• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay?

    2021-03-19 03:19:38YingjieFan樊英杰ZhenWang王震JianweiXia夏建偉andHaoShen沈浩
    Chinese Physics B 2021年3期
    關(guān)鍵詞:沈浩王震英杰

    Yingjie Fan(樊英杰), Zhen Wang(王震), Jianwei Xia(夏建偉), and Hao Shen(沈浩)

    1College of Electrical Engineering and Automation,Shandong University of Science and Technology,Qingdao 266590,China

    2College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao 266590,China

    3School of Mathematical Science,Liaocheng University,Liaocheng 252059,China

    4College of Electrical and Information Engineering,Anhui University of Technology,Ma’anshan 243032,China

    Keywords: global stabilization, state-dependent switching neural networks, discontinuous event-trigger scheme,communication delay

    1. Introduction

    The last decade has displayed an ever-increasing research topic on state-dependent switching neural networks(SDSNNs), such as memristive neural networks, since it has some outstanding superiorities in multi-value storage,[1]and unsupervised learning,[2]etc. Compared with traditional neural networks,some experiment results have demonstrated that SDSNNs can imitate the synaptic activity better in the brain emulation. Accordingly, an enormous interest has been attracted to the investigation of SDSNNs and many pioneering works have been presented,such as synchronization,[3-10]state estimation.[11-14]It is noteworthy that stability is a prerequisite for ensuring SDSNNs steadily operation. As such,various control schemes have been developed to investigate the stabilization problem of SDSNNs.[15-18]Nevertheless,all the above published results are on the basis of an assumption that there are no communication delay and any constraints on the digital transmission channel. From a resource conservation of view,these traditional control schemes in Refs.[3-19]will lead to transmission burdens and increase control cost.With the increasing demand of digital technology in industry,a rich synthesis of energy-saving networked control schemes,such as impulsive control,[20-22]sampled-data control,[23-26]and event-triggered control,[27-40]compose a popular research issue in relevant applications domains. Clearly,it is necessary and reasonable to settle the stabilization problem of SDSNNs under networked control schemes.

    As we know, the sampling information is sent out at a series of transmission instants. It can be found that the time-dependent mechanism is easy to realize by using a clock generator. However, the redundant sampling information is still transmitted to the controller if some desirable targets are satisfied. Hence, it will lead to a waste of energy resources and communication bandwidth. To this end, several event-trigger schemes have been established to reduce the unnecessary sampling times, such as continuous event-trigger(CET),[27-29]sampled-data-based event-trigger,[30-36]and discontinuous event-trigger(DET).[37-41]For example,the global synchronization problem of SDSNNs with parameters mismatch has been investigated via continuous event-triggered control in Ref.[29]. Also,theoretical analysis has proved that the Zeno behavior can be avoided. However, the derived results in Ref.[42]demonstrate that the Zeno behavior may be still exist under the influence of arbitrary small measurement noise or external disturbances. To overcome this shortcoming,the global stabilization of SDSNNs has been discussed under sampled-data-based event-triggered control in Ref. [34].Unfortunately, this kind of trigger scheme does not take advantage of the available state information. In view of the above considerations,the DET scheme consisting of two work modes has been proposed in Ref.[37]for the first time,which can not only avoid Zeno behavior but also reduce the triggering times. For instance, the global stabilization of SDSNNs has been achieved based on an exponential-attenuation-based DET scheme and the simulation results have demonstrated that the triggering times can be effectively reduced in Ref.[38]. It is, therefore, meaningful to investigate the stabilization problem of SDSNNs by using DET scheme.

    On the other hand, an ineluctable issue is that the sampling information transmitted from the controller to actuator is usually influenced by network-induced communication delay.[43,44]Under the effect of communication delay, it is difficult to achieve a satisfactory performance. Accordingly,how to ensure the stability of networked control systems with communication delay is an important and necessary problem. To this end, the global stabilization problem of networked T-S fuzzy control systems has been investigated under adaptive event-triggered control with communication delay in Ref.[35]. In addition,a class of event-trigger predictive control scheme, to compensate communication delays, has been proposed for networked control systems(NCSs)in Ref.[36].Nevertheless,there are no published results to study the analysis and synthesis of SDSNNs under discontinuous eventtriggered control under the framework of communication delay. The main reason lies in that the proposed analysis techniques in Refs. [38,40,41] cannot be applied to deal with the stability of SDSNNs under discontinuous event-triggered control subject to communication delay.This naturally touches off the following important problems. What is the impact of communication delay on data transmission? Furthermore, what is the effect of communication delay on the trigger times and stability performance? To the best of our knowledge, these difficulties have not been solved for SDSNNs with communication delay by employing DET scheme. Therefore, how to well settle these problems motivates the present investigation of this paper.

    Summarizing the above discussions, this paper investigates the global stabilization of SDSNNs under discontinuous event-triggered control with communication delay. The main contributions are listed as follows.

    (i)Considering the effect of communication delay,a fictitious delay function is proposed by utilizing the convex combination technique. Then, the SDSNNs and trigger condition are respectively transformed into two tractable models,which contributes to the current theoretical analysis.

    (ii) A unified framework is proposed that has the ability to deal with the simultaneous existence of the properties of discontinuous event-trigger scheme,communication delay,as well as feedback controller design. First, a novel Lyapunov-Krasovskii functional is constructed to investigate the stability of the resulting closed-loop SDSNNs. Then, by employing the extended reciprocally convex combination method and some inequality estimation techniques,two novel globally asymptotically stability criteria are respectively established for the resulting closed-loop SDSNNs under discontinuous eventtriggered control with communication delay.

    Notations:Throughout this paper, N, Rn×ndenote the set of nonnegative integers, n×n real matrices, respectively.diag(···)and A(i)respectively denote a block diagonal matrix and the i-th row of matrix A. AT(A?1) stands for transpose(inverse) of matrix A. A >0 (A ≥0) means that A is a symmetric and positive definite (semi-definite) matrix. col{···}is a column vector. λmax(A) denotes the maximal eigenvalue of matrix A. ||·||p, p=1,2,∞and I (0) are the p-norm of a vector or a matrix and identity (zero) matrices of appropriate dimensions.

    2. Preliminaries and problem formulation

    Consider the following dynamical system for n-neurons SDSNNs:

    where x(t)∈Rnand u(t)∈Rndenote the state vector and controller, respectively. D=diag{d1,d2,...,dn}>0, A(x(t))=(aij(xj(t)))n×n,and B(x(t))=(bij(xj(t)))n×nrespectively denote the self-feedback matrix,state-dependent switching connection weight matrix,and delayed connection weight matrix.τ(t)denotes the time-varying delay satisfying 0 ≤τ(t)≤τ and ˙τ(t)≤μ <1. The neuron activation function f(x(t))∈Rnis assumed to be monotonically nondecreasing and satisfies 0 ≤fj(u)?fj(ν)/(u?ν)≤Lj, u, ν, u/=ν, Lj∈R, i,j =1,2,...,n. The state-dependent switching connection weights satisfy the following conditions:

    Also,one can see that equation(1)is the characteristic of differential dynamical systems with discontinuous right-hand sides. In this case, we consider the trivial solutions of system (1) in Filippov’s sense and the following Definition 1 is introduced.

    Definition 1[45]Consider the system ˙y(t)=g(y),y ∈Rnwith discontinuous right-hand sides, a set-valued map is described as

    where B(y,δ)={z:‖z ?y‖≤δ},co[E]is the closure of the convex hull of set E, and μ(N) is the Lebesgue measure of set N. A solution in Filippov’s sense of the Cauchy problem,for the system with initial value y(0)=y0, is an absolutely continuous function y(t),t ∈[0,T]. It satisfies y(0)=y0and differential inclusion

    ˙y(t)∈φ(y)

    for a.e.t ∈[0,T].

    Define

    Based on Definition 1,system(1)is equivalent to

    where

    such that

    In this paper, we consider the stabilization problem of SDSNNs via discontinuous event-triggered control. As displayed in Fig.1,a discontinuous event-trigger(DET)scheme is positioned between the controller and the sensor. The corresponding trigger condition is formulated as

    where the waiting time h >0, λ ≥0, and trigger matrix Θ ≥0. It should be mentioned that the main feature of this DET scheme lies in that the operation pattern consists of rest interval and work interval. The principle is as follows. Suppose that the k-th event is activated on the basis of trigger condition (3). Then, the sampling information x(sk)is transmitted from the event generator to the controller.Meanwhile, the trigger scheme rests for h seconds. At time sk+h, the DET scheme begins to work. Once the trigger condition (3) is violated, the next (k+1)-th event satisfying (x(t)?x(sk+1))TΘ(x(t)?x(sk+1))>λxT(t)Θx(t) is activated. Repeating the above reasoning, it is easy to see that the Zeno phenomenon can be avoided by using DET scheme since the inner-event interval is not less than h seconds.

    Fig.1. Schematic diagram of an event-triggered control SDSNNs.

    The control law in system(2)is designed as

    u(t)=Kx(sk),

    where K is the control gain matrix to be determined.

    Taking the network-induced delay into account,denote by δk∈[0,δM]over all communication delay from the controller to the actuator. From Fig.1,one can see that the communication delay δkaffects the transmission of sampling information x(sk). Here, we set tk=sk+δkas the ZOH updating time,which is satisfied

    tk=sk+δk≤sk+1+δk+1=tk+1.

    Then,the closed-loop system(2),for[tk,tk+1),has the resulting form

    Remark 1According to the characteristics of DET scheme,we would like to transform the closed-loop SDSNNs(4) into a system which switches between the rest interval t ∈[tk,tk+h)and work interval t ∈[tk+h,tk+1).However,owing to the effect of the communication delay δk,such a switching case will not happen if tk+h=sk+δk+h ≥sk+1+δk+1=tk+1. Accordingly, the trigger condition (3) and closed-loop system(4)should be reconsidered.

    In view of the foregoing discussions, rewrite system (4)as follows:

    where

    ε(t)=t ?sk≤h+δM=εM, t ∈[tk,min{tk+h,tk+1}),

    e(t)=x(sk)?x(t ?δ(t)), t ∈[min{tk+h,tk+1},tk+1).

    Fig.2. The illustration of the sampling and transmission sequence whentk+h <tk+1.

    Here, δ(t) ∈[0,δM] is a fictitious delay function. As shown in Fig.2,owing to t ?δ(t)∈[sk+h,sk+1),δ(t)can be presented as a simple convex combination with δ(tk+1)=δk+1and δ(tk+h)=δk,i.e.,

    Therefore,the trigger condition(3)can be written as

    Before deriving the main results,the following lemma is introduced.

    4. Related work

    Considering the effect of communication delay,the main difficulties and contributions will be discussed in this section.

    (i)Proof of Theorem 1

    It should be mentioned that,for ε(t)∈[0,δM]and κ(t)=1, the closed-loop system (5) can be described by itself with κ(t)=0 and e(t)=0. Clearly,the trigger scheme(6)can be guaranteed. In this case, the condition (7) in Theorem 1 ensures ˙V(t)≤0 for system (5) with ε(t)∈[0,δM], κ(t)=1.As such,we,here,just consider the dynamic behavior of system(5)with ε(t)∈(δM,εM]and κ(t)=1.

    (ii)Robustness to communication delay

    In this paper, the main difficulty is how to analyze the stability of the trivial solutions of closed-loop system(5)under discontinuous event-triggered control subject to network-induced communication delay. Unlike the previous works,[38,40]the closed-loop systems switching between the rest interval and work interval may not occur if sk+δk+h ≥sk+1+δk+1. Accordingly, the developed system models and analysis approaches in Refs. [38,40] cannot be applied in this paper. To overcome these difficulties, a fictitious delay function δ(t) is designed by utilizing the convex combination method. Then, a novel closed-loop system (5) and the related trigger condition (6) are respectively established with the aid of δ(t). In addition, the other challenge is how to investigate the stability of system (5). To this end, the proof of Theorem 1 is divided into two steps, i.e., κ(t)=1,δ(t)∈[0,δM] and κ(t)=0, ε(t)∈(δM,εM]. Meanwhile, by using the constructed Lyapunov-Krasovskii functional and extended reciprocally convex inequality technique, a new globally asymptotically stability criterion is derived for closedloop SDSNNs(5)with communication delay under discontinuous event-triggered control. As such,a unified framework,to reflect the engineering practice, is proposed that aims to handle the problem of simultaneous existence of the communication delay,discontinuous event-triggered control,and feedback controller design. It can not only make full use of the advantage of the DET but also guarantee enough resilience requirement and satisfactory performance influenced by communication delay and limited network resources.

    5. Numerical simulation

    Example 1Taken from Refs.[50], a chaotic SDSNN is proposed and the related system parameters are described by

    and f(x(t))=tanh(x(t)), τ(t)= et/(1+et), D=diag(1,1).Thus,we can obtain L=diag(1,1),τ =1,μ =0.25,

    Using the above parameters, figure 3 demonstrates that the global stabilization of the closed-loop SDSNNs (5) with communication delay can be achieved under discontinuous event-triggered control. In the following, the influence of the waiting time h and communication delay δMon the number of triggering times are respectively discussed.

    Case 1 To depict the effect of h on the triggering times,choose ξ =1, λ =0.01, δM=0.01, and some calculations are shown in Figs.4 and 5. Figure 4 displays the release times with the different values of waiting time h over[0 s,5 s].From Fig.5,we can conclude that the triggering times will decrease when h increases. That is to say,the average period arwill become large. Accordingly,it is clear that the limited bandwidth and computational resources can be effectively saved with the increasing of h.

    Fig.3. Evolutions of xi(t),xi(tk),i=1,2 under DET scheme(6).

    Fig.4. Event release instants with different h for ξ =1,λ =0.01,δM =0.01.

    Fig.5. Triggering times tr for different waiting time h.

    Fig.6. Triggering times tr for different communication delay δM.

    Case 2For fixed ξ =1, λ =0.01, h=0.01, set δM=0.005l,l=1,2,3,4,5,6,figure 6 and Table 1 display the evolution of triggering times tr. From Fig.6 and Table 1, it can be seen that only 135 data signals are transmitted when δM= 0.005. However, it is noteworthy that the amount of triggering times will increase if the communication delay δMbecomes large, which means that the output fluctuation of closed-loop system is large. Namely,the increasing of δMcan aggravate the computational cost and transmission burden of networked control systems.

    Table 1. For fixed ξ =1, λ =0.01, h=0.01, the triggering times tr,average period pr with different communication delay δM over[0 s,5 s].

    From above analyses,it is clear that a larger waiting time h and a smaller communication delay δMcontribute to a better performance of triggering times.

    Example 2Consider a 2-neurons SDSNN(1)with τ(t)=et/(1+et), f(x(t))=tanh(x(t)),D=diag(1,1),and

    then,one has L=diag(1,1),τ =1,μ =0.25,

    Take h=0.04, ξ =1, λ =0.01, δM=0.01, εM=h+δM=0.05,x(s)=(?0.8,1.3)T,s ∈[?1,0]. As well,combining with Theorem 2, one can obtain the trigger matrix Θ and feedback gain K:

    As shown in Fig.7(a), it can be seen that the state responses xi(t) and xi(tk) (i=1,2) of system (6) converge to origin. Furthermore,figure 7(b)displays the event release instants over[0 s,12 s].One can obtain the trigger times tr=187 and average period ar=0.0642 s. It implies that the global stabilization of system (6) can be achieved via discontinuous event-triggered control with communication delay.

    Fig.7. (a)Evolutions of xi(t),xi(tk),i=1,2;(b)event release instants over[0 s,12 s]under DET scheme(6).

    It should be mentioned that when λ = 0 and h = 0 in system (6), the DET control will degenerate into periodic sampled-data (PS) control and CET control, respectively. In order to display the advantage of DET, some comparisons are illustrated as follows. Set the initial value as x(s) =(?0.8,1.3)T,s ∈[?1,0],h=0.01,ξ=1,λ=0.1,and δM=0.In terms of Theorem 2,the triggering times for different control schemes are displayed in Table 2. Compared with the PS and CET,it is easy to see that the number of triggering times,based on DET(3),is respectively reduced more than 91%and 86%. It means that the limited network resources can be effectively saved by using DET control.

    Table 2. Comparisons of the average release period ar,triggering times tr,and data transmission rates o for h=0.01,ξ=1,λ=0.1,and δM=0 over[0 s,8 s].

    6. Conclusion

    The global stabilization problem of SDSNNs is developed under discontinuous event-triggered control with communication delay. Considering the influence of communication delay, the trigger condition and SDSNNs are transformed into two tractable models by introducing a fictitious delay function.Then, a Lyapunov-Krasovskii functional is designed for the resulting closed-loop SDSNNs. Meanwhile, some inequality estimation techniques and extended reciprocally convex combination method are employed to guarantee the stability of the closed-loop SDSNNs. A unified framework is established that is capable of handling the simultaneous existence of the properties of discontinuous event-trigger scheme, feedback controller design, as well as communication delay. Lastly, two examples are given to illustrate the validity of the obtained results. In our future work,the networked privacy problems will be considered in the presence of DET control.In addition,how to extend the developed framework to consider the privacy issues with DET control will be another interesting topic.

    猜你喜歡
    沈浩王震英杰
    拜謁沈浩墓
    Probability density and oscillating period of magnetopolaron in parabolic quantum dot in the presence of Rashba effect and temperature*
    其實我很想哭
    其實我很想哭
    ?∞state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule?
    Observe modern design works and taste traditional Chinese culture
    “要是”的作用
    搶著去邊疆的王震
    “辦”“為”和解
    Special Property of Group Velocity for Temporal Dark Soliton?
    亚洲成人中文字幕在线播放| 欧美成人a在线观看| 国模一区二区三区四区视频| 国产真实乱freesex| 少妇熟女欧美另类| 国产69精品久久久久777片| 亚洲专区国产一区二区| 国产精品久久久久久av不卡| 在线观看一区二区三区| 看免费成人av毛片| 如何舔出高潮| 国产成人a∨麻豆精品| 村上凉子中文字幕在线| 内射极品少妇av片p| 高清毛片免费看| 最新在线观看一区二区三区| 日韩高清综合在线| 久久久久久国产a免费观看| 伊人久久精品亚洲午夜| 国产aⅴ精品一区二区三区波| 少妇人妻精品综合一区二区 | 看黄色毛片网站| 伊人久久精品亚洲午夜| 亚洲第一区二区三区不卡| 日本成人三级电影网站| 黄色视频,在线免费观看| 亚洲国产精品sss在线观看| 亚洲精品日韩在线中文字幕 | 日产精品乱码卡一卡2卡三| 91久久精品电影网| av天堂中文字幕网| 欧美最黄视频在线播放免费| 精品久久久久久成人av| 亚洲久久久久久中文字幕| 免费看av在线观看网站| 97热精品久久久久久| 亚洲无线在线观看| 亚洲熟妇熟女久久| 人人妻,人人澡人人爽秒播| 成人毛片a级毛片在线播放| 国产片特级美女逼逼视频| 国产一区二区亚洲精品在线观看| 亚洲美女视频黄频| 日本黄色视频三级网站网址| 一个人看的www免费观看视频| 国产亚洲精品av在线| 久久久a久久爽久久v久久| 毛片女人毛片| 91久久精品国产一区二区三区| 国产精品久久久久久精品电影| 国产精品亚洲一级av第二区| a级一级毛片免费在线观看| 欧美高清性xxxxhd video| 一区二区三区免费毛片| 九九热线精品视视频播放| 你懂的网址亚洲精品在线观看 | 毛片女人毛片| 成人av在线播放网站| 老司机福利观看| 亚洲三级黄色毛片| 老熟妇乱子伦视频在线观看| 一区二区三区高清视频在线| 亚洲av.av天堂| 激情 狠狠 欧美| 一级毛片电影观看 | av女优亚洲男人天堂| 亚洲成a人片在线一区二区| 国产av一区在线观看免费| 午夜日韩欧美国产| 精品一区二区三区人妻视频| 黄片wwwwww| 国产高清视频在线观看网站| 日日干狠狠操夜夜爽| 亚洲人与动物交配视频| 最近视频中文字幕2019在线8| 男女之事视频高清在线观看| 人妻少妇偷人精品九色| 午夜精品在线福利| 中文字幕免费在线视频6| 天堂av国产一区二区熟女人妻| 亚洲精品亚洲一区二区| 国产精品爽爽va在线观看网站| 狂野欧美白嫩少妇大欣赏| 小蜜桃在线观看免费完整版高清| 一级a爱片免费观看的视频| 日本一二三区视频观看| 亚洲av熟女| 在现免费观看毛片| 性欧美人与动物交配| 丝袜喷水一区| 乱码一卡2卡4卡精品| 国产探花在线观看一区二区| 亚洲av中文字字幕乱码综合| 亚洲av二区三区四区| 2021天堂中文幕一二区在线观| avwww免费| 香蕉av资源在线| 18禁在线播放成人免费| 99在线视频只有这里精品首页| 国产v大片淫在线免费观看| 国产精品电影一区二区三区| 国产视频一区二区在线看| 日本与韩国留学比较| 精品乱码久久久久久99久播| or卡值多少钱| 久99久视频精品免费| 国产欧美日韩一区二区精品| 亚洲第一电影网av| 一个人看视频在线观看www免费| 在线天堂最新版资源| 寂寞人妻少妇视频99o| 国产精品1区2区在线观看.| 欧美最新免费一区二区三区| 三级国产精品欧美在线观看| 最近中文字幕高清免费大全6| 色噜噜av男人的天堂激情| 三级男女做爰猛烈吃奶摸视频| 精品国内亚洲2022精品成人| 国产单亲对白刺激| 18禁裸乳无遮挡免费网站照片| 中国国产av一级| 久久这里只有精品中国| 波多野结衣高清无吗| 网址你懂的国产日韩在线| 亚洲欧美成人精品一区二区| 欧美在线一区亚洲| 欧美激情在线99| 久久久国产成人免费| 国产91av在线免费观看| 国产成人一区二区在线| 我的老师免费观看完整版| 深夜a级毛片| 久久精品影院6| а√天堂www在线а√下载| 乱系列少妇在线播放| 欧美高清性xxxxhd video| 免费一级毛片在线播放高清视频| 我的老师免费观看完整版| 亚洲欧美成人综合另类久久久 | 桃色一区二区三区在线观看| 男女那种视频在线观看| 欧美日韩综合久久久久久| 少妇人妻一区二区三区视频| 久久人人爽人人爽人人片va| 精品欧美国产一区二区三| 日本在线视频免费播放| 国内精品一区二区在线观看| 亚洲国产高清在线一区二区三| avwww免费| 国产精品爽爽va在线观看网站| 性色avwww在线观看| 啦啦啦啦在线视频资源| 国产成人a区在线观看| 一个人看视频在线观看www免费| 日韩欧美 国产精品| 久久婷婷人人爽人人干人人爱| 18禁在线播放成人免费| 成人性生交大片免费视频hd| 国产精品伦人一区二区| av在线亚洲专区| av在线蜜桃| 久久99热这里只有精品18| 丰满乱子伦码专区| 可以在线观看的亚洲视频| 午夜福利成人在线免费观看| 久久鲁丝午夜福利片| 此物有八面人人有两片| 国产成人福利小说| 亚洲成人久久爱视频| 最近2019中文字幕mv第一页| 波多野结衣巨乳人妻| 久久久久免费精品人妻一区二区| 此物有八面人人有两片| 听说在线观看完整版免费高清| 日韩高清综合在线| 久久久久精品国产欧美久久久| 成人永久免费在线观看视频| 22中文网久久字幕| 亚洲无线在线观看| 99热6这里只有精品| 亚洲av中文字字幕乱码综合| 天天躁夜夜躁狠狠久久av| 99热只有精品国产| 久久国内精品自在自线图片| 亚洲人成网站高清观看| 亚洲第一区二区三区不卡| 热99在线观看视频| 午夜福利视频1000在线观看| av在线老鸭窝| 成人特级黄色片久久久久久久| 久久99热这里只有精品18| 午夜爱爱视频在线播放| 成人亚洲欧美一区二区av| 亚洲国产欧美人成| 国产精品99久久久久久久久| 日本 av在线| 99久国产av精品国产电影| 亚洲人成网站在线观看播放| 国产蜜桃级精品一区二区三区| 久久久色成人| 国内精品一区二区在线观看| 一级a爱片免费观看的视频| 成人漫画全彩无遮挡| 狂野欧美白嫩少妇大欣赏| 观看免费一级毛片| 不卡视频在线观看欧美| 免费看a级黄色片| 亚州av有码| 成年女人永久免费观看视频| 亚洲一区高清亚洲精品| 国产伦在线观看视频一区| 成人毛片a级毛片在线播放| 久久99热这里只有精品18| 91久久精品国产一区二区成人| 美女内射精品一级片tv| 18+在线观看网站| 免费大片18禁| 狂野欧美白嫩少妇大欣赏| 国产av麻豆久久久久久久| 国产女主播在线喷水免费视频网站 | 最近在线观看免费完整版| 免费观看精品视频网站| 悠悠久久av| 变态另类丝袜制服| 国模一区二区三区四区视频| 久久久久久久久久久丰满| av国产免费在线观看| 精品一区二区三区人妻视频| 99视频精品全部免费 在线| 婷婷精品国产亚洲av| 内射极品少妇av片p| 亚洲欧美成人精品一区二区| 中文字幕av在线有码专区| 欧美一级a爱片免费观看看| 亚洲不卡免费看| 国产久久久一区二区三区| 校园春色视频在线观看| 国模一区二区三区四区视频| 搡老妇女老女人老熟妇| 麻豆国产97在线/欧美| 草草在线视频免费看| 99热网站在线观看| 精品一区二区三区视频在线观看免费| 亚洲精品成人久久久久久| 两个人视频免费观看高清| 老司机午夜福利在线观看视频| 亚洲,欧美,日韩| 色在线成人网| 岛国在线免费视频观看| 成人二区视频| 国产精品.久久久| 亚洲国产精品专区欧美| 亚洲国产最新在线播放| 国产精品麻豆人妻色哟哟久久| 中文字幕人妻丝袜制服| 久久人人爽人人爽人人片va| 男人爽女人下面视频在线观看| 久久这里有精品视频免费| 成人亚洲精品一区在线观看| 亚洲精品色激情综合| 91精品国产九色| 人人妻人人澡人人爽人人夜夜| 亚洲综合色惰| 狂野欧美白嫩少妇大欣赏| 亚洲国产精品999| 啦啦啦在线观看免费高清www| 特大巨黑吊av在线直播| 日本av免费视频播放| 亚洲精品日本国产第一区| 国产精品一区二区三区四区免费观看| 偷拍熟女少妇极品色| 亚洲三级黄色毛片| 国产欧美另类精品又又久久亚洲欧美| 老熟女久久久| 日韩不卡一区二区三区视频在线| 美女视频免费永久观看网站| 欧美精品人与动牲交sv欧美| 嫩草影院新地址| 欧美丝袜亚洲另类| 久久久久久久久久人人人人人人| 各种免费的搞黄视频| 最近的中文字幕免费完整| 久久久欧美国产精品| 亚洲欧美精品自产自拍| 啦啦啦中文免费视频观看日本| 午夜激情福利司机影院| 国产毛片在线视频| 国产一区亚洲一区在线观看| 日韩强制内射视频| 国产69精品久久久久777片| 不卡视频在线观看欧美| 亚洲国产精品一区二区三区在线| 精品国产乱码久久久久久小说| 一本久久精品| av视频免费观看在线观看| 自拍偷自拍亚洲精品老妇| 日本猛色少妇xxxxx猛交久久| 日韩一区二区三区影片| 午夜免费观看性视频| 久久99蜜桃精品久久| 少妇猛男粗大的猛烈进出视频| 涩涩av久久男人的天堂| 成人毛片a级毛片在线播放| 欧美另类一区| 91精品国产九色| 国产精品一区二区三区四区免费观看| 少妇人妻 视频| 国产精品女同一区二区软件| 18禁动态无遮挡网站| 大陆偷拍与自拍| 自拍欧美九色日韩亚洲蝌蚪91 | 中文字幕制服av| 黄色配什么色好看| 国产精品国产三级国产av玫瑰| 亚洲欧美一区二区三区国产| 丁香六月天网| 性高湖久久久久久久久免费观看| 亚洲精品色激情综合| 国产 精品1| 亚洲欧美成人精品一区二区| 99热网站在线观看| 色94色欧美一区二区| 国产成人一区二区在线| 国产精品秋霞免费鲁丝片| 欧美 日韩 精品 国产| 国产精品成人在线| a级毛色黄片| 欧美精品人与动牲交sv欧美| 欧美精品亚洲一区二区| 亚洲精品乱码久久久久久按摩| 国产片特级美女逼逼视频| 久久久久久久久久人人人人人人| 丰满少妇做爰视频| 黑丝袜美女国产一区| 国产精品久久久久久av不卡| av天堂中文字幕网| 一级毛片我不卡| 亚洲中文av在线| 国产高清有码在线观看视频| 久久久久国产网址| 一区二区三区四区激情视频| 性高湖久久久久久久久免费观看| 久久97久久精品| 不卡视频在线观看欧美| 嫩草影院新地址| 久久久久久久久久成人| 综合色丁香网| www.av在线官网国产| 91在线精品国自产拍蜜月| 久久av网站| 成人漫画全彩无遮挡| 亚洲欧美成人精品一区二区| 天堂8中文在线网| 亚洲性久久影院| 亚洲国产精品一区三区| 内射极品少妇av片p| 一级毛片久久久久久久久女| 免费看光身美女| 久久青草综合色| 亚洲欧美日韩东京热| 久久人人爽av亚洲精品天堂| 久久久久久久久久成人| 亚洲,一卡二卡三卡| 婷婷色麻豆天堂久久| 国产视频首页在线观看| 最近的中文字幕免费完整| 国产一区二区三区综合在线观看 | 中文在线观看免费www的网站| 日本黄大片高清| 色视频在线一区二区三区| 熟妇人妻不卡中文字幕| 国产精品一区二区性色av| 在线观看国产h片| 老熟女久久久| 国产女主播在线喷水免费视频网站| 青青草视频在线视频观看| 免费黄频网站在线观看国产| 我的老师免费观看完整版| 噜噜噜噜噜久久久久久91| 纯流量卡能插随身wifi吗| 人妻夜夜爽99麻豆av| 91在线精品国自产拍蜜月| 免费少妇av软件| 精品久久久久久久久亚洲| 午夜老司机福利剧场| 18+在线观看网站| 国产伦精品一区二区三区视频9| 亚洲综合精品二区| 色5月婷婷丁香| 青青草视频在线视频观看| 精品人妻熟女毛片av久久网站| 久久精品久久精品一区二区三区| 黄色日韩在线| 亚洲欧美清纯卡通| 欧美精品一区二区大全| 最近的中文字幕免费完整| 蜜臀久久99精品久久宅男| 秋霞在线观看毛片| 日本av免费视频播放| 国产精品蜜桃在线观看| www.色视频.com| 中文在线观看免费www的网站| 各种免费的搞黄视频| 欧美97在线视频| 亚洲自偷自拍三级| 少妇被粗大的猛进出69影院 | 国产精品福利在线免费观看| 免费看日本二区| 精品国产乱码久久久久久小说| 亚洲不卡免费看| 七月丁香在线播放| 国产免费又黄又爽又色| 在线观看三级黄色| av视频免费观看在线观看| 国产日韩一区二区三区精品不卡 | 亚洲成人av在线免费| 午夜老司机福利剧场| 久久久久久久久久人人人人人人| 在线 av 中文字幕| 高清黄色对白视频在线免费看 | 国产极品粉嫩免费观看在线 | 国产成人午夜福利电影在线观看| 亚洲精品久久午夜乱码| 国产av精品麻豆| 男人和女人高潮做爰伦理| 两个人的视频大全免费| 久久99热6这里只有精品| 五月伊人婷婷丁香| 乱码一卡2卡4卡精品| 国产成人精品婷婷| 中国美白少妇内射xxxbb| 天堂8中文在线网| 看十八女毛片水多多多| 热99国产精品久久久久久7| a级毛片在线看网站| 欧美丝袜亚洲另类| 日韩制服骚丝袜av| 精品久久久噜噜| 91久久精品国产一区二区三区| 99re6热这里在线精品视频| 国产成人a∨麻豆精品| 国产淫片久久久久久久久| 久久国产精品大桥未久av | 一区二区三区精品91| 嘟嘟电影网在线观看| 菩萨蛮人人尽说江南好唐韦庄| 在线观看一区二区三区激情| 亚洲欧洲精品一区二区精品久久久 | videos熟女内射| 久久人人爽人人爽人人片va| 人妻一区二区av| 国精品久久久久久国模美| 欧美日韩综合久久久久久| 成年人午夜在线观看视频| 蜜臀久久99精品久久宅男| 久热久热在线精品观看| 99热网站在线观看| a级一级毛片免费在线观看| 青青草视频在线视频观看| 亚洲av二区三区四区| 高清欧美精品videossex| 一级,二级,三级黄色视频| 欧美丝袜亚洲另类| 美女国产视频在线观看| 欧美变态另类bdsm刘玥| 久久 成人 亚洲| 成年美女黄网站色视频大全免费 | 国产伦理片在线播放av一区| 亚洲高清免费不卡视频| 中文天堂在线官网| 欧美3d第一页| 色吧在线观看| 80岁老熟妇乱子伦牲交| 中文字幕av电影在线播放| av.在线天堂| 亚洲精品成人av观看孕妇| 日韩伦理黄色片| 亚洲av成人精品一区久久| 久久午夜综合久久蜜桃| 免费av不卡在线播放| av女优亚洲男人天堂| 汤姆久久久久久久影院中文字幕| 久久精品国产亚洲av天美| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品一二三| 天美传媒精品一区二区| 亚洲电影在线观看av| 少妇 在线观看| 少妇丰满av| 中文在线观看免费www的网站| 97在线视频观看| 一个人看视频在线观看www免费| 精品久久久精品久久久| 最新的欧美精品一区二区| 欧美丝袜亚洲另类| 日本vs欧美在线观看视频 | 国产黄片视频在线免费观看| 久久鲁丝午夜福利片| 我要看黄色一级片免费的| 日产精品乱码卡一卡2卡三| 丝瓜视频免费看黄片| 有码 亚洲区| 久久久久国产网址| 中文乱码字字幕精品一区二区三区| 亚洲美女黄色视频免费看| 丁香六月天网| 18禁在线播放成人免费| 在线天堂最新版资源| 51国产日韩欧美| 国内揄拍国产精品人妻在线| 午夜免费观看性视频| 高清不卡的av网站| 天天操日日干夜夜撸| 欧美 日韩 精品 国产| 爱豆传媒免费全集在线观看| 麻豆成人av视频| 婷婷色综合www| 婷婷色麻豆天堂久久| 国产在线一区二区三区精| 日本猛色少妇xxxxx猛交久久| 亚洲国产日韩一区二区| 国产片特级美女逼逼视频| 一区在线观看完整版| 国产日韩欧美在线精品| 久久99热这里只频精品6学生| 天堂中文最新版在线下载| 另类精品久久| 亚洲国产欧美在线一区| 亚洲国产日韩一区二区| 国产片特级美女逼逼视频| 日本午夜av视频| 亚洲三级黄色毛片| 久久6这里有精品| 日本黄大片高清| 久热久热在线精品观看| 久久久国产一区二区| 久久精品国产亚洲av涩爱| 日韩免费高清中文字幕av| 国产精品福利在线免费观看| 欧美精品高潮呻吟av久久| 日韩成人av中文字幕在线观看| 制服丝袜香蕉在线| 亚洲精品成人av观看孕妇| 黄片无遮挡物在线观看| 久久久久久久大尺度免费视频| 一边亲一边摸免费视频| 国产成人精品福利久久| 大片免费播放器 马上看| 国产黄片视频在线免费观看| 女性生殖器流出的白浆| 一区二区三区免费毛片| 永久网站在线| av女优亚洲男人天堂| 男人舔奶头视频| 国产精品一二三区在线看| 欧美日韩在线观看h| 欧美 日韩 精品 国产| 搡女人真爽免费视频火全软件| 黑人巨大精品欧美一区二区蜜桃 | 久久女婷五月综合色啪小说| 2021少妇久久久久久久久久久| 国产永久视频网站| 国产精品久久久久久精品古装| 人人妻人人澡人人看| 精品亚洲成国产av| 国产精品欧美亚洲77777| 国产探花极品一区二区| 能在线免费看毛片的网站| 中文天堂在线官网| 国产无遮挡羞羞视频在线观看| 少妇丰满av| 国产日韩欧美在线精品| 日韩强制内射视频| 国产欧美亚洲国产| 夜夜骑夜夜射夜夜干| 亚洲精品自拍成人| 如何舔出高潮| 免费不卡的大黄色大毛片视频在线观看| 日韩电影二区| 一级毛片久久久久久久久女| h日本视频在线播放| 人妻系列 视频| 黑人高潮一二区| 国产成人精品福利久久| 亚洲精品成人av观看孕妇| 亚洲精品乱久久久久久| 岛国毛片在线播放| 99热6这里只有精品| 亚洲精品色激情综合| 精品酒店卫生间| 麻豆乱淫一区二区| xxx大片免费视频| 国产白丝娇喘喷水9色精品| 少妇 在线观看| 国产精品国产三级国产av玫瑰| 久久久久国产网址| 99热6这里只有精品| 日韩中文字幕视频在线看片| 五月开心婷婷网| 国产精品国产三级国产专区5o| 丰满人妻一区二区三区视频av| 精品少妇黑人巨大在线播放| 日韩 亚洲 欧美在线| 18禁裸乳无遮挡动漫免费视频| 岛国毛片在线播放| 国产乱来视频区| 国产精品人妻久久久影院| 精品人妻熟女毛片av久久网站| 狂野欧美白嫩少妇大欣赏| 一本色道久久久久久精品综合| 国产在线视频一区二区| 午夜激情福利司机影院| av又黄又爽大尺度在线免费看| 国产黄片美女视频| 久久精品国产亚洲网站|