22(c)and 22(d)and figures 23(c)and 23(d)show the time–frequency diagrams of the output signals of the CTSR and PLSTSR respectively. The optimal parameters of the CTSR area1=2.4876,b1=1.1249, andc1=0.003. The optimal parameters of the PLSTSR arem1=0.4312,m2=1.4347,m3=1.0996,k1=0.0342,andk2=0.0838.

    Fig. 22. Time domain waveforms of input and output signals: (a) inner ring fault input signal, (b) inner ring fault signal with noise (D=0.2), (c) CTSR output signal,(d)PLSTSR output signal.

    Fig.23. Power spectra of input signal and output signals: (a)inner ring fault input signal,(b)inner ring fault signal with noise,(c)CTSR output signal,(d)PLSTSR output signal.

    It can be seen from Figs. 22(c) and 22(d) that the amplitude of the time domain waveform of the output signal of PLSTSR is significantly larger than that of the CTSR,and the periodicity is stronger. Figures 23(c)and 23(d)show the peak of PLSTSR and CTSR atf=162 Hz(relative error is 0.12%),which are 8.748 and 32.21 respectively, so the PLSTSR is 23.462 higher than that of CTSR. The SNRs of the two systems are?13.0787 dB and?10.8274 dB respectively,and the PLSTSR is 2.2513 dB higher than the CTSR,which proves the advantage of the PLSTSR in fault signal detection.

    5.1.2. Outer ring fault detection

    Figures 24(a) and 25(a) show the time–frequency diagram of the 6205-2RS JEM SKF outer ring bearing fault signal. Figures 24(b) and 25(b) show the time–frequency diagrams of the fault signal after adding Gaussian white noise.Figures 24(c) and 24(d) and Figs. 25(c) and 25(d) show the time–frequency diagram of the output signals of the CTSR and PLSTSR respectively. The optimal parameters of the CTSR area1=0.1507,b1=0.5291,andc1=0.3201. The optimal parameters of the PLSTSR arem1= 1.9598,m2= 1.3831,m3=5.6892,k1=3.5269,andk2=4.0129.

    It can be seen from Fig. 24 that the time domain waveform of the PLSTSR output signal has stronger periodicity and larger output amplitude. It can be seen from Figs. 25(c)and 25(d) that the spectral peaks of the output signals of the two systems are both atf= 108 Hz (relative error is 0.65%), but the spectral peak of the CTSR output signal is only 2.419,while the spectral peak of the PLSTSR output signal is 1269.The SNR of PLSTSR and CTSR are?14.2030 dB and?5.5644 dB,respectively,and the PLSTSR is 7.6389 dB higher than the CTSR.

    Fig. 24. Time domain waveforms of input and output signals: (a) outer ring fault input signal, (b) outer ring fault signal with noise (D=0.8), (c) CTSR output signal,(d)PLSTSR output signal.

    Fig.25. Power spectra of input signal and output signals: (a)outer ring fault input signal,(b)outer ring fault signal with noise(D=0.8),(c)CTSR output signal,(d)PLSTSR output signal.

    5.2. Bearing fault detection under LDK UER204 model

    Currently, the experimental data which are widely used by many scholars of SR are the CWRU bearing fault data public set. Therefore, in order to verify the applicability of the PLSTSR in different scenarios, the national public data LDK UER204-type bearing is selected for the experiment. The experimental device is shown in Fig.26. The bearing structural parameters[35]are shown in Table 4. The sampling frequency is set to befs=25600 Hz,sampling pointN=20000,and the theoretical value of outer ring fault frequency is calculated to bef=107.91 Hz. Since the signal does not meet the adiabatic approximation condition either, the secondary sampling frequency is set to befsr=5 Hz.

    Fig.26. LDK UER204 bearing test device.

    Table 4. Main data of LDK UER204 bearing.

    5.2.1. Outer ring fault detection

    Figures 27(a)and 28(a)show the time–frequency diagram of the LDK UER204 bearing fault signal. Figures 27(b) and 28(b) show the time–frequency diagrams of the fault signal after adding noise. Figure 27(c) and 27(d) and figures 28(c)and 28(d) show the time–frequency diagrams of the output signals of the CTSR and PLSTSR, respectively. The optimal parameters of the CTSR area1=0.1007,b1=2.6162,andc1=0.0418. The optimal parameters of the PLSTSR arem1=1.1512,m2=1.0547,m3=1.3156,k1=0.4354, andk2=0.5677.

    Fig. 27. Time domain waveforms of input and output signals: (a) outer ring fault input signal, (b) outer ring fault signal with noise (D=0.2), (c) CTSR output signal,(d)PLSTSR output signal.

    Fig. 28. Power spectra of input signal and output signals: (a) outer ring fault input signal, (b) CTSR output signal, (c) PLSR output signal, (d) PLSTSR output signal.

    From Figs. 28(a) and 28(b), it can be seen that the fault frequency cannot be identified by directly using Fourier transform to obtain the power spectrum of the original fault signal nor the noise-added fault signal. In Figs.28(c)and 28(d),the spectral peaks of both systems are atf=107.5 Hz(relative error is 0.38%)with peaks of 0.3402 and 5.75 respectively. The SNR of the two systems are?23.1750 dB and?20.2316 dB,respectively. The PLSTSR is improved by 2.9434 dB relative to CTSR.Obviously,the PLSTSR has a larger peak and SNR,less noise interference which makes it easier to detect the fault signal.

    6. Bearing fault detection under Levy noise

    Since Gaussian white noise is an ideal noise and cannot effectively simulate the actual noise in engineering practice,non-Gaussian Levy noise is introduced in order to be more similar to the random noise in the actual engineering environment.

    6.1. Levy noise

    The characteristic function expression of Levy noise[36]is shown as follows:

    where is the characteristic parameter,which determines the smearing characteristics and impulse characteristics of its distribution.The smearing characteristics of the noise turns stronger as increases,and the impulse characteristics becomes weaker as increases.The is a symmetry parameter, which determines the symmetry of the distribution. is the scale parameter, and represents the position parameter,which determines the center position of the distribution.

    The random variables of Levy noise are generated by the Chambers–Mallows–Stuck(CMS)method.

    where the random variablesVandWare independent of each other,V ∈(?π/2,π/2) obeys a uniform distribution,Wfollows an exponential distribution with a mean of 1, andCα,β= arctan(βtan(πα/2))/α,Dα,β,σ=σ[cos(arctan(βtan(πα/2)))]?1/α.

    6.2. Bearing fault detection under LDK UER204 model

    In order to verify the ability of PLSTSR to detect th bearing fault under Levy noise, the same LDK UER204 type of bearing as that in the previous section is selected. The sampling frequency is set to befs=25600 Hz, sampling pointN=20000, and the theoretical value of outer ring fault frequency is calculated to befout=107.91 Hz. Since the signal does not meet the adiabatic approximation condition either,the secondary sampling frequency is set to befsr=5 Hz.

    Figures 29(a) and 30(a) show the time–frequency diagrams of the LDK UER204 bearing fault signal, and figures 29(b) and 30(b) display the time–frequency diagrams of the fault signal after adding Levy noise. None of the characteristic frequencies of the fault signals can be identified. Figures 29(c) and 29(d) and figures 30(c) and 30(d) show the time–frequency diagrams of the output signals of the CTSR and PLSTSR, respectively. The optimal parameters of the CTSR area1=0.7112,b1=1.562,andc1=0.2311.The optimal parameters of the PLSTSR arem1=4.4652,m2=5.0647,m3=9.0956,k1=1.3354,andk2=1.6697.

    Fig.29. Time domain waveforms of input and output signals. (a)Outer ring fault input signal, (b)outer ring fault signal with noise(D=0.2), (c)CTSR output signal,(d)PLSTSR output signal.

    Fig.30. Power spectra of input signal and output signals: (a)outer ring fault input signal,(b)outer ring fault signal with noise,(c)CTSR output signal,(d)PLSTSR output signal.

    Comparing spectra among Figs. 30(a)–30(d), only the spectral peak of PLSTSR output signal is located atf=107.5 Hz (relative error is 0.38%), the CTSR cannot detect fault frequency well in Levy noise environment. Although the noise utilization rate of PLSTSR is not ideal, the fault frequency can still be detected. The SNR at fault frequency is?19.8919 dB,and the relative input SNR is also improved by 25.684 dB,which proves the engineering application value of PLSTSR.

    7. Conclusions and perspectives

    In this work,the PLSTSR is proposed and applied to the detecting of low-frequency, high-frequency, multi-frequency signal,and bearing fault under Gaussian white noise and Levy noise. The PLSTSR is introduced, its saturation is verified,and the Kramers escape rate and MFPT are derived. Then,using the SNR as a measure,the influence of system parameters on the SNR is analyzed.Some conclusions are drawn from the present research as follows.

    (i)PLSTSR overcomes the saturation of CTSR,improves the system output SNR,and amplifies the signal amplitude.

    (ii) The adaptive genetic algorithm optimizes the system parameters collaboratively,so that the results can achieve global optimization.

    (iii) The PLSTSR can detect low-frequency, highfrequency and multi-frequency signals well, and its SNR and output amplitude are better than those of the CTSR.

    (iv) The PLSTSR is applied to the bearing fault detection of two scenarios under the Gaussian white noise, which eliminates the chance that the proposed system is only suitable for a certain bearing. The experimental results show that the PLSTSR has better large output amplitude and SNR.It is proved that the system has good theoretical significance and practical value. The details are shown in Table 5.

    (v) The PLSTSR and CTSR are applied to detecting of bearing fault under the Levy noise, which proves that the PLSTSR can also detect fault signals in a noise environment closer to engineering scenario,while the CTSR cannot detect fault signals. The specific test results are listed in Table 5.

    Table 5. Comparison of performances among different systems in bearing fault detection.

    The system proposed in this paper is a one-dimensional system. Subsequent research will apply the potential function of PLSTSR to a two-dimensional system or an underdamped system,and judge its superiority in performance.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 61771085), the Research Project of Chongqing Educational Commission,China(Grant Nos. KJ1600407 and KJQN201900601), and the Natural Science Foundation of Chongqing, China (Grant No.cstc2021jcyj-msxmX0836).

    猜你喜歡
    張剛
    Visualizing and witnessing first-order coherence,Bell nonlocality and purity by using a quantum steering ellipsoid in the non-inertial frame
    Steering quantum nonlocalities of quantum dot system suffering from decoherence
    2022年高考模擬試題(三)
    層林盡染
    HeTDSE:A GPU based program to solve the full-dimensional time-dependent Schr¨odinger equation for two-electron helium subjected to strong laser fields*
    最萌“海拔差”:我要給你一個(gè)“補(bǔ)齊的幸?!?/a>
    最萌“海拔差”:我要給你一個(gè)“補(bǔ)齊的幸?!?/a>
    Implementation Scheme of Two-Photon Post-Quantum Correlations?
    數(shù)列最值問題的求解策略
    活用課本習(xí)題
    最近的中文字幕免费完整| 国产真实伦视频高清在线观看| 国产精品无大码| 国产成人精品婷婷| 国产精品熟女久久久久浪| 蜜桃久久精品国产亚洲av| 欧美变态另类bdsm刘玥| 亚洲激情五月婷婷啪啪| 久久久精品欧美日韩精品| 国产淫片久久久久久久久| 高清在线视频一区二区三区| 国产成人一区二区在线| 亚洲精品日韩av片在线观看| 久久ye,这里只有精品| 久久久久久久久久久丰满| 精品国产乱码久久久久久小说| 青春草亚洲视频在线观看| 熟女人妻精品中文字幕| 91精品一卡2卡3卡4卡| 亚洲精品aⅴ在线观看| 国产精品国产三级国产av玫瑰| 色播亚洲综合网| 亚洲精品456在线播放app| 久久亚洲国产成人精品v| 国内精品美女久久久久久| 色吧在线观看| 嫩草影院入口| 成人鲁丝片一二三区免费| 成人一区二区视频在线观看| 午夜福利高清视频| 自拍欧美九色日韩亚洲蝌蚪91 | 日本-黄色视频高清免费观看| 搡女人真爽免费视频火全软件| av国产精品久久久久影院| 99热全是精品| 在线播放无遮挡| 久久精品人妻少妇| 美女xxoo啪啪120秒动态图| 97精品久久久久久久久久精品| 国产欧美日韩精品一区二区| 国产亚洲5aaaaa淫片| 男女边吃奶边做爰视频| 成年免费大片在线观看| 欧美日本视频| 免费看a级黄色片| av一本久久久久| 一个人观看的视频www高清免费观看| 啦啦啦中文免费视频观看日本| 亚洲熟女精品中文字幕| 我的女老师完整版在线观看| 国产一区亚洲一区在线观看| 欧美日韩视频精品一区| 亚洲第一区二区三区不卡| av线在线观看网站| 免费电影在线观看免费观看| 国产男人的电影天堂91| 一区二区三区四区激情视频| 插阴视频在线观看视频| 在现免费观看毛片| 麻豆成人午夜福利视频| 欧美高清性xxxxhd video| 亚洲丝袜综合中文字幕| 亚洲最大成人中文| 日本免费在线观看一区| 男的添女的下面高潮视频| 国产黄色免费在线视频| 国产精品成人在线| 亚洲美女视频黄频| 综合色av麻豆| 春色校园在线视频观看| 女人被狂操c到高潮| 丝袜喷水一区| 人妻一区二区av| .国产精品久久| 日韩一本色道免费dvd| 搡女人真爽免费视频火全软件| 欧美另类一区| 18禁在线无遮挡免费观看视频| 日韩 亚洲 欧美在线| 久久久久久久大尺度免费视频| 欧美97在线视频| 色综合色国产| 一级毛片 在线播放| 日本一二三区视频观看| 久久久精品免费免费高清| 男女啪啪激烈高潮av片| 免费观看性生交大片5| 又爽又黄无遮挡网站| 亚洲人成网站在线观看播放| 亚洲av中文av极速乱| 99九九线精品视频在线观看视频| 熟妇人妻不卡中文字幕| 成人亚洲欧美一区二区av| 99久久精品热视频| 亚洲精品国产av成人精品| 国产大屁股一区二区在线视频| 午夜福利在线观看免费完整高清在| 亚洲av免费在线观看| 热99国产精品久久久久久7| 中文字幕久久专区| 亚洲成人精品中文字幕电影| 好男人视频免费观看在线| 国产 一区 欧美 日韩| 插逼视频在线观看| 又大又黄又爽视频免费| 亚洲最大成人手机在线| 91精品一卡2卡3卡4卡| 国产 一区精品| 女人十人毛片免费观看3o分钟| 亚洲国产成人一精品久久久| 99久久九九国产精品国产免费| 少妇被粗大猛烈的视频| av国产久精品久网站免费入址| 久久精品国产亚洲av天美| 欧美+日韩+精品| 少妇丰满av| 卡戴珊不雅视频在线播放| 尤物成人国产欧美一区二区三区| 我的老师免费观看完整版| 男女国产视频网站| 午夜精品国产一区二区电影 | 一区二区av电影网| 男人爽女人下面视频在线观看| a级一级毛片免费在线观看| 亚洲真实伦在线观看| 免费观看性生交大片5| 别揉我奶头 嗯啊视频| 最近中文字幕2019免费版| 成人国产av品久久久| 欧美区成人在线视频| 免费不卡的大黄色大毛片视频在线观看| av女优亚洲男人天堂| 亚洲欧美成人精品一区二区| 精品一区二区免费观看| 97精品久久久久久久久久精品| 内射极品少妇av片p| 亚洲欧洲国产日韩| 狂野欧美激情性bbbbbb| 国产欧美日韩精品一区二区| 国产成人精品久久久久久| 久久久午夜欧美精品| 99久久精品一区二区三区| 白带黄色成豆腐渣| 亚洲av国产av综合av卡| 少妇人妻 视频| 国产精品秋霞免费鲁丝片| 午夜亚洲福利在线播放| 国产美女午夜福利| av线在线观看网站| kizo精华| 国产女主播在线喷水免费视频网站| 精品国产乱码久久久久久小说| 国产亚洲一区二区精品| 韩国高清视频一区二区三区| 精品视频人人做人人爽| 亚洲欧美一区二区三区黑人 | 国产女主播在线喷水免费视频网站| 久久99精品国语久久久| 日韩av免费高清视频| 亚洲va在线va天堂va国产| 久久精品国产鲁丝片午夜精品| 一个人看视频在线观看www免费| 国内精品美女久久久久久| 国内揄拍国产精品人妻在线| 欧美性感艳星| 男人和女人高潮做爰伦理| 久久久久久久久久久丰满| 十八禁网站网址无遮挡 | 免费黄网站久久成人精品| 亚洲国产精品999| 国内少妇人妻偷人精品xxx网站| 一级毛片 在线播放| 18禁在线无遮挡免费观看视频| 久久久久久久国产电影| 久久久亚洲精品成人影院| 91在线精品国自产拍蜜月| 国产综合懂色| 亚洲精品久久久久久婷婷小说| 久久韩国三级中文字幕| 黄色欧美视频在线观看| 久久久久精品久久久久真实原创| 少妇熟女欧美另类| 国产精品久久久久久久电影| 最近中文字幕高清免费大全6| 国产精品麻豆人妻色哟哟久久| 亚洲av中文av极速乱| 男男h啪啪无遮挡| 男人添女人高潮全过程视频| 国产精品av视频在线免费观看| 亚洲精品日本国产第一区| 久久久久久久久久成人| 九色成人免费人妻av| 特大巨黑吊av在线直播| 亚洲一区二区三区欧美精品 | 国产女主播在线喷水免费视频网站| 久久久久久久精品精品| 日韩欧美一区视频在线观看 | 亚洲熟女精品中文字幕| 狂野欧美激情性bbbbbb| 夜夜看夜夜爽夜夜摸| 欧美性猛交╳xxx乱大交人| 亚洲精品一区蜜桃| 亚洲av中文av极速乱| 久久午夜福利片| 欧美变态另类bdsm刘玥| xxx大片免费视频| 亚洲成人一二三区av| 欧美xxⅹ黑人| 天天躁日日操中文字幕| 人妻一区二区av| 国产成年人精品一区二区| 又爽又黄无遮挡网站| 制服丝袜香蕉在线| 国模一区二区三区四区视频| 天天一区二区日本电影三级| 久久久精品94久久精品| 成人美女网站在线观看视频| 亚洲国产av新网站| 免费看av在线观看网站| 男女边摸边吃奶| 少妇猛男粗大的猛烈进出视频 | 一区二区三区四区激情视频| 国产探花在线观看一区二区| 日韩精品有码人妻一区| 热re99久久精品国产66热6| 欧美日韩一区二区视频在线观看视频在线 | 久久99热这里只有精品18| 一级黄片播放器| 大陆偷拍与自拍| 青春草亚洲视频在线观看| 国产色爽女视频免费观看| 国产精品成人在线| 免费黄色在线免费观看| 高清午夜精品一区二区三区| 午夜免费鲁丝| 亚洲欧美成人精品一区二区| 一级a做视频免费观看| 日韩伦理黄色片| 欧美一区二区亚洲| 最近2019中文字幕mv第一页| 99热这里只有是精品50| 22中文网久久字幕| 一个人观看的视频www高清免费观看| 久久这里有精品视频免费| 久久久成人免费电影| 99热全是精品| 日韩人妻高清精品专区| 能在线免费看毛片的网站| 国产伦理片在线播放av一区| 激情五月婷婷亚洲| 成年女人在线观看亚洲视频 | 日韩电影二区| 少妇人妻 视频| 建设人人有责人人尽责人人享有的 | 国产成人午夜福利电影在线观看| 亚洲国产精品专区欧美| 成人二区视频| 只有这里有精品99| 少妇人妻精品综合一区二区| 国产女主播在线喷水免费视频网站| 91精品伊人久久大香线蕉| 赤兔流量卡办理| 99久久中文字幕三级久久日本| 美女视频免费永久观看网站| 久久精品人妻少妇| 国产精品一区www在线观看| av天堂中文字幕网| 少妇猛男粗大的猛烈进出视频 | 97热精品久久久久久| 国产毛片在线视频| 成人漫画全彩无遮挡| 夜夜爽夜夜爽视频| 成人国产av品久久久| 久热这里只有精品99| 国产黄片美女视频| 国内揄拍国产精品人妻在线| 亚洲aⅴ乱码一区二区在线播放| 国产精品一区www在线观看| 亚洲精品日本国产第一区| 免费人成在线观看视频色| 国产免费福利视频在线观看| 一级片'在线观看视频| 丰满少妇做爰视频| 又黄又爽又刺激的免费视频.| 22中文网久久字幕| 超碰av人人做人人爽久久| 老女人水多毛片| 亚洲av国产av综合av卡| 好男人视频免费观看在线| 免费av观看视频| 亚洲精品色激情综合| 下体分泌物呈黄色| 久久久久国产网址| 九色成人免费人妻av| 中文字幕免费在线视频6| 交换朋友夫妻互换小说| av国产精品久久久久影院| 免费少妇av软件| 神马国产精品三级电影在线观看| 少妇猛男粗大的猛烈进出视频 | 免费观看在线日韩| 国产精品精品国产色婷婷| 丝瓜视频免费看黄片| 亚洲av国产av综合av卡| 久久午夜福利片| 欧美高清成人免费视频www| av免费在线看不卡| 男人狂女人下面高潮的视频| 天堂中文最新版在线下载 | 国产成人a区在线观看| 久久国产乱子免费精品| 午夜老司机福利剧场| 亚洲精品一区蜜桃| 亚洲精品日韩在线中文字幕| 啦啦啦中文免费视频观看日本| 午夜免费观看性视频| 精品国产乱码久久久久久小说| 免费黄色在线免费观看| 成人亚洲精品一区在线观看 | 又大又黄又爽视频免费| 老司机影院成人| 色5月婷婷丁香| 亚洲美女视频黄频| 国产 精品1| 黄色日韩在线| 九色成人免费人妻av| 国产高清国产精品国产三级 | 天堂俺去俺来也www色官网| 看黄色毛片网站| 成人黄色视频免费在线看| 日日摸夜夜添夜夜爱| 亚洲色图av天堂| 免费不卡的大黄色大毛片视频在线观看| 在线 av 中文字幕| 亚洲精华国产精华液的使用体验| 搡女人真爽免费视频火全软件| 亚洲精品日本国产第一区| 中文资源天堂在线| 亚洲怡红院男人天堂| 成年人午夜在线观看视频| 国产精品99久久久久久久久| 99热国产这里只有精品6| 国产亚洲精品久久久com| 午夜免费男女啪啪视频观看| 日韩不卡一区二区三区视频在线| 丝瓜视频免费看黄片| 又大又黄又爽视频免费| 久久精品国产鲁丝片午夜精品| 欧美日韩精品成人综合77777| 国产精品久久久久久精品古装| 2021天堂中文幕一二区在线观| 午夜激情福利司机影院| 只有这里有精品99| 一级av片app| 国产一区二区三区av在线| 日本黄色片子视频| 五月伊人婷婷丁香| av线在线观看网站| 丰满人妻一区二区三区视频av| 国产大屁股一区二区在线视频| 亚洲av.av天堂| 在线观看人妻少妇| 亚洲国产精品专区欧美| 日本一本二区三区精品| 五月玫瑰六月丁香| 久久这里有精品视频免费| 国产精品三级大全| 80岁老熟妇乱子伦牲交| av在线天堂中文字幕| 国产毛片在线视频| 欧美zozozo另类| 欧美激情久久久久久爽电影| videossex国产| 美女脱内裤让男人舔精品视频| 插阴视频在线观看视频| 麻豆久久精品国产亚洲av| 能在线免费看毛片的网站| 久久亚洲国产成人精品v| 精品久久国产蜜桃| 国产色爽女视频免费观看| 亚洲av成人精品一二三区| 干丝袜人妻中文字幕| 亚洲精品视频女| 下体分泌物呈黄色| 精品熟女少妇av免费看| 天天躁日日操中文字幕| 内射极品少妇av片p| a级毛片免费高清观看在线播放| 久久久a久久爽久久v久久| 日韩不卡一区二区三区视频在线| 色视频www国产| 日韩av在线免费看完整版不卡| 99久久精品国产国产毛片| h日本视频在线播放| 最近中文字幕高清免费大全6| 国产成人午夜福利电影在线观看| 亚洲伊人久久精品综合| 国产精品国产三级国产专区5o| 国产精品国产三级专区第一集| 国产视频内射| 91aial.com中文字幕在线观看| 女人被狂操c到高潮| av免费观看日本| 内地一区二区视频在线| 亚洲精品乱久久久久久| av专区在线播放| 久久ye,这里只有精品| 麻豆成人av视频| 69人妻影院| 亚洲成色77777| 日韩免费高清中文字幕av| 亚洲av日韩在线播放| 国产美女午夜福利| 中文欧美无线码| 成人亚洲精品av一区二区| 日韩不卡一区二区三区视频在线| 亚洲人成网站高清观看| 综合色av麻豆| 免费大片黄手机在线观看| 国产精品久久久久久av不卡| 国产成人精品久久久久久| 熟女人妻精品中文字幕| 亚洲欧美日韩无卡精品| 欧美成人午夜免费资源| 国产精品人妻久久久影院| 成人欧美大片| 国产综合精华液| 大香蕉久久网| 最近手机中文字幕大全| 亚洲精品乱码久久久久久按摩| 天堂俺去俺来也www色官网| 精品久久久久久久久亚洲| 别揉我奶头 嗯啊视频| 国产一区亚洲一区在线观看| 国产精品人妻久久久久久| 久久99热这里只频精品6学生| 卡戴珊不雅视频在线播放| 欧美老熟妇乱子伦牲交| 哪个播放器可以免费观看大片| 欧美高清性xxxxhd video| 日韩大片免费观看网站| 赤兔流量卡办理| 午夜亚洲福利在线播放| 亚洲成人av在线免费| 国产亚洲av嫩草精品影院| 午夜福利网站1000一区二区三区| 韩国av在线不卡| 黄片wwwwww| 国产日韩欧美亚洲二区| 色哟哟·www| 91狼人影院| 久久韩国三级中文字幕| 身体一侧抽搐| 国产69精品久久久久777片| 亚洲欧洲国产日韩| 男女无遮挡免费网站观看| 激情 狠狠 欧美| 人妻制服诱惑在线中文字幕| 春色校园在线视频观看| 午夜福利在线在线| 亚洲精品乱码久久久v下载方式| 亚洲精品色激情综合| 午夜免费男女啪啪视频观看| 91久久精品国产一区二区成人| 大陆偷拍与自拍| 国产精品一区www在线观看| 91aial.com中文字幕在线观看| 丝瓜视频免费看黄片| 亚洲av福利一区| 免费av观看视频| 一二三四中文在线观看免费高清| 精品熟女少妇av免费看| 免费黄色在线免费观看| 日韩精品有码人妻一区| 日韩电影二区| 久久精品久久精品一区二区三区| 免费观看在线日韩| 久久99热6这里只有精品| 草草在线视频免费看| 亚洲av成人精品一区久久| 嫩草影院精品99| 白带黄色成豆腐渣| 在线免费十八禁| 国产一区二区三区av在线| 精品人妻一区二区三区麻豆| 综合色av麻豆| 人人妻人人澡人人爽人人夜夜| 亚洲精品日本国产第一区| av播播在线观看一区| 尤物成人国产欧美一区二区三区| 久久久精品94久久精品| 久久久久久久久久久免费av| 国产人妻一区二区三区在| av免费观看日本| 男女那种视频在线观看| 深爱激情五月婷婷| 在线天堂最新版资源| 免费黄色在线免费观看| 国产精品秋霞免费鲁丝片| 国产欧美日韩精品一区二区| 女人十人毛片免费观看3o分钟| 制服丝袜香蕉在线| 国产精品伦人一区二区| 亚洲av免费在线观看| 国产伦理片在线播放av一区| 91在线精品国自产拍蜜月| 成年版毛片免费区| 简卡轻食公司| 国内揄拍国产精品人妻在线| 国产欧美日韩精品一区二区| 亚洲aⅴ乱码一区二区在线播放| 三级国产精品欧美在线观看| 又爽又黄无遮挡网站| 欧美日韩在线观看h| 下体分泌物呈黄色| 日韩av不卡免费在线播放| 女的被弄到高潮叫床怎么办| av又黄又爽大尺度在线免费看| 中国美白少妇内射xxxbb| 日韩欧美精品免费久久| av在线观看视频网站免费| 亚洲国产精品国产精品| 激情 狠狠 欧美| 色网站视频免费| 狂野欧美白嫩少妇大欣赏| 久久精品久久久久久噜噜老黄| 男女无遮挡免费网站观看| av国产精品久久久久影院| 三级国产精品欧美在线观看| 18禁动态无遮挡网站| xxx大片免费视频| 特级一级黄色大片| 大香蕉97超碰在线| 免费高清在线观看视频在线观看| 九九爱精品视频在线观看| 有码 亚洲区| 看免费成人av毛片| 下体分泌物呈黄色| 草草在线视频免费看| 国产精品国产av在线观看| 国产成人a∨麻豆精品| 男女边摸边吃奶| 久久久久久久久久久丰满| 国产高清国产精品国产三级 | 日韩一本色道免费dvd| 性色av一级| 日韩制服骚丝袜av| 国产精品国产av在线观看| 国模一区二区三区四区视频| 久久99精品国语久久久| 男女那种视频在线观看| 久久99热这里只频精品6学生| 人妻夜夜爽99麻豆av| 欧美极品一区二区三区四区| 欧美国产精品一级二级三级 | 亚洲在久久综合| 好男人在线观看高清免费视频| av国产免费在线观看| 日韩电影二区| 嫩草影院入口| 一区二区三区精品91| 观看免费一级毛片| 亚洲成色77777| 18禁裸乳无遮挡免费网站照片| 午夜日本视频在线| 老女人水多毛片| 久久久久久久精品精品| 成人毛片a级毛片在线播放| 狠狠精品人妻久久久久久综合| 有码 亚洲区| 免费av不卡在线播放| 日韩一区二区三区影片| 最近最新中文字幕免费大全7| 高清视频免费观看一区二区| 亚洲精品日本国产第一区| 又大又黄又爽视频免费| 欧美高清成人免费视频www| 美女cb高潮喷水在线观看| 免费高清在线观看视频在线观看| 观看免费一级毛片| 国产视频首页在线观看| 熟女电影av网| 一级av片app| 国产精品三级大全| 欧美区成人在线视频| 男人狂女人下面高潮的视频| 精品久久国产蜜桃| 99视频精品全部免费 在线| 热re99久久精品国产66热6| 2018国产大陆天天弄谢| 国产男女超爽视频在线观看| 超碰97精品在线观看| 色哟哟·www| 九九在线视频观看精品| 超碰97精品在线观看| 精品久久国产蜜桃| 九九在线视频观看精品| 香蕉精品网在线| 欧美少妇被猛烈插入视频| 色网站视频免费| 嘟嘟电影网在线观看| 欧美国产精品一级二级三级 | 三级经典国产精品| a级毛色黄片| 国产国拍精品亚洲av在线观看| 久久久久久久久久久免费av| 色视频www国产| 麻豆国产97在线/欧美| 插逼视频在线观看| 91精品国产九色| av一本久久久久| 日本黄大片高清| 女的被弄到高潮叫床怎么办| 大码成人一级视频| 亚洲欧美成人精品一区二区|