• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ?∞state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule?

    2021-06-26 03:03:06HaoShen沈浩JiaChengWu吳佳成JianWeiXia夏建偉andZhenWang王震
    Chinese Physics B 2021年6期
    關(guān)鍵詞:沈浩王震

    Hao Shen(沈浩) Jia-Cheng Wu(吳佳成) Jian-Wei Xia(夏建偉) and Zhen Wang(王震)

    1College of Electrical and Information Engineering,Anhui University of Technology,Ma’anshan 243032,China

    2School of Mathematical Sciences,Liaocheng University,Liaocheng 252059,China

    3College of Electrical Engineering and Automation,Shandong University of Science and Technology,Qingdao 266590,China

    Keywords: Markov jump neural networks, persistent dwell-time switching rule, ?∞state estimation, meansquare exponential stability

    1. Introduction

    Over the past few decades, neural networks (NNs) have drawn considerable interest of many researchers, mainly owing to its significant potential applications in many domains,such as image restoration,fault detection,and classification of patterns.[1–7]In the study of NNs,it has been realized that the parameters of NNs may stochastically switch due to external or internal changes,such as random component faults and unexpected environment variations.[8–15]As is well-known, the Markov chain has been extensively utilized to character the jumping behavior that displays the stochastic feature.[16–18]Thus,Markov jump NNs(MJNNs)are quite suitable for modeling the randomly jumping NNs with multi-modes. The studies about MJNNs are becoming more and more pervasive,and there are many remarkable results on MJNNs that have been made,see in Refs.[19–21],and the references therein.

    In fact, much current work on MJNNs depends on the hypothesis that the transition probabilities (TPs) are timeinvariant. However, this hypothesis may be inapplicable to many practical applications where TPs are time-variant because of the diverse changes in the external environment.Therefore, researchers have turned to a more general kind of TPs in the Markov chain that can better describe the random phenomenon. Typically, a reasonable way is to introduce the nonhomogeneous TPs. By virtue of the piecewise constant TPs, we are going to make efforts on it. Then, in one study in Ref. [14], the authors obtained some sufficient conditions for the stability of Markov jump linear systems whose TPs satisfy a dwell-time (DT) constraint. Then, the DT switching rule(DTSR)demands that the all switching interval must be no less than a positive constantτDT,which is unable to describe the situation where activation times of some subsystems are less thanτDT. Moreover, the average dwell-time switching rule (ADTSR) was used to characterize the variation of TPs for MJNNs in Ref.[22]. The ADTSR allows that the duration between two sequential switching instants can be less than a positive constantτADT,which relieves the restriction of the DTSR to a certain degree. Persistent dwell-time (PDT)switching, which displays more general switching characteristics, includes the fast and slow switchings, simultaneously.There is still little research about the issue of TPs subject to the PDTSR, although the PDTSR is regarded to be more general than the DTSR and ADTSR in some degree.[23,24]In practice, due to the influence of some external environment,the Markov chain may exhibit a characteristic,that is,TPs are time-varying but invariant in some segments. Thus,introducing a Markov chain with piecewise constant TPs is of great significance, which has not been fully studied. In addition,the PDTSR,as a more general switching rule,can be changed into the DTSR and ADTSR by selecting the corresponding parameters. This motivates us to use the PDTSR to describe the piecewise constant TPs for MJNNs.

    In practice,the obtained state information is not complete in most of the research about MJNNs mainly because the states of systems are unmeasurable,or there is a large error between the measured and the actual signals. Therefore,it is necessary to construct a state estimator to obtain complete information about system states. Moreover,there are fruitful results focusing on this issue in Refs.[25,26]. To name a few,the authors have studied the issue of the non-fragile state estimation for discrete-time NNs with Markov jump parameters and time delays in Ref. [27]. The?∞asynchronous state estimation for fuzzy MJNNs with uncertain measurements has been investigated in Ref. [28]. Furthermore, the problem of the exponential state estimation for MJNNs with time-varying discrete and distributed delays has been discussed in Ref.[29]. As for discrete-time MJNNs with TPs subject to the PDTSR,the corresponding results on the state estimation issue are quite few.This motivates our great interest in coping with this issue.

    Motivated by the above discussions, we mainly concentrate on the design of the state estimator for MJNNs. Distinct from the existing state estimation methods in Refs. [22,27],we make the first attempt to deal with the?∞state estimation issues for discrete-time MJNNs with TPs subject to the PDTSR, where the mode-dependent estimator is considered.In order to model a more general scenario, we introduce the PDTSR to characterize the time-varying TPs, rather than the DT and ADTSR frequently studied previously. Moreover,through the Lyapunov stability theory and stochastic analysis method,some sufficient conditions that ensure the stability and the desired property of the estimation error system(EES)are proposed in this paper.

    The undermentioned content of this paper is arranged as follows. The system modeling and PDTSR are elaborated in detail in Section 2. Some criteria are obtained in Section 3 on the mean-square exponentially stability with an?∞performance attenuation level for the EES.In addition,a numerical example is presented to show the correctness of the developed method in Section 4. Finally, the summary of this paper is given in Section 5.

    Notations: The notations used in this work are standards in Ref.[22].

    2. Preliminaries and problem formulation

    2.1. System model

    Considering probability space(?,?,Pr)in this study,the discrete-time MJNNs are depicted by the following equalities:

    Remark 1 It is worth pointing that MJNNs consist of finite modes, which switch due to the external uncertainty change,[30]and the parameters of the estimator are modedependent,whose mode is in line with the underlying system.In this study,the PDTSR is adopted to characterize the change of the piecewise time-varying TPs. In addition,the switching signal?(m)andδ(m)are two different switching signals,which obey different switching rules,but they affect EES(3)simultaneously.

    To present further,the following definitions and a lemma are provided.

    Definition 1[31]If there exist scalarsρ >0, 0<ζ <1,such that for??(0)∈Rn,δ(0)∈?,and?(0)∈J,the following inequality

    holds forw(m)≡0,then,EES(3)is mean-square exponentially stable(MSES).

    Definition 2[32]Given constantγ >0, if EES (3) is MSES,and under zero-initial conditions

    satisfy for nonzero?w(t)∈l2[0,∞), then, EES (3) is MSES and meets a desired?∞performance indexγ.

    Lemma 1[33]Assume that the neuron activation functiongi(·),i={1,2,...,n}, is continuous and bounded,gi(0)=0,and satisfies

    whereu1,u2∈Rn,andι?i,ι+iare known constants,then,for positive mode-dependent matricesΓi,there exist the following inequalities:

    2.2. PDT switching and Markov jump mechanism

    In this paper, the variation of system parameters is governed by Markov chain whose TPs are assumed to be nonhomogeneous, and the PDTSR is employed to characterize the alteration feature of TPs. The element of the transition probability matrix(TPM)can be expressed as

    To facilitate the subsequent analysis,the definition of the PDTSR is provided.

    Definition 3[31]For two positive integersτPandTP,the switching signal?(m)complies with the PDTSR if the following two constraints are satisfied

    (i) There are a set of inconsecutive intervals, and the length of each interstice is not smaller thanτP,where the positive scalarτPis called the persistent dwell-time. This type of interval is called theτ-portion, where the switching signal?(m)is constant.

    (ii)The above-mentioned interstices in(i)are divided by intervals whose length is no longer thanTP,where the positive scalarTPis called the period of persistence. This interstice is calledT-portion,on which signal?(m)can take different values.

    Remark 3 The state estimator was designed for discretetime MJNNs with TPs subject to the ADTSR in Ref. [22].Compared with the DT and ADTSR, the PDTSR is more general. However, when it comes to TPs complied with the PDTSR,some researcher have studied this issue.As well summarized in one study in Ref.[34],we can obtain

    with?τD>0,?N0≥1,ξ ∈(0,1) andT?ξτD(N0?ξ)/(1?ξ). Then,TDT(τD),TADT(τD,N0) andTPDT(ξτD,T) represent the sets of switching signals with DT, ADT and PDT properties, respectively. Then, the DT and ADTSR can be regarded as special cases of the PDTSR.Therefore,the PDTSR is more flexible.

    From Fig.1,there are two portions in thedth stage of the PDT switching signal:T-portion andτ-portion. Inτ-portion,the actual lengthτ(d)satisfiesτ(d)≥τP,and inT-portion,the actual length can be represented as T(d)=T(m)+···+T(o)+T(r)and meets T(d)≤TP. Heremqd,mqd+1,...,mqd+1?1,mqd+1denote the switching instants. For switching signal?(m)and an aleatoric section[l,k),the following inequality can be derived from Ref.[31]:

    where?(l,k)denotes the switching number within the interval[l,k).

    Fig.1. The possible variations of the Lyapunov function under the consideration of the Markov chain with TPs subject to the PDTSR.

    Remark 4 As the illustration in Fig.1,the Markov chain with piecewise constant TPs is used to depict the stochastic jumping of system modes. As for the PDTSR, inτ-portion,switching signal?(m)takes the same value, which is called slow switching. In T-portion, switching signal?(m)can arbitrarily switch among subsystems called fast switching. Thus,the PDTSR can effectively model switched systems with fast and slow switching characteristics. Then,mqdandmqd+1represent the sample and switching instants, respectively. In addition,the value of the Lyapunov function can increase or decrease at switching instants, but it is required to attenuate at sampling instants.

    3. Main results

    In this part,the goal is to study the stability for EES(3)in?∞sense. The following two theorems will provide some sufficient conditions,such that EES(3)is MSES with an?∞performance attenuation level. Then,the desired estimator gains can be obtained based on the proposed conditions.

    3.1. Stability and performance analysis

    Theorem 1 Given scalarsTP>0,τP>0,σ >0, 0<κ1<κ2, the change ratesr1∈(0,1),r2∈(1,∞), if there exists the Lyapunov functionV(?(m),δ(m),?(m)), such that for?δ(m)∈?,??(m)∈J,the following inequalities hold:

    then EES (3) is MSES with an?∞performance attenuation level.

    Proof

    Step 1 The following relationship can be obtained from Eq.(12)in the case ofw(m)≡0:

    Case 2: If 0<r1r2<1,one can deduce 0<? <1.

    Therefore,inequality 0<? <1 hold for anyr2∈(1,∞)andr1∈(0,1).

    It follows Eq.(17)that

    Denotingm0?mq1,it is deduced that

    Step 2 Settingm ∈[mqd,mqd+1), from inequality (10),one can obtain the following inequality according to Eqs.(12)and(13):

    Considering zero-initial conditions,we can deduce that

    Thus, it can be seen from Eq. (5) that EES (3) is MSES with an?∞performance attenuation level.

    Remark 5 Note that we consider that 0<r1<1 andr2>1 are the changing rates at the sampling instants and the switching instants, respectively. Here 0<r1<1 means that the Lyapunov function is attenuated at sampling instants;r2>1 denotes that the Lyapunov function can rise at switching instants. Different from the limitation that the Lyapunov function is attenuating over the entire period.In this study,the Lyapunov function is permitted to increase at switching instants as long as the overall function value represents a declining trend.There is still huge research potential to investigate the change of Lyapunov function,which can guarantee the stability of the systems along with less conservatism.

    3.2. Estimator design

    Based on Theorem 1,the parameters of the state estimator are developed below.

    Theorem 2 Considering EES (3), for given scalarsr2∈(1,∞),r1∈(0,1),σ >0, andυ ∈(0,∞), if there existΓi >0(?i ∈?) and symmetric positive definite matricesPθi(?i ∈?,θ ∈J) satisfying Eq. (14), and the following conditions hold for?i ∈?,?θ ∈J:

    then, EES (3) is MSES with an?∞performance attenuation level. Furthermore, the desired estimation gains can be obtained asKi.

    Proof Settingδ(m)?i,?(m)?θ,i ∈?,θ ∈J, the Lyapunov function for EES(3)is constructed as

    one can derive that

    where

    Then,criterion(11)is guaranteed.

    For?υ ∈(0,∞),the following derivation is satisfied,

    It can be obtained from Eq.(12)that

    Furthermore,it follows from Eq.(29)that

    where

    Then, by using Schur complement, it can be obtained from Eq.(27)thatΘ <0. Therefore,formula(12)is satisfied.

    On the other hand,from condition(27),and for?i ∈?,?θ1,θ2∈J,we have

    Therefore,based on Eq.(31),inequality(13)is satisfied.This ends the proof.

    4. Numerical simulation

    In this section, MJNNs with TPs subject to the PDTSR are presented to substantiate the validity of the proposed state estimator.

    We consider the discrete-time MJNNs with two modes.

    Mode 1

    whereg1(x1(m))=tanh(x1(m)),g2(x2(m))=tanh(x2(m)). According to Lemma 1, we get matricesΦ?= 0, andΦ+=diag{0.5,0.5}, and the exogenous disturbancew(m)=10exp(?0.06m)sin(0.5m).

    Fig.2. The evolution sequence of the switching signal ?(m).

    Fig.3. The evolution sequence of the jumping signal δ(m).

    The parameters of the Markov chain are given as follows:

    Moreover,the parameters related to the PDTSR are given as

    Then,based on Theorem 2,σ=1.2,andυ=1,the state estimator gains can be presented as follows:

    Fig.4. The state responses of system state and estimate state.

    Fig.5. The responses of the estimation error.

    Fig.6. Optimal values of min with different r1 and r2.

    Consider that the initial states are selected asx(0)=[1.48 1.6]T,(0)= [0 0]T. Then, the state responses of the researched system and the estimator are presented in Fig. 4.Then,the responses of the EES are drawn in Fig.5. The goal of this study is to construct a mode-dependent state estimator for MJNNs with TPs subject to the PDTSR,such that EES(3) is mean-square exponentially stable and has a prescribed?∞performance index. Firstly, the evolution of TPs satisfying the PDTSR is displayed in Fig. 2, and the Markov chain used is in Fig. 3, respectively. Then, Fig. 5 shows that the state responses of EES(3),from which it can be seen that the proposed mode-depended state estimator is indeed effective.By applying the obtained estimator gains, the state responses of the researched system and the estimator are presented in Fig.4,which demonstrates that the designed estimator can effectively track the states of discrete-time MJNNs in the case that the time-varying TPs are subject to the PDTSR.Furthermore,the relationship betweenminandr1,r2can be obtained through the dichotomy method. As shown in Table 1,and the trend of the above relationship is presented in Fig.6. We can find that the decay rater1at sampling instants and the change rater2at switching instants have impact on the system performance index to some degree. Thus, choosing an appropriate Lyapunov function change rate to sure the prescribed performance index of the desired system is important.

    Table 1. Optimal H∞performance index min for different values of r1 and r2.

    Table 1. Optimal H∞performance index min for different values of r1 and r2.

    ˉσmin r2=1.12 r2=1.14 r2=1.16 r2=1.18 r2=1.2 r2=1.22 r1=0.74 0.3109 0.3464 0.3858 0.4295 0.4780 0.5319 r1=0.78 0.3203 0.3598 0.4042 0.4543 0.5112 0.5760 r1=0.82 0.3370 0.3838 0.4382 0.5021 0.5780 0.6696 r1=0.86 0.3714 0.4364 0.5189 0.6276 0.7802 1.0190

    5. Conclusion

    In this work, the issue of?∞state estimation has been discussed for a set of discrete-time Markov jump neural networks. In this framework, the change of the piecewise timevarying transition probabilities of the Markov chain, which governs the evolution of TPs, is subject to the switching signal with the persistent dwell-time switching property. Moreover, some sufficient conditions have been established such that the error estimation system is stable with an?∞performance index. Finally, an illustrated example has been provided to show the effectiveness of the designed state estimator and the feasibility of the proposed method. As for piecewise time-varying transition probabilities subject to the persistent dwell-time switching rule, future work may extend the obtained results to more complex Markov jump neural networks.

    猜你喜歡
    沈浩王震
    拜謁沈浩墓
    其實我很想哭
    其實我很想哭
    Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay?
    攔喜
    故事會(2020年18期)2020-09-17 13:35:44
    復(fù)韻母歌
    “要是”的作用
    什么是“羊雜粹”?
    搶著去邊疆的王震
    “辦”“為”和解
    免费电影在线观看免费观看| 国产成人精品无人区| 亚洲无线在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲第一青青草原| 琪琪午夜伦伦电影理论片6080| 99久久无色码亚洲精品果冻| 国产成人影院久久av| 一本久久中文字幕| 午夜精品久久久久久毛片777| 99国产精品一区二区蜜桃av| 亚洲人成77777在线视频| 深夜精品福利| 亚洲电影在线观看av| 色播在线永久视频| 亚洲精品av麻豆狂野| 九色国产91popny在线| 久久草成人影院| 成年免费大片在线观看| 精华霜和精华液先用哪个| 亚洲午夜理论影院| 黑人操中国人逼视频| 亚洲熟女毛片儿| 2021天堂中文幕一二区在线观 | 精品久久久久久久毛片微露脸| av超薄肉色丝袜交足视频| av福利片在线| 91老司机精品| 白带黄色成豆腐渣| 久久欧美精品欧美久久欧美| 亚洲熟妇中文字幕五十中出| 日本a在线网址| 免费看十八禁软件| 美女 人体艺术 gogo| 丰满人妻熟妇乱又伦精品不卡| 热re99久久国产66热| 精品国产国语对白av| 亚洲中文字幕日韩| av在线播放免费不卡| 色综合站精品国产| 一本一本综合久久| 中文在线观看免费www的网站 | 黄色丝袜av网址大全| 免费一级毛片在线播放高清视频| 亚洲五月色婷婷综合| 亚洲美女黄片视频| 波多野结衣高清作品| 最近最新中文字幕大全免费视频| 夜夜夜夜夜久久久久| 欧美一级a爱片免费观看看 | 久久精品国产综合久久久| 精品不卡国产一区二区三区| 一a级毛片在线观看| 99re在线观看精品视频| 91av网站免费观看| 久久香蕉激情| 黄片播放在线免费| 熟女电影av网| 久热这里只有精品99| 国产亚洲欧美在线一区二区| 国产精华一区二区三区| 国产人伦9x9x在线观看| 欧美激情久久久久久爽电影| 男人舔女人的私密视频| 日韩欧美一区二区三区在线观看| 久久精品国产亚洲av高清一级| АⅤ资源中文在线天堂| 在线观看午夜福利视频| √禁漫天堂资源中文www| 国产精品亚洲美女久久久| 精品电影一区二区在线| 亚洲av美国av| 色精品久久人妻99蜜桃| 在线av久久热| 精品卡一卡二卡四卡免费| 精品国产超薄肉色丝袜足j| 欧美av亚洲av综合av国产av| 嫩草影院精品99| 日韩高清综合在线| 性欧美人与动物交配| 精品国内亚洲2022精品成人| 黄网站色视频无遮挡免费观看| 搡老岳熟女国产| 亚洲av日韩精品久久久久久密| 这个男人来自地球电影免费观看| 国产单亲对白刺激| 亚洲专区字幕在线| 欧美av亚洲av综合av国产av| 亚洲精品中文字幕一二三四区| 国产国语露脸激情在线看| 中文在线观看免费www的网站 | 91在线观看av| 天天躁夜夜躁狠狠躁躁| 午夜福利免费观看在线| 中文字幕人妻熟女乱码| 人妻丰满熟妇av一区二区三区| 国产精品99久久99久久久不卡| 国产在线观看jvid| 国产黄色小视频在线观看| 国产成人av教育| 黄色a级毛片大全视频| 国产精品免费视频内射| 他把我摸到了高潮在线观看| 1024视频免费在线观看| 中文字幕最新亚洲高清| 国产亚洲av高清不卡| 日韩欧美 国产精品| 日本免费一区二区三区高清不卡| 国产精品九九99| 男人操女人黄网站| 啦啦啦韩国在线观看视频| 国产精品亚洲一级av第二区| 亚洲成人久久爱视频| 国产极品粉嫩免费观看在线| 老司机深夜福利视频在线观看| 久久狼人影院| 亚洲五月婷婷丁香| 色综合婷婷激情| 91成人精品电影| 亚洲av第一区精品v没综合| 校园春色视频在线观看| 日本黄色视频三级网站网址| 日韩三级视频一区二区三区| 1024视频免费在线观看| 校园春色视频在线观看| 香蕉久久夜色| 12—13女人毛片做爰片一| 午夜福利一区二区在线看| 日本免费a在线| 免费看日本二区| 黑人操中国人逼视频| 欧美在线一区亚洲| 在线观看日韩欧美| 久久午夜综合久久蜜桃| 欧美乱色亚洲激情| 精品一区二区三区视频在线观看免费| 国产精品久久久av美女十八| 亚洲无线在线观看| 麻豆国产av国片精品| 国内久久婷婷六月综合欲色啪| 国产精品一区二区精品视频观看| 深夜精品福利| 日本撒尿小便嘘嘘汇集6| 欧美性长视频在线观看| 国产av一区二区精品久久| 在线观看免费日韩欧美大片| 黑人操中国人逼视频| 欧美在线黄色| 亚洲色图 男人天堂 中文字幕| 久久国产亚洲av麻豆专区| 91成人精品电影| 一级片免费观看大全| 午夜免费鲁丝| www日本黄色视频网| 亚洲七黄色美女视频| √禁漫天堂资源中文www| 亚洲 欧美 日韩 在线 免费| 免费看美女性在线毛片视频| 欧美中文综合在线视频| 亚洲精品在线美女| а√天堂www在线а√下载| 久久伊人香网站| 在线观看www视频免费| 久久久国产精品麻豆| 成年女人毛片免费观看观看9| 国产精品99久久99久久久不卡| 亚洲,欧美精品.| 午夜免费激情av| 美女扒开内裤让男人捅视频| 成人永久免费在线观看视频| 自线自在国产av| 日韩欧美免费精品| 黄色a级毛片大全视频| 亚洲精品一区av在线观看| 日韩av在线大香蕉| 国产1区2区3区精品| 村上凉子中文字幕在线| 色精品久久人妻99蜜桃| 色综合婷婷激情| 亚洲精品久久成人aⅴ小说| 黄片大片在线免费观看| netflix在线观看网站| 巨乳人妻的诱惑在线观看| a在线观看视频网站| 日日夜夜操网爽| 99国产极品粉嫩在线观看| 欧美zozozo另类| 男女那种视频在线观看| 免费看a级黄色片| a级毛片在线看网站| 国产精品电影一区二区三区| 国产主播在线观看一区二区| 99精品久久久久人妻精品| 搞女人的毛片| 欧美丝袜亚洲另类 | 桃红色精品国产亚洲av| 国产成+人综合+亚洲专区| 美女午夜性视频免费| 香蕉国产在线看| 国产成+人综合+亚洲专区| 18禁国产床啪视频网站| 亚洲欧美精品综合久久99| 亚洲国产高清在线一区二区三 | 亚洲在线自拍视频| 亚洲片人在线观看| e午夜精品久久久久久久| 亚洲专区国产一区二区| 搡老妇女老女人老熟妇| 免费一级毛片在线播放高清视频| 1024香蕉在线观看| 成年免费大片在线观看| 国产爱豆传媒在线观看 | 亚洲第一欧美日韩一区二区三区| 国产高清视频在线播放一区| 国产亚洲精品久久久久5区| xxx96com| 日韩精品免费视频一区二区三区| 1024手机看黄色片| 国产精品98久久久久久宅男小说| 亚洲九九香蕉| 淫妇啪啪啪对白视频| 色在线成人网| 高清毛片免费观看视频网站| 免费在线观看视频国产中文字幕亚洲| 午夜免费观看网址| 欧美日韩亚洲国产一区二区在线观看| 久久久久久九九精品二区国产 | 国产成人av教育| av免费在线观看网站| 一个人免费在线观看的高清视频| 日韩大尺度精品在线看网址| av欧美777| 99精品久久久久人妻精品| 黄色成人免费大全| 亚洲av电影在线进入| 制服人妻中文乱码| 国产不卡一卡二| 日韩有码中文字幕| 国产精品99久久99久久久不卡| 黄色女人牲交| av有码第一页| 国产又色又爽无遮挡免费看| 欧美性猛交╳xxx乱大交人| 满18在线观看网站| 成熟少妇高潮喷水视频| 香蕉久久夜色| 亚洲男人天堂网一区| 亚洲一区高清亚洲精品| 欧美三级亚洲精品| av超薄肉色丝袜交足视频| 一级毛片女人18水好多| 午夜视频精品福利| 日韩大码丰满熟妇| 老熟妇乱子伦视频在线观看| 免费观看人在逋| 欧美一级a爱片免费观看看 | 久久精品国产清高在天天线| 久久久久久亚洲精品国产蜜桃av| 亚洲全国av大片| 亚洲国产欧美一区二区综合| 超碰成人久久| 久久久精品欧美日韩精品| 两个人看的免费小视频| 一区二区日韩欧美中文字幕| 可以免费在线观看a视频的电影网站| 精品国产超薄肉色丝袜足j| 91av网站免费观看| 久久精品国产综合久久久| 黄片小视频在线播放| 亚洲色图 男人天堂 中文字幕| 曰老女人黄片| 亚洲性夜色夜夜综合| 亚洲天堂国产精品一区在线| 国产精品久久久av美女十八| 女警被强在线播放| 亚洲成人久久性| 欧美在线一区亚洲| 女性被躁到高潮视频| a级毛片a级免费在线| 黄片播放在线免费| 精品乱码久久久久久99久播| www.熟女人妻精品国产| 男女下面进入的视频免费午夜 | 999久久久精品免费观看国产| 欧美日韩乱码在线| 国产精品亚洲美女久久久| 国产精品九九99| 午夜久久久久精精品| 中文字幕人成人乱码亚洲影| 亚洲成国产人片在线观看| 国内少妇人妻偷人精品xxx网站 | 亚洲av熟女| 看黄色毛片网站| 日韩欧美三级三区| 欧美大码av| avwww免费| 国产精品亚洲av一区麻豆| 天天躁夜夜躁狠狠躁躁| 欧美色视频一区免费| 黄色成人免费大全| 最近最新免费中文字幕在线| 777久久人妻少妇嫩草av网站| 黄频高清免费视频| 亚洲专区字幕在线| 午夜亚洲福利在线播放| 中文字幕精品免费在线观看视频| 黑丝袜美女国产一区| 一级毛片精品| 国产一区二区激情短视频| 最近最新中文字幕大全电影3 | 精品一区二区三区四区五区乱码| 嫩草影视91久久| 国产熟女午夜一区二区三区| 欧美亚洲日本最大视频资源| 1024手机看黄色片| 亚洲国产欧美日韩在线播放| 午夜精品在线福利| 欧美三级亚洲精品| 亚洲成av人片免费观看| 中文亚洲av片在线观看爽| 亚洲国产欧美一区二区综合| 手机成人av网站| 黄频高清免费视频| 欧美精品啪啪一区二区三区| 大型av网站在线播放| 熟妇人妻久久中文字幕3abv| 亚洲九九香蕉| 中文字幕精品免费在线观看视频| 男女之事视频高清在线观看| 欧美国产精品va在线观看不卡| a级毛片a级免费在线| 日日摸夜夜添夜夜添小说| 亚洲男人天堂网一区| 国产人伦9x9x在线观看| 亚洲成人国产一区在线观看| 国产精品一区二区免费欧美| 精品乱码久久久久久99久播| 亚洲在线自拍视频| 日韩欧美三级三区| 国内精品久久久久精免费| 99热只有精品国产| 精品久久久久久久久久免费视频| 99精品欧美一区二区三区四区| 国产aⅴ精品一区二区三区波| 亚洲片人在线观看| 在线播放国产精品三级| 国产91精品成人一区二区三区| 成人18禁在线播放| 国产一卡二卡三卡精品| 91大片在线观看| 视频区欧美日本亚洲| xxx96com| 国产精品一区二区三区四区久久 | 嫩草影视91久久| 可以在线观看的亚洲视频| 老司机靠b影院| 亚洲色图 男人天堂 中文字幕| 亚洲国产高清在线一区二区三 | 欧美日韩瑟瑟在线播放| 大型av网站在线播放| 女性被躁到高潮视频| 久久精品国产亚洲av高清一级| 熟妇人妻久久中文字幕3abv| 狠狠狠狠99中文字幕| 免费在线观看视频国产中文字幕亚洲| 18禁美女被吸乳视频| 亚洲国产日韩欧美精品在线观看 | 搞女人的毛片| 99国产精品一区二区蜜桃av| 国产精品1区2区在线观看.| 满18在线观看网站| 亚洲欧美精品综合一区二区三区| 日韩大码丰满熟妇| 国产一级毛片七仙女欲春2 | 久久人人精品亚洲av| 国产视频内射| 亚洲第一av免费看| 日本在线视频免费播放| 在线免费观看的www视频| 九色国产91popny在线| 岛国视频午夜一区免费看| 九色国产91popny在线| 在线免费观看的www视频| 欧美久久黑人一区二区| 日本精品一区二区三区蜜桃| 久久 成人 亚洲| 国产午夜精品久久久久久| 成人欧美大片| 国产精品精品国产色婷婷| 黄色毛片三级朝国网站| 久久久久久大精品| 在线观看舔阴道视频| 久久中文字幕人妻熟女| 色老头精品视频在线观看| 欧美在线一区亚洲| 午夜两性在线视频| 亚洲色图 男人天堂 中文字幕| 久久婷婷成人综合色麻豆| 中文字幕人妻熟女乱码| 精品人妻1区二区| 久久久久久亚洲精品国产蜜桃av| 午夜福利欧美成人| 精品久久久久久久久久久久久 | 欧美成人性av电影在线观看| 高潮久久久久久久久久久不卡| 美女免费视频网站| 一本一本综合久久| 欧美日韩瑟瑟在线播放| 亚洲中文av在线| 国产精品永久免费网站| 国产男靠女视频免费网站| 久久九九热精品免费| 欧美绝顶高潮抽搐喷水| 十八禁网站免费在线| 欧美成人免费av一区二区三区| 好男人电影高清在线观看| 久久久久九九精品影院| 在线十欧美十亚洲十日本专区| 国产亚洲欧美在线一区二区| 一卡2卡三卡四卡精品乱码亚洲| 久久久久亚洲av毛片大全| 午夜精品在线福利| 亚洲精品一卡2卡三卡4卡5卡| 嫩草影院精品99| 国产99久久九九免费精品| 国产一区二区在线av高清观看| 真人做人爱边吃奶动态| 黄色视频,在线免费观看| 欧美性长视频在线观看| 在线观看午夜福利视频| 国产精品综合久久久久久久免费| 久久这里只有精品19| 久久人人精品亚洲av| 成熟少妇高潮喷水视频| 亚洲第一青青草原| 精品久久久久久久人妻蜜臀av| 国产精品精品国产色婷婷| 在线十欧美十亚洲十日本专区| a级毛片在线看网站| 久久精品91蜜桃| 精品熟女少妇八av免费久了| 无遮挡黄片免费观看| 特大巨黑吊av在线直播 | 中文字幕av电影在线播放| 色综合欧美亚洲国产小说| 日韩精品免费视频一区二区三区| xxx96com| a级毛片a级免费在线| 两性午夜刺激爽爽歪歪视频在线观看 | 女人高潮潮喷娇喘18禁视频| 91麻豆av在线| 精品乱码久久久久久99久播| 真人做人爱边吃奶动态| 久久精品国产亚洲av高清一级| 久热爱精品视频在线9| 午夜福利视频1000在线观看| 亚洲专区中文字幕在线| 成人国语在线视频| 久久99热这里只有精品18| 欧美久久黑人一区二区| 亚洲熟妇熟女久久| 国产成人av激情在线播放| 久久精品国产清高在天天线| 国产激情偷乱视频一区二区| 久久久国产精品麻豆| 久久青草综合色| 美女高潮喷水抽搐中文字幕| 9191精品国产免费久久| 欧美黑人巨大hd| 亚洲电影在线观看av| 国产成人av教育| 久久国产精品男人的天堂亚洲| www.熟女人妻精品国产| 美女高潮到喷水免费观看| 成人永久免费在线观看视频| 1024视频免费在线观看| 999久久久国产精品视频| 久久精品国产99精品国产亚洲性色| 欧美黑人精品巨大| 国内精品久久久久精免费| 黄色视频,在线免费观看| 老司机在亚洲福利影院| 欧美色视频一区免费| 国产三级在线视频| 中文字幕最新亚洲高清| 久久久久久大精品| 午夜激情av网站| 国产欧美日韩一区二区精品| 亚洲美女黄片视频| 国产又黄又爽又无遮挡在线| 国产精品爽爽va在线观看网站 | 亚洲无线在线观看| 亚洲色图av天堂| 1024手机看黄色片| 搡老岳熟女国产| 久久人妻av系列| 视频区欧美日本亚洲| 国产精品国产高清国产av| 午夜福利视频1000在线观看| 人人妻人人澡欧美一区二区| 久久久久精品国产欧美久久久| 啦啦啦 在线观看视频| 99国产精品一区二区三区| 黄片大片在线免费观看| 国产av在哪里看| 国产精品永久免费网站| 视频区欧美日本亚洲| 手机成人av网站| 麻豆成人午夜福利视频| 久久国产精品男人的天堂亚洲| 国产在线精品亚洲第一网站| 久久久精品欧美日韩精品| 黄色成人免费大全| 三级毛片av免费| 久久精品夜夜夜夜夜久久蜜豆 | 国产伦一二天堂av在线观看| 十八禁人妻一区二区| 日韩精品青青久久久久久| 欧美中文综合在线视频| 美女高潮到喷水免费观看| 色老头精品视频在线观看| 欧美色视频一区免费| 18禁黄网站禁片免费观看直播| 91老司机精品| 国产亚洲精品久久久久5区| 夜夜看夜夜爽夜夜摸| 免费在线观看亚洲国产| 男女做爰动态图高潮gif福利片| 看免费av毛片| 欧美成人性av电影在线观看| 一区二区三区激情视频| 国产精品亚洲av一区麻豆| 亚洲av美国av| 99国产精品一区二区三区| tocl精华| 美女午夜性视频免费| 精品国内亚洲2022精品成人| 欧美zozozo另类| ponron亚洲| 色av中文字幕| 亚洲精品美女久久av网站| 岛国在线观看网站| 一级作爱视频免费观看| 亚洲人成伊人成综合网2020| 精品国产美女av久久久久小说| 精品卡一卡二卡四卡免费| 午夜福利在线观看吧| 男人舔奶头视频| 伦理电影免费视频| 丝袜美腿诱惑在线| 老司机在亚洲福利影院| 国产国语露脸激情在线看| 久热这里只有精品99| 热re99久久国产66热| 一边摸一边抽搐一进一小说| 2021天堂中文幕一二区在线观 | 嫩草影院精品99| 午夜两性在线视频| 久久精品国产99精品国产亚洲性色| 男女床上黄色一级片免费看| 色婷婷久久久亚洲欧美| 久9热在线精品视频| avwww免费| 亚洲中文日韩欧美视频| 日韩大码丰满熟妇| 日韩成人在线观看一区二区三区| 国产精品一区二区免费欧美| а√天堂www在线а√下载| 12—13女人毛片做爰片一| www.精华液| 亚洲熟妇中文字幕五十中出| 婷婷亚洲欧美| 亚洲成人久久爱视频| 在线永久观看黄色视频| 亚洲一区二区三区不卡视频| 制服诱惑二区| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲国产精品合色在线| 国产精品美女特级片免费视频播放器 | 一本大道久久a久久精品| 一区二区三区精品91| 国产成人系列免费观看| 精品国内亚洲2022精品成人| 国产精品 国内视频| 韩国精品一区二区三区| 观看免费一级毛片| 国产高清有码在线观看视频 | 999久久久国产精品视频| 亚洲男人的天堂狠狠| 90打野战视频偷拍视频| 动漫黄色视频在线观看| 午夜福利成人在线免费观看| 90打野战视频偷拍视频| 日本黄色视频三级网站网址| 老司机福利观看| 久久久久久国产a免费观看| 一级黄色大片毛片| 久久久国产成人精品二区| 波多野结衣高清作品| 午夜激情av网站| 成年免费大片在线观看| 国产av不卡久久| 午夜激情av网站| 国产亚洲欧美98| 免费高清视频大片| 白带黄色成豆腐渣| 成年免费大片在线观看| 久久久水蜜桃国产精品网| 欧美日韩精品网址| 国产视频内射| 19禁男女啪啪无遮挡网站| 女同久久另类99精品国产91| 女人被狂操c到高潮| 国产亚洲欧美在线一区二区| 日韩中文字幕欧美一区二区|