• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DYNAMICS FOR AN SIR EPIDEMIC MODEL WITH NONLOCAL DIFFUSION AND FREE BOUNDARIES?

    2021-09-06 07:54:16趙孟
    關(guān)鍵詞:趙孟

    (趙孟)

    College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China School of Mathematics and Statistics,Lanzhou University,Lanzhou 730000,China E-mail:zhaom@nwnu.edu.cn

    Wantong LI (李萬(wàn)同)?

    School of Mathematics and Statistics,Lanzhou University,Lanzhou 730000,China E-mail:wtli@lzu.edu.cn

    Jiafeng CAO (曹佳峰)

    Department of Applied Mathematics,Lanzhou University of Technology,Lanzhou 730050,China E-mail:caojf07@lzu.edu.cn

    Abstract This paper is concerned with the spatial propagation of an SIR epidemic model with nonlocal diffusion and free boundaries describing the evolution of a disease.This model can be viewed as a nonlocal version of the free boundary problem studied by Kim et al.(An SIR epidemic model with free boundary.Nonlinear Anal RWA,2013,14:1992–2001).We first prove that this problem has a unique solution de fined for all time,and then we give sufficient conditions for the disease vanishing and spreading.Our result shows that the disease will not spread if the basic reproduction number R0<1,or the initial infected area h0,expanding abilityμ,and the initial datum S0are all small enough when.Furthermore,we show that if,the disease will spread when h0is large enough or h0is small butμis large enough.It is expected that the disease will always spread when R0,which is different from the local model.

    Key words SIR model;nonlocal diffusion;free boundary;spreading and vanishing

    1 Introduction

    In mathematical epidemiology,one of the most important models is the classical SIR model,which receives great attention.In this model,according to the stage of infection,the population is separated into three classes:susceptible,infectious and recovered individuals,denoted by

    S,I

    and

    R

    ,respectively.Assuming that the disease incubation period is negligible so that each susceptible individual becomes infectious and later recovers having acquired a permanent or temporary immunity,then the classical SIR model can be governed by

    is a threshold value for the longtime behaviour of(1.1),the disease will die out if

    R

    <

    1,and remain endemic if

    R

    >

    1.Obviously,(1.1)ignores the spatial diffusion of the population.Motivated by this factor,Kuniya and Wang[21]studied the corresponding spatial diffusion problem,and obtained a result similar to[15]for some special cases.To describe how an epidemic spreads in space,spreading speed is an useful approach.We refer to Hosono and Ilyas[16]for the spreading speed of a corresponding spatial diffusion problem.However,the works of Kuniya and Wang[21]and Hosono and Ilyas[16]cannot describe precisely the spreading front of the disease.This shortcoming can be overcome by considering the problem over a moving domain,resulting in the free boundary problem.Kim et al.[20]introduced the free boundary in order to consider the corresponding spatial diffusion problem;that is to say,they assume that the populations

    S,I

    and

    R

    disperse randomly,and the range of infected area is assumed to be a moving interval,

    B

    (0).This model has the form

    where the free boundaries satisfy the famous Stefan condition.Kim et al.first proved the existence and uniqueness of the global solution,and then gave the sufficient conditions for the disease vanishing or spreading:

    (i)If

    R

    <

    1,then

    h

    <

    ∞.(ii)If

    R

    >

    1,then there exist

    h

    and

    h

    such that(a)if

    h

    >h

    ,then

    h

    =∞;(b)if

    h

    h

    ,then there exists

    μ

    >

    0 such that

    h

    <

    ∞for 0

    <μ<μ

    ,where

    R

    is given by(1.2).Moreover,if

    h

    <

    ∞,then

    The results in[20]seem to be more reasonable than those in[15].Later,Huang and Wang[17]studied a similar SIR epidemic model with a free boundary in one dimension.They obtained some sufficient conditions of disease vanishing,and then gave the longtime behavior of

    S,I

    and

    R

    if vanishing happens.For(1.3),the deduction of free boundary condition

    h

    (

    t

    )=?

    μI

    (

    t,h

    (

    t

    ))can be found in[2].Du and Lin[6]were the first to use this condition to consider a logistic type of local diffusion model with a free boundary.After this work,many local diffusion problems with a free boundary were investigated;see[7,8,10–14,18,19,22,26–29,32–35]and the references therein.Recently,Cao et al.[3]proposed a nonlocal version of[6],and successfully extended many basic results of[6]to the nonlocal model.For the spreading-vanishing criteria,the results in[3]revealed signi ficant differences from the local diffusion model in[6].Very recently,Du et al.[5]investigated the spreading speed of the nonlocal model in[3]and proved that the spreading may or may not have a finite speed,depending on whether a certain condition is satis fied by the kernel function

    J

    .From these results,we can see that there are striking differences between the local and nonlocal diffusion models.

    Motivated by the work[3],many researchers investigated other problems with nonlocal diffusion and free boundaries;for example,Du et al.[9]considered a class of two species of Lotka-Volterra models with nonlocal diffusion and common free boundaries,Li et al.[24]discussed a class of free boundary problem in relation to ecological models with nonlocal and local diffusions,Zhao et al.[36]studied a degenerate epidemic model with nonlocal diffusion and free boundaries,Cao et al.[4]considered the dynamics of a Lotka-Volterra competition model with nonlocal diffusion and free boundaries,Wang and Wang[30,31]studied free boundary problems with nonlocal and local diffusions,and[23]considered the dynamics of nonlocal diffusion systems with different free boundaries,and so on.

    Inspired by the above works about nonlocal diffusion,the main purpose of this paper is to extend the results in[20]into the free boundary problem with nonlocal diffusion.For simplicity,we assume that the spatial region is one dimensional.If the spatial movement is described by a nonlocal diffusion operator(see[1,25])and

    S,I

    and

    R

    have the same diffusion rate,then we can propose the nonlocal variation of(1.3)as follows:

    Here,the parameters

    d,μ

    and

    h

    are positive constants.It is assumed that the kernel function

    J

    :R→R is continuous and nonnegative,and has the properties

    Furthermore,we assume that the initial function

    S

    (

    x

    )belongs to

    and the initial functions

    I

    (

    x

    )and

    R

    (

    x

    )belong to

    where[?

    h

    ,h

    ]represents the initial infected area.We note that the detailed derivation of the free boundary conditions

    h

    (

    t

    )and

    g

    (

    t

    )in(1.4)can be found in[3].We will show that(1.4)has a unique solution de fined for all time,and then determine its longtime dynamical behaviour.It is emphasized that we apply the approach in[3,9,36]to deal with(1.4),which is different from[20].Note that the equations for

    S

    and

    I

    are fully decoupled from

    R

    in(1.4).Although we only need to consider the sub-system for

    S

    and

    I

    ,the reaction functions are different from the above mentioned works considering systems with nonlocal diffusion.As a result,the arguments in this paper will be a little different.The main results of this paper are the following theorems:

    Theorem 1.1

    Suppose that(J)holds.Then,for any given

    h

    >

    0,

    S

    ∈Xand

    I

    ,R

    ∈X,problem(1.4)has a unique positive solution(

    S

    (

    t,x

    )

    ,I

    (

    t,x

    )

    ,R

    (

    t,x

    )

    ,g

    (

    t

    )

    ,h

    (

    t

    ))de fined for all

    t>

    0.It is easily seen that

    h

    (

    t

    )is monotonically increasing and that

    g

    (

    t

    )is monotonically decreasing.Therefore

    are always well-de fined.Let us recall that

    R

    is given by(1.2),so we have

    Theorem 1.2

    Let the conditions of Theorem 1.1 hold and let(

    S,I,R,g,h

    )be the solution of(1.4).Assume further that

    J

    (

    x

    )

    >

    0 in R.Then we have

    Note that

    l

    is determined by an eigenvalue problem(see(3.6)).

    Finally,we first explain the differences between the model with nonlocal diffusion and the one with local diffusion based on the work[3,5,6].

    Remark 1.3

    We note that local diffusion is only suitable to describe short-range in the dispersal,however,nonlocal diffusion can be used to study long-range factors in the dispersal by choosing the kernel function

    J

    properly.Mathematically,the results in[3]showed that if the diffusion rate of the species is small enough,then spreading will always happen,which is very different from that which is described in[6].On the other hand,the results in[5]showed that the spreading may have an in finite speed,which is another difference from the local model.Biologically,this means that nonlocal diffusion of the species increases the chance of species spreading,compared with the case that the species only diffuses randomly.

    For our results,we have the following two remarks discussing the differences between the local and nonlocal model:

    Remark 1.5

    Depending on the choice of the kernel function in the nonlocal diffusion operator,Du et al.[5]showed that the spreading speed of the nonlocal model in[3]is accelerated.It is expected that a similar result holds for(1.4),which presents an interesting problem.To check this result,we should first obtain the longtime behavior of(1.4)for when spreading happens.We will consider this in the future.The rest of this paper is organised as follows:in Section 2 we prove Theorem 1.1,namely,problem(1.4)has a unique solution de fined for all

    t>

    0;the longtime dynamical behaviour of(1.4)is investigated in Section 3,where Theorem 1.2 is proved.

    2 Global Existence and Uniqueness

    Throughout this section,we assume that

    h

    >

    0,

    S

    ∈Xand

    I

    ,R

    ∈X.For any given

    T>

    0,we first introduce the following notations:

    Just as in[3],we first prove the following lemma:

    Lemma 2.1

    For any given

    T>

    0 and(

    g,h

    )∈

    G

    ×

    H

    ,the problem

    with

    μ

    =min{

    μ

    }.

    Proof

    If we can obtain the existence and uniqueness of(

    S,I

    ),then the existence and uniqueness of

    R

    can follow from[36,Lemma 2.2].Hence we only need to consider problem

    and prove the existence and uniqueness of solution(

    S,I

    ).Let

    f

    (

    S,I

    )=

    b

    ?

    βSI

    ?

    μ

    S

    and

    f

    (

    S,I

    )=

    βSI

    ?

    αI

    ?

    μ

    I

    .Since

    f

    (0

    ,I

    )/=0,and

    S

    is de fined in(0

    ,T

    ]×R,the corresponding result in[9]does not cover this case.However,we can deal with this by making some considerable changes.Here we give the details.

    Step 1

    The parameterised ODE problems.For any given

    x

    ∈R and

    s

    ∈(0

    ,T

    ],de fine

    In this case,

    I

    (

    t,x

    )=0.Consider the following ODE initial value problem:

    Case 2:

    x

    ∈(

    g

    (

    s

    )

    ,h

    (

    s

    ))and

    t

    ∈[

    t

    ,s

    ].

    De fine

    Consider the ODE problem

    For any(

    S

    ,I

    )∈[0

    ,L

    ]×[0

    ,L

    ],

    Hence,

    F

    (

    t,x,S,I

    )is Lipschitz continuous in(

    S,I

    )for(

    S

    ,I

    )∈[0

    ,L

    ]×[0

    ,L

    ],and is uniformly continuous for

    x

    ∈(

    g

    (

    s

    )

    ,h

    (

    s

    ))and

    t

    ∈[

    t

    ,s

    ].Additionally,

    F

    (

    t,x,S,I

    )is continuous in all its variables in this range.By the fundamental theorem of ODEs,problem(2.5)admits a unique solution(

    S

    (

    t,x

    )

    ,I

    (

    t,x

    ))de fined in some interval[

    t

    ,s

    )of

    t

    ,and(

    S

    (

    t,x

    )

    ,I

    (

    t,x

    ))is continuous in both

    t

    and

    x

    .To claim that

    t

    →(

    S

    (

    t,x

    )

    ,I

    (

    t,x

    ))can be uniquely extended to[

    t

    ,s

    ],we should show that if(

    S

    ,I

    )is uniquely de fined for

    t

    ∈[

    t

    ,t

    ?]with?

    t

    ∈(

    t

    ,s

    ],then

    It is easy to check that

    By

    L

    ≥‖

    S

    ‖and

    L

    ≥‖

    I

    ‖,it follows from a simple comparison argument that

    S

    (

    t,x

    )≤

    L

    ,I

    (

    t,x

    )≤

    L

    in

    t

    ∈[

    t

    ,t

    ?].The left part can be obtained similarly by using

    F

    (

    t,x,

    0

    ,

    0)≥0.

    Step 2

    A fixed point theorem.For any

    s

    ∈(0

    ,T

    ),we denote

    and‖

    S

    ‖+‖

    I

    ‖≤

    B

    ,we can apply a simple comparison argument to see that

    W

    (

    t,x

    )≤

    B

    for

    t

    ∈[0

    ,s

    ]and

    x

    ∈[

    g

    (

    t

    )

    ,h

    (

    t

    )].Hence,(2.11)holds.We have thus proved that for any

    s

    ∈(0

    ,s

    ],(2.3)has a unique solution for

    t

    ∈[0

    ,s

    ].

    Step 3

    Extension of the solution.

    Proof of Theorem 1.1

    Following the approach of[3],we will make use of Lemma 2.1 and a fixed point argument to finish this proof.For any given

    T>

    0 and(

    g

    ,h

    )∈

    G

    ×

    H

    ,it follows from Lemma 2.1 that(2.1)with(

    g,h

    )=(

    g

    ,h

    )has a unique solution(

    S

    ,I

    ,R

    ).Using such

    I

    (

    t,x

    ),we can de fine(

    g

    ?

    ,

    ?

    h

    )for

    t

    ∈[0

    ,T

    ]by

    Due to the fact that,by(J),

    J

    (0)

    >

    0,there exist constants

    ?

    ∈(0

    ,h

    /

    4)and

    δ

    such that

    Using this,we can follow the corresponding arguments of[3]to show that,for some sufficiently small

    T

    =

    T

    (

    μ,B,h

    ,?

    ,I

    ,J

    )

    >

    0 and any

    T

    ∈(0

    ,T

    ],

    In what follows,we show that for sufficiently small

    T

    ∈(0

    ,T

    ],F has a unique fixed point(

    g

    ,h

    )in Σ,so(

    S

    ,I

    ,R

    ,g

    ,h

    )clearly is a solution of(1.4)for

    t

    ∈[0

    ,T

    ].We will then show that this is the unique solution of(1.4)and that it can be extended uniquely to all

    t>

    0.We will complete this task in several steps.

    Step 1

    We show that,for sufficiently small

    T

    ∈(0

    ,T

    ],F has,by the contraction mapping theorem,a unique fixed point in Σ.

    It follows from[36,(2.28)]that there exists some

    C

    depending on(

    μ,h

    ,B

    )such that

    By the same argument as in[36],we deduce that,for

    t

    ∈(0

    ,T

    ],

    with

    C

    depending on(

    d,α,β,μ

    ,A,B

    ).By[36,(2.16)],we have

    Without loss of generality we may assume that

    T

    ≤1.Then the inequalities(2.15),(2.16)and(2.17)yield,for the case

    x

    ∈[?

    h

    ,h

    (

    t

    )],that

    Here

    C

    does not depend on

    T

    and(

    t

    ,x

    ).When

    x

    ∈[

    g

    (

    t

    )

    ,

    ?

    h

    ),we can show that this inequality still holds.Since

    Z

    (

    t

    ,x

    )=0 for

    t

    ∈[0

    ,T

    ]and

    x

    ∈R[

    g

    (

    t

    )

    ,h

    (

    t

    )],we have

    Thus,for

    T

    ∈(0

    ,T

    ?],F is a contraction mapping on Σ.Hence,F has a unique fixed point(

    g,h

    )in Σ,which gives a nonnegative solution(

    S,I,R,g,h

    )of(1.4)for

    t

    ∈(0

    ,T

    ].

    Step 2

    To show that(

    S,I,R,g,h

    )is the unique solution of(1.4)for

    t

    ∈(0

    ,T

    ],we should show that(

    g,h

    )∈Σhold for any solution(

    S,I,R,g,h

    )of(1.4)de fined in

    t

    ∈(0

    ,T

    ].This can be shown by the same argument as in Step 3 of the proof in[3,Theorem 2.1].Let(

    S,I,R,g,h

    )be an arbitrary solution of(1.4)de fined for

    t

    ∈(0

    ,T

    ].Then

    Step 3

    Extension of the solution of(1.4)to

    t

    ∈(0

    ,

    ∞).

    Firstly,we can show,as above,that

    3 Spreading and Vanishing

    Proof

    Applying Lemma 3.1,we can prove this lemma by the same argument as in[3,Theorem 3.1]and[36,Lemma 3.2].Here we omit the proof.

    Lemma 3.3

    If

    θ<

    0,or equivalently,

    R

    <

    1,then

    h

    ?

    g

    <

    ∞,and

    Proof

    We first prove(3.1).We note that

    S

    (

    t,x

    )satis fies

    Then we can get

    h

    ?

    g

    <

    ∞by letting

    t

    →∞.For the case

    θ>

    0,or equivalently,

    R

    >

    1,we de fine the operator L+

    θ

    by

    The generalized principal eigenvalue of L+

    θ

    is given by

    Lemma 3.4

    Assume that

    J

    (

    x

    )satis fies(J),and that

    J

    (

    x

    )

    >

    0 in R.Let(

    S,I,R,g,h

    )be the solution of(1.4).If 0

    <θ<d

    and

    h

    ?

    g

    <

    ∞,then

    Proof

    By the same arguments as in[9],we can have that

    If we choose

    δ

    small enough such that

    δφ

    (

    x

    )≤

    I

    (

    T

    ,x

    )for

    x

    ∈[

    g

    +

    ?,h

    ?

    ?

    ],then we can use[3,Lemma 3.3]and a simple comparison argument to obtain

    This is in contradiction to(3.2).Thus we have proven(3.3).

    We next consider the case 0

    <θ<d.

    In this case,it follows from[3,Proposition 3.4]that there exists

    l

    such that

    Proof

    (i)Arguing indirectly,we assume that

    h

    ?

    g

    >l

    .Since 0

    <θ<d

    ,we have

    λ

    (L+

    θ

    )

    >

    0.This is in contradiction to(3.3).

    (ii)This conclusion follows directly from(i).

    (iii)By using[9,Lemma 3.9],we can have that there exists

    μ

    such that

    h

    ?

    g

    =∞for

    μ>μ

    .Now we prove the remaining part.Since 2

    h

    <l

    ,we have

    λ

    (L+

    θ

    )

    <

    0.There exists some small

    ε

    such that

    h

    :=

    h

    (1+

    ε

    )satis fies

    Choose the positive constants

    K

    large enough such that

    For

    δ

    determined above,we choose

    K

    such that

    猜你喜歡
    趙孟
    元 趙孟 行書(shū)與達(dá)觀(guān)長(zhǎng)老札
    趙孟頫《印史·序》中“復(fù)古”印學(xué)觀(guān)略論
    淺析趙孟《雙松平遠(yuǎn)圖》的藝術(shù)表現(xiàn)形式
    淺談趙孟頫馬畫(huà)中的“師古而化”
    “元四家”概念流變考略
    吳保初書(shū)法來(lái)源探微
    論管道升對(duì)趙孟頫藝術(shù)事業(yè)的影響
    藝苑(2019年3期)2019-07-11 04:49:34
    趙孟的書(shū)法藝術(shù)
    趙孟《陶淵明五言詩(shī)頁(yè)》
    老年教育(2017年4期)2017-05-10 05:27:34
    淺析趙孟▌繪畫(huà)對(duì)畫(huà)壇的影響
    亚洲天堂国产精品一区在线| 国产激情久久老熟女| 老汉色av国产亚洲站长工具| 人妻夜夜爽99麻豆av| 亚洲一区中文字幕在线| 99精品在免费线老司机午夜| 亚洲成a人片在线一区二区| 精品熟女少妇八av免费久了| 欧美成人一区二区免费高清观看 | 亚洲av中文字字幕乱码综合| 亚洲一区高清亚洲精品| 这个男人来自地球电影免费观看| 男人的好看免费观看在线视频 | 亚洲成av人片在线播放无| 最新美女视频免费是黄的| 中文字幕最新亚洲高清| www国产在线视频色| 在线观看免费午夜福利视频| 在线观看午夜福利视频| 精品免费久久久久久久清纯| 91成年电影在线观看| 天天添夜夜摸| 亚洲精品美女久久av网站| 亚洲国产精品999在线| 欧美一区二区精品小视频在线| 777久久人妻少妇嫩草av网站| 在线观看舔阴道视频| 亚洲精品av麻豆狂野| 熟女少妇亚洲综合色aaa.| 亚洲人成伊人成综合网2020| 两人在一起打扑克的视频| 午夜精品久久久久久毛片777| 18禁美女被吸乳视频| 午夜亚洲福利在线播放| 成在线人永久免费视频| 最近视频中文字幕2019在线8| 国产欧美日韩精品亚洲av| 999精品在线视频| 黄色a级毛片大全视频| 久久草成人影院| 一本精品99久久精品77| 真人一进一出gif抽搐免费| 叶爱在线成人免费视频播放| 日本精品一区二区三区蜜桃| 天天躁夜夜躁狠狠躁躁| 少妇人妻一区二区三区视频| 国产三级在线视频| 国产在线观看jvid| 丰满的人妻完整版| 成人三级黄色视频| 久久国产乱子伦精品免费另类| 美女免费视频网站| 婷婷六月久久综合丁香| 精品人妻1区二区| 国产一区二区在线观看日韩 | 精品久久久久久久毛片微露脸| 男女做爰动态图高潮gif福利片| 美女午夜性视频免费| 免费在线观看完整版高清| av中文乱码字幕在线| 两个人的视频大全免费| 日本免费一区二区三区高清不卡| 国产三级中文精品| 亚洲欧美日韩无卡精品| 婷婷六月久久综合丁香| 亚洲精品粉嫩美女一区| 日韩三级视频一区二区三区| 中文字幕熟女人妻在线| 啪啪无遮挡十八禁网站| 国产精品一区二区三区四区久久| www.999成人在线观看| 国产野战对白在线观看| 97碰自拍视频| 搡老岳熟女国产| 日韩精品免费视频一区二区三区| 两个人免费观看高清视频| 亚洲精品色激情综合| 久久精品影院6| 在线免费观看的www视频| 99热只有精品国产| 国产高清视频在线观看网站| 天堂√8在线中文| av有码第一页| 国产高清视频在线观看网站| 国产精品爽爽va在线观看网站| 国产三级黄色录像| 亚洲国产精品成人综合色| 高清毛片免费观看视频网站| 最近最新中文字幕大全免费视频| 国产精品爽爽va在线观看网站| 欧美日韩乱码在线| 亚洲黑人精品在线| 午夜福利在线观看吧| 亚洲色图 男人天堂 中文字幕| av超薄肉色丝袜交足视频| 欧美成人一区二区免费高清观看 | 免费看美女性在线毛片视频| 搡老妇女老女人老熟妇| 真人一进一出gif抽搐免费| 欧美中文日本在线观看视频| 亚洲av电影不卡..在线观看| 国产又黄又爽又无遮挡在线| 天堂av国产一区二区熟女人妻 | 亚洲国产精品999在线| 亚洲国产欧洲综合997久久,| 天天添夜夜摸| 18美女黄网站色大片免费观看| 国产av又大| 国产成人aa在线观看| 99热6这里只有精品| 狂野欧美激情性xxxx| 久久久久精品国产欧美久久久| 久久人妻av系列| 亚洲午夜理论影院| 亚洲av中文字字幕乱码综合| 日本黄色视频三级网站网址| 日本五十路高清| 亚洲,欧美精品.| 亚洲精品粉嫩美女一区| 日韩av在线大香蕉| 久久香蕉激情| 成人三级做爰电影| 黄色丝袜av网址大全| 九色国产91popny在线| 又黄又粗又硬又大视频| 曰老女人黄片| 老司机深夜福利视频在线观看| 国产伦在线观看视频一区| 欧美成人午夜精品| 在线a可以看的网站| 久久久久久免费高清国产稀缺| 亚洲全国av大片| 一区二区三区高清视频在线| 国产精品久久久人人做人人爽| 亚洲精品在线观看二区| 国产精品久久久久久精品电影| 男人舔女人下体高潮全视频| 美女黄网站色视频| 91成年电影在线观看| 99久久无色码亚洲精品果冻| 成人av在线播放网站| 老司机午夜十八禁免费视频| 在线播放国产精品三级| 九色国产91popny在线| 国产伦在线观看视频一区| 欧美成人午夜精品| 丁香欧美五月| 久久天堂一区二区三区四区| 深夜精品福利| 极品教师在线免费播放| 色精品久久人妻99蜜桃| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲第一欧美日韩一区二区三区| 日本在线视频免费播放| 精品国内亚洲2022精品成人| 看片在线看免费视频| 亚洲va日本ⅴa欧美va伊人久久| 一二三四在线观看免费中文在| 老熟妇仑乱视频hdxx| 午夜a级毛片| 长腿黑丝高跟| www.www免费av| 国产成人av教育| 亚洲国产精品久久男人天堂| 国产熟女xx| 国产精品99久久99久久久不卡| 999久久久国产精品视频| 巨乳人妻的诱惑在线观看| 99精品欧美一区二区三区四区| 欧美性猛交╳xxx乱大交人| 国产精品久久久久久人妻精品电影| 亚洲成av人片免费观看| 国产v大片淫在线免费观看| 日韩大尺度精品在线看网址| 欧美不卡视频在线免费观看 | 最近最新中文字幕大全免费视频| 亚洲欧美激情综合另类| 中文字幕精品亚洲无线码一区| 天堂影院成人在线观看| 亚洲成av人片在线播放无| 人妻夜夜爽99麻豆av| 国产av一区二区精品久久| 90打野战视频偷拍视频| 亚洲五月婷婷丁香| 亚洲免费av在线视频| 精品一区二区三区av网在线观看| 婷婷精品国产亚洲av| 亚洲真实伦在线观看| 欧美黑人精品巨大| 久久久午夜欧美精品| 一区二区三区四区激情视频 | 黄色配什么色好看| 中文亚洲av片在线观看爽| av国产免费在线观看| 中文字幕熟女人妻在线| 国产人妻一区二区三区在| 尤物成人国产欧美一区二区三区| 久久久久久久久久久免费av| 日韩一本色道免费dvd| 国产黄a三级三级三级人| 性色avwww在线观看| 日韩一区二区三区影片| 国产一区二区三区av在线 | 欧美丝袜亚洲另类| 国产乱人偷精品视频| 日韩国内少妇激情av| 亚洲精品乱码久久久久久按摩| 日韩制服骚丝袜av| 一级二级三级毛片免费看| 美女 人体艺术 gogo| 黄色欧美视频在线观看| 久久鲁丝午夜福利片| 2022亚洲国产成人精品| 波多野结衣高清作品| 搡老妇女老女人老熟妇| 热99re8久久精品国产| 尤物成人国产欧美一区二区三区| 黄色配什么色好看| av在线观看视频网站免费| 国产亚洲91精品色在线| 一级毛片我不卡| 精品久久久久久成人av| 成人永久免费在线观看视频| 大型黄色视频在线免费观看| 爱豆传媒免费全集在线观看| 色播亚洲综合网| 国产精品蜜桃在线观看 | 人妻夜夜爽99麻豆av| 久久久久久久久大av| or卡值多少钱| 简卡轻食公司| 免费观看精品视频网站| 不卡一级毛片| 久久久成人免费电影| 超碰av人人做人人爽久久| 51国产日韩欧美| 国产在线精品亚洲第一网站| 波野结衣二区三区在线| 热99在线观看视频| 亚洲av熟女| 亚洲精品456在线播放app| 小蜜桃在线观看免费完整版高清| 日本免费一区二区三区高清不卡| 精品午夜福利在线看| 校园人妻丝袜中文字幕| 99热6这里只有精品| 亚洲精华国产精华液的使用体验 | 久久九九热精品免费| 国产日韩欧美在线精品| 国产精品一区二区在线观看99 | 亚洲va在线va天堂va国产| 亚洲欧美精品综合久久99| 日韩大尺度精品在线看网址| 变态另类成人亚洲欧美熟女| 日产精品乱码卡一卡2卡三| a级毛片免费高清观看在线播放| 老司机影院成人| 免费人成在线观看视频色| 亚洲第一区二区三区不卡| 色综合亚洲欧美另类图片| 女人十人毛片免费观看3o分钟| 色视频www国产| 亚洲国产日韩欧美精品在线观看| 日韩人妻高清精品专区| 精品久久久久久久久av| 国产片特级美女逼逼视频| 国产又黄又爽又无遮挡在线| 九九在线视频观看精品| 九九久久精品国产亚洲av麻豆| 日本爱情动作片www.在线观看| 久久99热6这里只有精品| 亚洲欧美日韩东京热| 日本五十路高清| 69人妻影院| 成人二区视频| 免费看光身美女| 精华霜和精华液先用哪个| 日日干狠狠操夜夜爽| 免费看日本二区| 国产成人freesex在线| 一区福利在线观看| 久久韩国三级中文字幕| 成人二区视频| 在线播放无遮挡| 国产精品福利在线免费观看| 听说在线观看完整版免费高清| 亚洲国产色片| 麻豆一二三区av精品| 寂寞人妻少妇视频99o| 五月玫瑰六月丁香| 午夜福利在线观看吧| 亚洲人成网站在线播| 老熟妇乱子伦视频在线观看| 国产真实伦视频高清在线观看| 久久久精品欧美日韩精品| 男人和女人高潮做爰伦理| 男女那种视频在线观看| 日本-黄色视频高清免费观看| 91av网一区二区| 国国产精品蜜臀av免费| 国产老妇伦熟女老妇高清| 中文字幕久久专区| 一区二区三区高清视频在线| 有码 亚洲区| 97热精品久久久久久| 99久久成人亚洲精品观看| 色综合色国产| www日本黄色视频网| 久久久精品欧美日韩精品| 成年免费大片在线观看| 麻豆成人av视频| 一区福利在线观看| 日日摸夜夜添夜夜爱| 国产一级毛片在线| 国产精品一区二区三区四区免费观看| 男女做爰动态图高潮gif福利片| 久久久久九九精品影院| 99热精品在线国产| 亚洲精品自拍成人| 日韩成人av中文字幕在线观看| 亚洲av不卡在线观看| www.av在线官网国产| www.色视频.com| 国模一区二区三区四区视频| 女人被狂操c到高潮| av免费在线看不卡| 超碰av人人做人人爽久久| 亚洲人成网站在线播| 我的老师免费观看完整版| 国产成人精品婷婷| 一进一出抽搐动态| 国产精品乱码一区二三区的特点| 26uuu在线亚洲综合色| 给我免费播放毛片高清在线观看| 成人一区二区视频在线观看| 2021天堂中文幕一二区在线观| 女人十人毛片免费观看3o分钟| 国产色婷婷99| 欧美日韩精品成人综合77777| 日本欧美国产在线视频| 亚洲精华国产精华液的使用体验 | 三级毛片av免费| 欧美激情久久久久久爽电影| www.色视频.com| 在线免费观看不下载黄p国产| 久久久久国产网址| 高清日韩中文字幕在线| 麻豆国产av国片精品| av在线亚洲专区| 91麻豆精品激情在线观看国产| 久久精品夜色国产| 少妇高潮的动态图| 变态另类丝袜制服| 男人狂女人下面高潮的视频| 人人妻人人澡人人爽人人夜夜 | 国产乱人偷精品视频| 精品人妻偷拍中文字幕| 欧美成人a在线观看| 精品人妻一区二区三区麻豆| 亚洲av中文av极速乱| 老司机影院成人| 日本黄色视频三级网站网址| 日韩高清综合在线| 精品不卡国产一区二区三区| 亚洲五月天丁香| 一个人看的www免费观看视频| 亚洲av熟女| 亚洲欧美日韩东京热| 青青草视频在线视频观看| 国产亚洲精品av在线| 日韩强制内射视频| 国产伦一二天堂av在线观看| or卡值多少钱| 国产午夜精品论理片| 青青草视频在线视频观看| 日韩成人伦理影院| 免费观看人在逋| 亚洲性久久影院| 免费看美女性在线毛片视频| 两性午夜刺激爽爽歪歪视频在线观看| 最近中文字幕高清免费大全6| 不卡视频在线观看欧美| 欧美激情在线99| 麻豆成人av视频| 免费看美女性在线毛片视频| 国产毛片a区久久久久| 岛国在线免费视频观看| 看免费成人av毛片| 性插视频无遮挡在线免费观看| 免费av不卡在线播放| 久久午夜福利片| 变态另类成人亚洲欧美熟女| 99久国产av精品国产电影| 欧美三级亚洲精品| 久久久国产成人免费| 成年女人看的毛片在线观看| 一本久久中文字幕| 不卡一级毛片| 亚洲成人久久爱视频| 波多野结衣高清无吗| 99热全是精品| 亚洲国产精品sss在线观看| 精品日产1卡2卡| 欧美bdsm另类| 99久久成人亚洲精品观看| 久久久久久久久大av| 老女人水多毛片| 亚洲国产欧洲综合997久久,| 国产欧美日韩精品一区二区| 亚洲最大成人av| 日韩成人伦理影院| 亚洲av第一区精品v没综合| 人妻制服诱惑在线中文字幕| 99国产精品一区二区蜜桃av| 一级黄色大片毛片| 国产片特级美女逼逼视频| 国产高潮美女av| 久99久视频精品免费| 国产精品综合久久久久久久免费| 禁无遮挡网站| 不卡一级毛片| 欧美xxxx性猛交bbbb| 亚洲精品久久久久久婷婷小说 | 亚洲人成网站在线播| 婷婷六月久久综合丁香| 男女那种视频在线观看| 精品久久国产蜜桃| 亚洲人成网站在线观看播放| 日韩强制内射视频| 伊人久久精品亚洲午夜| 能在线免费看毛片的网站| 欧美日韩一区二区视频在线观看视频在线 | 亚洲一级一片aⅴ在线观看| 色尼玛亚洲综合影院| 亚洲美女视频黄频| 国产av一区在线观看免费| 99热网站在线观看| 久久人妻av系列| 亚洲精品色激情综合| 天堂网av新在线| 国产av不卡久久| 美女被艹到高潮喷水动态| 淫秽高清视频在线观看| 成人高潮视频无遮挡免费网站| av在线播放精品| 国产69精品久久久久777片| 亚洲成人久久性| 在线免费十八禁| 男人舔奶头视频| 国产人妻一区二区三区在| 亚洲av中文av极速乱| 青春草国产在线视频 | 欧美成人a在线观看| 伦理电影大哥的女人| 国产黄片视频在线免费观看| 亚洲av二区三区四区| 午夜亚洲福利在线播放| 成年版毛片免费区| 国产精品久久视频播放| 免费观看在线日韩| 中国美女看黄片| 亚洲欧美日韩高清在线视频| 国产一区二区亚洲精品在线观看| 天堂网av新在线| 国产一区二区在线av高清观看| 看黄色毛片网站| 综合色丁香网| 国产精品国产高清国产av| 国产精品久久久久久av不卡| 人人妻人人澡人人爽人人夜夜 | 男女做爰动态图高潮gif福利片| 最近最新中文字幕大全电影3| 日日撸夜夜添| 精品国内亚洲2022精品成人| 免费看美女性在线毛片视频| 人人妻人人澡人人爽人人夜夜 | 免费电影在线观看免费观看| 青春草视频在线免费观看| 一级毛片电影观看 | 99视频精品全部免费 在线| 欧美成人a在线观看| 美女脱内裤让男人舔精品视频 | 在线观看66精品国产| 日韩亚洲欧美综合| 欧美日本亚洲视频在线播放| 99热这里只有是精品在线观看| 美女大奶头视频| av黄色大香蕉| 国产男人的电影天堂91| 欧美高清成人免费视频www| 99九九线精品视频在线观看视频| 日韩国内少妇激情av| 欧美在线一区亚洲| 看十八女毛片水多多多| 禁无遮挡网站| 国产亚洲5aaaaa淫片| 欧美成人精品欧美一级黄| 97人妻精品一区二区三区麻豆| 又爽又黄无遮挡网站| 久久亚洲精品不卡| 成人一区二区视频在线观看| 久久精品综合一区二区三区| 91精品一卡2卡3卡4卡| 综合色丁香网| 人人妻人人澡人人爽人人夜夜 | 国产真实伦视频高清在线观看| 亚洲av不卡在线观看| 亚洲欧美成人综合另类久久久 | 成年女人看的毛片在线观看| 99热全是精品| 婷婷色综合大香蕉| 国产成人a区在线观看| 亚洲一级一片aⅴ在线观看| 日韩视频在线欧美| 久久久久久久午夜电影| 亚洲欧美日韩东京热| 日韩av在线大香蕉| 一级黄色大片毛片| 国产精品美女特级片免费视频播放器| 最好的美女福利视频网| 日本在线视频免费播放| av又黄又爽大尺度在线免费看 | 岛国毛片在线播放| 男人和女人高潮做爰伦理| 此物有八面人人有两片| 中出人妻视频一区二区| 久久婷婷人人爽人人干人人爱| 亚洲欧美日韩高清在线视频| 亚洲最大成人av| 久久久久国产网址| 国产亚洲精品久久久com| 波多野结衣高清无吗| 午夜精品国产一区二区电影 | 免费看av在线观看网站| 精品一区二区免费观看| 欧美变态另类bdsm刘玥| 91在线精品国自产拍蜜月| 免费观看在线日韩| 亚洲精品456在线播放app| 97超视频在线观看视频| 97超碰精品成人国产| 一个人观看的视频www高清免费观看| 亚洲人成网站在线播放欧美日韩| 国产黄色视频一区二区在线观看 | 黄色视频,在线免费观看| 国内精品一区二区在线观看| 亚洲四区av| 日本五十路高清| 亚洲国产精品久久男人天堂| 99热只有精品国产| 亚洲欧美成人精品一区二区| 夜夜爽天天搞| 国产精品综合久久久久久久免费| 成人亚洲精品av一区二区| 亚洲自偷自拍三级| 两性午夜刺激爽爽歪歪视频在线观看| 午夜精品在线福利| av免费观看日本| 国产色爽女视频免费观看| 美女xxoo啪啪120秒动态图| 变态另类成人亚洲欧美熟女| 欧美xxxx性猛交bbbb| 少妇丰满av| 十八禁国产超污无遮挡网站| 久久综合国产亚洲精品| 高清午夜精品一区二区三区 | 国产不卡一卡二| 直男gayav资源| 变态另类丝袜制服| 看免费成人av毛片| 国产老妇伦熟女老妇高清| 深夜a级毛片| 亚洲欧美日韩高清在线视频| 美女xxoo啪啪120秒动态图| 变态另类成人亚洲欧美熟女| 少妇人妻精品综合一区二区 | 久久久久性生活片| 草草在线视频免费看| 乱码一卡2卡4卡精品| 久久综合国产亚洲精品| 精品一区二区三区人妻视频| 老司机福利观看| 色哟哟·www| 老熟妇乱子伦视频在线观看| 亚洲国产色片| 热99在线观看视频| 日韩成人伦理影院| 一本久久中文字幕| 少妇人妻一区二区三区视频| 久久久久久久亚洲中文字幕| 一级毛片久久久久久久久女| 亚洲国产高清在线一区二区三| 美女高潮的动态| 爱豆传媒免费全集在线观看| 成人永久免费在线观看视频| 1024手机看黄色片| 国产 一区精品| 国产大屁股一区二区在线视频| 天堂√8在线中文| 亚洲成av人片在线播放无| 天天躁日日操中文字幕| 国内精品美女久久久久久| 夜夜夜夜夜久久久久| 日韩欧美三级三区| 国产精品99久久久久久久久| 男女视频在线观看网站免费| 亚洲一区二区三区色噜噜| 又爽又黄无遮挡网站| 国产男人的电影天堂91| 国内精品一区二区在线观看| 亚洲欧美中文字幕日韩二区| 91av网一区二区| 大又大粗又爽又黄少妇毛片口| 久久6这里有精品| 边亲边吃奶的免费视频|