• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Non-adiabatic quantum dynamical studies of Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction?

    2019-06-18 05:42:22YuePeiWen溫月佩BayaerBuren布仁巴雅爾andMaoDuChen陳茂篤
    Chinese Physics B 2019年6期
    關(guān)鍵詞:雅爾

    Yue-Pei Wen(溫月佩),Bayaer Buren(布仁巴雅爾),and Mao-Du Chen(陳茂篤)

    Key Laboratory of Materials Modi fication by Laser,Electron,and Ion Beams(Ministry of Education),School of Physics,Dalian University of Technology,Dalian 116024,China

    Keywords:time-dependent wave packet method,non-adiabatic reaction,integral cross section,differential cross section

    1.Introduction

    The reactions of excited-state alkali atoms with hydrogen molecule have received much attention because of their unique advantages for studying non-adiabatic processes in reaction dynamics.[1-17]As the most intriguing characteristic,the alkali-hydrogen reactions are highly endoergic in their ground state.The energy to initiate the reaction is easily achieved via electronic excitation of the alkali atom,therefore the transitions of electronic states necessarily occur when the reaction proceeds from the excited entrance valley to the ground exit valley.[13]

    For the Na+H2→NaH+H reaction,several excited states(32P,42S,42P,32D,and 62S)of sodium atom were considered in previous studies.Regarding the collision of Na(32P)+H2,both quenching[17-24](Na(3p)+H2→Na(3s)+H2)and reactive[15-20](Na(3p)+H2→NaH+H)processes were investigated.Motzkus et al.[15]demonstrated twostep collision process for the formation of sodium hydride from the collision of Na(3p)+H2,where the vibrationally excited hydrogen molecule from first quenching process plays a signi ficant role.The rate for NaH formation was determined by rate-equation-model based on the two-step reaction model,and other reaction schemes were ruled out.Regarding the Na(4p)+H2→NaH+H reaction,Bililign et al.[1,2]observed a bimodal rotational state distribution for the NaH products,which was attributed to the two different reaction pathways.The side-on-attack mechanism leads to highly rotationally excited products,while the end-on-attack mechanism generates products with low-rotational excitation.Motzkus et al.[17]performed comparative studies for the two previous reactions using several nonlinear techniques.Consequently,vibrational state distributions of NaH from two reactions were determined.The time scale of NaH formation revealed that the Na(4p)+H2→NaH+H reaction is direct.Chang et al.[4]obtained rotational and vibrational state distributions of NaH from the reactions of Na(42S,32D and 62S)plus H2.A bimodal rotational feature was found in the 42S and 32D reaction,which is similar to the 42P reaction.However,rotationally cold but vibrationally hot product population was found in the 62S reaction which was explained by the collinear abstraction mechanism.The results conclude that the increasing atomic size of Na may hinder the insertion reaction mechanism.

    In this work,we intend to investigate the dynamics of the Na(3p)+HD(ν =1,j=0)→ NaH/NaD+D/H reaction.The reaction involves two coupled potential energy surfaces(PESs),thus diabatic PESs should be considered in the dynamical calculations.Recently,a new set of highly accurate diabatic PESs(called WYYC[16]PESs)of the NaH2system was developed by Wang et al.[16]and the dynamic studies were carried out for the Na(3p)+H2(ν =0,j=0)→ NaH+H reaction.For dynamical calculations of state-to-state reactions,the quasi-classical-trajectory[25-28]method and timedependent wave packet[29-37](TDWP)method have been used widely.The TDWP method has unique advantage for the dynamical study of non-adiabatic reactions.In the present work,the dynamical calculations of the Na(3p)+HD(ν=1,j=0)→NaH/NaD+D/H reaction are carried out by using TDWP method based on the WYYC diabatic PESs.The rest of this paper is organized as follows.A brief description regarding TDWP method is presented in Section 2.Dynamic results and detailed discussion are performed in Section 3.Fi-nally,some conclusions are drawn from the present study in Section 4.

    2.TDWP method

    The TDWP method is particularly powerful for studying the dynamics of state-to-state reactions and has been used to study many atom-diatom reactions[29-32]and reactions involving polyatom.[33-37]This method is also effective to study the dynamic of non-adiabatic reactions,[10,16,32]which involve several coupled PESs.The basic principle of the TDWP method is to solve the time-dependent Schr¨odinger equation.The initial wave packet containing all the information about reactants propagates on the PES,and the dynamic information can be extracted from total wave function after propagating for enough time.The solution of wave function at time t is given by

    For an atom-diatom reaction of A+BC→AB+C,the timeindependent Hamiltonian operator in the body- fixed reactant Jacobi coordinates R(distance of A from the center of mass of BC),r(bond length of BC)and γ(the angle between R and r)can be written as

    The initial wave function ψ(t=0)can be written as

    where|JMj0l0ε〉ε isthespace- fixed rotational basis,G(R)isa Gaussian wave packet,and φv0j0(r)is the rovibrational eigenfunction of the BC molecule.

    The second order split operator[38]is used to propagate the wave packet.During the propagation of the wave packet,the absorbing potential expressed by the R and r coordinate is used to avoid the re flection of the wave packet from the boundaries.The absorbing potential used in the TDWP calculations is in the following form:

    where x represents the R or r coordinate;xa,xb,and xendare the positions of absorbing potentials;Ca,Cb,and n determines the strength of the absorbing potential.

    After propagating for enough time,the state-to-state S-matrix SJεvjK←v0j0K0(E)is obtained by using the reactant coordinate-based(RCB)[40]method.

    The state-to-state reaction probability is obtained by using

    The state-to-state integral cross section(ICS)is calculated from

    where kυ0j0is the momentum in the entrance channel.The state-to-state differential cross section(DCS)is obtained from

    where θ is the scattering angle,and dJKK0(θ )is the reduced Wigner rotation matrix.

    For a non-adiabatic reaction correlated with two electronic states,diabatic PESs should be considered in the TDWP calculations.The,r,γ)in Eq.(2)can be written as a 2×2 Hermitian matrix

    In this work,the WYYC[16]diabatic PESs are employed in the TDWP dynamical calculations for the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction.A more detailed description regarding the TDWP method can be found in the relevant literature.[39-42]

    3.Results and discussion

    In this work,state-to-state quantum dynamical calculations of the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H re-action are carried out by using the TDWP method.The initial rotational-vibrational states of reagent are set to be v0=1,and j0=0.The full Coriolis-coupling is involved in the TDWP calculations.A lot of tests were carried out on the reaction probability of different total angular momentum values to obtain appropriate numerical parameters for the TDWP calculations,which are listed in Table 1.The state-to-state reaction probabilities,ICSs and DCSs are calculated for two reaction channels.

    For the non-adiabatic Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction,electronic states of reactants and products correlate with the first excited and ground electronic states of NaH2system,respectively.This indicates that the transition between two electronic states occurs along the reaction path.In the present work,the WYYC[16]diabatic PESs are used in the TDWP calculations.Regarding the WYYC[16]PESs,the ab initio single-point energy is calculated by the multi-reference con figuration interaction method with large basis sets(cc-pw-CVQZ for Na atom and aug-cc-PVQZ for H atom),and the neural network method is used to fit the PESs.The V22surface of WYYC[16]PESs connects elecelectronicstates of reactant and products of the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction.Therefore,the initial wave packet is constructed on the V22surface and product information was collected at the V22surface after propagating for enough time in the TDWP calculations.For a better description of the non-adiabatic dynamics in the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction,a schematic energy diagram of the reactants and products is shown in Fig.1 based on the WYYC[16]PESs.Blue and red lines represent V11and V22surface of WYYC[16]diabatic PESs,respectively.The cross of V11and V22curves indicates the transition between two electronic states along the reaction path.As seen from product energy diagram,the product channel of NaD+H opens easier than that of NaH+D,because vibrational constant of NaD molecule is smaller than that of NaH.There still exists a threshold in reaction when HD is excited to v=1 state;however,the threshold disappears when HD is excited above the v=2 state.Moreover,it should be noted that there is a potential well along the reaction path,which may generate a longlived complex.A more detailed description regarding WYYC diabatic PESs could be found in Ref.[16].

    Table 1.Numerical parameters used in TDWP calculations.

    Fig.1.Energy diagram of reactants,products,and the most possible reaction path on WYYC diabatic PESs.Blue and red line represent V11 andV22elements of WYYC PESs,respectively.

    The reaction probabilities of two reaction channels from the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction are shown in Fig.2 each as a function of collision energy at several selected J values.Many oscillation peaks are found in reaction probability curves,which can be attributed to the dynamical resonances.The reaction threshold becomes larger and the values of reaction probabilities decrease as the J value increases,which is attributed to the increasing centrifugal potential energy in the total Hamiltonian.Due to the fact that the increased centrifugal potential energy can reduce the depth of potential well in the reaction path,the oscillations in the reaction probabilities gradually subside as the J value increases.In addition to these similarities,there are also some differences in reaction probability between two reaction channels.The reaction threshold of NaD+H channel(almost 0.186 eV)is lower than that of NaH+D channel(almost 0.206 eV)because of the difference in zero-energy point between NaD(almost 0.057 eV)and NaH(almost 0.077 eV)molecule.This is consistent with the energy diagram as shown in Fig.1.Moreover,the threshold of the J=60 partial wave for the NaD+H product channel is approximately 0.45 eV,which is higher than that of NaH+D product channel(approximately 0.4 eV).The convergence of reaction probability for the NaD+H channel is faster than that of NaH+D channel,which may be attributed to the different reduced mass in centrifugal potential at product Jacobi coordinates.

    Fig.2.The reaction probabilities of the two reaction channels for Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction at several selected J values.

    The state-to-state ICSs and DCSs are calculated for collision energy up to 0.4 eV based on the convergence of reaction probability at the maximum value of J.The total and product vibrationally state-resolved ICSs of two product channels from the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction are shown in Fig.3.The ICS curves are very smooth and increase monotonically as the collision energy increases.The vibrationally excited products rise with the increase of collision energy.Due to the vibrational constant of NaD being smaller than that of NaH,the opened channels for NaD+H are more than for NaH+D.Thresholds of ICSs are consistent with those shown in the reactant and product energy diagram.From the product’s vibrational state-resolved ICSs,the NaD and NaH products both prefer to form in the vibrational ground state in the whole range of the calculated collision energy.As seen from total ICSs,the NaD+H reaction channel opens easier than the NaH+D reaction channel.However,the NaH+D channel gradually overtakes the dominant position as collision energy increases.To clarify this competition,the cross-section branching ratio ICS(NaH)/ICS(NaD) is shown in Fig.4as a function of collision energy. At low collision energy(<0.227 eV),branching ratio is lower than 1.0 and increases monotonically with collision energy increasing.For high collision energy(>0.227 eV),branching ratio is larger than 1.0 and fluctuates around 1.3.Therefore,the NaD+H product channel is dominant in the Na(3p)+HD(v=1)reaction at low collision energy(<0.227 eV),and it is surpassed by NaH+D channel as collision energy increases.A similar competition between two reaction channels was found in the Au+HD reaction[43]anditwas explainedas thefactthattheDatomcan easily get away from the potential well because of its larger mass than that of the H atom.This explanation is also applicable to the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction.

    Fig.3.Total and product vibrational state-resolved ICSs of two reaction channels for Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction.

    Fig.4.The cross-section branching ratio ICS(NaH)/ICS(NaD)of the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction versus collision energy.

    To obtain more details regarding energy distribution of products from the Na(3p)+HD(v=1)reaction,rotational state distributions of products at some values of selected collision energy are shown in Fig.5.Only vibrational ground state products are depicted in Fig.5 because products primarily form in the vibrational ground state,as mentioned above.As seen from Fig.5,products of two reaction channels both prefer to form in rotationally excited states that are different from the vibrationally exited states.The product rotational states’distributions become broader and the maximum populations of j′become larger as collision energy increases.The rotational state distribution of NaD is broader than that of NaH and the maximum population of j′in the NaD is larger than that in the NaH at the same collision energy.This is attributed to fact that the rotational constant of NaD is smaller than that of NaH,therefore,the more the channels are opened for NaD,the larger the product rotational state density will be than that of NaH at the same collision energy.

    Fig.5. Rotational state distributions of products from the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction respectively at four values of collision energy(0.25,0.30,0.35,and 0.40 eV).

    The three-dimensional total DCSs of two reaction channels from the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction are shown in Fig.6.There are many peaks at extreme angles 0°and 180°which are corresponding to forward and backward scattering,respectively.The products of two reaction channels both prefer forward scattering,especially at low collision energy.Signi ficant forward scattering peaks reveal that the reaction is dominated by the direct reaction mechanism.Small backward scattering peaks rise as the collision energy increases,which may be attributed to the opening collinear abstraction reaction channel.To understand the information regarding product scattering direction in depth,the product state-resolved angular distributions of two product channels at several values of selected collision energy are shown in Fig.7.The forward scattering products from the NaH+D channel are mainly at lower rotational states(j′< 5).However,the forward scattering products from the NaD+H channel each have a wide rotational state distribution.The forward scattering products from two reaction channels both can be excited to higher rotational excited states as the collision energy increases,which is consistent with the above discussion.Moreover,many oscillations are found along the scattering angle.A similar phenomenon was observed in the H+HD→H2+D reaction,[44]and the observed forward angular oscillations were explained by the contribution of partial waves.The period Δθ in the angular oscillation can be used to estimate which J partial wave has primary contribution by using J=180°/Δθ -1/2.[44]As seen from Fig.7,the period Δθ decreases as the collision energy increases.This indicates that the J value of partial wave contributing to the oscillations increases as the collision energy increases.

    Fig.6. Three-dimensional DCSs of two reaction channels for Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction versus collision energy and scattering angle.

    Fig.7.State-to-state DCSs of two reaction channels for Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction at three collision energies(0.3,0.35,and 0.4 eV).

    4.Conclusions

    In this work,the dynamics of the non-adiabatic Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction are investigated using the TDWP method.The state-to-state reaction probabilities,ICSs and DCSs of two product channels from the Na(3p)+HD(v=1,j=0)reaction are calculated.The threshold of the NaD+H product channel is lower than that of NaH+D because of the difference in zero-point energy between NaD and NaH.The product vibrational-state resolved ICSs show that the products of two reaction channels both prefer to form in vibrational ground state.However,distributions of product rotational states have peaks at excited states.The curves of total ICS indicate that there is a competition between the two product channels with collision energy changing.From the cross-section branching ratio it follows that the NaD+Hchannel dominates the Na(3p)+HD(v=1)reactionat the collision energy lower than 0.227 eV,and then the NaH+D channel gradually becomes dominant as the collision energy increases.Total DCSs show that the products of two reaction channels both prefer forward scattering.The forward scattering NaH products mainly populate at lower rotational excited sates,while NaD products have a broad rotational state distribution.

    猜你喜歡
    雅爾
    腹腔鏡手術(shù)與開放手術(shù)治療急性闌尾炎的經(jīng)驗
    簡論蒙古族與星星有關(guān)的傳說
    《吉祥三寶》歌者布仁巴雅爾:用鏡頭記錄百位百歲老人
    文苑(2018年21期)2018-11-09 01:23:00
    莫·浩斯巴雅爾小說集《人參姑娘》題材的探究
    讓“科爾沁的琴聲”響徹世界——記蒙古族馬頭琴演奏家陳巴雅爾
    草原歌聲(2017年4期)2017-04-28 08:20:39
    落花成冢
    沒有特長的兒子
    巴雅爾吐胡碩地區(qū)50多年氣溫變化特征分析
    吉祥三寶
    琴童(2006年6期)2006-06-06 09:32:02
    日韩亚洲欧美综合| 18禁在线播放成人免费| 国产日韩欧美在线精品| 好男人在线观看高清免费视频| 性色avwww在线观看| 一级二级三级毛片免费看| 国产av不卡久久| 欧美精品国产亚洲| 亚洲综合色惰| 午夜a级毛片| 久久国产乱子免费精品| 草草在线视频免费看| 看非洲黑人一级黄片| av免费观看日本| 免费看a级黄色片| 亚洲成人av在线免费| 成年版毛片免费区| 国产精品一区二区在线观看99 | 女同久久另类99精品国产91| 国产高清不卡午夜福利| 在线播放国产精品三级| 精品免费久久久久久久清纯| 久久久精品欧美日韩精品| 深爱激情五月婷婷| 有码 亚洲区| a级毛片a级免费在线| 日日啪夜夜撸| 欧美又色又爽又黄视频| 不卡一级毛片| 悠悠久久av| ponron亚洲| 美女大奶头视频| 国产精品免费一区二区三区在线| 婷婷色综合大香蕉| 亚洲国产精品sss在线观看| 久久国产乱子免费精品| 菩萨蛮人人尽说江南好唐韦庄 | 身体一侧抽搐| 久久久久久九九精品二区国产| 精品人妻偷拍中文字幕| av天堂在线播放| 国产精品一区二区在线观看99 | 日韩欧美三级三区| 亚州av有码| 国产精品爽爽va在线观看网站| 狠狠狠狠99中文字幕| 91久久精品国产一区二区成人| 亚洲五月天丁香| 亚洲五月天丁香| 国产片特级美女逼逼视频| 久久久国产成人免费| 精品一区二区三区视频在线| 在线免费观看不下载黄p国产| 久久精品夜色国产| 国产亚洲欧美98| 国产精品伦人一区二区| 性欧美人与动物交配| 一卡2卡三卡四卡精品乱码亚洲| 精品久久久久久久久久免费视频| 日本一本二区三区精品| 可以在线观看毛片的网站| 免费av观看视频| 久久久久久久久久成人| 亚洲无线观看免费| 国产黄片美女视频| 日本黄大片高清| 成人特级黄色片久久久久久久| 1000部很黄的大片| 久久热精品热| 精品一区二区三区人妻视频| 国产熟女欧美一区二区| 日本黄大片高清| 日韩人妻高清精品专区| 国产三级在线视频| 22中文网久久字幕| 日本与韩国留学比较| 婷婷色综合大香蕉| 久久精品夜夜夜夜夜久久蜜豆| 99久久精品热视频| 亚洲熟妇中文字幕五十中出| av免费在线看不卡| 国产真实伦视频高清在线观看| 成人三级黄色视频| 久久人人精品亚洲av| 久久这里只有精品中国| av免费在线看不卡| 国产精品一及| 国产亚洲91精品色在线| 国产视频首页在线观看| 91在线精品国自产拍蜜月| 欧美日韩乱码在线| 夜夜爽天天搞| 欧美zozozo另类| 午夜精品在线福利| 欧美3d第一页| 高清在线视频一区二区三区 | 禁无遮挡网站| 99热6这里只有精品| 亚洲最大成人手机在线| 国产一区亚洲一区在线观看| 精品久久国产蜜桃| 久久久久九九精品影院| 国产精品蜜桃在线观看 | 搞女人的毛片| 在线天堂最新版资源| 热99在线观看视频| 嫩草影院入口| 99久久人妻综合| 中文资源天堂在线| 亚洲精品亚洲一区二区| 波多野结衣高清作品| 国产精品一区二区三区四区久久| 老熟妇乱子伦视频在线观看| 99久久中文字幕三级久久日本| 国产精品三级大全| 亚洲七黄色美女视频| 午夜精品在线福利| 99久国产av精品| 高清在线视频一区二区三区 | 色播亚洲综合网| 中文字幕精品亚洲无线码一区| 欧美极品一区二区三区四区| 99热精品在线国产| 中国美白少妇内射xxxbb| 搞女人的毛片| 在线观看66精品国产| 色哟哟哟哟哟哟| 男人舔女人下体高潮全视频| 国产一区二区三区在线臀色熟女| 夜夜爽天天搞| 国产日本99.免费观看| 天堂影院成人在线观看| 亚洲人成网站在线观看播放| 亚洲成人av在线免费| 国产不卡一卡二| 亚洲成人中文字幕在线播放| 五月玫瑰六月丁香| 69人妻影院| 蜜桃亚洲精品一区二区三区| 久久精品久久久久久久性| 国产美女午夜福利| 欧美高清性xxxxhd video| 国内精品久久久久精免费| av在线亚洲专区| 99久久九九国产精品国产免费| 欧美又色又爽又黄视频| 国产高清激情床上av| 日韩三级伦理在线观看| 黄色视频,在线免费观看| 亚洲婷婷狠狠爱综合网| 午夜爱爱视频在线播放| 一卡2卡三卡四卡精品乱码亚洲| 欧美潮喷喷水| 夫妻性生交免费视频一级片| 国产三级中文精品| 国产精品一及| 亚洲最大成人av| 免费人成视频x8x8入口观看| 老司机影院成人| 晚上一个人看的免费电影| 亚洲丝袜综合中文字幕| 欧美激情国产日韩精品一区| 我的老师免费观看完整版| 久久精品久久久久久噜噜老黄 | 97在线视频观看| 亚洲精品国产av成人精品| 蜜桃亚洲精品一区二区三区| 国产成人a区在线观看| 久久久久国产网址| 成人毛片60女人毛片免费| 国产精品一及| 国产成人a∨麻豆精品| 成人av在线播放网站| 在线播放国产精品三级| 日本熟妇午夜| 少妇人妻一区二区三区视频| 变态另类丝袜制服| 久久久精品欧美日韩精品| 国产真实乱freesex| 别揉我奶头 嗯啊视频| 国产精品一区二区三区四区免费观看| 亚洲精品亚洲一区二区| 色吧在线观看| 天天躁日日操中文字幕| 久久草成人影院| 国产色婷婷99| 久久久久久久久中文| 日本黄色视频三级网站网址| 久久这里只有精品中国| 超碰av人人做人人爽久久| 日韩亚洲欧美综合| 久久精品国产鲁丝片午夜精品| 日日摸夜夜添夜夜添av毛片| 久久久久久九九精品二区国产| 亚洲欧美成人综合另类久久久 | 哪里可以看免费的av片| 一区二区三区四区激情视频 | 日韩欧美 国产精品| 国产精品av视频在线免费观看| 亚洲精品色激情综合| 欧美zozozo另类| 亚洲一区高清亚洲精品| 国产高清三级在线| 国产精品一区二区三区四区免费观看| 2022亚洲国产成人精品| 波多野结衣高清作品| 能在线免费看毛片的网站| 成熟少妇高潮喷水视频| 91精品一卡2卡3卡4卡| 三级国产精品欧美在线观看| 国产精品一及| 男女视频在线观看网站免费| 色视频www国产| 久久久久免费精品人妻一区二区| 国产三级中文精品| 国产国拍精品亚洲av在线观看| 夜夜爽天天搞| 如何舔出高潮| 亚洲国产日韩欧美精品在线观看| 免费观看在线日韩| 亚洲欧美成人综合另类久久久 | 最近中文字幕高清免费大全6| 少妇熟女欧美另类| 国产精品野战在线观看| 我的老师免费观看完整版| 有码 亚洲区| 成人av在线播放网站| 99精品在免费线老司机午夜| 亚洲一区二区三区色噜噜| 美女国产视频在线观看| 搡老妇女老女人老熟妇| 成年免费大片在线观看| 中文资源天堂在线| 美女大奶头视频| 国产高清有码在线观看视频| 久久九九热精品免费| 99久久人妻综合| 欧美不卡视频在线免费观看| 在线观看一区二区三区| 国产高清有码在线观看视频| 又爽又黄无遮挡网站| 欧美激情国产日韩精品一区| 国产精品无大码| 免费看美女性在线毛片视频| 性欧美人与动物交配| www.av在线官网国产| 久久99蜜桃精品久久| av在线天堂中文字幕| 熟女人妻精品中文字幕| 欧美一级a爱片免费观看看| 小说图片视频综合网站| av免费观看日本| 性插视频无遮挡在线免费观看| 久久精品国产99精品国产亚洲性色| 国产精品不卡视频一区二区| 亚洲欧美精品自产自拍| 简卡轻食公司| av黄色大香蕉| 在线a可以看的网站| 26uuu在线亚洲综合色| 欧美一区二区亚洲| 桃色一区二区三区在线观看| 亚洲精品456在线播放app| 亚洲综合色惰| 久久99蜜桃精品久久| 久久久久久伊人网av| 国产精品久久视频播放| 成人三级黄色视频| 久久精品国产亚洲av涩爱 | 国产老妇伦熟女老妇高清| 国产综合懂色| 欧美最新免费一区二区三区| 国产精品av视频在线免费观看| videossex国产| 日韩欧美国产在线观看| 日本成人三级电影网站| 高清日韩中文字幕在线| 插阴视频在线观看视频| 久久久久久久亚洲中文字幕| 亚洲人成网站在线播放欧美日韩| 国产不卡一卡二| 女人十人毛片免费观看3o分钟| 亚洲一区高清亚洲精品| 国产精品99久久久久久久久| 久久精品人妻少妇| 亚洲国产欧美人成| 51国产日韩欧美| 99久久精品一区二区三区| 国产爱豆传媒在线观看| 少妇的逼好多水| 午夜爱爱视频在线播放| 黄色欧美视频在线观看| 亚洲一区二区三区色噜噜| 日韩三级伦理在线观看| 午夜精品在线福利| 国产精品电影一区二区三区| 亚洲精品乱码久久久久久按摩| av在线播放精品| 日本在线视频免费播放| 中文亚洲av片在线观看爽| 97超视频在线观看视频| 国产黄色视频一区二区在线观看 | 麻豆一二三区av精品| 国产成人a区在线观看| 久久久久久九九精品二区国产| 国产精品爽爽va在线观看网站| 又爽又黄无遮挡网站| 精品少妇黑人巨大在线播放 | 日韩制服骚丝袜av| 天天躁日日操中文字幕| 国产又黄又爽又无遮挡在线| 国产成人精品久久久久久| 99在线人妻在线中文字幕| 中文字幕精品亚洲无线码一区| 亚洲精华国产精华液的使用体验 | 亚洲成a人片在线一区二区| 伦精品一区二区三区| av免费在线看不卡| 欧美xxxx性猛交bbbb| 亚洲性久久影院| 91aial.com中文字幕在线观看| 日日摸夜夜添夜夜爱| 在线播放国产精品三级| 欧美精品一区二区大全| 国产精品三级大全| 午夜激情福利司机影院| 久久久久久久久中文| 深夜a级毛片| 免费搜索国产男女视频| 亚洲av成人精品一区久久| 日韩欧美 国产精品| 两个人视频免费观看高清| 高清在线视频一区二区三区 | 特级一级黄色大片| 国产不卡一卡二| 嫩草影院入口| 免费人成在线观看视频色| 亚洲欧美精品专区久久| 在线观看午夜福利视频| 国产色爽女视频免费观看| 人人妻人人澡欧美一区二区| 99国产精品一区二区蜜桃av| 内地一区二区视频在线| 人妻夜夜爽99麻豆av| 激情 狠狠 欧美| 麻豆av噜噜一区二区三区| 九草在线视频观看| 国产精品一及| 国产69精品久久久久777片| 人人妻人人澡人人爽人人夜夜 | 99久久精品国产国产毛片| 亚洲无线观看免费| 国产精品av视频在线免费观看| 亚洲国产色片| 尾随美女入室| 国产精品免费一区二区三区在线| 在线免费十八禁| 成人永久免费在线观看视频| 国内揄拍国产精品人妻在线| 亚洲欧美日韩高清专用| 亚洲性久久影院| 国产伦精品一区二区三区视频9| 能在线免费看毛片的网站| 久久久久免费精品人妻一区二区| 午夜a级毛片| 国产真实乱freesex| 内射极品少妇av片p| 波多野结衣高清作品| 91精品国产九色| 在线天堂最新版资源| 黄色视频,在线免费观看| 欧美另类亚洲清纯唯美| 看十八女毛片水多多多| a级毛片免费高清观看在线播放| 日本三级黄在线观看| 两个人的视频大全免费| 最近视频中文字幕2019在线8| 最近最新中文字幕大全电影3| 亚洲精品乱码久久久久久按摩| av在线播放精品| 日韩一区二区视频免费看| 国产爱豆传媒在线观看| 亚洲av熟女| 欧美潮喷喷水| 精品久久久久久久久亚洲| 在现免费观看毛片| 日韩一区二区视频免费看| 婷婷六月久久综合丁香| 美女 人体艺术 gogo| 国产精品国产高清国产av| 亚洲欧洲日产国产| 日韩欧美国产在线观看| 日韩欧美精品v在线| 亚洲欧美日韩高清专用| 成人永久免费在线观看视频| 深夜精品福利| 亚洲人成网站在线播| 亚洲第一区二区三区不卡| 免费看美女性在线毛片视频| 久久人妻av系列| 亚洲精品久久久久久婷婷小说 | 国产精品久久久久久精品电影| 最近的中文字幕免费完整| 黄色一级大片看看| 国产一区二区在线av高清观看| 晚上一个人看的免费电影| 亚洲成人久久性| 日韩av在线大香蕉| 看片在线看免费视频| 男女下面进入的视频免费午夜| 麻豆精品久久久久久蜜桃| 国语自产精品视频在线第100页| 噜噜噜噜噜久久久久久91| 国产成人精品一,二区 | 欧美成人免费av一区二区三区| 国产高潮美女av| 成人无遮挡网站| 久久久久久久久中文| 美女国产视频在线观看| 国产日本99.免费观看| 久久久欧美国产精品| 亚洲欧美成人综合另类久久久 | 国产成人aa在线观看| 久久久久免费精品人妻一区二区| 日产精品乱码卡一卡2卡三| 一本久久精品| 老女人水多毛片| ponron亚洲| 最后的刺客免费高清国语| 免费看光身美女| 一边亲一边摸免费视频| 国产久久久一区二区三区| 只有这里有精品99| 国内精品宾馆在线| 欧美激情久久久久久爽电影| 97在线视频观看| 久久久久久久久久久丰满| 久久欧美精品欧美久久欧美| 午夜老司机福利剧场| 亚洲,欧美,日韩| 国产真实伦视频高清在线观看| 久久久色成人| 三级经典国产精品| 97在线视频观看| 国产又黄又爽又无遮挡在线| 五月伊人婷婷丁香| 人妻少妇偷人精品九色| 欧美日韩综合久久久久久| 91在线精品国自产拍蜜月| 国产精品人妻久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 少妇熟女欧美另类| 日本-黄色视频高清免费观看| 国产精品久久久久久av不卡| 国产伦一二天堂av在线观看| 国产精品一及| 亚洲av不卡在线观看| 久久久午夜欧美精品| 久久九九热精品免费| 成人高潮视频无遮挡免费网站| 丰满乱子伦码专区| 国产色爽女视频免费观看| 欧美日韩精品成人综合77777| 久久久久性生活片| 三级国产精品欧美在线观看| 99riav亚洲国产免费| 亚洲成人av在线免费| 久久午夜福利片| 欧美人与善性xxx| 欧美xxxx黑人xx丫x性爽| 色播亚洲综合网| 一区二区三区四区激情视频 | 国产极品天堂在线| 国产成人影院久久av| kizo精华| 变态另类丝袜制服| 中文字幕免费在线视频6| 熟妇人妻久久中文字幕3abv| 久久久久久伊人网av| 国产精品美女特级片免费视频播放器| 亚洲在线观看片| 三级国产精品欧美在线观看| 亚洲七黄色美女视频| 国产av麻豆久久久久久久| 亚洲一级一片aⅴ在线观看| 国产亚洲欧美98| 亚洲成人久久性| 男女视频在线观看网站免费| 亚洲欧美日韩东京热| 床上黄色一级片| 久久久精品大字幕| 亚洲美女视频黄频| 高清毛片免费看| 日韩中字成人| 性欧美人与动物交配| 亚洲成人精品中文字幕电影| 99热全是精品| 久久欧美精品欧美久久欧美| 最近2019中文字幕mv第一页| 91久久精品电影网| 毛片女人毛片| 精品一区二区三区人妻视频| 成人无遮挡网站| 免费看光身美女| 我要搜黄色片| 成人欧美大片| 床上黄色一级片| 高清在线视频一区二区三区 | 国内精品一区二区在线观看| 久久久久久久午夜电影| 精品久久久久久久久久免费视频| 久久久成人免费电影| 深夜精品福利| 欧洲精品卡2卡3卡4卡5卡区| 一区福利在线观看| 亚洲欧美精品综合久久99| 亚洲真实伦在线观看| 卡戴珊不雅视频在线播放| 老熟妇乱子伦视频在线观看| 变态另类丝袜制服| 精品国内亚洲2022精品成人| 国国产精品蜜臀av免费| 成人午夜精彩视频在线观看| a级毛片a级免费在线| 一本精品99久久精品77| 少妇的逼好多水| 91精品一卡2卡3卡4卡| 岛国在线免费视频观看| 国产精品一区二区三区四区免费观看| 丝袜美腿在线中文| 国产精品乱码一区二三区的特点| 日韩欧美三级三区| 国产成人a区在线观看| 国产av不卡久久| 欧美变态另类bdsm刘玥| 国产精品精品国产色婷婷| 一级毛片aaaaaa免费看小| 99九九线精品视频在线观看视频| 黄色一级大片看看| 岛国在线免费视频观看| 国产黄片美女视频| 中国美女看黄片| 给我免费播放毛片高清在线观看| 国产高清不卡午夜福利| 插阴视频在线观看视频| 全区人妻精品视频| 99在线视频只有这里精品首页| 边亲边吃奶的免费视频| 欧美xxxx性猛交bbbb| 亚洲激情五月婷婷啪啪| 亚洲最大成人手机在线| 12—13女人毛片做爰片一| 1024手机看黄色片| 日本黄大片高清| 国产精品一区www在线观看| 看十八女毛片水多多多| 精品久久久久久久末码| 白带黄色成豆腐渣| 69av精品久久久久久| 人人妻人人看人人澡| 国产精品免费一区二区三区在线| 国产在线精品亚洲第一网站| 边亲边吃奶的免费视频| 搡老妇女老女人老熟妇| 国内精品久久久久精免费| 美女黄网站色视频| 久久久久久久亚洲中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 老司机福利观看| 在线观看一区二区三区| 性欧美人与动物交配| 中文字幕av成人在线电影| 亚洲成a人片在线一区二区| 又粗又爽又猛毛片免费看| 秋霞在线观看毛片| 日本与韩国留学比较| 久久99热6这里只有精品| 三级经典国产精品| 一级毛片电影观看 | 在现免费观看毛片| 欧美精品一区二区大全| 亚洲国产精品成人久久小说 | 最新中文字幕久久久久| 中出人妻视频一区二区| 日韩人妻高清精品专区| 国产人妻一区二区三区在| 欧美又色又爽又黄视频| 国产成人aa在线观看| 村上凉子中文字幕在线| 日韩一区二区三区影片| 国产午夜精品久久久久久一区二区三区| 国产亚洲av嫩草精品影院| 国产免费一级a男人的天堂| 一区二区三区免费毛片| 国产精品久久久久久久电影| 午夜福利视频1000在线观看| 久久久久久九九精品二区国产| 国产片特级美女逼逼视频| 久久欧美精品欧美久久欧美| 最近2019中文字幕mv第一页| 2021天堂中文幕一二区在线观| 亚洲欧美中文字幕日韩二区| 亚洲真实伦在线观看| 日本撒尿小便嘘嘘汇集6| 国产 一区精品| 麻豆精品久久久久久蜜桃| 亚洲美女视频黄频| 午夜精品一区二区三区免费看| 国产精品一区二区三区四区久久| 小蜜桃在线观看免费完整版高清| 乱人视频在线观看| 白带黄色成豆腐渣| 亚洲国产精品成人综合色| 婷婷精品国产亚洲av| 日韩欧美精品免费久久|