• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Non-adiabatic quantum dynamical studies of Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction?

    2019-06-18 05:42:22YuePeiWen溫月佩BayaerBuren布仁巴雅爾andMaoDuChen陳茂篤
    Chinese Physics B 2019年6期
    關(guān)鍵詞:雅爾

    Yue-Pei Wen(溫月佩),Bayaer Buren(布仁巴雅爾),and Mao-Du Chen(陳茂篤)

    Key Laboratory of Materials Modi fication by Laser,Electron,and Ion Beams(Ministry of Education),School of Physics,Dalian University of Technology,Dalian 116024,China

    Keywords:time-dependent wave packet method,non-adiabatic reaction,integral cross section,differential cross section

    1.Introduction

    The reactions of excited-state alkali atoms with hydrogen molecule have received much attention because of their unique advantages for studying non-adiabatic processes in reaction dynamics.[1-17]As the most intriguing characteristic,the alkali-hydrogen reactions are highly endoergic in their ground state.The energy to initiate the reaction is easily achieved via electronic excitation of the alkali atom,therefore the transitions of electronic states necessarily occur when the reaction proceeds from the excited entrance valley to the ground exit valley.[13]

    For the Na+H2→NaH+H reaction,several excited states(32P,42S,42P,32D,and 62S)of sodium atom were considered in previous studies.Regarding the collision of Na(32P)+H2,both quenching[17-24](Na(3p)+H2→Na(3s)+H2)and reactive[15-20](Na(3p)+H2→NaH+H)processes were investigated.Motzkus et al.[15]demonstrated twostep collision process for the formation of sodium hydride from the collision of Na(3p)+H2,where the vibrationally excited hydrogen molecule from first quenching process plays a signi ficant role.The rate for NaH formation was determined by rate-equation-model based on the two-step reaction model,and other reaction schemes were ruled out.Regarding the Na(4p)+H2→NaH+H reaction,Bililign et al.[1,2]observed a bimodal rotational state distribution for the NaH products,which was attributed to the two different reaction pathways.The side-on-attack mechanism leads to highly rotationally excited products,while the end-on-attack mechanism generates products with low-rotational excitation.Motzkus et al.[17]performed comparative studies for the two previous reactions using several nonlinear techniques.Consequently,vibrational state distributions of NaH from two reactions were determined.The time scale of NaH formation revealed that the Na(4p)+H2→NaH+H reaction is direct.Chang et al.[4]obtained rotational and vibrational state distributions of NaH from the reactions of Na(42S,32D and 62S)plus H2.A bimodal rotational feature was found in the 42S and 32D reaction,which is similar to the 42P reaction.However,rotationally cold but vibrationally hot product population was found in the 62S reaction which was explained by the collinear abstraction mechanism.The results conclude that the increasing atomic size of Na may hinder the insertion reaction mechanism.

    In this work,we intend to investigate the dynamics of the Na(3p)+HD(ν =1,j=0)→ NaH/NaD+D/H reaction.The reaction involves two coupled potential energy surfaces(PESs),thus diabatic PESs should be considered in the dynamical calculations.Recently,a new set of highly accurate diabatic PESs(called WYYC[16]PESs)of the NaH2system was developed by Wang et al.[16]and the dynamic studies were carried out for the Na(3p)+H2(ν =0,j=0)→ NaH+H reaction.For dynamical calculations of state-to-state reactions,the quasi-classical-trajectory[25-28]method and timedependent wave packet[29-37](TDWP)method have been used widely.The TDWP method has unique advantage for the dynamical study of non-adiabatic reactions.In the present work,the dynamical calculations of the Na(3p)+HD(ν=1,j=0)→NaH/NaD+D/H reaction are carried out by using TDWP method based on the WYYC diabatic PESs.The rest of this paper is organized as follows.A brief description regarding TDWP method is presented in Section 2.Dynamic results and detailed discussion are performed in Section 3.Fi-nally,some conclusions are drawn from the present study in Section 4.

    2.TDWP method

    The TDWP method is particularly powerful for studying the dynamics of state-to-state reactions and has been used to study many atom-diatom reactions[29-32]and reactions involving polyatom.[33-37]This method is also effective to study the dynamic of non-adiabatic reactions,[10,16,32]which involve several coupled PESs.The basic principle of the TDWP method is to solve the time-dependent Schr¨odinger equation.The initial wave packet containing all the information about reactants propagates on the PES,and the dynamic information can be extracted from total wave function after propagating for enough time.The solution of wave function at time t is given by

    For an atom-diatom reaction of A+BC→AB+C,the timeindependent Hamiltonian operator in the body- fixed reactant Jacobi coordinates R(distance of A from the center of mass of BC),r(bond length of BC)and γ(the angle between R and r)can be written as

    The initial wave function ψ(t=0)can be written as

    where|JMj0l0ε〉ε isthespace- fixed rotational basis,G(R)isa Gaussian wave packet,and φv0j0(r)is the rovibrational eigenfunction of the BC molecule.

    The second order split operator[38]is used to propagate the wave packet.During the propagation of the wave packet,the absorbing potential expressed by the R and r coordinate is used to avoid the re flection of the wave packet from the boundaries.The absorbing potential used in the TDWP calculations is in the following form:

    where x represents the R or r coordinate;xa,xb,and xendare the positions of absorbing potentials;Ca,Cb,and n determines the strength of the absorbing potential.

    After propagating for enough time,the state-to-state S-matrix SJεvjK←v0j0K0(E)is obtained by using the reactant coordinate-based(RCB)[40]method.

    The state-to-state reaction probability is obtained by using

    The state-to-state integral cross section(ICS)is calculated from

    where kυ0j0is the momentum in the entrance channel.The state-to-state differential cross section(DCS)is obtained from

    where θ is the scattering angle,and dJKK0(θ )is the reduced Wigner rotation matrix.

    For a non-adiabatic reaction correlated with two electronic states,diabatic PESs should be considered in the TDWP calculations.The,r,γ)in Eq.(2)can be written as a 2×2 Hermitian matrix

    In this work,the WYYC[16]diabatic PESs are employed in the TDWP dynamical calculations for the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction.A more detailed description regarding the TDWP method can be found in the relevant literature.[39-42]

    3.Results and discussion

    In this work,state-to-state quantum dynamical calculations of the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H re-action are carried out by using the TDWP method.The initial rotational-vibrational states of reagent are set to be v0=1,and j0=0.The full Coriolis-coupling is involved in the TDWP calculations.A lot of tests were carried out on the reaction probability of different total angular momentum values to obtain appropriate numerical parameters for the TDWP calculations,which are listed in Table 1.The state-to-state reaction probabilities,ICSs and DCSs are calculated for two reaction channels.

    For the non-adiabatic Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction,electronic states of reactants and products correlate with the first excited and ground electronic states of NaH2system,respectively.This indicates that the transition between two electronic states occurs along the reaction path.In the present work,the WYYC[16]diabatic PESs are used in the TDWP calculations.Regarding the WYYC[16]PESs,the ab initio single-point energy is calculated by the multi-reference con figuration interaction method with large basis sets(cc-pw-CVQZ for Na atom and aug-cc-PVQZ for H atom),and the neural network method is used to fit the PESs.The V22surface of WYYC[16]PESs connects elecelectronicstates of reactant and products of the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction.Therefore,the initial wave packet is constructed on the V22surface and product information was collected at the V22surface after propagating for enough time in the TDWP calculations.For a better description of the non-adiabatic dynamics in the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction,a schematic energy diagram of the reactants and products is shown in Fig.1 based on the WYYC[16]PESs.Blue and red lines represent V11and V22surface of WYYC[16]diabatic PESs,respectively.The cross of V11and V22curves indicates the transition between two electronic states along the reaction path.As seen from product energy diagram,the product channel of NaD+H opens easier than that of NaH+D,because vibrational constant of NaD molecule is smaller than that of NaH.There still exists a threshold in reaction when HD is excited to v=1 state;however,the threshold disappears when HD is excited above the v=2 state.Moreover,it should be noted that there is a potential well along the reaction path,which may generate a longlived complex.A more detailed description regarding WYYC diabatic PESs could be found in Ref.[16].

    Table 1.Numerical parameters used in TDWP calculations.

    Fig.1.Energy diagram of reactants,products,and the most possible reaction path on WYYC diabatic PESs.Blue and red line represent V11 andV22elements of WYYC PESs,respectively.

    The reaction probabilities of two reaction channels from the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction are shown in Fig.2 each as a function of collision energy at several selected J values.Many oscillation peaks are found in reaction probability curves,which can be attributed to the dynamical resonances.The reaction threshold becomes larger and the values of reaction probabilities decrease as the J value increases,which is attributed to the increasing centrifugal potential energy in the total Hamiltonian.Due to the fact that the increased centrifugal potential energy can reduce the depth of potential well in the reaction path,the oscillations in the reaction probabilities gradually subside as the J value increases.In addition to these similarities,there are also some differences in reaction probability between two reaction channels.The reaction threshold of NaD+H channel(almost 0.186 eV)is lower than that of NaH+D channel(almost 0.206 eV)because of the difference in zero-energy point between NaD(almost 0.057 eV)and NaH(almost 0.077 eV)molecule.This is consistent with the energy diagram as shown in Fig.1.Moreover,the threshold of the J=60 partial wave for the NaD+H product channel is approximately 0.45 eV,which is higher than that of NaH+D product channel(approximately 0.4 eV).The convergence of reaction probability for the NaD+H channel is faster than that of NaH+D channel,which may be attributed to the different reduced mass in centrifugal potential at product Jacobi coordinates.

    Fig.2.The reaction probabilities of the two reaction channels for Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction at several selected J values.

    The state-to-state ICSs and DCSs are calculated for collision energy up to 0.4 eV based on the convergence of reaction probability at the maximum value of J.The total and product vibrationally state-resolved ICSs of two product channels from the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction are shown in Fig.3.The ICS curves are very smooth and increase monotonically as the collision energy increases.The vibrationally excited products rise with the increase of collision energy.Due to the vibrational constant of NaD being smaller than that of NaH,the opened channels for NaD+H are more than for NaH+D.Thresholds of ICSs are consistent with those shown in the reactant and product energy diagram.From the product’s vibrational state-resolved ICSs,the NaD and NaH products both prefer to form in the vibrational ground state in the whole range of the calculated collision energy.As seen from total ICSs,the NaD+H reaction channel opens easier than the NaH+D reaction channel.However,the NaH+D channel gradually overtakes the dominant position as collision energy increases.To clarify this competition,the cross-section branching ratio ICS(NaH)/ICS(NaD) is shown in Fig.4as a function of collision energy. At low collision energy(<0.227 eV),branching ratio is lower than 1.0 and increases monotonically with collision energy increasing.For high collision energy(>0.227 eV),branching ratio is larger than 1.0 and fluctuates around 1.3.Therefore,the NaD+H product channel is dominant in the Na(3p)+HD(v=1)reaction at low collision energy(<0.227 eV),and it is surpassed by NaH+D channel as collision energy increases.A similar competition between two reaction channels was found in the Au+HD reaction[43]anditwas explainedas thefactthattheDatomcan easily get away from the potential well because of its larger mass than that of the H atom.This explanation is also applicable to the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction.

    Fig.3.Total and product vibrational state-resolved ICSs of two reaction channels for Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction.

    Fig.4.The cross-section branching ratio ICS(NaH)/ICS(NaD)of the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction versus collision energy.

    To obtain more details regarding energy distribution of products from the Na(3p)+HD(v=1)reaction,rotational state distributions of products at some values of selected collision energy are shown in Fig.5.Only vibrational ground state products are depicted in Fig.5 because products primarily form in the vibrational ground state,as mentioned above.As seen from Fig.5,products of two reaction channels both prefer to form in rotationally excited states that are different from the vibrationally exited states.The product rotational states’distributions become broader and the maximum populations of j′become larger as collision energy increases.The rotational state distribution of NaD is broader than that of NaH and the maximum population of j′in the NaD is larger than that in the NaH at the same collision energy.This is attributed to fact that the rotational constant of NaD is smaller than that of NaH,therefore,the more the channels are opened for NaD,the larger the product rotational state density will be than that of NaH at the same collision energy.

    Fig.5. Rotational state distributions of products from the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction respectively at four values of collision energy(0.25,0.30,0.35,and 0.40 eV).

    The three-dimensional total DCSs of two reaction channels from the Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction are shown in Fig.6.There are many peaks at extreme angles 0°and 180°which are corresponding to forward and backward scattering,respectively.The products of two reaction channels both prefer forward scattering,especially at low collision energy.Signi ficant forward scattering peaks reveal that the reaction is dominated by the direct reaction mechanism.Small backward scattering peaks rise as the collision energy increases,which may be attributed to the opening collinear abstraction reaction channel.To understand the information regarding product scattering direction in depth,the product state-resolved angular distributions of two product channels at several values of selected collision energy are shown in Fig.7.The forward scattering products from the NaH+D channel are mainly at lower rotational states(j′< 5).However,the forward scattering products from the NaD+H channel each have a wide rotational state distribution.The forward scattering products from two reaction channels both can be excited to higher rotational excited states as the collision energy increases,which is consistent with the above discussion.Moreover,many oscillations are found along the scattering angle.A similar phenomenon was observed in the H+HD→H2+D reaction,[44]and the observed forward angular oscillations were explained by the contribution of partial waves.The period Δθ in the angular oscillation can be used to estimate which J partial wave has primary contribution by using J=180°/Δθ -1/2.[44]As seen from Fig.7,the period Δθ decreases as the collision energy increases.This indicates that the J value of partial wave contributing to the oscillations increases as the collision energy increases.

    Fig.6. Three-dimensional DCSs of two reaction channels for Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction versus collision energy and scattering angle.

    Fig.7.State-to-state DCSs of two reaction channels for Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction at three collision energies(0.3,0.35,and 0.4 eV).

    4.Conclusions

    In this work,the dynamics of the non-adiabatic Na(3p)+HD(v=1,j=0)→NaH/NaD+D/H reaction are investigated using the TDWP method.The state-to-state reaction probabilities,ICSs and DCSs of two product channels from the Na(3p)+HD(v=1,j=0)reaction are calculated.The threshold of the NaD+H product channel is lower than that of NaH+D because of the difference in zero-point energy between NaD and NaH.The product vibrational-state resolved ICSs show that the products of two reaction channels both prefer to form in vibrational ground state.However,distributions of product rotational states have peaks at excited states.The curves of total ICS indicate that there is a competition between the two product channels with collision energy changing.From the cross-section branching ratio it follows that the NaD+Hchannel dominates the Na(3p)+HD(v=1)reactionat the collision energy lower than 0.227 eV,and then the NaH+D channel gradually becomes dominant as the collision energy increases.Total DCSs show that the products of two reaction channels both prefer forward scattering.The forward scattering NaH products mainly populate at lower rotational excited sates,while NaD products have a broad rotational state distribution.

    猜你喜歡
    雅爾
    腹腔鏡手術(shù)與開放手術(shù)治療急性闌尾炎的經(jīng)驗
    簡論蒙古族與星星有關(guān)的傳說
    《吉祥三寶》歌者布仁巴雅爾:用鏡頭記錄百位百歲老人
    文苑(2018年21期)2018-11-09 01:23:00
    莫·浩斯巴雅爾小說集《人參姑娘》題材的探究
    讓“科爾沁的琴聲”響徹世界——記蒙古族馬頭琴演奏家陳巴雅爾
    草原歌聲(2017年4期)2017-04-28 08:20:39
    落花成冢
    沒有特長的兒子
    巴雅爾吐胡碩地區(qū)50多年氣溫變化特征分析
    吉祥三寶
    琴童(2006年6期)2006-06-06 09:32:02
    一个人免费在线观看的高清视频| 亚洲精品国产精品久久久不卡| 亚洲狠狠婷婷综合久久图片| a级毛片在线看网站| 69精品国产乱码久久久| 久久伊人香网站| 波多野结衣巨乳人妻| 97人妻天天添夜夜摸| 欧美+亚洲+日韩+国产| 岛国视频午夜一区免费看| 国产伦人伦偷精品视频| 可以免费在线观看a视频的电影网站| 国产精品野战在线观看| 日本免费一区二区三区高清不卡 | 亚洲国产精品成人综合色| 老鸭窝网址在线观看| bbb黄色大片| 亚洲国产精品久久男人天堂| 天天一区二区日本电影三级 | 一级作爱视频免费观看| 午夜久久久在线观看| 久久午夜综合久久蜜桃| 一边摸一边抽搐一进一出视频| 国产精品综合久久久久久久免费 | 好男人电影高清在线观看| 一区二区日韩欧美中文字幕| 国产av精品麻豆| 给我免费播放毛片高清在线观看| 久久天躁狠狠躁夜夜2o2o| 老汉色av国产亚洲站长工具| 久久草成人影院| 51午夜福利影视在线观看| 91国产中文字幕| 一卡2卡三卡四卡精品乱码亚洲| www.熟女人妻精品国产| 国产亚洲精品一区二区www| 999久久久精品免费观看国产| 美女大奶头视频| 色综合站精品国产| 亚洲aⅴ乱码一区二区在线播放 | 无遮挡黄片免费观看| 国产精品一区二区三区四区久久 | 日韩av在线大香蕉| 麻豆国产av国片精品| 啪啪无遮挡十八禁网站| 伦理电影免费视频| 精品欧美国产一区二区三| 国产成人av教育| 女警被强在线播放| 久久久久久亚洲精品国产蜜桃av| av福利片在线| 三级毛片av免费| 日本vs欧美在线观看视频| 亚洲第一欧美日韩一区二区三区| 日韩视频一区二区在线观看| av中文乱码字幕在线| 国产精品二区激情视频| 日日干狠狠操夜夜爽| 免费不卡黄色视频| 熟妇人妻久久中文字幕3abv| 国产精品久久久av美女十八| 亚洲精品中文字幕一二三四区| 久久久精品国产亚洲av高清涩受| 50天的宝宝边吃奶边哭怎么回事| 中出人妻视频一区二区| 国产熟女xx| 午夜福利高清视频| 成人免费观看视频高清| 亚洲一卡2卡3卡4卡5卡精品中文| 一级毛片精品| 欧美+亚洲+日韩+国产| 免费高清视频大片| 欧美成狂野欧美在线观看| 美女扒开内裤让男人捅视频| 一边摸一边抽搐一进一出视频| 18禁观看日本| 丰满的人妻完整版| 亚洲黑人精品在线| 亚洲国产精品久久男人天堂| 在线观看66精品国产| 久久人人精品亚洲av| 亚洲无线在线观看| 亚洲免费av在线视频| 亚洲中文日韩欧美视频| 亚洲 国产 在线| 国产欧美日韩精品亚洲av| 十八禁人妻一区二区| 日本vs欧美在线观看视频| 一区二区三区国产精品乱码| 一进一出抽搐gif免费好疼| 欧美激情 高清一区二区三区| 亚洲五月天丁香| 久久久精品国产亚洲av高清涩受| av电影中文网址| 婷婷精品国产亚洲av在线| 亚洲中文av在线| 久久久国产成人免费| 欧美一级a爱片免费观看看 | 午夜福利在线观看吧| 国产激情欧美一区二区| 欧美精品啪啪一区二区三区| 一边摸一边做爽爽视频免费| 美女大奶头视频| av欧美777| 变态另类丝袜制服| 亚洲av成人av| 一级片免费观看大全| 亚洲成a人片在线一区二区| 欧美国产日韩亚洲一区| 日韩欧美国产在线观看| 亚洲专区字幕在线| 不卡一级毛片| 妹子高潮喷水视频| 亚洲 欧美 日韩 在线 免费| 日韩 欧美 亚洲 中文字幕| 99国产精品免费福利视频| 色播亚洲综合网| 成年人黄色毛片网站| 夜夜夜夜夜久久久久| 日本一区二区免费在线视频| 久久草成人影院| 91麻豆av在线| 国产精品一区二区免费欧美| 99精品在免费线老司机午夜| 丁香六月欧美| 中文字幕av电影在线播放| 搡老熟女国产l中国老女人| 国产一级毛片七仙女欲春2 | 看黄色毛片网站| 久久久久国产精品人妻aⅴ院| 亚洲中文字幕一区二区三区有码在线看 | 午夜影院日韩av| 久热这里只有精品99| 国产三级黄色录像| 十八禁人妻一区二区| 国产亚洲欧美精品永久| 色播在线永久视频| 国产99白浆流出| 婷婷六月久久综合丁香| 大陆偷拍与自拍| 欧美色视频一区免费| 日本在线视频免费播放| 日韩国内少妇激情av| 黑人巨大精品欧美一区二区mp4| 国产又爽黄色视频| 亚洲精品中文字幕一二三四区| 色尼玛亚洲综合影院| 亚洲一区二区三区色噜噜| videosex国产| 在线播放国产精品三级| 老汉色∧v一级毛片| 久久久精品欧美日韩精品| 大码成人一级视频| 色哟哟哟哟哟哟| 黑丝袜美女国产一区| 成熟少妇高潮喷水视频| 午夜视频精品福利| av网站免费在线观看视频| 精品一区二区三区av网在线观看| 国产av在哪里看| 色播亚洲综合网| 午夜免费鲁丝| 久久狼人影院| 国产成人av教育| 亚洲午夜精品一区,二区,三区| 人人妻人人爽人人添夜夜欢视频| www国产在线视频色| 精品不卡国产一区二区三区| 黑丝袜美女国产一区| 法律面前人人平等表现在哪些方面| 精品一区二区三区视频在线观看免费| 制服丝袜大香蕉在线| 久久久久精品国产欧美久久久| 最新美女视频免费是黄的| 亚洲午夜理论影院| 亚洲成人精品中文字幕电影| 国产精华一区二区三区| www日本在线高清视频| 少妇被粗大的猛进出69影院| 一级作爱视频免费观看| 久久国产精品影院| 黄频高清免费视频| 日日夜夜操网爽| 一级a爱片免费观看的视频| 男人的好看免费观看在线视频 | 少妇的丰满在线观看| 少妇 在线观看| 19禁男女啪啪无遮挡网站| 久久草成人影院| 在线观看www视频免费| 亚洲性夜色夜夜综合| 亚洲国产精品久久男人天堂| 午夜影院日韩av| 亚洲人成电影观看| 成人永久免费在线观看视频| 午夜免费观看网址| 亚洲成a人片在线一区二区| 精品不卡国产一区二区三区| 51午夜福利影视在线观看| 淫妇啪啪啪对白视频| 午夜福利18| 91国产中文字幕| 一本大道久久a久久精品| 午夜免费观看网址| 成人三级做爰电影| 波多野结衣高清无吗| 色精品久久人妻99蜜桃| 欧美性长视频在线观看| 亚洲av电影在线进入| 日韩欧美在线二视频| 国产欧美日韩一区二区三区在线| 视频在线观看一区二区三区| 超碰成人久久| 国产精品爽爽va在线观看网站 | 黄色毛片三级朝国网站| 丰满的人妻完整版| 精品日产1卡2卡| 老熟妇仑乱视频hdxx| 免费搜索国产男女视频| 99国产精品99久久久久| 国产精品一区二区三区四区久久 | 黄片播放在线免费| 日韩精品免费视频一区二区三区| 很黄的视频免费| 侵犯人妻中文字幕一二三四区| 90打野战视频偷拍视频| 久久影院123| 欧美日本亚洲视频在线播放| 18禁黄网站禁片午夜丰满| 久热爱精品视频在线9| 久久精品人人爽人人爽视色| 两个人看的免费小视频| 一区福利在线观看| 成人国语在线视频| 乱人伦中国视频| a在线观看视频网站| 亚洲一区二区三区不卡视频| 久久精品国产综合久久久| 久久精品国产清高在天天线| 亚洲成a人片在线一区二区| 亚洲 欧美 日韩 在线 免费| 中亚洲国语对白在线视频| 在线国产一区二区在线| 国产午夜精品久久久久久| 法律面前人人平等表现在哪些方面| 此物有八面人人有两片| 久9热在线精品视频| 9热在线视频观看99| 91成年电影在线观看| 国产日韩一区二区三区精品不卡| av欧美777| 极品人妻少妇av视频| 在线观看www视频免费| 99国产精品一区二区蜜桃av| 老司机深夜福利视频在线观看| 十八禁网站免费在线| 国产亚洲欧美精品永久| 成人三级黄色视频| av片东京热男人的天堂| 91字幕亚洲| 在线观看午夜福利视频| 亚洲av五月六月丁香网| 亚洲av第一区精品v没综合| 日日摸夜夜添夜夜添小说| 日韩欧美一区视频在线观看| 免费不卡黄色视频| 欧美一区二区精品小视频在线| 色精品久久人妻99蜜桃| 色婷婷久久久亚洲欧美| 一夜夜www| 久久国产亚洲av麻豆专区| 1024香蕉在线观看| 精品久久久久久成人av| 美女免费视频网站| 国产97色在线日韩免费| 亚洲电影在线观看av| 大型av网站在线播放| 麻豆一二三区av精品| 久久中文看片网| 人妻久久中文字幕网| av天堂在线播放| 男女下面插进去视频免费观看| 国产精品亚洲av一区麻豆| 男人舔女人下体高潮全视频| 久久久久久久午夜电影| 国产亚洲欧美精品永久| 丝袜在线中文字幕| 国产亚洲欧美在线一区二区| 欧美色视频一区免费| 午夜成年电影在线免费观看| 一进一出抽搐gif免费好疼| 一个人观看的视频www高清免费观看 | 在线永久观看黄色视频| 91国产中文字幕| 一区二区三区国产精品乱码| 国产野战对白在线观看| 色播亚洲综合网| 国产成人av激情在线播放| 午夜免费成人在线视频| 老鸭窝网址在线观看| 亚洲 欧美一区二区三区| 免费看a级黄色片| 中国美女看黄片| 久久 成人 亚洲| 亚洲三区欧美一区| 久久香蕉国产精品| 中出人妻视频一区二区| 精品不卡国产一区二区三区| 亚洲久久久国产精品| 国产精品美女特级片免费视频播放器 | 美女午夜性视频免费| 美女大奶头视频| 国内毛片毛片毛片毛片毛片| 国产精品久久电影中文字幕| 悠悠久久av| 男女之事视频高清在线观看| 亚洲天堂国产精品一区在线| 丝袜在线中文字幕| 搡老妇女老女人老熟妇| 操美女的视频在线观看| 亚洲av五月六月丁香网| 国产一区二区三区综合在线观看| 国产成人欧美在线观看| 国产视频一区二区在线看| videosex国产| 国产成人啪精品午夜网站| 日本免费一区二区三区高清不卡 | 曰老女人黄片| 国产一区二区三区综合在线观看| 黄色片一级片一级黄色片| 亚洲中文日韩欧美视频| 亚洲午夜理论影院| av免费在线观看网站| av有码第一页| 国产人伦9x9x在线观看| 黄网站色视频无遮挡免费观看| 久久久久久免费高清国产稀缺| 美女高潮喷水抽搐中文字幕| 性少妇av在线| 久久国产精品影院| 亚洲av电影在线进入| 精品久久久久久成人av| 麻豆久久精品国产亚洲av| 亚洲九九香蕉| 50天的宝宝边吃奶边哭怎么回事| 日韩成人在线观看一区二区三区| 一本久久中文字幕| 中文字幕精品免费在线观看视频| 午夜免费观看网址| 日本vs欧美在线观看视频| 国产精品亚洲一级av第二区| 色综合站精品国产| 国产成人啪精品午夜网站| 自线自在国产av| 亚洲五月天丁香| 日韩国内少妇激情av| 国产三级黄色录像| 国内久久婷婷六月综合欲色啪| 国产又色又爽无遮挡免费看| 法律面前人人平等表现在哪些方面| 久久狼人影院| 国产精品永久免费网站| 午夜免费观看网址| 正在播放国产对白刺激| 99精品欧美一区二区三区四区| 国产精品一区二区在线不卡| 黄片小视频在线播放| 国产精品一区二区在线不卡| 亚洲成av片中文字幕在线观看| 亚洲在线自拍视频| 啦啦啦 在线观看视频| 一级毛片女人18水好多| 久久久久久久午夜电影| 好看av亚洲va欧美ⅴa在| 国产精品精品国产色婷婷| 国产亚洲精品综合一区在线观看 | 亚洲国产精品sss在线观看| 女人被狂操c到高潮| 亚洲国产毛片av蜜桃av| 亚洲一区高清亚洲精品| 国产xxxxx性猛交| 亚洲欧美精品综合久久99| 美女大奶头视频| 久久久久国产一级毛片高清牌| 免费少妇av软件| 欧美一级毛片孕妇| 日韩欧美一区视频在线观看| 午夜久久久久精精品| 99热只有精品国产| 国产精品一区二区免费欧美| 99国产精品免费福利视频| 高潮久久久久久久久久久不卡| 国产一区二区三区综合在线观看| 亚洲 欧美一区二区三区| 亚洲精品粉嫩美女一区| 精品卡一卡二卡四卡免费| 久久久国产精品麻豆| 久久精品国产综合久久久| 国内毛片毛片毛片毛片毛片| 成人国产综合亚洲| 日韩高清综合在线| 老汉色∧v一级毛片| 久99久视频精品免费| 大型黄色视频在线免费观看| 欧美黄色淫秽网站| 国产高清激情床上av| 色尼玛亚洲综合影院| 久久中文看片网| 国内精品久久久久精免费| 日韩三级视频一区二区三区| 精品国产国语对白av| 俄罗斯特黄特色一大片| 激情在线观看视频在线高清| 高清毛片免费观看视频网站| 少妇粗大呻吟视频| 国产亚洲欧美98| 日本欧美视频一区| 国产高清videossex| 午夜福利,免费看| 国产99久久九九免费精品| 女性生殖器流出的白浆| 免费在线观看视频国产中文字幕亚洲| 久久久久久久精品吃奶| 亚洲 欧美 日韩 在线 免费| 国产极品粉嫩免费观看在线| 无遮挡黄片免费观看| 亚洲avbb在线观看| 亚洲男人天堂网一区| 成人欧美大片| 91精品三级在线观看| 最新美女视频免费是黄的| 免费在线观看影片大全网站| 欧美不卡视频在线免费观看 | 禁无遮挡网站| 亚洲熟女毛片儿| 午夜福利视频1000在线观看 | 国产精品亚洲av一区麻豆| 一a级毛片在线观看| 伦理电影免费视频| 女生性感内裤真人,穿戴方法视频| 亚洲av成人一区二区三| cao死你这个sao货| 精品一区二区三区视频在线观看免费| 热99re8久久精品国产| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产精品久久男人天堂| 国产欧美日韩精品亚洲av| 99久久99久久久精品蜜桃| 两个人视频免费观看高清| 一级a爱视频在线免费观看| 在线观看免费日韩欧美大片| 亚洲av成人不卡在线观看播放网| 99久久综合精品五月天人人| 最近最新中文字幕大全免费视频| 九色亚洲精品在线播放| 99在线视频只有这里精品首页| 亚洲av成人不卡在线观看播放网| 成人亚洲精品av一区二区| 色综合亚洲欧美另类图片| 最新美女视频免费是黄的| 黄色视频不卡| 搞女人的毛片| 桃红色精品国产亚洲av| 亚洲全国av大片| 老司机午夜福利在线观看视频| 久久亚洲精品不卡| 亚洲 欧美一区二区三区| 国内毛片毛片毛片毛片毛片| 亚洲欧美日韩另类电影网站| 午夜精品久久久久久毛片777| 国产亚洲精品第一综合不卡| 丰满人妻熟妇乱又伦精品不卡| 91精品三级在线观看| 91在线观看av| 一级片免费观看大全| 国产成人欧美| 十分钟在线观看高清视频www| 日本 av在线| 亚洲欧美日韩高清在线视频| 少妇裸体淫交视频免费看高清 | 久久热在线av| 亚洲av电影在线进入| 老熟妇乱子伦视频在线观看| 国产欧美日韩一区二区精品| 亚洲国产精品sss在线观看| 日韩欧美国产在线观看| 国产精品爽爽va在线观看网站 | 国产成人系列免费观看| 日本在线视频免费播放| 国产亚洲欧美在线一区二区| 手机成人av网站| 制服诱惑二区| 国产野战对白在线观看| 老司机福利观看| 国产成年人精品一区二区| 91九色精品人成在线观看| 亚洲国产欧美一区二区综合| 12—13女人毛片做爰片一| 久久草成人影院| 亚洲av美国av| 国产熟女xx| 久久精品成人免费网站| 97碰自拍视频| 欧美国产日韩亚洲一区| 成人亚洲精品一区在线观看| 777久久人妻少妇嫩草av网站| 一级作爱视频免费观看| 中文字幕人成人乱码亚洲影| 免费在线观看日本一区| 国产av精品麻豆| 亚洲专区国产一区二区| 非洲黑人性xxxx精品又粗又长| 国产一区在线观看成人免费| 人妻丰满熟妇av一区二区三区| 91av网站免费观看| 精品国产超薄肉色丝袜足j| 亚洲免费av在线视频| 欧美老熟妇乱子伦牲交| 国产亚洲精品综合一区在线观看 | 精品免费久久久久久久清纯| 不卡一级毛片| 91麻豆av在线| 黄色视频不卡| 亚洲色图av天堂| 久99久视频精品免费| 国产精品香港三级国产av潘金莲| 啦啦啦韩国在线观看视频| 久久精品国产亚洲av高清一级| 色哟哟哟哟哟哟| 亚洲欧美精品综合久久99| 免费高清视频大片| 757午夜福利合集在线观看| 好男人在线观看高清免费视频 | 国产精品久久久久久人妻精品电影| 女人被躁到高潮嗷嗷叫费观| 99久久综合精品五月天人人| 亚洲熟妇熟女久久| 女性被躁到高潮视频| 别揉我奶头~嗯~啊~动态视频| 久久国产精品男人的天堂亚洲| 中文字幕久久专区| 欧美成人性av电影在线观看| 欧美一区二区精品小视频在线| 亚洲国产中文字幕在线视频| 久久久久久久午夜电影| 侵犯人妻中文字幕一二三四区| 亚洲欧美激情综合另类| 黄片小视频在线播放| 欧美乱色亚洲激情| 国产欧美日韩一区二区精品| 国产精品香港三级国产av潘金莲| 91精品国产国语对白视频| 亚洲黑人精品在线| 波多野结衣高清无吗| 亚洲欧洲精品一区二区精品久久久| 国产成人精品在线电影| 亚洲三区欧美一区| 久久久久国产一级毛片高清牌| 欧美日本中文国产一区发布| 精品福利观看| 非洲黑人性xxxx精品又粗又长| 久久精品国产清高在天天线| 无限看片的www在线观看| 男人操女人黄网站| 国产精品香港三级国产av潘金莲| 精品久久久久久久人妻蜜臀av | 在线十欧美十亚洲十日本专区| 一级作爱视频免费观看| 国产av一区二区精品久久| 国产亚洲精品综合一区在线观看 | 日本 欧美在线| 日韩欧美国产一区二区入口| 精品第一国产精品| 亚洲av第一区精品v没综合| 一进一出抽搐gif免费好疼| 日本在线视频免费播放| 亚洲九九香蕉| 免费在线观看影片大全网站| 久久伊人香网站| 亚洲性夜色夜夜综合| 亚洲中文字幕一区二区三区有码在线看 | 国产欧美日韩一区二区三区在线| 久久伊人香网站| 亚洲九九香蕉| 一区二区三区高清视频在线| 国内久久婷婷六月综合欲色啪| 久久中文字幕一级| 身体一侧抽搐| 亚洲国产精品久久男人天堂| 久久中文字幕一级| 国产精品综合久久久久久久免费 | 美女午夜性视频免费| 男男h啪啪无遮挡| 一区二区三区精品91| 午夜福利欧美成人| 久久久久久久久中文| 国产亚洲av嫩草精品影院| 亚洲第一av免费看| 久久久久久久久中文| 欧美乱妇无乱码| 一区福利在线观看| 女人爽到高潮嗷嗷叫在线视频| 如日韩欧美国产精品一区二区三区| 美女午夜性视频免费| 亚洲av片天天在线观看| 午夜精品在线福利| 久热这里只有精品99| 成人永久免费在线观看视频| 在线观看日韩欧美| 亚洲视频免费观看视频| 欧美乱色亚洲激情| bbb黄色大片| 亚洲av美国av| 国语自产精品视频在线第100页| 十分钟在线观看高清视频www|