• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced dye-sensitized up-conversion luminescence of neodymium-sensitized multi-shell nanostructures

    2021-04-20 06:06:00WANGDanXUEBinTULangpingZHANGYoulinSONGJunQUJunleKONGXianggui
    中國(guó)光學(xué) 2021年2期
    關(guān)鍵詞:三氟敏化染料

    WANG Dan,XUE Bin,TU Lang-ping,ZHANG You-lin,SONG Jun,QU Jun-le,KONG Xiang-gui

    (1.Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education/Guangdong Province,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;2.College of Information Engineering, Shenzhen University, Shenzhen 518060, China;3.State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China)

    Abstract:Lanthanide-ion-doped upconversion luminescence is limited by the small absorption cross-section and narrow absorption band of lanthanide ions,which results in weak luminescence.Recently,a dye-sensitized method has proven to be an effective strategy of increasing upconversion luminescence.However,simply attaching dye molecules to nanoparticles with classic Yb-doped nanostructures cannot effectively activate the sensitizing ability of the dye molecules.In response to this problem,we designed Nd-sensitized core/shell/shell(NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%)@NaYF4:Nd(80%))nanostructures,compared with the classic IR-806 sensitized NaYF4:Yb/Er nanostructure,their upconversion luminescence(500 to 700 nm)was approximately enhanced by a factor of 38.Through analysis of the nanostructure’s emission and luminescence lifetime data,the enhancement was confirmed by the effective overlap of Nd absorption with the emission of near-infrared dye molecules and the protective effects of the shell structure on the luminescent center(the lifetime of Er(4S3/2→4I15/2)was increased by 1.7 times).In addition,we found that the doping Yb3+in the outermost layer will decrease the dye-sensitized luminescence intensity.Furthermore,this Ndsensitized core/shell/shell structure also achieved enhancement in the sensitized upconversion luminescence of the luminescence centers of Ho and Tm,which establishes a foundation for enhanced dye-sensitized upconversion luminescence.

    Key words:upconversion luminescence;dye-sensitized;lanthanide ion;nanoparticles

    1 Introduction

    Due to the unique electron transitions in 4f electron configuration and between 4f and 5d,rare earth ions can generate the photon radiation of various wavelengths from ultraviolet,visible light to infrared light[1-2].The Up-Conversion NanoParticles(UCNPs)doped with rare earth ions have the characteristic of converting two or more low-energy near-infrared photons into a high-energy photon.In particular,the photon emission generated by UCNPs has the advantages such as narrow spectral band,resistance to bleaching,and low background noise[3].This up-conversion luminescence induced by nearinfrared light has been applied in many fields,such as super-resolution imaging,fluorescent labeling,photodynamic therapy,and optical anti-counterfeiting[4-8].

    In spite of the above wide applications,the further practical application of the up-conversion luminescence generated by the doped rare earth ions has been limited by its low luminous intensity.How to enhance the up-conversion luminescence has always been an urgent problem to be solved in upconversion luminescence research.In recent years,the techniques such as core-shell nanostructure[9],plasma field-enhanced luminescence[10]and dyesensitized luminescence[11]have realized the enhancement of up-conversion luminescence intensity.In particular,the study of dye-sensitized luminescence has not only enhanced the intensity of up-conversion luminescence,but also broadened the excitation range of up-conversion luminescence.Instead of the rare earth ions with weak absorption(absorption coefficient:0.1~10 M?1cm?1),near-infrared dyes(absorption coefficient:1 000~10 000 M?1cm?1)have been used to absorb near-infrared light so as to realize the up-conversion luminescence enhanced by sensitization.However,the iterated integral of most of the near-infrared dye emission(800~900 nm)and the Yb absorption in the classical Yb-sensitized doping system(950~1,000 nm)is small,thus limiting the enhancement of dye-sensitized up-conversion luminescence.Furthermore,Nd/Er-ion sensitization system has been designed as the recipient of dye sensitization[12-13]to achieve more effective enhancement of dye-sensitized up-conversion luminescence.It is in recent years that Nd3+-sensitized upconversion luminescence system has been developed.Especially,its partitioned doping strategy can realize efficient up-conversion luminescence[14-16].However,the dye-sensitized Nd-ion doping system usually adopts the optimum structural design of Ndsensitized up-conversion luminescence.Considering that the dye will interact with rare earth luminescence system in the dye sensitization process to weaken the luminescence[17],the design and optimization of dye-sensitized Nd-doped up-conversion luminescence system will be more effectively applied in biochemical analysis,tumor diagnosis and treatment,luminescence display and other fields[18-22].

    In this paper,Nd-sensitized core/shell/shell structure was designed as the recipient of enhanced dye-sensitized up-conversion luminescence.The Nd-sensitized core/shell/shell structure was successfully prepared by high-temperature thermal decomposition,and then was coupled with the dye IR-806 molecules to enhance the intensity of dye-sensitized up-conversion luminescence.The related structural characterization confirmed the successful preparation of this nanostructure.The enhancement mechanism behind it was further studied through the analysis of emission spectrum and fluorescence lifetime spectrum.Meanwhile,by optimizing the doping concentration of Yb ions in the outermost shell,the intensity of the dye-sensitized up-conversion luminescence without Yb doping proved to be the strongest.

    2 Experiment

    2.1 Experimental materials

    The experimental materials include ytterbium chloride(YbCl3·6H2O,99.99%),yttrium chloride(YCl3·6H2O),erbium chloride(ErCl3·6H2O),sodium hydroxide(NaOH,98%),ammonium fluoride(NHF4,99.99%),IR-780 iodide(99%),4-mercaptobenzoic acid(99%),1-octadecene(ODE),oleylamine(90%)(OM)and oleic acid(90%)(OA),all of which were purchased from Sigma-Aldrich.According to the reference[14],Nd(CF3COO)3was obtained through the reaction between Nd2O3powder and excessive trifluoroacetic acid and then removing the remaining trifluoroacetic acid by evaporation.Ytterbium trifluoroacetate(Yb(CF3COO)3),yttrium trifluoroacetate(Y(CF3COO)3)and sodium trifluoroacetate(CF3COONa)were purchased from GFS Chemicals.Dichloromethane,trichloromethane and dimethyl formamide(DMF)were purchased from Beijing Chemical Works.All the chemical reagents were of analysis purity.

    2.2 Synthesis of up-conversion nanoparticles

    The core-shell-shell up-conversion nanostructure is fabricated based on the published chemical process[14-15].Firstly,synthesize the core structure.Dissolve YbCl3·6H2O(0.1 mmol),YCl3·6H2O(0.39 mmol)and ErCl3·6H2O(0.01 mmol)in a three-mouth flask containing 3 mL OA and 7.5 mL ODE.Heat the mixture to 150℃for 30 minutes,and then cool it to room temperature under the protection of argon.Then,dissolve NH4F(2 mmol)and NaOH(1.25 mmol)into 5 mL methanol,add the mixture to the above three-mouth flask with rare earth salts,and heat it to 70℃to remove methanol and then heat to 300℃for 1h.Then,add 0.25 mmol NaYF4:Yb(10%)active shell to ODE(synthesized by trifluoroacetate process)and then add to the above mixture for 10 min curing.Then,add 0.5 mmol NaYF4:Nd(20%)active shell(synthesized by trifluoroacetate process)and cure it for 10 min.Finally,cool the solution to room temperature,centrifuge it with ethanol,and dissolve it into 6 mL trichloromethane.The core-shell-shell up-conversion nanostructures doped with different rare earth elements were all synthesized in the similar way.

    2.3 Synthesis of IR-780 molecules

    Similarly,dissolve organic IR-780 molecules(250 mg),4-mercaptobenzoic acid(115.5 mg)and DMF(10 mL)in a 50-mL three-mouth flask under nitrogen protection according to the Ref.[11].Then keep the mixture under nitrogen protection for 17 h.Filter the product solution with 0.45μm PTFE and remove DMF through reduced-pressure distillation.Then dissolve the residue into 5 mL dichloromethane,filter the mixture again with 0.45μm PTFE and precipitate it with ice ethyl ether.Finally,filter and dry the reactant under vacuum,and keep it in dark place.

    2.4 Synthesis of IR-806 molecules

    In the similar way as Refs.[8],[17],dissolve 1 mL IR-806(xmg/mL,x=0~20 mg/mL)into trichloromethane,and mix it with 1 mLβ-NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%)@NaYF4:Nd(20%)nanoparticles(Er3+:~1.67 mmol).Stir the entire reaction mixture for 24 h at room temperature,centrifuge it,and redisperse it into 1 mL trichloromethane.Test the up-conversion spectrum of IR 806-sensitized UCNPs under the Er3+concentration of about 16μmol.

    2.5 Experimental characterization testing

    Transmission Electron Microscope(TEM)was tested at 200 kV by use of Tecnai G2 F20 S-Twin electron microscopy.X-ray diffraction(XRD)test was performed on Rigaku D/Max-2000 by using Cu Kαradiation(λ=0.154 1 nm)as diffraction radius.Absorption spectrum was tested on a Maya 2000 spectrometer(Ocean Optics).The up-conversion spectrum was recorded by an externally coupled 808 nm laser on an ocean optical spectrometer(Maya2000).Energy Dispersive Spectrum(EDS)analysis was characterized by Hitachi S-4800.In the fluorescence lifetime test of up-conversion luminescence,500 MHz TDS 3052 was used as the excitation light source,and the fluorescence lifetime data was obtained through an OPO(Sunlite 8000)and an oscilloscope.

    3 Experimental results and discussion

    3.1 Morphology and characterization of nanoparticles

    The highly uniform Nd3+-sensitized core-shellshell(NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%)@NaYF4:Nd(80%))UCNP structure was successfully prepared through high-temperature thermal decomposition.The TEM photo showed that the UCNPs were in uniform size.As shown in Fig.1,the average sizes of core(NaYF4:Yb/Er(20/2%),denoted as“C”),core/shell(NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%),denoted as“CS”)and core/shell/shell(NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%)@NaYF4:Nd(80%)),denoted as“ CSS”)were 23.5 nm,26.3 nm and 33.6 nm,respectively.This increasing size confirmed that an Yb transition layer of about 1.4 nm and a 3.7 nm Nd-sensitized nanoshell layer were gradually growing on the NaYF4:Yb/Er nano-core.The Fig.2(a)shows that the UCNPs have a classical hexagonal phase structure(JCPDS-16-0334).The EDS confirmed that Nd,Y,Yb and other rare earth elements were effectively doped into the nanoparticles(Fig.2(b)).Furthermore,we synthesized the IR-806 molecule according to the reference method(Fig.2(c)).As seen from the absorption diagram(Fig.2(d)),its absorption peak shifted from 780 nm to 806 nm,which confirmed the successful synthesis of IR-806 molecule.Furthermore,the IR-806 molecules was modified to the surface of UCNPs according to the above method.As shown in Fig.2(d),after an IR-806 molecule was modified to UCNPs,the absorption peak of the UCNPs was masked by the absorption spectrum of IR-806,thus confirming the successful modification of dye molecule to UCNPs.

    Fig.1 TEM images of core(a),core/shell(b)and core/shell/shell(c)of up-conversion nanoparticles and their size distributions(d)圖1 上轉(zhuǎn)換納米粒子的核(a),核/殼(b),核/殼/殼(c)電鏡表征圖及尺寸分布(d)

    Fig.2 (a)XRD data of C,CS and CSS of UCNPs and theβ-NaYF4(JCPDS-16-0334,bottom);(b)EDS data of CSS;(c)IR-806 synthesis process;(d)absorptions of IR-780 and IR-806 before and after synthesis;(e)absorption of UCNPs and dye conjugated UCNPs after IR-806 connection圖2 (a)上轉(zhuǎn)換納米粒子的核、核/殼、核/殼/殼XRD 及標(biāo)準(zhǔn)卡片β-NaYF4(JCPDS-16-0334,底部)結(jié)果,(b)上轉(zhuǎn)換CSS 的EDS 數(shù)據(jù),(c)IR-806合成過(guò)程圖,(d)合成前后IR-780和IR-806 的吸收,(e)連接IR-806 之后UCNPs 吸收和UCNPs 本身的吸收

    3.2 Confirmation and discussion of dye-sensitized enhancement mechanism

    As shown in Fig.3(a),the up-conversion luminescence intensity of the dye-sensitized CSS structure proposed in this paper is about 38 times stronger than that of the classical IR-806-sensitized NaYF4:Yb/Er(20/2%)nanoparticle reported at the earliest[11].This proves that the dye-sensitized structure has achieved the enhancement of up-conversion luminescence intensity.In addition,under the excitation of 808 nm near-infrared light,the intensities of both the up-conversion red and green light emissions of dye-sensitized CSS structure were nonlinearly dependent on excitation light power(Fig.3(b)).The corresponding multiphoton indexes were 1.67(540 nm green light emission:4S13/2→4I15/2)and 2.0(655 nm red light emission:4F9/2→4I15/2).Therefore,the luminescence of this structure proves to be nonlinear up-conversion luminescence.

    Fig.3 (a)Up-conversion luminescence(UCL)spectra of IR-806-sensitized CSS structure and IR-806-sensitized core structure under 808 nm excitation wavelength;(b)log-log plots of the UCL intensity versus laser power for the IR-806 dye-sensitized CSS under 808 nm excitation圖3 (a)IR-806 敏化CSS 結(jié)構(gòu)的上轉(zhuǎn)換光譜及IR-806 敏化核結(jié)構(gòu)的上轉(zhuǎn)換光譜,激發(fā)波長(zhǎng)為808 nm,(b)808 nm 激發(fā)下的IR-806 敏化的CSS 結(jié)構(gòu)的上轉(zhuǎn)換發(fā)光強(qiáng)度隨功率變化的log-log 關(guān)系

    According to our analysis,the outermost layer of CSS nanostructure is Nd3+-doped shell,where Nd can be sensitized by IR-806 molecules efficiently due to the serious overlap between the Nd absorption and the emission of IR-806 dye molecules,as shown in Fig.4(a)(Color online).On the other hand,the nanoshell in CSS structure can effectively protect the luminescence center.As seen from Fig.4(b)(Color online),the luminescence lifetime of Er(253μs)in the dye-sensitized CSS structure was significantly longer than that of Er in the dyesensitized core nanoparticle(146μs)or core nanoparticle(169μs).In other words,the luminescence lifetime of Er has increased by 1.73 times and 1.50 times,respectively.Thus,it is proved that the nanoshell can insulate the luminescence center from the external interference environment so as to guarantee a long life of the luminescence center.It is worth noting that although the designed dye-sensitized Nd3+-doped nanostructure has a better excitation wavelength near 800 nm,but NaYF4:Yb/Er(20/2%)nanoparticles can only be excited by 980 nm wavelength.As shown in Fig.4(b),the exicitation wavelength was 980 nm,not the conventional 808 nm wavelengh.Furthermore,the Fig.4(c)shows that the luminescence life of CSS nanostructure remains unchanged whether dye molecules are connected or not.This further proves that the nanoshell can effectively prevent the interaction between the luminescence center and the external environment,thus enhancing the up-conversion luminescence

    The difference of Nd3+sensitization system lies in the fact that its outermost nanoshell is doped with only Nd3+ions,rather than the previously reported Nd-Yb ions[16].This structural design is based on the results of our experiments.As shown in Fig.5,with the increase of Yb3+-doping concentration in the outermost layer,the up-conversion luminescence intensity of dye-sensitized CSS structure will gradually decrease.According to our previous research of dye-sensitized rare earth up-conversion nanosystem,the excitation energy absorbed by dye needs to be gradually transferred to the internal luminescence center[17].In this process,the energy loss in the migration of excitation energy to the surface is very heavy.The doped Yb3+ions are likely to transfer the excitation energy to the surface[9,23-24],thus reducing the excitation energy transferred to the interior and weakening the up-conversion luminescence.Therefore,the strongest dye-sensitized up-conversion luminescence is produced in the outermost nanoshell without doped Yb3+ions,as shown in Fig.5.

    Fig.4 (a)Overlap between the emission spectrum of IR-806 molecules and the absorption spectrum of Nd3+;(b)the lifetimes of Er3+(4S3/2→4I15/2)in core nanoparticles(black,NaYF4:Yb/Er(20/2%),dye-sensitized core nanoparticles(red)and dye-sensitized CSS nanostructure(blue)under 980 nm excitation;(c)the lifetimes of Er3+(4S3/2→4I15/2)in CSS nanostructure and dye-sensitized CSS nanostructure under 808 nm excitation圖4 (a)IR-806 分子的發(fā)射光譜與Nd3+的吸收交疊圖;(b)980 nm 激發(fā)下,測(cè)試得到的核納米粒子(黑色,NaYF4:Yb/Er(20/2%)),染料敏化核納米粒子(紅色)及染料敏化的CSS 納米結(jié)構(gòu)(藍(lán)色)的Er3+(4S3/2→4I15/2)的壽命測(cè)試結(jié)果;(c)808 nm 激發(fā)下CSS 納米結(jié)構(gòu)及染料敏化的CSS 納米結(jié)構(gòu)的Er3+(4S3/2→4I15/2)的壽命測(cè)試結(jié)果

    Fig.5 Upconversion spectra of dye-sensitized NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%)@NaYF4:Nd/Yb(80/x%)(x=0,5,10,20)nanoparticles under 808 nm excitation圖5 染料敏化的NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%)@NaYF4:Nd/Yb(80/x%)(x=0,5,10,20)的上轉(zhuǎn)換光譜(808 nm 激發(fā))

    3.3 Enhancement of dye-sensitized luminescence by using Ho or Tm as luminescence center

    Furthermore,the replacement of luminescence center in the core of CSS structure by Ho(NaYF4:Yb/Ho(20/1%))@NaYF4:Yb(10%)@NaYF4:Nd(80%))or Tm(NaYF4:Yb/Tm(20/1%)@NaYF4:Yb(10%)@NaYF4:Nd(80%))also realized the enhancement of dye-sensitized up-conversion luminescence(Fig.6(a)and 6(b),Color online).When the luminescence center was Ho or Tm,the typical nonlinear dependence of luminescence intensity on excitation light power was also shown(Fig.6(c)and 6(d),Color online).When the luminescence center was Ho,the multi-photon indexes were 1.57(540 nm emission,4S13/2→4I15/2)and 1.88(645 nm emission,4F9/2→4I15/2)respectively.When the luminescence center was Tm,the multi-photon indexes were 2.82(450 nm emission,1D2→3F4),1.74(470 nm emission,1G4→3H6),1.80(645 nm emission,1G4→3F4)and 1.34(695 nm emission,3F2→3H6)respectively.It should be noted that,for Tm ions,the dye-sensitized up-conversion luminescence had hardly been seen in the NaYF4:Yb/Tm(20/1%)nano-core structure.This is because the 800 nm emission level(3H4→3H6)of Tm heavily overlapped with the absorption of IR-806 molecules,thus quenching the Tm luminescence.However,the outer shell of CSS structure successfully blocked the transfer of Tm to IR-806,thus realizing the dye-sensitized up-conversion luminescence.

    Fig.6 (a)The UCL of the IR-806 sensitized Ho core nanostructure and IR-806 sensitized Ho-CSS nanostructure,(b)the UCL of the IR-806 sensitized Tm core nanostructure and IR-806 sensitized Tm-CSS nanostructure,(c)log-log plots of the UCL intensity over laser power for the green and red emissions of the dye-sensitized Ho-CSS under 808 nm excitation,(d)log-log plots of the UCL intensity versus laser power for the green and red emissions of the dye-sensitized Tm-CSS under 808 nm excitation圖6 (a)IR-806 敏化Ho 核結(jié)構(gòu)及IR-806 敏化Ho-CSS 結(jié)構(gòu)的上轉(zhuǎn)換光譜,(b)IR-806 敏化Tm 核結(jié)構(gòu)及IR-806 敏化Tm-CSS 結(jié)構(gòu)的上轉(zhuǎn)換光譜,(c)808 nm 激發(fā)下的IR-806 敏化的Ho-CSS 結(jié)構(gòu)的上轉(zhuǎn)換發(fā)光強(qiáng)度隨功率變化的loglog 關(guān)系,(d)808 nm 激發(fā)下的IR-806 敏化的Tm-CSS 結(jié)構(gòu)的上轉(zhuǎn)換發(fā)光強(qiáng)度隨功率變化的log-log 關(guān)系

    4 Conclusion

    Highly uniform NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%)@NaYF4:Nd(80%)up-conversion nanoparticles were successfully prepared.Their up-conversion luminescence intensity was about 38 times stronger than that of dye-sensitized NaYF4:Yb/Er(20/2%)core nanostructure.Further studies showed that there were two reasons for this enhancement.On the one hand,the heavy overlap between the Nd absorption in the outmost layer and the emission of dye IR-806 molecules led to the effective absorption of the excitation energy of dye.On the other hand,due to the protective effect of nanoshell layer on the luminescence center,the luminescence life of this structure was 1.73 times longer than that of dye-sensitized core nanostructure.By changing the doping concentration of Yb3+ions in the outermost layer,we demonstrated that the dye-sensitized up-conversion luminescence would be weakened by the doping of Yb3+ions,and could become the strongest without the doping of Yb3+ions.Furthermore,this dye-sensitized CSS structure has realized the enhancement of dye-sensitized up-conversion luminescence intensity when the luminescence center is Ho or Tm.

    ——中文對(duì)照版——

    1 引言

    稀土離子由于其具有4f 電子組態(tài)內(nèi)及4f 到5d 之間的電子躍遷的特異性,導(dǎo)致其可產(chǎn)生從紫外、可見(jiàn)光區(qū)到紅外光區(qū)的多種波長(zhǎng)的光子輻射[1-2]。尤其是,稀土離子摻雜的上轉(zhuǎn)換納米粒子(UCNPs)具備將兩個(gè)及兩個(gè)以上的低能量近紅外光子轉(zhuǎn)換為一個(gè)高能量光子的特性,其產(chǎn)生的光子發(fā)射具有譜帶窄、抗漂白、背景噪聲低等優(yōu)點(diǎn)[3]。這種近紅外光激發(fā)的上轉(zhuǎn)換發(fā)光特性將產(chǎn)生諸多應(yīng)用,如超分辨成像、熒光標(biāo)記、光動(dòng)力治療、光學(xué)防偽等[4-8]。

    盡管稀土離子摻雜產(chǎn)生的上轉(zhuǎn)換發(fā)光有諸多應(yīng)用,但其相對(duì)較低的發(fā)光強(qiáng)度限制了其進(jìn)一步實(shí)際應(yīng)用。如何增強(qiáng)上轉(zhuǎn)換發(fā)光一直是上轉(zhuǎn)換發(fā)光研究中亟待解決的問(wèn)題。近年來(lái),如核殼納米結(jié)構(gòu)[9]、等離子體場(chǎng)增強(qiáng)發(fā)光[10]、染料敏化發(fā)光[11],實(shí)現(xiàn)了上轉(zhuǎn)換發(fā)光強(qiáng)度的增強(qiáng)。特別是,染料敏化發(fā)光的研究不僅增強(qiáng)了上轉(zhuǎn)換發(fā)光的強(qiáng)度,也拓寬了上轉(zhuǎn)換發(fā)光的激發(fā)范圍。相對(duì)于吸收弱的稀土離子(吸收系數(shù)為0.1~10 M?1cm?1),改用近紅外染料(吸收系數(shù)為1 000~10 000 M?1cm?1)來(lái)吸收近紅外光可實(shí)現(xiàn)敏化增強(qiáng)上轉(zhuǎn)換發(fā)光。然而,大部分近紅外染料發(fā)射波長(zhǎng)(800~900 nm)和經(jīng)典的Yb 敏化摻雜體系的Yb 的吸收波長(zhǎng)(950~1 000 nm)的交疊積分較小,從而限制了染料敏化上轉(zhuǎn)換發(fā)光的增強(qiáng)。進(jìn)一步,設(shè)計(jì)采用Nd 和Er離子敏化體系作為染料敏化的受主[12-13],實(shí)現(xiàn)更有效的染料敏化上轉(zhuǎn)換發(fā)光的增強(qiáng)。Nd3+敏化上轉(zhuǎn)換發(fā)光是近些年發(fā)展的上轉(zhuǎn)換發(fā)光體系,尤其是其分區(qū)摻雜策略可以實(shí)現(xiàn)高效的上轉(zhuǎn)換發(fā)光[14-16]。目前為止,染料敏化的Nd 離子摻雜體系通常采用的是Nd 敏化上轉(zhuǎn)換發(fā)光的最佳結(jié)構(gòu)設(shè)計(jì)??紤]到染料敏化過(guò)程中染料會(huì)與稀土發(fā)光體系相互作用從而減弱發(fā)光[17],因此,設(shè)計(jì)優(yōu)化染料敏化增強(qiáng)的Nd 摻雜的上轉(zhuǎn)換發(fā)光體系,將能更有效地應(yīng)用于生化分析、腫瘤診療、發(fā)光顯示等領(lǐng)域[18-22]。

    本文設(shè)計(jì)采用Nd 敏化的核/殼/殼結(jié)構(gòu)作為增強(qiáng)染料敏化上轉(zhuǎn)換發(fā)光的受主,通過(guò)采用高溫?zé)岱纸夥椒ǔ晒χ苽銷d 敏化的核/殼/殼結(jié)構(gòu),并與染料IR-806 分子耦連實(shí)現(xiàn)染料敏化上轉(zhuǎn)換發(fā)光強(qiáng)度的增強(qiáng)。相關(guān)的結(jié)構(gòu)表征證實(shí)納米結(jié)構(gòu)的有效性。進(jìn)一步通過(guò)發(fā)射光譜,熒光壽命光譜分析等研究了其背后的增強(qiáng)機(jī)制。通過(guò)優(yōu)化最外層殼中Yb 離子的摻雜濃度,證實(shí)無(wú)Yb 摻雜情況下染料敏化上轉(zhuǎn)換發(fā)光最強(qiáng)。

    2 實(shí) 驗(yàn)

    2.1 實(shí)驗(yàn)原料

    氯化鐿(YbCl3·6H2O(99.99%)、氯化釔(YCl3·6H2O)、氯化鉺(ErCl3·6H2O)、氫氧化鈉(NaOH,98%)、氟化銨(NHF4,99.99%)、IR-780 iodide(99%)、4-巰基苯甲酸(99%)、1-十八烯(ODE)、油胺(90%)(OM)和油酸(90%)(OA),購(gòu)于Sigma-Aldrich 公司。根據(jù)參考文獻(xiàn)[14],Nd(CF3COO)3通過(guò)將Nd2O3粉末與過(guò)量的三氟醋酸反應(yīng),然后蒸發(fā)除去過(guò)量的三氟醋酸獲得。三氟醋酸鐿(Yb(CF3COO)3)、三氟醋酸釔(Y(CF3COO)3)、三氟醋酸鈉(CF3COONa)購(gòu)于GFS Chemicals。二氯甲烷及三氯甲烷、二甲基甲酰胺(DMF)購(gòu)買于北京化工廠。所有的化學(xué)試劑都是分析純度。

    2.2 合成上轉(zhuǎn)換納米粒子

    該核殼殼層上轉(zhuǎn)換納米結(jié)構(gòu)基于已發(fā)表的化學(xué)方法制備[14-15]。首先,合成核結(jié)構(gòu),將YbCl3·6H2O(0.1 mmol),YCl3·6H2O(0.39 mmol)和ErCl3·6H2O(0.01 mmol)溶解在3 mL OA,7.5 mL ODE 的三口瓶中,并加熱到150℃,保持30 min,之后在氬氣保護(hù)下冷卻至室溫。然后,配置NH4F(2 mmol),NaOH(1.25 mmol),使其溶解在5 mL 甲醇中,并加入到以上稀土鹽的三口瓶中,加到70℃去除甲醇,再加熱到300℃并保持1 h。然后,加入0.25 mmol NaYF4:Yb(10%)活性殼在ODE 中(通過(guò)三氟醋酸鹽法合成),加熱并熟化10 min。然后加入0.5 mmol NaYF4:Nd(20%)活性殼(通過(guò)三氟醋酸鹽法合成),并熟化10 min。最后,使溶液冷卻到室溫,并使用乙醇離心,將上述混合物溶解在6 mL 三氯甲烷中。不同稀土元素?fù)诫s的核殼殼層上轉(zhuǎn)換納米結(jié)構(gòu)均采用類似方法合成。

    2.3 合成IR-780 分子

    根據(jù)文獻(xiàn)[11]方法,類似地,在氮?dú)獗Wo(hù)下,將有機(jī)IR-780 分 子(250 mg),4-巰基苯甲酸(115.5 mg),和DMF(10 mL)溶解在50 mL 三口瓶中,使混合溶液在氮?dú)猸h(huán)境下維持17 h。產(chǎn)物溶液用0.45μm PTFE過(guò)濾后,減壓蒸餾去除DMF。然后,將殘余物溶解在5 mL 二氯甲烷中,再次通過(guò)0.45μm PTFE過(guò)濾,并用冰乙醚實(shí)施沉淀。最后,將反應(yīng)物在真空下過(guò)濾、干燥并避光保存。

    2.4 合成IR-806 分子

    采用類似于文獻(xiàn)[8,17]的方法,將1 mL IR-806(xmg/mL,x為0~20 mg/mL)溶解在三氯甲烷中,并與1 mLβ-NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%)@NaYF4:Nd(20%)納米粒子混合,其中(Er3+~1.67 mM)。將得到的反應(yīng)混合物攪拌24 h在室溫下離心,重新分散在1 mL 三氯甲烷中。對(duì)IR-806敏化的UCNPs 進(jìn)行上轉(zhuǎn)換光譜測(cè)試時(shí),在稀土納米粒子中的Er3+離子濃度約為16μM的條件下進(jìn)行。

    2.5 實(shí)驗(yàn)表征測(cè)試

    透射電鏡(TEM)測(cè)試:采用Tecnai G2 F20 S-Twin電子顯微鏡在200 kV 電壓下測(cè)試。X-ray衍射(XRD)測(cè)試通過(guò)Rigaku D/max-2000 完成,衍射半徑采用Cu Kαradiation(λ=0.154 1 nm)。吸收光譜利用Maya 2000光譜儀完成測(cè)試(Ocean optics)。利用外在耦合的808 nm激光在海洋光學(xué)光譜儀(Maya2000)記錄上轉(zhuǎn)換光譜。通過(guò)Hitachi,S-4800 表征能譜(EDS)。上轉(zhuǎn)換發(fā)光的熒光壽命測(cè)試采用500 MHz TDS 3052作為激發(fā)光源,通過(guò)OPO(Sunlite 8000)及示波器獲得熒光壽命數(shù)據(jù)。

    3 實(shí)驗(yàn)結(jié)果與討論

    3.1 納米粒子形貌及表征

    采用高溫?zé)岱纸夥ㄖ苽涓叨染鶆虻腘d3+敏化核/殼/殼上轉(zhuǎn)換NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%)@NaYF4:Nd(80%)納米核結(jié)構(gòu)。透射電鏡照片顯示上轉(zhuǎn)換納米粒子的尺寸均勻。圖1 為上轉(zhuǎn)換納米粒子的核、核/殼、核/殼/殼電鏡表征圖及尺寸分布圖。由平均粒徑大小統(tǒng)計(jì)結(jié)果可知,核(NaYF4:Yb/Er(20/2%),記 為C),核/殼(NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%),記 為CS),核/殼/殼(NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%)@NaYF4:Nd(80%)),記為CSS)的平均尺寸分別為23.5、26.3、33.6 nm。這證實(shí)結(jié)構(gòu)存在約1.4 nm 的Yb 過(guò)渡層,3.7 nm 的Nd 敏化納米殼層逐步生長(zhǎng)在NaYF4:Yb/Er 納米核上面。圖2(a)為上轉(zhuǎn)換納米粒子的核、核/殼、核/殼/殼XRD圖,顯示合成的UCNPs 為經(jīng)典的六角相結(jié)構(gòu)(JCPDS-16-0334),EDS 證實(shí)Nd、Y、Yb 等稀土元素有效地?fù)诫s進(jìn)納米粒子內(nèi)(圖2(b))。進(jìn)一步,根據(jù)文獻(xiàn)的方法(圖2(c)),合成了IR-806 分子,由吸收?qǐng)D(圖2(d))可見(jiàn),其吸收峰位從780 nm移動(dòng)到806 nm,結(jié)果證實(shí)成功合成了IR-806 分子。進(jìn)一步,根據(jù)前面的方法將IR-806 分子修飾到上轉(zhuǎn)換納米粒子表面。由圖2(d)可知,當(dāng)IR-806 分子修飾到UCNPs 上之后,其吸收峰位被IR-806 的吸收所掩蓋,從而證實(shí)染料分子成功修飾到UCNPs 上。

    3.2 染料敏化增強(qiáng)機(jī)制證實(shí)與討論

    相對(duì)于最早報(bào)道的經(jīng)典的IR-806 敏化NaYF4:Yb/Er(20/2%)納米粒子[11],本文設(shè)計(jì)的染料敏化CSS 結(jié)構(gòu)的上轉(zhuǎn)換發(fā)光強(qiáng)度(圖3(a))增強(qiáng)了約38 倍。證實(shí)本文設(shè)計(jì)的染料敏化結(jié)構(gòu)實(shí)現(xiàn)了上轉(zhuǎn)換發(fā)光強(qiáng)度的增強(qiáng)。另外,在近紅外(808 nm)光激發(fā)下,染料敏化CSS 結(jié)構(gòu)的上轉(zhuǎn)換紅光發(fā)射與綠光發(fā)射均表現(xiàn)出發(fā)光強(qiáng)度隨激發(fā)光功率的非線性依賴特性(圖3(b)),其多光子指數(shù)分別為1.67(綠 光540 nm發(fā) 射4S13/2→4I15/2),2.0(紅光655 nm 發(fā)射4F9/2→4I15/2),證實(shí)其發(fā)光特性為非線性的上轉(zhuǎn)換發(fā)光。

    本文設(shè)計(jì)的染料敏化CSS 結(jié)構(gòu)的上轉(zhuǎn)換發(fā)光強(qiáng)度相對(duì)于染料敏化的核納米粒子增強(qiáng)約38 倍。對(duì)于這種增強(qiáng),分析認(rèn)為:一方面,在CSS 納米結(jié)構(gòu)中最外層為Nd3+離子摻雜殼層,而由圖4(a)(彩圖見(jiàn)期刊電子版)可知,Nd 的吸收與IR-806 染料分子的發(fā)射有大量交疊,因而,能夠被IR-806 分子高效敏化;另一方面,CSS 結(jié)構(gòu)中的納米殼層可以有效保護(hù)發(fā)光中心。由圖4(b)(彩圖見(jiàn)期刊電子版)可見(jiàn),經(jīng)染料敏化的具有CSS 結(jié)構(gòu)的Er 的發(fā)光壽命(253μs)明顯長(zhǎng)于染料敏化核納米粒子(146μs)及核納米粒子(169μs)Er 的壽命,發(fā)光壽命值分別延長(zhǎng)了1.73 倍及1.50倍。證實(shí)了納米殼層隔絕了發(fā)光中心與外部環(huán)境干擾,使得發(fā)光中心產(chǎn)生長(zhǎng)的發(fā)光壽命。值得注意的是,盡管所設(shè)計(jì)的染料敏化Nd3+離子摻雜納米結(jié)構(gòu)較佳的激發(fā)波長(zhǎng)在800 nm 附近,但是在研究發(fā)光壽命時(shí),NaYF4:Yb/Er(20/2%)納米粒子只能在980 nm 波長(zhǎng)處激發(fā)。

    傳統(tǒng)(20/2%)核納米粒子只能被980 nm 光激發(fā)產(chǎn)生上轉(zhuǎn)換發(fā)光,因此,圖4(b)的測(cè)試激發(fā)波長(zhǎng)選擇為980 nm 而非通常采用的808 nm。由圖4(c)可知,對(duì)于CSS 納米結(jié)構(gòu),無(wú)論是否連接染料分子,其發(fā)光壽命均保持不變。進(jìn)一步證實(shí)納米殼層有效地阻隔了發(fā)光中心與外界環(huán)境的相互作用,從而增強(qiáng)了上轉(zhuǎn)換發(fā)光。

    本文Nd3+敏化體系的不同之處在于,其最外層的納米殼層中僅摻雜了Nd3+,而沒(méi)有像以往文獻(xiàn)報(bào)道的將Nd-Yb 共摻雜到納米殼層中[16]。這種結(jié)構(gòu)設(shè)計(jì)是根據(jù)實(shí)驗(yàn)結(jié)果所得。本文所設(shè)計(jì)的釹敏化多層殼納米結(jié)構(gòu)的上轉(zhuǎn)換光譜如圖5 所示??梢?jiàn),隨著最外層Yb3+摻雜濃度的增加,染料敏化CSS 結(jié)構(gòu)的上轉(zhuǎn)換發(fā)光強(qiáng)度反而逐漸減弱。根據(jù)前面的研究可知,染料敏化稀土上轉(zhuǎn)換納米體系中,染料吸收的激發(fā)能需要逐步傳遞到內(nèi)部的發(fā)光中心[17],而激發(fā)能傳遞過(guò)程中,能量損耗非常大,摻雜Yb3+離子極易將激發(fā)能傳遞到表面[9,23-24],從而使傳遞到內(nèi)部的激發(fā)能降低,最終導(dǎo)致上轉(zhuǎn)換發(fā)光降低。由此可知,最外層的納米殼層在不摻雜Yb3+離子的情況下,產(chǎn)生的染料敏化上轉(zhuǎn)換發(fā)光最強(qiáng)。

    3.3 發(fā)光中心為Ho 及Tm 時(shí)染料敏化發(fā)光增強(qiáng)

    進(jìn)一步,對(duì)于CSS 結(jié)構(gòu),將核內(nèi)的發(fā)光中心換 為 Ho(NaYF4:Yb/Ho(20/1%))@NaYF4:Yb(10%)@NaYF4:Nd(80%))或Tm(NaYF4:Yb/Tm(20/1%)@NaYF4:Yb(10%)@NaYF4:Nd(80%)),同樣實(shí)現(xiàn)了染料敏化上轉(zhuǎn)換發(fā)光的增強(qiáng)(圖6(a)和6(b),彩圖見(jiàn)期刊電子版)。對(duì)于發(fā)光中心為Ho 及Tm,發(fā)光強(qiáng)度同樣隨激發(fā)光功率呈非線性的依賴關(guān)系(圖6(c)和6(d),彩圖見(jiàn)期刊電子版)。對(duì)于發(fā)光中心為Ho 的情況,其多光子指數(shù)分別為1.57(540 nm發(fā) 射4S13/2→4I15/2),1.88(645 nm 發(fā)射4F9/2→4I15/2)。對(duì)于發(fā)光中心為Tm的情況,其多光子指數(shù)分別為2.82(450 nm 發(fā)射1D2→3F4)、1.74(470 nm 發(fā)射1G4→3H6)、1.80(645 nm發(fā)射1G4→3F4)、1.34(695 nm發(fā)射3F2→3H6)。值得注意的是,對(duì)于Tm 離子,NaYF4:Yb/Tm(20/1%)納米核結(jié)構(gòu),幾乎沒(méi)有染料敏化的上轉(zhuǎn)換發(fā)光出現(xiàn)。這是由于Tm 的800 nm 發(fā)射能級(jí)(3H4→3H6)與IR-806 分子的吸收交疊嚴(yán)重,從而猝滅了Tm的發(fā)光。而CSS 結(jié)構(gòu)使得外面的殼層成功地阻隔了Tm 向IR-806 傳遞,從而實(shí)現(xiàn)了染料敏化上轉(zhuǎn)換發(fā)光。

    4 結(jié)論

    本文成功制備了高度均勻的NaYF4:Yb/Er(20/2%)@NaYF4:Yb(10%)@NaYF4:Nd(80%)上轉(zhuǎn)換納米粒子,其染料敏化上轉(zhuǎn)換發(fā)光強(qiáng)度相對(duì)于染料敏化的NaYF4:Yb/Er(20/2%)核納米結(jié)構(gòu)增強(qiáng)了約38 倍。進(jìn)一步研究表明,這種增強(qiáng)一方面源自最外層Nd 吸收與染料IR-806 分子的發(fā)射交疊大,導(dǎo)致其能有效吸收染料的激發(fā)能。另一方面源自納米殼層對(duì)發(fā)光中心的保護(hù)作用,相對(duì)于染料敏化的核納米結(jié)構(gòu),其發(fā)光壽命延長(zhǎng)了1.73 倍。通過(guò)改變最外層Yb3+的摻雜濃度,證實(shí)摻雜Yb3+將導(dǎo)致染料敏化上轉(zhuǎn)換發(fā)光減弱,而無(wú)摻雜Yb3+的條件下上轉(zhuǎn)換發(fā)光最強(qiáng)。最終,采用這種染料敏化的CSS 結(jié)構(gòu)實(shí)現(xiàn)了發(fā)光中心為Ho 及Tm 的染料敏化上轉(zhuǎn)換發(fā)光強(qiáng)度的增強(qiáng)。

    猜你喜歡
    三氟敏化染料
    微波加熱快速合成5-三氟甲基吡啶-2-胺和2-[(5-三氟甲基吡啶-2-基)氧基]乙醇
    山東化工(2024年1期)2024-02-04 09:47:12
    新染料可提高電動(dòng)汽車安全性
    冠心病穴位敏化現(xiàn)象與規(guī)律探討
    近5年敏化態(tài)與非敏化態(tài)關(guān)元穴臨床主治規(guī)律的文獻(xiàn)計(jì)量學(xué)分析
    中國(guó)染料作物栽培史
    染料、油和水
    4-甲胺基-6-三氟甲基-2-甲砜基嘧啶的合成及其晶體結(jié)構(gòu)
    新型含1,2,3-三氮唑的染料木素糖綴合物的合成
    耦聯(lián)劑輔助吸附法制備CuInS2量子點(diǎn)敏化太陽(yáng)電池
    5種天然染料敏化太陽(yáng)電池的性能研究
    午夜福利高清视频| 久久久久久国产a免费观看| 午夜老司机福利剧场| 国产精品久久久久久久久免| 日韩,欧美,国产一区二区三区| 22中文网久久字幕| 国产精品人妻久久久影院| 免费观看无遮挡的男女| 成人亚洲精品av一区二区| 亚洲精品一二三| 国产爱豆传媒在线观看| 一级a做视频免费观看| 日本一二三区视频观看| av在线老鸭窝| 日本-黄色视频高清免费观看| 久久久久精品久久久久真实原创| 观看美女的网站| 麻豆乱淫一区二区| av在线亚洲专区| 午夜福利网站1000一区二区三区| 3wmmmm亚洲av在线观看| 亚洲国产av新网站| 亚州av有码| 国产精品精品国产色婷婷| 好男人视频免费观看在线| 秋霞在线观看毛片| 麻豆精品久久久久久蜜桃| av播播在线观看一区| 欧美区成人在线视频| 亚洲在久久综合| 99re6热这里在线精品视频| 亚洲色图av天堂| 蜜臀久久99精品久久宅男| 国产真实伦视频高清在线观看| 亚洲自偷自拍三级| 性色avwww在线观看| 久久久久久久久久久丰满| 成人高潮视频无遮挡免费网站| 亚洲精品,欧美精品| 日韩强制内射视频| 三级国产精品片| 午夜免费观看性视频| 国产高潮美女av| 亚州av有码| 18禁裸乳无遮挡免费网站照片| 久久久久久久久久久丰满| 亚洲色图av天堂| 国内揄拍国产精品人妻在线| 91精品伊人久久大香线蕉| 成人亚洲精品av一区二区| 亚洲欧美日韩东京热| 免费看a级黄色片| 听说在线观看完整版免费高清| 乱系列少妇在线播放| 精品久久久噜噜| 成人高潮视频无遮挡免费网站| 久久精品国产亚洲av涩爱| 成人特级av手机在线观看| 日日干狠狠操夜夜爽| 少妇猛男粗大的猛烈进出视频 | 97在线视频观看| 国产精品国产三级国产av玫瑰| 听说在线观看完整版免费高清| 午夜精品在线福利| 啦啦啦啦在线视频资源| 国产 一区 欧美 日韩| 日韩成人伦理影院| 色网站视频免费| 亚洲成人精品中文字幕电影| 麻豆国产97在线/欧美| 亚洲高清免费不卡视频| 国产黄片视频在线免费观看| 久久精品久久精品一区二区三区| 国产精品熟女久久久久浪| 插阴视频在线观看视频| 18禁动态无遮挡网站| 日韩一区二区视频免费看| 精品国内亚洲2022精品成人| 中文字幕久久专区| 国产午夜精品论理片| 九九在线视频观看精品| 亚洲欧美精品专区久久| 国产成年人精品一区二区| 少妇猛男粗大的猛烈进出视频 | 婷婷色av中文字幕| 欧美日本视频| 欧美日韩综合久久久久久| 大话2 男鬼变身卡| 2022亚洲国产成人精品| 国产一区二区三区av在线| 九色成人免费人妻av| 一区二区三区免费毛片| 超碰97精品在线观看| 国产单亲对白刺激| 精品一区二区三卡| 黄色日韩在线| 街头女战士在线观看网站| 久久久久久伊人网av| 丰满乱子伦码专区| 最近中文字幕高清免费大全6| 少妇熟女欧美另类| 成人一区二区视频在线观看| 亚洲经典国产精华液单| 亚洲自拍偷在线| 亚洲国产欧美人成| 国语对白做爰xxxⅹ性视频网站| 一级av片app| 国产精品麻豆人妻色哟哟久久 | 久久久久久久久大av| 最近视频中文字幕2019在线8| 国产老妇伦熟女老妇高清| 精品人妻一区二区三区麻豆| 精品一区二区三卡| 人体艺术视频欧美日本| 欧美日韩在线观看h| 有码 亚洲区| 日本一二三区视频观看| 亚洲精品一区蜜桃| 国产精品99久久久久久久久| 汤姆久久久久久久影院中文字幕 | 国产成人aa在线观看| 真实男女啪啪啪动态图| 久久鲁丝午夜福利片| 大话2 男鬼变身卡| 亚洲精品乱久久久久久| 97热精品久久久久久| 日韩av在线免费看完整版不卡| 黄片无遮挡物在线观看| 九色成人免费人妻av| 国产在视频线精品| 精品久久久久久成人av| 高清视频免费观看一区二区 | 欧美xxxx性猛交bbbb| 亚洲人成网站高清观看| 国产白丝娇喘喷水9色精品| 国产三级在线视频| 国产一区二区亚洲精品在线观看| 婷婷色综合www| 色尼玛亚洲综合影院| 国内精品一区二区在线观看| 免费看a级黄色片| 97在线视频观看| 国产老妇伦熟女老妇高清| 真实男女啪啪啪动态图| 国产精品1区2区在线观看.| 成人国产麻豆网| 大片免费播放器 马上看| 国产亚洲一区二区精品| 久久精品熟女亚洲av麻豆精品 | 国产爱豆传媒在线观看| 草草在线视频免费看| 一级片'在线观看视频| av在线天堂中文字幕| 啦啦啦中文免费视频观看日本| 精品久久久久久成人av| 麻豆成人av视频| 寂寞人妻少妇视频99o| 国产一区二区三区av在线| 青青草视频在线视频观看| 国产69精品久久久久777片| 国产精品不卡视频一区二区| 少妇高潮的动态图| 国产精品国产三级专区第一集| 亚洲av.av天堂| 在线观看美女被高潮喷水网站| 国产69精品久久久久777片| 嘟嘟电影网在线观看| 精品一区二区三卡| 大香蕉久久网| 日日啪夜夜撸| 国产精品三级大全| 最后的刺客免费高清国语| 最近手机中文字幕大全| 韩国高清视频一区二区三区| 直男gayav资源| 久久久久免费精品人妻一区二区| 精品不卡国产一区二区三区| eeuss影院久久| 色哟哟·www| 最近的中文字幕免费完整| 精品久久久久久成人av| 麻豆成人av视频| 日韩一本色道免费dvd| 3wmmmm亚洲av在线观看| 国产精品人妻久久久影院| 日日干狠狠操夜夜爽| 91精品国产九色| 国产亚洲av片在线观看秒播厂 | av.在线天堂| 日韩欧美三级三区| 一级毛片电影观看| 大片免费播放器 马上看| 少妇熟女欧美另类| 高清在线视频一区二区三区| 人人妻人人看人人澡| av天堂中文字幕网| 亚洲精品日韩av片在线观看| 欧美另类一区| 日本一二三区视频观看| 欧美成人精品欧美一级黄| 精品亚洲乱码少妇综合久久| 日韩视频在线欧美| 成人亚洲欧美一区二区av| 国产精品无大码| 美女黄网站色视频| 精品久久久精品久久久| 51国产日韩欧美| 国产在线一区二区三区精| 午夜免费观看性视频| 你懂的网址亚洲精品在线观看| 国产 亚洲一区二区三区 | 激情五月婷婷亚洲| 久久99热这里只频精品6学生| 中文乱码字字幕精品一区二区三区 | 大香蕉97超碰在线| 国产久久久一区二区三区| 国产成人精品福利久久| 午夜福利在线在线| 久久精品久久久久久噜噜老黄| 一二三四中文在线观看免费高清| 欧美成人午夜免费资源| 亚洲欧美日韩东京热| 又大又黄又爽视频免费| av一本久久久久| av女优亚洲男人天堂| 精品久久久久久久人妻蜜臀av| 纵有疾风起免费观看全集完整版 | 免费观看无遮挡的男女| 午夜激情欧美在线| 欧美高清性xxxxhd video| 亚洲,欧美,日韩| av在线观看视频网站免费| 国产精品三级大全| 一本久久精品| 久久99热6这里只有精品| 欧美变态另类bdsm刘玥| 插逼视频在线观看| 亚洲欧美成人综合另类久久久| 国模一区二区三区四区视频| 极品教师在线视频| 女人久久www免费人成看片| 色尼玛亚洲综合影院| 人妻制服诱惑在线中文字幕| 亚洲成人中文字幕在线播放| 久久久久久久久久黄片| 一级片'在线观看视频| 一级毛片我不卡| 亚洲在线自拍视频| .国产精品久久| 草草在线视频免费看| 成人漫画全彩无遮挡| 亚洲欧美一区二区三区国产| 真实男女啪啪啪动态图| 高清午夜精品一区二区三区| 亚洲综合色惰| 亚洲国产色片| 十八禁国产超污无遮挡网站| 欧美区成人在线视频| 国产伦精品一区二区三区视频9| 青青草视频在线视频观看| 国产精品嫩草影院av在线观看| 99热这里只有是精品50| 国产男女超爽视频在线观看| 亚洲美女视频黄频| 日韩成人av中文字幕在线观看| 精品久久久久久久末码| 中文字幕亚洲精品专区| 波野结衣二区三区在线| 中文天堂在线官网| 成人特级av手机在线观看| 亚洲精品影视一区二区三区av| 久久久久久久久久久丰满| 免费大片黄手机在线观看| 少妇人妻一区二区三区视频| 日本免费a在线| 成人二区视频| 波野结衣二区三区在线| 2018国产大陆天天弄谢| 最近2019中文字幕mv第一页| 亚洲人成网站高清观看| 亚洲欧美精品自产自拍| 777米奇影视久久| 美女cb高潮喷水在线观看| 久久草成人影院| 大香蕉久久网| 色吧在线观看| 国产人妻一区二区三区在| 国产在线男女| av免费观看日本| 欧美xxxx黑人xx丫x性爽| 精品久久久噜噜| 国产极品天堂在线| 亚洲欧美日韩卡通动漫| av线在线观看网站| 成人毛片60女人毛片免费| 日韩强制内射视频| 特大巨黑吊av在线直播| 插逼视频在线观看| 免费av毛片视频| 婷婷色综合www| 中文字幕免费在线视频6| 亚洲最大成人中文| 日韩不卡一区二区三区视频在线| 啦啦啦中文免费视频观看日本| 女人被狂操c到高潮| 国内精品一区二区在线观看| 亚洲精品乱久久久久久| 最后的刺客免费高清国语| 国产91av在线免费观看| 国产成人一区二区在线| 精品一区二区免费观看| 亚洲国产色片| 亚洲在线观看片| 国产老妇女一区| 色吧在线观看| 在线观看免费高清a一片| 午夜福利成人在线免费观看| 亚洲第一区二区三区不卡| 国产成人精品婷婷| 国产成人aa在线观看| 免费av观看视频| 亚洲精品成人久久久久久| 亚洲国产色片| 免费观看精品视频网站| 最近中文字幕2019免费版| 日韩精品有码人妻一区| 一本一本综合久久| 日韩电影二区| 麻豆久久精品国产亚洲av| 亚洲怡红院男人天堂| 国产精品一区www在线观看| 日韩视频在线欧美| 成人亚洲欧美一区二区av| 99热网站在线观看| 国产美女午夜福利| 三级经典国产精品| 黑人高潮一二区| 亚洲欧美中文字幕日韩二区| www.av在线官网国产| 国产一区亚洲一区在线观看| 春色校园在线视频观看| 国产成人午夜福利电影在线观看| 亚洲欧洲国产日韩| 久久久久性生活片| 欧美高清成人免费视频www| 国内少妇人妻偷人精品xxx网站| 日韩强制内射视频| 久久久色成人| 亚洲国产精品国产精品| 少妇高潮的动态图| 爱豆传媒免费全集在线观看| 99久久精品国产国产毛片| 成人综合一区亚洲| 2021天堂中文幕一二区在线观| 亚洲av一区综合| 亚洲精品国产av蜜桃| 肉色欧美久久久久久久蜜桃 | 婷婷色综合大香蕉| 一二三四中文在线观看免费高清| 国产精品一二三区在线看| 亚洲最大成人中文| 国产精品日韩av在线免费观看| 国产精品美女特级片免费视频播放器| 国产成人a区在线观看| ponron亚洲| 青青草视频在线视频观看| 99久国产av精品国产电影| 99热全是精品| 亚洲人成网站在线观看播放| 免费观看在线日韩| 一级毛片久久久久久久久女| 蜜桃久久精品国产亚洲av| 国产伦在线观看视频一区| 黄片wwwwww| 黄片无遮挡物在线观看| 欧美成人a在线观看| 亚洲精品456在线播放app| 熟女电影av网| 有码 亚洲区| 尤物成人国产欧美一区二区三区| 日产精品乱码卡一卡2卡三| 国模一区二区三区四区视频| 中国美白少妇内射xxxbb| 国产成年人精品一区二区| 晚上一个人看的免费电影| 精品少妇黑人巨大在线播放| 久久久久久久久久黄片| 国产精品国产三级国产专区5o| 99re6热这里在线精品视频| 亚洲av成人av| 国产综合懂色| 少妇被粗大猛烈的视频| 精品久久久久久久末码| 国产综合懂色| 只有这里有精品99| 亚洲av一区综合| 如何舔出高潮| 全区人妻精品视频| 日本爱情动作片www.在线观看| 国产一区有黄有色的免费视频 | 国产成人午夜福利电影在线观看| 亚洲精品久久久久久婷婷小说| 少妇的逼好多水| 亚洲久久久久久中文字幕| 中文欧美无线码| 久99久视频精品免费| 成人亚洲精品一区在线观看 | 亚洲av免费高清在线观看| 午夜免费观看性视频| 久久热精品热| 一夜夜www| av女优亚洲男人天堂| 亚洲在久久综合| 精品久久久久久电影网| 久久久色成人| 熟妇人妻久久中文字幕3abv| 国产 亚洲一区二区三区 | 熟女人妻精品中文字幕| 不卡视频在线观看欧美| 国产成人91sexporn| 成人av在线播放网站| 国产精品1区2区在线观看.| av一本久久久久| 免费看av在线观看网站| 国产午夜福利久久久久久| 丰满乱子伦码专区| 亚洲av电影不卡..在线观看| av.在线天堂| 一个人免费在线观看电影| 一级毛片aaaaaa免费看小| 亚洲激情五月婷婷啪啪| 国产av国产精品国产| 午夜视频国产福利| 久久精品夜夜夜夜夜久久蜜豆| 非洲黑人性xxxx精品又粗又长| 人体艺术视频欧美日本| 久久97久久精品| 亚洲在线观看片| 免费高清在线观看视频在线观看| 色播亚洲综合网| 91精品一卡2卡3卡4卡| av又黄又爽大尺度在线免费看| 色视频www国产| 亚洲精品aⅴ在线观看| 18禁裸乳无遮挡免费网站照片| 日韩国内少妇激情av| 国产黄a三级三级三级人| 91精品国产九色| 日本黄大片高清| 18禁在线播放成人免费| videos熟女内射| 男女啪啪激烈高潮av片| 国产亚洲av嫩草精品影院| 亚洲成色77777| 国产高清有码在线观看视频| 日韩欧美一区视频在线观看 | 69av精品久久久久久| 热99在线观看视频| 嘟嘟电影网在线观看| 免费高清在线观看视频在线观看| 久久久久精品性色| 九九在线视频观看精品| 久久午夜福利片| 黄色配什么色好看| 国产精品女同一区二区软件| 十八禁国产超污无遮挡网站| 自拍偷自拍亚洲精品老妇| 亚洲成人久久爱视频| 麻豆久久精品国产亚洲av| 国产有黄有色有爽视频| 国产黄色小视频在线观看| 亚洲欧美成人精品一区二区| 国产精品日韩av在线免费观看| 国产色婷婷99| av又黄又爽大尺度在线免费看| 真实男女啪啪啪动态图| 国产男人的电影天堂91| 人人妻人人看人人澡| 国产av国产精品国产| 肉色欧美久久久久久久蜜桃 | 欧美高清成人免费视频www| 欧美激情在线99| 亚洲第一区二区三区不卡| 久久人人爽人人片av| 26uuu在线亚洲综合色| 国产成人a区在线观看| 最近视频中文字幕2019在线8| 国产精品.久久久| 99久国产av精品国产电影| 国产av在哪里看| 国产久久久一区二区三区| 日韩av免费高清视频| 99re6热这里在线精品视频| 一级毛片我不卡| 日韩一本色道免费dvd| 成人亚洲精品av一区二区| 五月玫瑰六月丁香| 欧美人与善性xxx| 日韩欧美精品免费久久| 国产黄色免费在线视频| 久久精品国产亚洲av天美| 精品久久久久久久久av| 免费大片黄手机在线观看| 日本欧美国产在线视频| 亚洲欧美日韩无卡精品| 国产精品麻豆人妻色哟哟久久 | 国产高清不卡午夜福利| 97精品久久久久久久久久精品| 国产不卡一卡二| 精品一区二区三卡| 日日干狠狠操夜夜爽| 国产免费福利视频在线观看| 亚洲成人一二三区av| 国产 亚洲一区二区三区 | 国产在线男女| av卡一久久| 1000部很黄的大片| 亚洲av不卡在线观看| 又粗又硬又长又爽又黄的视频| 国产探花极品一区二区| 在现免费观看毛片| 精华霜和精华液先用哪个| 成人美女网站在线观看视频| 校园人妻丝袜中文字幕| 国内精品美女久久久久久| 国产精品伦人一区二区| 国产亚洲91精品色在线| 成人高潮视频无遮挡免费网站| 好男人在线观看高清免费视频| 国产 一区精品| 成人美女网站在线观看视频| 一夜夜www| 身体一侧抽搐| 亚洲国产成人一精品久久久| 国产成人福利小说| 久久久久久久久久久免费av| 狂野欧美白嫩少妇大欣赏| 久久这里只有精品中国| 中文字幕av在线有码专区| 亚洲婷婷狠狠爱综合网| 日日啪夜夜撸| 久久久a久久爽久久v久久| 免费看美女性在线毛片视频| 精品熟女少妇av免费看| 男人狂女人下面高潮的视频| 国产男人的电影天堂91| 黄色配什么色好看| 日韩 亚洲 欧美在线| 国产伦精品一区二区三区视频9| 国产在线男女| 日韩欧美精品免费久久| 国产精品福利在线免费观看| 国产成人a区在线观看| 亚洲精品久久午夜乱码| 边亲边吃奶的免费视频| 亚洲不卡免费看| 淫秽高清视频在线观看| 最近中文字幕2019免费版| 韩国高清视频一区二区三区| av又黄又爽大尺度在线免费看| 亚洲欧美日韩东京热| 亚洲欧美中文字幕日韩二区| 亚洲av成人精品一二三区| 人人妻人人看人人澡| 性色avwww在线观看| 亚洲自拍偷在线| 精品一区二区三卡| 国产成人a∨麻豆精品| 亚洲av中文av极速乱| 国产综合懂色| 国产黄片视频在线免费观看| ponron亚洲| 国产在线一区二区三区精| 欧美性猛交╳xxx乱大交人| 成年女人看的毛片在线观看| 久久久久久久大尺度免费视频| 国产一区二区亚洲精品在线观看| 国产高清不卡午夜福利| 国产69精品久久久久777片| 国产亚洲91精品色在线| 日韩在线高清观看一区二区三区| 国产精品女同一区二区软件| 大香蕉久久网| 国产中年淑女户外野战色| 日韩精品有码人妻一区| 国产日韩欧美在线精品| 舔av片在线| 国产男女超爽视频在线观看| 亚洲一区高清亚洲精品| 九色成人免费人妻av| av天堂中文字幕网| 婷婷色av中文字幕| 国产亚洲午夜精品一区二区久久 | 丰满人妻一区二区三区视频av| 伊人久久精品亚洲午夜| 狂野欧美白嫩少妇大欣赏| 日韩大片免费观看网站| 少妇熟女aⅴ在线视频| 久久精品夜色国产| 亚州av有码| 国产精品.久久久| a级毛色黄片| 一级片'在线观看视频| 黄色日韩在线| 免费看av在线观看网站| 有码 亚洲区| 国产av码专区亚洲av| 欧美日韩亚洲高清精品| 日韩强制内射视频| 身体一侧抽搐| 国产久久久一区二区三区| 国产综合精华液| 在线观看av片永久免费下载| 免费黄频网站在线观看国产| 日日摸夜夜添夜夜爱|