• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay?

    2021-03-19 03:19:38YingjieFan樊英杰ZhenWang王震JianweiXia夏建偉andHaoShen沈浩
    Chinese Physics B 2021年3期
    關(guān)鍵詞:沈浩王震英杰

    Yingjie Fan(樊英杰), Zhen Wang(王震), Jianwei Xia(夏建偉), and Hao Shen(沈浩)

    1College of Electrical Engineering and Automation,Shandong University of Science and Technology,Qingdao 266590,China

    2College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao 266590,China

    3School of Mathematical Science,Liaocheng University,Liaocheng 252059,China

    4College of Electrical and Information Engineering,Anhui University of Technology,Ma’anshan 243032,China

    Keywords: global stabilization, state-dependent switching neural networks, discontinuous event-trigger scheme,communication delay

    1. Introduction

    The last decade has displayed an ever-increasing research topic on state-dependent switching neural networks(SDSNNs), such as memristive neural networks, since it has some outstanding superiorities in multi-value storage,[1]and unsupervised learning,[2]etc. Compared with traditional neural networks,some experiment results have demonstrated that SDSNNs can imitate the synaptic activity better in the brain emulation. Accordingly, an enormous interest has been attracted to the investigation of SDSNNs and many pioneering works have been presented,such as synchronization,[3-10]state estimation.[11-14]It is noteworthy that stability is a prerequisite for ensuring SDSNNs steadily operation. As such,various control schemes have been developed to investigate the stabilization problem of SDSNNs.[15-18]Nevertheless,all the above published results are on the basis of an assumption that there are no communication delay and any constraints on the digital transmission channel. From a resource conservation of view,these traditional control schemes in Refs.[3-19]will lead to transmission burdens and increase control cost.With the increasing demand of digital technology in industry,a rich synthesis of energy-saving networked control schemes,such as impulsive control,[20-22]sampled-data control,[23-26]and event-triggered control,[27-40]compose a popular research issue in relevant applications domains. Clearly,it is necessary and reasonable to settle the stabilization problem of SDSNNs under networked control schemes.

    As we know, the sampling information is sent out at a series of transmission instants. It can be found that the time-dependent mechanism is easy to realize by using a clock generator. However, the redundant sampling information is still transmitted to the controller if some desirable targets are satisfied. Hence, it will lead to a waste of energy resources and communication bandwidth. To this end, several event-trigger schemes have been established to reduce the unnecessary sampling times, such as continuous event-trigger(CET),[27-29]sampled-data-based event-trigger,[30-36]and discontinuous event-trigger(DET).[37-41]For example,the global synchronization problem of SDSNNs with parameters mismatch has been investigated via continuous event-triggered control in Ref.[29]. Also,theoretical analysis has proved that the Zeno behavior can be avoided. However, the derived results in Ref.[42]demonstrate that the Zeno behavior may be still exist under the influence of arbitrary small measurement noise or external disturbances. To overcome this shortcoming,the global stabilization of SDSNNs has been discussed under sampled-data-based event-triggered control in Ref. [34].Unfortunately, this kind of trigger scheme does not take advantage of the available state information. In view of the above considerations,the DET scheme consisting of two work modes has been proposed in Ref.[37]for the first time,which can not only avoid Zeno behavior but also reduce the triggering times. For instance, the global stabilization of SDSNNs has been achieved based on an exponential-attenuation-based DET scheme and the simulation results have demonstrated that the triggering times can be effectively reduced in Ref.[38]. It is, therefore, meaningful to investigate the stabilization problem of SDSNNs by using DET scheme.

    On the other hand, an ineluctable issue is that the sampling information transmitted from the controller to actuator is usually influenced by network-induced communication delay.[43,44]Under the effect of communication delay, it is difficult to achieve a satisfactory performance. Accordingly,how to ensure the stability of networked control systems with communication delay is an important and necessary problem. To this end, the global stabilization problem of networked T-S fuzzy control systems has been investigated under adaptive event-triggered control with communication delay in Ref.[35]. In addition,a class of event-trigger predictive control scheme, to compensate communication delays, has been proposed for networked control systems(NCSs)in Ref.[36].Nevertheless,there are no published results to study the analysis and synthesis of SDSNNs under discontinuous eventtriggered control under the framework of communication delay. The main reason lies in that the proposed analysis techniques in Refs. [38,40,41] cannot be applied to deal with the stability of SDSNNs under discontinuous event-triggered control subject to communication delay.This naturally touches off the following important problems. What is the impact of communication delay on data transmission? Furthermore, what is the effect of communication delay on the trigger times and stability performance? To the best of our knowledge, these difficulties have not been solved for SDSNNs with communication delay by employing DET scheme. Therefore, how to well settle these problems motivates the present investigation of this paper.

    Summarizing the above discussions, this paper investigates the global stabilization of SDSNNs under discontinuous event-triggered control with communication delay. The main contributions are listed as follows.

    (i)Considering the effect of communication delay,a fictitious delay function is proposed by utilizing the convex combination technique. Then, the SDSNNs and trigger condition are respectively transformed into two tractable models,which contributes to the current theoretical analysis.

    (ii) A unified framework is proposed that has the ability to deal with the simultaneous existence of the properties of discontinuous event-trigger scheme,communication delay,as well as feedback controller design. First, a novel Lyapunov-Krasovskii functional is constructed to investigate the stability of the resulting closed-loop SDSNNs. Then, by employing the extended reciprocally convex combination method and some inequality estimation techniques,two novel globally asymptotically stability criteria are respectively established for the resulting closed-loop SDSNNs under discontinuous eventtriggered control with communication delay.

    Notations:Throughout this paper, N, Rn×ndenote the set of nonnegative integers, n×n real matrices, respectively.diag(···)and A(i)respectively denote a block diagonal matrix and the i-th row of matrix A. AT(A?1) stands for transpose(inverse) of matrix A. A >0 (A ≥0) means that A is a symmetric and positive definite (semi-definite) matrix. col{···}is a column vector. λmax(A) denotes the maximal eigenvalue of matrix A. ||·||p, p=1,2,∞and I (0) are the p-norm of a vector or a matrix and identity (zero) matrices of appropriate dimensions.

    2. Preliminaries and problem formulation

    Consider the following dynamical system for n-neurons SDSNNs:

    where x(t)∈Rnand u(t)∈Rndenote the state vector and controller, respectively. D=diag{d1,d2,...,dn}>0, A(x(t))=(aij(xj(t)))n×n,and B(x(t))=(bij(xj(t)))n×nrespectively denote the self-feedback matrix,state-dependent switching connection weight matrix,and delayed connection weight matrix.τ(t)denotes the time-varying delay satisfying 0 ≤τ(t)≤τ and ˙τ(t)≤μ <1. The neuron activation function f(x(t))∈Rnis assumed to be monotonically nondecreasing and satisfies 0 ≤fj(u)?fj(ν)/(u?ν)≤Lj, u, ν, u/=ν, Lj∈R, i,j =1,2,...,n. The state-dependent switching connection weights satisfy the following conditions:

    Also,one can see that equation(1)is the characteristic of differential dynamical systems with discontinuous right-hand sides. In this case, we consider the trivial solutions of system (1) in Filippov’s sense and the following Definition 1 is introduced.

    Definition 1[45]Consider the system ˙y(t)=g(y),y ∈Rnwith discontinuous right-hand sides, a set-valued map is described as

    where B(y,δ)={z:‖z ?y‖≤δ},co[E]is the closure of the convex hull of set E, and μ(N) is the Lebesgue measure of set N. A solution in Filippov’s sense of the Cauchy problem,for the system with initial value y(0)=y0, is an absolutely continuous function y(t),t ∈[0,T]. It satisfies y(0)=y0and differential inclusion

    ˙y(t)∈φ(y)

    for a.e.t ∈[0,T].

    Define

    Based on Definition 1,system(1)is equivalent to

    where

    such that

    In this paper, we consider the stabilization problem of SDSNNs via discontinuous event-triggered control. As displayed in Fig.1,a discontinuous event-trigger(DET)scheme is positioned between the controller and the sensor. The corresponding trigger condition is formulated as

    where the waiting time h >0, λ ≥0, and trigger matrix Θ ≥0. It should be mentioned that the main feature of this DET scheme lies in that the operation pattern consists of rest interval and work interval. The principle is as follows. Suppose that the k-th event is activated on the basis of trigger condition (3). Then, the sampling information x(sk)is transmitted from the event generator to the controller.Meanwhile, the trigger scheme rests for h seconds. At time sk+h, the DET scheme begins to work. Once the trigger condition (3) is violated, the next (k+1)-th event satisfying (x(t)?x(sk+1))TΘ(x(t)?x(sk+1))>λxT(t)Θx(t) is activated. Repeating the above reasoning, it is easy to see that the Zeno phenomenon can be avoided by using DET scheme since the inner-event interval is not less than h seconds.

    Fig.1. Schematic diagram of an event-triggered control SDSNNs.

    The control law in system(2)is designed as

    u(t)=Kx(sk),

    where K is the control gain matrix to be determined.

    Taking the network-induced delay into account,denote by δk∈[0,δM]over all communication delay from the controller to the actuator. From Fig.1,one can see that the communication delay δkaffects the transmission of sampling information x(sk). Here, we set tk=sk+δkas the ZOH updating time,which is satisfied

    tk=sk+δk≤sk+1+δk+1=tk+1.

    Then,the closed-loop system(2),for[tk,tk+1),has the resulting form

    Remark 1According to the characteristics of DET scheme,we would like to transform the closed-loop SDSNNs(4) into a system which switches between the rest interval t ∈[tk,tk+h)and work interval t ∈[tk+h,tk+1).However,owing to the effect of the communication delay δk,such a switching case will not happen if tk+h=sk+δk+h ≥sk+1+δk+1=tk+1. Accordingly, the trigger condition (3) and closed-loop system(4)should be reconsidered.

    In view of the foregoing discussions, rewrite system (4)as follows:

    where

    ε(t)=t ?sk≤h+δM=εM, t ∈[tk,min{tk+h,tk+1}),

    e(t)=x(sk)?x(t ?δ(t)), t ∈[min{tk+h,tk+1},tk+1).

    Fig.2. The illustration of the sampling and transmission sequence whentk+h <tk+1.

    Here, δ(t) ∈[0,δM] is a fictitious delay function. As shown in Fig.2,owing to t ?δ(t)∈[sk+h,sk+1),δ(t)can be presented as a simple convex combination with δ(tk+1)=δk+1and δ(tk+h)=δk,i.e.,

    Therefore,the trigger condition(3)can be written as

    Before deriving the main results,the following lemma is introduced.

    4. Related work

    Considering the effect of communication delay,the main difficulties and contributions will be discussed in this section.

    (i)Proof of Theorem 1

    It should be mentioned that,for ε(t)∈[0,δM]and κ(t)=1, the closed-loop system (5) can be described by itself with κ(t)=0 and e(t)=0. Clearly,the trigger scheme(6)can be guaranteed. In this case, the condition (7) in Theorem 1 ensures ˙V(t)≤0 for system (5) with ε(t)∈[0,δM], κ(t)=1.As such,we,here,just consider the dynamic behavior of system(5)with ε(t)∈(δM,εM]and κ(t)=1.

    (ii)Robustness to communication delay

    In this paper, the main difficulty is how to analyze the stability of the trivial solutions of closed-loop system(5)under discontinuous event-triggered control subject to network-induced communication delay. Unlike the previous works,[38,40]the closed-loop systems switching between the rest interval and work interval may not occur if sk+δk+h ≥sk+1+δk+1. Accordingly, the developed system models and analysis approaches in Refs. [38,40] cannot be applied in this paper. To overcome these difficulties, a fictitious delay function δ(t) is designed by utilizing the convex combination method. Then, a novel closed-loop system (5) and the related trigger condition (6) are respectively established with the aid of δ(t). In addition, the other challenge is how to investigate the stability of system (5). To this end, the proof of Theorem 1 is divided into two steps, i.e., κ(t)=1,δ(t)∈[0,δM] and κ(t)=0, ε(t)∈(δM,εM]. Meanwhile, by using the constructed Lyapunov-Krasovskii functional and extended reciprocally convex inequality technique, a new globally asymptotically stability criterion is derived for closedloop SDSNNs(5)with communication delay under discontinuous event-triggered control. As such,a unified framework,to reflect the engineering practice, is proposed that aims to handle the problem of simultaneous existence of the communication delay,discontinuous event-triggered control,and feedback controller design. It can not only make full use of the advantage of the DET but also guarantee enough resilience requirement and satisfactory performance influenced by communication delay and limited network resources.

    5. Numerical simulation

    Example 1Taken from Refs.[50], a chaotic SDSNN is proposed and the related system parameters are described by

    and f(x(t))=tanh(x(t)), τ(t)= et/(1+et), D=diag(1,1).Thus,we can obtain L=diag(1,1),τ =1,μ =0.25,

    Using the above parameters, figure 3 demonstrates that the global stabilization of the closed-loop SDSNNs (5) with communication delay can be achieved under discontinuous event-triggered control. In the following, the influence of the waiting time h and communication delay δMon the number of triggering times are respectively discussed.

    Case 1 To depict the effect of h on the triggering times,choose ξ =1, λ =0.01, δM=0.01, and some calculations are shown in Figs.4 and 5. Figure 4 displays the release times with the different values of waiting time h over[0 s,5 s].From Fig.5,we can conclude that the triggering times will decrease when h increases. That is to say,the average period arwill become large. Accordingly,it is clear that the limited bandwidth and computational resources can be effectively saved with the increasing of h.

    Fig.3. Evolutions of xi(t),xi(tk),i=1,2 under DET scheme(6).

    Fig.4. Event release instants with different h for ξ =1,λ =0.01,δM =0.01.

    Fig.5. Triggering times tr for different waiting time h.

    Fig.6. Triggering times tr for different communication delay δM.

    Case 2For fixed ξ =1, λ =0.01, h=0.01, set δM=0.005l,l=1,2,3,4,5,6,figure 6 and Table 1 display the evolution of triggering times tr. From Fig.6 and Table 1, it can be seen that only 135 data signals are transmitted when δM= 0.005. However, it is noteworthy that the amount of triggering times will increase if the communication delay δMbecomes large, which means that the output fluctuation of closed-loop system is large. Namely,the increasing of δMcan aggravate the computational cost and transmission burden of networked control systems.

    Table 1. For fixed ξ =1, λ =0.01, h=0.01, the triggering times tr,average period pr with different communication delay δM over[0 s,5 s].

    From above analyses,it is clear that a larger waiting time h and a smaller communication delay δMcontribute to a better performance of triggering times.

    Example 2Consider a 2-neurons SDSNN(1)with τ(t)=et/(1+et), f(x(t))=tanh(x(t)),D=diag(1,1),and

    then,one has L=diag(1,1),τ =1,μ =0.25,

    Take h=0.04, ξ =1, λ =0.01, δM=0.01, εM=h+δM=0.05,x(s)=(?0.8,1.3)T,s ∈[?1,0]. As well,combining with Theorem 2, one can obtain the trigger matrix Θ and feedback gain K:

    As shown in Fig.7(a), it can be seen that the state responses xi(t) and xi(tk) (i=1,2) of system (6) converge to origin. Furthermore,figure 7(b)displays the event release instants over[0 s,12 s].One can obtain the trigger times tr=187 and average period ar=0.0642 s. It implies that the global stabilization of system (6) can be achieved via discontinuous event-triggered control with communication delay.

    Fig.7. (a)Evolutions of xi(t),xi(tk),i=1,2;(b)event release instants over[0 s,12 s]under DET scheme(6).

    It should be mentioned that when λ = 0 and h = 0 in system (6), the DET control will degenerate into periodic sampled-data (PS) control and CET control, respectively. In order to display the advantage of DET, some comparisons are illustrated as follows. Set the initial value as x(s) =(?0.8,1.3)T,s ∈[?1,0],h=0.01,ξ=1,λ=0.1,and δM=0.In terms of Theorem 2,the triggering times for different control schemes are displayed in Table 2. Compared with the PS and CET,it is easy to see that the number of triggering times,based on DET(3),is respectively reduced more than 91%and 86%. It means that the limited network resources can be effectively saved by using DET control.

    Table 2. Comparisons of the average release period ar,triggering times tr,and data transmission rates o for h=0.01,ξ=1,λ=0.1,and δM=0 over[0 s,8 s].

    6. Conclusion

    The global stabilization problem of SDSNNs is developed under discontinuous event-triggered control with communication delay. Considering the influence of communication delay, the trigger condition and SDSNNs are transformed into two tractable models by introducing a fictitious delay function.Then, a Lyapunov-Krasovskii functional is designed for the resulting closed-loop SDSNNs. Meanwhile, some inequality estimation techniques and extended reciprocally convex combination method are employed to guarantee the stability of the closed-loop SDSNNs. A unified framework is established that is capable of handling the simultaneous existence of the properties of discontinuous event-trigger scheme, feedback controller design, as well as communication delay. Lastly, two examples are given to illustrate the validity of the obtained results. In our future work,the networked privacy problems will be considered in the presence of DET control.In addition,how to extend the developed framework to consider the privacy issues with DET control will be another interesting topic.

    猜你喜歡
    沈浩王震英杰
    拜謁沈浩墓
    Probability density and oscillating period of magnetopolaron in parabolic quantum dot in the presence of Rashba effect and temperature*
    其實我很想哭
    其實我很想哭
    ?∞state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule?
    Observe modern design works and taste traditional Chinese culture
    “要是”的作用
    搶著去邊疆的王震
    “辦”“為”和解
    Special Property of Group Velocity for Temporal Dark Soliton?
    一级a做视频免费观看| 亚洲成色77777| 91成人精品电影| 中文字幕人妻丝袜制服| av播播在线观看一区| 国产男人的电影天堂91| 亚洲欧美清纯卡通| 久久精品国产亚洲av天美| 午夜视频国产福利| 人人妻人人澡人人爽人人夜夜| 久久99精品国语久久久| 中国国产av一级| 2021少妇久久久久久久久久久| 国产精品蜜桃在线观看| 高清视频免费观看一区二区| 国产精品偷伦视频观看了| 国产成人91sexporn| 在线观看国产h片| 国产精品久久久久成人av| 久久精品久久久久久久性| 久久精品熟女亚洲av麻豆精品| 人人妻人人澡人人爽人人夜夜| 天天躁夜夜躁狠狠久久av| 最新中文字幕久久久久| 一级毛片电影观看| 国产精品女同一区二区软件| 免费不卡的大黄色大毛片视频在线观看| 草草在线视频免费看| 久久免费观看电影| 伊人亚洲综合成人网| 黄色一级大片看看| 国产欧美日韩精品一区二区| 能在线免费看毛片的网站| xxx大片免费视频| 欧美精品一区二区免费开放| 性高湖久久久久久久久免费观看| 国产91av在线免费观看| 老司机亚洲免费影院| 久久99蜜桃精品久久| 菩萨蛮人人尽说江南好唐韦庄| 校园人妻丝袜中文字幕| 久久久久久久大尺度免费视频| 亚洲精华国产精华液的使用体验| 亚洲av国产av综合av卡| 搡老乐熟女国产| 简卡轻食公司| 国产精品国产av在线观看| 国产免费一级a男人的天堂| 国产成人免费观看mmmm| 美女内射精品一级片tv| 新久久久久国产一级毛片| 国产精品一区二区在线观看99| 日本午夜av视频| 国产日韩一区二区三区精品不卡 | 久久久久久久久大av| 七月丁香在线播放| 99久久精品热视频| 日韩一本色道免费dvd| av网站免费在线观看视频| 欧美最新免费一区二区三区| 国产在线免费精品| 男女无遮挡免费网站观看| 少妇 在线观看| 一区二区三区乱码不卡18| 99久久综合免费| 国国产精品蜜臀av免费| 亚洲av.av天堂| 久久久久精品久久久久真实原创| 亚洲天堂av无毛| 亚洲一级一片aⅴ在线观看| 美女内射精品一级片tv| av线在线观看网站| av.在线天堂| 99热网站在线观看| 性色avwww在线观看| 新久久久久国产一级毛片| 国产高清不卡午夜福利| 成人国产麻豆网| 精品少妇内射三级| tube8黄色片| .国产精品久久| 久久久久精品久久久久真实原创| 91精品伊人久久大香线蕉| 最后的刺客免费高清国语| 老司机影院成人| 大片免费播放器 马上看| 国产真实伦视频高清在线观看| 男女啪啪激烈高潮av片| 99久久精品热视频| 国产精品久久久久久精品电影小说| 免费少妇av软件| 三级国产精品欧美在线观看| 91久久精品国产一区二区三区| 狂野欧美激情性bbbbbb| 免费av不卡在线播放| 亚洲av中文av极速乱| 亚洲精品国产成人久久av| 狂野欧美白嫩少妇大欣赏| 国产成人午夜福利电影在线观看| 91aial.com中文字幕在线观看| 99九九线精品视频在线观看视频| 国产 精品1| 国产在线男女| 亚洲精品日韩在线中文字幕| 亚洲av男天堂| 国产一区亚洲一区在线观看| 成人18禁高潮啪啪吃奶动态图 | av网站免费在线观看视频| 国产成人免费观看mmmm| 亚洲欧美日韩卡通动漫| 国产精品99久久99久久久不卡 | 亚洲内射少妇av| 精品一区在线观看国产| 亚洲,一卡二卡三卡| 一区二区三区免费毛片| 国产老妇伦熟女老妇高清| 久久久久久久精品精品| 性色avwww在线观看| 免费黄色在线免费观看| 婷婷色av中文字幕| 午夜精品国产一区二区电影| 久久久久久久亚洲中文字幕| 在线播放无遮挡| 最近中文字幕2019免费版| 国产一区二区三区av在线| 爱豆传媒免费全集在线观看| 9色porny在线观看| 2021少妇久久久久久久久久久| 久久久久久久大尺度免费视频| 三级经典国产精品| 精品久久国产蜜桃| 91精品国产九色| 成人亚洲精品一区在线观看| 国产精品秋霞免费鲁丝片| 各种免费的搞黄视频| 国产亚洲91精品色在线| 黑丝袜美女国产一区| 亚洲精品,欧美精品| 有码 亚洲区| 色婷婷久久久亚洲欧美| 久久久久久久久久久丰满| 国产伦理片在线播放av一区| 日产精品乱码卡一卡2卡三| 亚洲精品国产色婷婷电影| 日韩亚洲欧美综合| videos熟女内射| 99精国产麻豆久久婷婷| 亚洲伊人久久精品综合| 一级毛片久久久久久久久女| 最近中文字幕高清免费大全6| 99九九线精品视频在线观看视频| 亚洲精品乱码久久久久久按摩| 少妇丰满av| 高清av免费在线| 精品少妇内射三级| 久久精品久久久久久久性| 久久狼人影院| 99视频精品全部免费 在线| 看非洲黑人一级黄片| 男男h啪啪无遮挡| 乱人伦中国视频| 亚洲在久久综合| 国产精品熟女久久久久浪| 欧美精品亚洲一区二区| 亚洲精品456在线播放app| 亚洲国产毛片av蜜桃av| 免费大片黄手机在线观看| 男人舔奶头视频| 黄片无遮挡物在线观看| 欧美精品一区二区免费开放| 成人国产麻豆网| 国产亚洲91精品色在线| 人人妻人人添人人爽欧美一区卜| 少妇猛男粗大的猛烈进出视频| 精品少妇内射三级| 校园人妻丝袜中文字幕| 人妻人人澡人人爽人人| 水蜜桃什么品种好| 秋霞在线观看毛片| 中文字幕制服av| 亚洲精品成人av观看孕妇| 久久99热6这里只有精品| 精品人妻熟女av久视频| 男人狂女人下面高潮的视频| 熟妇人妻不卡中文字幕| 欧美日韩亚洲高清精品| 嘟嘟电影网在线观看| 欧美3d第一页| 免费人成在线观看视频色| av播播在线观看一区| 一本久久精品| 99国产精品免费福利视频| 精品一区二区免费观看| 国产精品久久久久久精品电影小说| 欧美+日韩+精品| 日日撸夜夜添| 亚洲精品456在线播放app| 亚洲第一区二区三区不卡| 美女xxoo啪啪120秒动态图| av黄色大香蕉| 午夜av观看不卡| 99久国产av精品国产电影| 欧美激情国产日韩精品一区| 久久久国产一区二区| 一级av片app| 熟女电影av网| 99九九线精品视频在线观看视频| 男人添女人高潮全过程视频| 亚洲伊人久久精品综合| 欧美成人精品欧美一级黄| 久久人妻熟女aⅴ| 少妇被粗大猛烈的视频| 国产淫片久久久久久久久| 岛国毛片在线播放| 欧美性感艳星| 一级爰片在线观看| 成人国产麻豆网| 国产精品一区www在线观看| 看免费成人av毛片| 99九九线精品视频在线观看视频| 久久婷婷青草| 日日撸夜夜添| 精品99又大又爽又粗少妇毛片| 高清黄色对白视频在线免费看 | 国产精品麻豆人妻色哟哟久久| 亚洲美女黄色视频免费看| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美成人精品一区二区| 在线观看三级黄色| 久热久热在线精品观看| 蜜臀久久99精品久久宅男| 午夜福利影视在线免费观看| 国产成人freesex在线| 大码成人一级视频| av线在线观看网站| 五月伊人婷婷丁香| 一级黄片播放器| 成人亚洲欧美一区二区av| 99九九线精品视频在线观看视频| 日韩一区二区视频免费看| 免费播放大片免费观看视频在线观看| 欧美3d第一页| 最新的欧美精品一区二区| 国产在视频线精品| 伦理电影大哥的女人| 国产视频首页在线观看| 一级毛片aaaaaa免费看小| 99热国产这里只有精品6| 亚洲人与动物交配视频| .国产精品久久| 18禁在线播放成人免费| 久热这里只有精品99| 日韩不卡一区二区三区视频在线| 丰满饥渴人妻一区二区三| 欧美三级亚洲精品| 18禁在线无遮挡免费观看视频| 国产成人午夜福利电影在线观看| 免费久久久久久久精品成人欧美视频 | 肉色欧美久久久久久久蜜桃| 大片免费播放器 马上看| 亚洲无线观看免费| 免费av中文字幕在线| videos熟女内射| 观看av在线不卡| 下体分泌物呈黄色| 高清午夜精品一区二区三区| 少妇猛男粗大的猛烈进出视频| 97超碰精品成人国产| 我的女老师完整版在线观看| 熟妇人妻不卡中文字幕| 亚洲熟女精品中文字幕| 最近的中文字幕免费完整| 欧美区成人在线视频| 最近中文字幕高清免费大全6| 午夜免费观看性视频| 少妇人妻久久综合中文| 内地一区二区视频在线| 精华霜和精华液先用哪个| 久久精品夜色国产| 成人毛片60女人毛片免费| av国产精品久久久久影院| 成年女人在线观看亚洲视频| 亚洲国产欧美在线一区| 极品少妇高潮喷水抽搐| 久久久久精品久久久久真实原创| 特大巨黑吊av在线直播| 欧美日韩在线观看h| 下体分泌物呈黄色| 纵有疾风起免费观看全集完整版| 中文字幕精品免费在线观看视频 | 少妇的逼水好多| 五月玫瑰六月丁香| 午夜影院在线不卡| 七月丁香在线播放| 中文字幕人妻熟人妻熟丝袜美| 国产 一区精品| 国产中年淑女户外野战色| 亚洲av日韩在线播放| 亚洲国产最新在线播放| 国产黄片美女视频| 国产成人a∨麻豆精品| 日韩成人伦理影院| 国产亚洲最大av| 在线观看一区二区三区激情| 一本色道久久久久久精品综合| 国产欧美日韩一区二区三区在线 | 9色porny在线观看| 中文资源天堂在线| 久久久精品94久久精品| 午夜视频国产福利| 激情五月婷婷亚洲| 国产又色又爽无遮挡免| 欧美另类一区| 国产欧美日韩精品一区二区| 国产精品免费大片| 日韩欧美一区视频在线观看 | 国产又色又爽无遮挡免| 亚洲精品国产色婷婷电影| 免费人成在线观看视频色| 爱豆传媒免费全集在线观看| 国产精品麻豆人妻色哟哟久久| 日韩制服骚丝袜av| 老熟女久久久| 精品一区二区免费观看| 极品少妇高潮喷水抽搐| 国产成人免费观看mmmm| 免费黄频网站在线观看国产| 日日撸夜夜添| av在线老鸭窝| 精品午夜福利在线看| 亚洲国产成人一精品久久久| 三级国产精品欧美在线观看| 桃花免费在线播放| 99热国产这里只有精品6| 五月天丁香电影| 日韩电影二区| av在线观看视频网站免费| 最近手机中文字幕大全| 国产高清三级在线| av天堂中文字幕网| 女人精品久久久久毛片| 国产免费视频播放在线视频| 成人综合一区亚洲| 五月伊人婷婷丁香| 免费观看的影片在线观看| 九草在线视频观看| 丰满迷人的少妇在线观看| 91精品国产九色| 全区人妻精品视频| 成人国产av品久久久| 性色av一级| 国产成人精品福利久久| 久久人人爽人人爽人人片va| 欧美 日韩 精品 国产| 免费观看av网站的网址| 国产高清国产精品国产三级| 在线亚洲精品国产二区图片欧美 | 亚洲精品视频女| 久久午夜福利片| 国产精品人妻久久久久久| www.色视频.com| 99热全是精品| 国产av精品麻豆| 观看美女的网站| 国产日韩欧美在线精品| 久久久国产一区二区| 大又大粗又爽又黄少妇毛片口| 亚洲欧美清纯卡通| 国产熟女欧美一区二区| 日韩亚洲欧美综合| 日韩av不卡免费在线播放| 乱系列少妇在线播放| 国内少妇人妻偷人精品xxx网站| 黄色视频在线播放观看不卡| 国产黄色免费在线视频| 国产无遮挡羞羞视频在线观看| 日本与韩国留学比较| 少妇人妻精品综合一区二区| 国产极品天堂在线| 青春草国产在线视频| 只有这里有精品99| 极品教师在线视频| 国产欧美日韩综合在线一区二区 | 久久99精品国语久久久| 亚洲欧美一区二区三区国产| 蜜臀久久99精品久久宅男| 国产视频内射| 欧美日韩视频精品一区| 高清毛片免费看| 26uuu在线亚洲综合色| 狠狠精品人妻久久久久久综合| 美女主播在线视频| 蜜桃久久精品国产亚洲av| 十八禁网站网址无遮挡 | 国产伦精品一区二区三区视频9| 男人爽女人下面视频在线观看| h视频一区二区三区| 亚洲欧美精品专区久久| 美女xxoo啪啪120秒动态图| 久久精品国产a三级三级三级| 大话2 男鬼变身卡| 精品久久久久久久久av| 建设人人有责人人尽责人人享有的| 久久这里有精品视频免费| 亚洲熟女精品中文字幕| 在现免费观看毛片| 不卡视频在线观看欧美| 久久久久久久久大av| 99热这里只有是精品在线观看| 亚洲国产精品一区二区三区在线| 黄色怎么调成土黄色| 男人添女人高潮全过程视频| 少妇人妻 视频| 欧美xxxx性猛交bbbb| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品久久午夜乱码| 亚洲丝袜综合中文字幕| 久久久久久久久大av| 国产一级毛片在线| 久久久久久久久久久久大奶| 人妻人人澡人人爽人人| 岛国毛片在线播放| 成人18禁高潮啪啪吃奶动态图 | 国产成人aa在线观看| 伦理电影大哥的女人| 国产精品女同一区二区软件| 一级毛片aaaaaa免费看小| 成人黄色视频免费在线看| 午夜福利视频精品| 一级爰片在线观看| 日韩av在线免费看完整版不卡| 曰老女人黄片| 国产成人精品久久久久久| 99九九在线精品视频 | 亚洲欧洲日产国产| 一级爰片在线观看| 美女国产视频在线观看| 三上悠亚av全集在线观看 | 熟女人妻精品中文字幕| 伦理电影大哥的女人| 日本爱情动作片www.在线观看| 日韩欧美一区视频在线观看 | 欧美变态另类bdsm刘玥| 黑人猛操日本美女一级片| 精品亚洲乱码少妇综合久久| 又大又黄又爽视频免费| 一级av片app| 黄片无遮挡物在线观看| 久久精品夜色国产| 高清午夜精品一区二区三区| 91久久精品国产一区二区成人| 国产伦理片在线播放av一区| 狂野欧美激情性xxxx在线观看| 免费黄频网站在线观看国产| av免费观看日本| 水蜜桃什么品种好| 久久97久久精品| 美女cb高潮喷水在线观看| 国产成人freesex在线| 在线观看国产h片| 人妻 亚洲 视频| 亚洲内射少妇av| 亚洲精品乱码久久久v下载方式| 熟女电影av网| 黄色怎么调成土黄色| 国产淫语在线视频| 街头女战士在线观看网站| 免费观看的影片在线观看| 久久久久久久久久人人人人人人| 亚洲色图综合在线观看| 人妻一区二区av| 一级二级三级毛片免费看| 午夜视频国产福利| 有码 亚洲区| 成年女人在线观看亚洲视频| 欧美日韩精品成人综合77777| 国产男人的电影天堂91| 亚洲国产精品国产精品| 日本vs欧美在线观看视频 | 亚洲精品亚洲一区二区| 女性被躁到高潮视频| 欧美日韩一区二区视频在线观看视频在线| 日日摸夜夜添夜夜爱| 国产成人freesex在线| 91久久精品国产一区二区三区| 国产淫语在线视频| 在线观看三级黄色| 免费黄频网站在线观看国产| 国产伦精品一区二区三区视频9| 欧美成人精品欧美一级黄| av播播在线观看一区| 亚洲精品第二区| 久久久久久久久久久久大奶| 一级av片app| 丰满人妻一区二区三区视频av| 人妻 亚洲 视频| 国精品久久久久久国模美| 九九在线视频观看精品| 久久精品国产亚洲网站| 极品人妻少妇av视频| 日韩一区二区视频免费看| 久久青草综合色| 天堂中文最新版在线下载| 久久99热6这里只有精品| www.色视频.com| 成人午夜精彩视频在线观看| 亚洲,一卡二卡三卡| 制服丝袜香蕉在线| 超碰97精品在线观看| 女人精品久久久久毛片| 欧美老熟妇乱子伦牲交| 一级毛片我不卡| 久久久午夜欧美精品| 高清毛片免费看| 国产亚洲午夜精品一区二区久久| 亚洲中文av在线| av女优亚洲男人天堂| 国产一区二区三区av在线| 十八禁高潮呻吟视频 | 欧美性感艳星| 在线天堂最新版资源| 人妻系列 视频| 日韩不卡一区二区三区视频在线| 国产伦精品一区二区三区四那| 最近中文字幕高清免费大全6| 欧美xxⅹ黑人| 免费看av在线观看网站| 免费不卡的大黄色大毛片视频在线观看| 91精品一卡2卡3卡4卡| videossex国产| freevideosex欧美| 新久久久久国产一级毛片| 我要看日韩黄色一级片| 在线天堂最新版资源| 丰满饥渴人妻一区二区三| 色婷婷av一区二区三区视频| 另类亚洲欧美激情| 成人无遮挡网站| 一级,二级,三级黄色视频| 亚洲美女搞黄在线观看| 伦理电影免费视频| 九九在线视频观看精品| 国产69精品久久久久777片| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕久久专区| 亚洲精品久久午夜乱码| 天天操日日干夜夜撸| 精品99又大又爽又粗少妇毛片| 一级a做视频免费观看| 成人免费观看视频高清| 精品人妻熟女av久视频| 日韩制服骚丝袜av| 中国美白少妇内射xxxbb| 91精品国产国语对白视频| 久久免费观看电影| 亚洲国产精品国产精品| 99九九线精品视频在线观看视频| 精品熟女少妇av免费看| 欧美 日韩 精品 国产| 国产男人的电影天堂91| av有码第一页| 99久国产av精品国产电影| 国产精品无大码| 国产一区有黄有色的免费视频| 日本av手机在线免费观看| 两个人的视频大全免费| 欧美成人午夜免费资源| 久久午夜综合久久蜜桃| 久久人妻熟女aⅴ| 晚上一个人看的免费电影| 一级a做视频免费观看| .国产精品久久| 国产亚洲一区二区精品| 精品国产乱码久久久久久小说| av线在线观看网站| 国产av精品麻豆| 男女边吃奶边做爰视频| 日韩欧美一区视频在线观看 | 黑人巨大精品欧美一区二区蜜桃 | 国产乱人偷精品视频| 如日韩欧美国产精品一区二区三区 | 一级毛片黄色毛片免费观看视频| 人妻人人澡人人爽人人| 肉色欧美久久久久久久蜜桃| 亚洲国产精品成人久久小说| 久久久久久久久久久久大奶| 国产精品一二三区在线看| 天天躁夜夜躁狠狠久久av| 少妇熟女欧美另类| av免费观看日本| 成年av动漫网址| 亚洲精品色激情综合| 成人午夜精彩视频在线观看| 欧美性感艳星| 亚洲中文av在线| 亚洲综合精品二区| a级毛片在线看网站| 久久99热6这里只有精品| 少妇丰满av| 欧美精品高潮呻吟av久久| 亚洲精品国产成人久久av| 久久久久久久久久成人| 男男h啪啪无遮挡| 日本黄大片高清| 国产视频内射| 亚洲怡红院男人天堂| 国产日韩欧美在线精品| 狂野欧美激情性xxxx在线观看| 九草在线视频观看| 99久久精品国产国产毛片| 亚洲精品视频女| 精品99又大又爽又粗少妇毛片| 日韩中文字幕视频在线看片| 少妇的逼水好多| 亚洲色图综合在线观看|